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Abstract

For many applications it is important to ac-
curately distinguish false negative results from
false positives. This is particularly important
for medical diagnosis where the correct balance
between sensitivity and specificity plays an im-
portant role in evaluating the performance of a
classifier. In this paper we discuss two schemes
for adjusting the sensitivity and specificity of
Support Vector Machines and the description
of their performance using receiver operating
characteristic (ROC) curves. We then illustrate
their use on real-life medical diagnostic tasks.

1 Introduction.

Since their introduction by Vapnik and coworkers [Vap-
nik, 1995; Cortes and Vapnik, 1995), Support Vector Ma-
chines (SVMs) have been successfully applied to a num-
ber of real world problems such as handwritten charac-
ter and digit recognition[Schélkopf, 1997; Cortes, 1995;
LeCun et al., 1995; Vapnik, 1995], face detection [Osuna
et al., 1997] and speaker identification [Schmidt, 1996] .
They exhibit a remarkable resistance to overfitting, a fea-
ture explained by the fact that they directly implement
the principle of Structural Risk Minimization [Vapnik,
1995). For noise-free classification tasks they work by
mapping the training points into a high-dimensional fea-
ture space where a separating hyperplane (w,b) is found
which maximises the margin or distance from the closest
data points. Hyperplanes can be represented in feature
space (a Hilbert space) by means of kernel functions (dot
products between mapped pairs of input points z;):

K(x',x) =Y 6i(x)¢i(x)
Gaussian kernels are an example:

K(x' x) = e llx=xII*/20

For input points x; mapping to targets y (i =
1,...,p), the decision function is formulated in terms
of these kernels:

f(x) = sign (Z oy K (%, %) + b)

i=1

where b is the bias and the coefficients «; are found by
maximising the Lagrangian:
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subject to constraints:
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Only those points which lie closest to the hyperplane
have a; > 0 (the support vectors).

In the presence of noise, two techniques can be used
to allow for, and control, a trade off between training
accuracy and simplicity of the hypothesis (equivalent to
a small norm of w). One consists of setting an upper
bound on the size of the «;, so the influence of outliers
is reduced. The other consists in adding a diagonal ele-
ment to the matrix K| effectively mapping the data into
a “separation space” where a separating hyperplane is
found. Both these soft margin techniques were intro-
duced by (Cortes and Vapnik 1995) and result from the
following optimization problems:

CYEF +(w,w)
yi((w,x;) +b) > 1 —-¢&, with & >0

minimize
subject to

(3)

with £ = 1 and k£ = 2. A theoretical analysis of both al-
gorithms has recently been provided by Shawe-Taylor
and Cristianini [Shawe-Taylor and Cristianini, 1999],
based on the concept of “margin distributions”.

For many decision support systems it is important to
distinguish the two types of errors that can arise: a false
alarm 1s usually not as expensive as a missed correct
alarm. For example, for the detection of tumours from
MRI scans it is important to avoid false negative results,



but a small number of false positive results may be tol-
erated if the scans are subsequently re-screened by med-
ical personnel. Similarly, for the condition monitoring
of machinery, occasional false alarms may be less expen-
sive than missing a correct alarm signalling imminant
machine failure.

In this paper we will present two new techniques for
controlling this trade-off between false positives and false
negatives with Support Vector Machines. In section 3 we
will compare these methods on real life medical datasets.

2 Sensitivity versus specificity

The performance of a binary classifier is usually quanti-
fied by its accuracy during the test phase, i.e. the frac-
tion of misclassified points on the test set. However, as
we have just remarked, the significance of the two types
of misclassifications may well be different. Consequently,
the performance of such systems are best described in
terms of their sensitivity and specificity quantifying their
performance for false positive and false negatives. Sys-
tems can then be compared by using a ROC (Receiver
Operating Characteristic) analysis. These techniques are
based on the consideration that a test point always falls
into one of the following 4 categories: False Positive (FP)
if the systems labels it as a positive while it is a negative;
False Negative (FN) if the system labels it as a negative
while it is a positive; True Positive (TP) and True Neg-
ative (TN) if the system correctly predicts the label. In
the following we will use TP, TN, F'P, F'N to denote the
number of true positives, true negatives, false positives
and false negatives, respectively. Note that with this no-
tation the number of positive points in the test set can
be written as TP+ F N | the number of negative points as
TN+ FP,and the test set size as TP+ FP+TN+ FN.

