
Controlling the Sensitivity of Support Vector MachinesK. Veropoulos, C. Campbell, N. CristianiniDepartment of Engineering Mathematics,Bristol University, Bristol BS8 1TR,United KingdomAbstractFor many applications it is important to ac-curately distinguish false negative results fromfalse positives. This is particularly importantfor medical diagnosis where the correct balancebetween sensitivity and speci�city plays an im-portant role in evaluating the performance of aclassi�er. In this paper we discuss two schemesfor adjusting the sensitivity and speci�city ofSupport Vector Machines and the descriptionof their performance using receiver operatingcharacteristic (ROC) curves. We then illustratetheir use on real-life medical diagnostic tasks.1 Introduction.Since their introduction by Vapnik and coworkers [Vap-nik, 1995; Cortes and Vapnik, 1995], Support Vector Ma-chines (SVMs) have been successfully applied to a num-ber of real world problems such as handwritten charac-ter and digit recognition[Sch�olkopf, 1997; Cortes, 1995;LeCun et al., 1995; Vapnik, 1995], face detection [Osunaet al., 1997] and speaker identi�cation [Schmidt, 1996] .They exhibit a remarkable resistance to over�tting, a fea-ture explained by the fact that they directly implementthe principle of Structural Risk Minimization [Vapnik,1995]. For noise-free classi�cation tasks they work bymapping the training points into a high-dimensional fea-ture space where a separating hyperplane (w; b) is foundwhich maximises the margin or distance from the closestdata points. Hyperplanes can be represented in featurespace (a Hilbert space) by means of kernel functions (dotproducts between mapped pairs of input points xi):K(x0;x) =Xi �i(x0)�i(x)Gaussian kernels are an example:K(x0;x) = e�jjx�x0jj2=2�2For input points xi mapping to targets yi (i =1; : : : ; p), the decision function is formulated in termsof these kernels:

f(x) = sign pXi=1 �iyiK(x;xi) + b!where b is the bias and the coe�cients �i are found bymaximising the Lagrangian:L = pXi=1 �i � 12 pXi;j=1�i�jyiyjK(xi; xj) (1)subject to constraints:�i � 0 pXi=1 �iyi = 0 (2)Only those points which lie closest to the hyperplanehave �i > 0 (the support vectors).In the presence of noise, two techniques can be usedto allow for, and control, a trade o� between trainingaccuracy and simplicity of the hypothesis (equivalent toa small norm of w). One consists of setting an upperbound on the size of the �i, so the in
uence of outliersis reduced. The other consists in adding a diagonal ele-ment to the matrixK, e�ectively mapping the data intoa \separation space" where a separating hyperplane isfound. Both these soft margin techniques were intro-duced by (Cortes and Vapnik 1995) and result from thefollowing optimization problems:minimize CP �ki + hw;wisubject to yi(hw;xii+ b) � 1� �i, with �i � 0 (3)with k = 1 and k = 2. A theoretical analysis of both al-gorithms has recently been provided by Shawe-Taylorand Cristianini [Shawe-Taylor and Cristianini, 1999],based on the concept of \margin distributions".For many decision support systems it is important todistinguish the two types of errors that can arise: a falsealarm is usually not as expensive as a missed correctalarm. For example, for the detection of tumours fromMRI scans it is important to avoid false negative results,



but a small number of false positive results may be tol-erated if the scans are subsequently re-screened by med-ical personnel. Similarly, for the condition monitoringof machinery, occasional false alarms may be less expen-sive than missing a correct alarm signalling imminantmachine failure.In this paper we will present two new techniques forcontrolling this trade-o� between false positives and falsenegatives with Support Vector Machines. In section 3 wewill compare these methods on real life medical datasets.2 Sensitivity versus speci�cityThe performance of a binary classi�er is usually quanti-�ed by its accuracy during the test phase, i.e. the frac-tion of misclassi�ed points on the test set. However, aswe have just remarked, the signi�cance of the two typesof misclassi�cations may well be di�erent. Consequently,the performance of such systems are best described interms of their sensitivity and speci�city quantifying theirperformance for false positive and false negatives. Sys-tems can then be compared by using a ROC (ReceiverOperating Characteristic) analysis. These techniques arebased on the consideration that a test point always fallsinto one of the following 4 categories: False Positive (FP)if the systems labels it as a positive while it is a negative;False Negative (FN) if the system labels it as a negativewhile it is a positive; True Positive (TP) and True Neg-ative (TN) if the system correctly predicts the label. Inthe followingwe will use TP , TN , FP , FN to denote thenumber of true positives, true negatives, false positivesand false negatives, respectively. Note that with this no-tation the number of positive points in the test set canbe written as TP+FN , the number of negative points asTN +FP , and the test set size as TP +FP+TN +FN:A confusion matrix can be used to summarize the per-formance of a learning machine:ExpectedMachine P NP TP FPN FN TNand thus a perfect predictor would have a diagonal con-fusion matrix.We then de�ne the sensitivity of a learning machine asthe ratio between the number of true positive predictionsTP and the number of positive instances in the test set:sensitivity = TPTP + FNthe speci�city as the ratio between the number of truenegative predictions TN and the number of negative in-stances in the test set:speci�city = TNTN + FPthe accuracy is the ratio between the number of correctlyidenti�ed examples and the test set size:accuracy = TP + TNTP + TN + FP + FN