A confusion matrix can be used to summarize the per-
formance of a learning machine:

FBrpected

P N
Machine P | TP | FP
N [ FN | TN

and thus a perfect predictor would have a diagonal con-
fusion matrix.

We then define the sensitivity of a learning machine as
the ratio between the number of true positive predictions
TP and the number of positive instances in the test set:

TP
TP+ FN

the specificity as the ratio between the number of true
negative predictions T'N and the number of negative in-
stances in the test set:

sensitivity =

TN
TN+ FP

the accuracy is the ratio between the number of correctly
identified examples and the test set size:

TP+ TN
TP+TN+FP+FN

specificity =

accuracy =

For medical diagnosis sensitivity gives the percentage
of correctly classified diseased individuals and the speci-
ficity the percentage of correctly classified individuals
without the disease.

ROC analysis 1s a classical method in Signal Detec-
tion Theory [Swets and Pickett, 1982], and is used also in
statistics, medical diagnosis [Centor, 1991] and more re-
cently in Machine Learning as an alternative method for
comparing learning systems [Provost et al., 1998]. ROC
space denotes a coordinate system used for visualizing
the performance of a classifier, where the true positive
rate 1s plotted on the y-axis, and the false positive rate
on the z-axis. In this way classifers are compared not by
a number, but by a point in a plane. For classifiers ob-
tained by thresholding a real valued function or depend-
ing on a real parameter, this produces a curve, called a
ROC curve, describing the trade-off between sensitivity
and specificity. Two systems can therefore be compared
with the better one being the highest and leftmost one.

The objective of this paper is to outline methods for
controlling the balance between the off-diagonal terms
in the confusion matrix. In the following we outline and
compare two schemes for doing this. The basic idea is
to introduce different loss functions for positively and
negatively labelled points, which translates into a bias
for larger multipliers a; for the class where the cost of
misclassification is heavier. In turn, this induces a de-
cision boundary which is much more distant from the
‘critical’ class than from the other. In [Shawe-Taylor,
1998] it is shown that the distance of a test point from
the boundary is related to its probability of misclassi-
fication (test points further away from the hyperplane
are less likely to be misclassified). This observation mo-
tivated a related technique to the one proposed in this
paper. Studying the case of very imbalanced datasets
(where points of one class are much more numerous than
points of the other class), the authors of [Karakoulas and
Shawe-Taylor, 1999] proposed an algorithm where the
labels are changed in such a way as to obtain a larger
margin on the side of the smaller class.

2.1. We can readily generalise the soft margin approach
(3):
wox;+b>1-¢

where:

& >0

so that the primal formulation of the Lagrangian has two
loss functions for the two types of errors:
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where a; > 0 and p; > 0. It is then straightforward
to show that the dual formulation gives the same La-

grangian as in (1) but with the «; constrained as follows:

C+>Ozi>0

if y; = +1 and:

C™>a; >0
ifyiz—l.

2.2. Instead of using an L; norm for the losses we can
also use the square of the Ly norm instead [Cortes and

Vapnik, 1995]. Thus:

_ ||W||2 + - 2 - - 2
L, = “5-+C Z &+ 0 Z &
{ilyi=+1} {ilyi=—1}
P P
= ailp(wexi+b) =1+ &] = ik
i=1 i=1

Using the derivatives 0L, /0w = 0, 0L, /b = 0, and
0L, /0& = 0, and the Kuhn-Tucker conditions:

o [y(w-x;+b0)—1+4+&]=0

and:

& =0

we get the dual formulation:
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then the balance between sensitivity and specificity can
be controlled using the following scheme, namely the
diagonal components of the kernel matrices are supple-
mented by fixed positive contributions:

K(xi,%x;) + K(xi,%;) + ¢t

for y; = +1 and:

K(x,%;) « K(xi,%xi) +¢
for y; = —1.

The addition of diagonal elements to the covariance
function is a widely used in Bayesian regression theory,

where the amount of noise present in the data dictates
the size of the regularising diagonal elements added to
the covariance function. The use of diagonal terms ap-
plies to those cases in which the amount of noise is not
the same throughout the data. By analogy, the above
method amounts to assuming a noise which is depen-
dent on the class. In a sense one class requiries more
regularization than the other. From the perspective of
large margin classifiers we have simply enforced an asym-
metric margin to minimize the risk of misclassifying the
elements of one of the two classes. Algorithmically, we
have achieved this by changing the covariance function,
effectively choosing a special kernel which maps the data
into a space where the standard hard margin algorithm
can be used.

3 Numerical Experiments

Since our motivation for studying this problem comes
from medical decision support we will compare the per-
formance of these two methods on 4 medical datasets:

1. Heart Disease Diagnosis. In Figures 1 and 2 we
illustrate the performance of these two methods on data
from the UCI (Cleveland) heart disease dataset [Blake
et al., 1998]. This consists of a binary classification task
with 13 input attributes and 270 examples. With test
sets of 27 examples (10-fold cross-validation) we show the
performance for C~ = oo and varying CT in Figure 1
and similarly with ¢~ = 0 and varying ¢Tin Figure 2. For
the ROC curves in Figure 3 the former method performs
better on the average though the difference between the
two methods is not statistically significant.
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Figure 1: Heart data: the generalisation error (y-axis)
versus CT (z-axis) for a SVM trained using Gaussian
kernels with o = 4.9 (C~ = o). As C'T decreases the
number of false positives decreases (dashed curve) but
at the expense of an increase in the number of false neg-
atives (solid curve).
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Figure 2: Heart data: the generalisation error (y-axis)
versus €T (z-axis) for a SVM trained using Gaussian ker-
nels with ¢ = 4.9 (¢= = 0.0). As et increases the num-
ber of false positives decreases (dashed curve) but at the
expense of an increase in the number of false negatives
(solid curve).
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Figure 3: Heart data: true positives (y-axis) vs false
positives (z-axis) (¢ = 4.9). The ROC curve generated
using method 2.1 (varying Ct - solid curve) is very sim-
ilar to the ROC curve generated by method 2.2 (varying
et - dashed curve).

2. Diabetes Dataset. This dataset also came from the
UCI repository [Blake et al., 1998] and consists of a bi-
nary classification task with 8 input attributes. We used
768 examples and approximate 10-fold cross-validation
(76 test examples). From the ROC curves (Figure 4) we
see that the first method with box constraints on «; 1s
better on the average but not at a statistically significant
level.
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Figure 4: Diabetes data: true positives (y-axis) vs false
positives (z-axis) (¢ = 1.1). The ROC curve gener-
ated using method 2.1 (varying Ct - solid curve) and
2.2 (varying et - dashed curve).

3. Liver Disorders Dataset. The BUPA liver dis-
orders dataset has 6 inputs and we used approximate
10-fold cross validation (34 test examples). There is lit-
tle to distinguish the two methods from the ROC curves
(Figure 5) though prohibitive training times for the sec-
ond method meant only part of the latter curve could be
plotted though this feature would depend on the training
algorithm used [Friess et al., 1998].

4. TB dataset. This dataset derives from one of
our own projects [Veropoulos et al., 1998; 1999]. The
task involves classification of image objects (TB bacilli
or non-bacilli) on images captured using a microscope.
It is intended as part of a system being developed for
semi-automated diagnosis to increase the volume of sam-
ples investigated and improve accuracy (current screen-
ing programmes may miss up to 30-50% of active cases
[WHO, 1998]). A total of 1140 examples were used (each
with 14 input attributes) together with 10-fold cross val-
idation. Again (Figure 6) there is little to distinguish the
two methods though we were not able to complete the
ROC curve for the second method for the same reason
as occured In experiment 3.
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Figure 5: Liver data: true positives (y-axis) vs false posi-
tives (z-axis) (o = 0.7). The ROC curve generated using
method 2.1 (varying CT - solid curve) and 2.2 (varying
et - dashed curve)
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Figure 6: TB data: true positives (y-axis) vs false posi-
tives (z-axis) (o = 0.3). The ROC curve generated using
method 2.1 (varying CT - solid curve) and 2.2 (varying
et - dashed curve)

4 Conclusion.

In this paper we have outlined 2 schemes for controlling
the balance between false positives and false negatives.
In our numerical experiments the method based on using
box constraints (C'*, ™) is better on the average for 2
datasets (heart and diabetes). However, the difference
between the two methods is not statistically significant
for any of the 4 datasets considered. For the algorithm
used [Friess et al., 1998] the method based on additions
to the kernel diagonal proved to be prohibitively slow
for large values of (¢t e7). However, the extent of this
problem is likely to be related to the type of QP routine
used.

For many data mining applications the problem of im-
balanced data sets or asymmetric loss functions is com-
mon (with sensitivity and specificity more important
than overall performance). The techniques proposed
here are sufficiently simple to be promptly implemented
while adding little further computational load to the al-
gorithm. As demonstrated in the above case studies,
they have the power to effectively control the sensitivity
of the learning machine.
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