For medical diagnosis sensitivity gives the percentageof correctly classi�ed diseased individuals and the speci-�city the percentage of correctly classi�ed individualswithout the disease.ROC analysis is a classical method in Signal Detec-tion Theory [Swets and Pickett, 1982], and is used also instatistics, medical diagnosis [Centor, 1991] and more re-cently in Machine Learning as an alternative method forcomparing learning systems [Provost et al., 1998]. ROCspace denotes a coordinate system used for visualizingthe performance of a classi�er, where the true positiverate is plotted on the y-axis, and the false positive rateon the x-axis. In this way classifers are compared not bya number, but by a point in a plane. For classi�ers ob-tained by thresholding a real valued function or depend-ing on a real parameter, this produces a curve, called aROC curve, describing the trade-o� between sensitivityand speci�city. Two systems can therefore be comparedwith the better one being the highest and leftmost one.The objective of this paper is to outline methods forcontrolling the balance between the o�-diagonal termsin the confusion matrix. In the following we outline andcompare two schemes for doing this. The basic idea isto introduce di�erent loss functions for positively andnegatively labelled points, which translates into a biasfor larger multipliers �i for the class where the cost ofmisclassi�cation is heavier. In turn, this induces a de-cision boundary which is much more distant from the`critical' class than from the other. In [Shawe-Taylor,1998] it is shown that the distance of a test point fromthe boundary is related to its probability of misclassi-�cation (test points further away from the hyperplaneare less likely to be misclassi�ed). This observation mo-tivated a related technique to the one proposed in thispaper. Studying the case of very imbalanced datasets(where points of one class are much more numerous thanpoints of the other class), the authors of [Karakoulas andShawe-Taylor, 1999] proposed an algorithm where thelabels are changed in such a way as to obtain a largermargin on the side of the smaller class.2.1. We can readily generalise the soft margin approach(3): w � xi + b � 1� �iwhere: �i � 0so that the primal formulation of the Lagrangian has twoloss functions for the two types of errors:Lp = jjwjj22 + C+ pXfijyi=+1g �i +C� pXfijyi=�1g �i� pXi=1 �i [yi(w � xi + b)� 1 + �i]� pXi=1 �i�i



where �i � 0 and �i � 0. It is then straightforwardto show that the dual formulation gives the same La-grangian as in (1) but with the �i constrained as follows:C+ � �i � 0if yi = +1 and: C� � �i � 0if yi = �1.2.2. Instead of using an L1 norm for the losses we canalso use the square of the L2 norm instead [Cortes andVapnik, 1995]. Thus:Lp = jjwjj22 +C+ pXfijyi=+1g �2i + C� pXfijyi=�1g �2i� pXi=1 �i [yi(w � xi + b)� 1 + �i]� pXi=1 �i�iUsing the derivatives @Lp=@w = 0, @Lp=@b = 0, and@Lp=@�i = 0, and the Kuhn-Tucker conditions:�i [yi(w � xi + b) � 1 + �i] = 0and: �i�i = 0we get the dual formulation:LD = pXi=1 �i � 12 pXi;j=1�i�jyiyjK(xi;xj)� 14C+ Xfijyi=+1g�2i � 14C� Xfijyi=�1g�2iLet: �+ = 14C+ �� = 14C�then the balance between sensitivity and speci�city canbe controlled using the following scheme, namely thediagonal components of the kernel matrices are supple-mented by �xed positive contributions:K(xi;xi) K(xi;xi) + �+for yi = +1 and:K(xi;xi) K(xi;xi) + ��for yi = �1.The addition of diagonal elements to the covariancefunction is a widely used in Bayesian regression theory,

where the amount of noise present in the data dictatesthe size of the regularising diagonal elements added tothe covariance function. The use of diagonal terms ap-plies to those cases in which the amount of noise is notthe same throughout the data. By analogy, the abovemethod amounts to assuming a noise which is depen-dent on the class. In a sense one class requiries moreregularization than the other. From the perspective oflarge margin classi�ers we have simply enforced an asym-metric margin to minimize the risk of misclassifying theelements of one of the two classes. Algorithmically, wehave achieved this by changing the covariance function,e�ectively choosing a special kernel which maps the datainto a space where the standard hard margin algorithmcan be used.3 Numerical ExperimentsSince our motivation for studying this problem comesfrom medical decision support we will compare the per-formance of these two methods on 4 medical datasets:1. Heart Disease Diagnosis. In Figures 1 and 2 weillustrate the performance of these two methods on datafrom the UCI (Cleveland) heart disease dataset [Blakeet al., 1998]. This consists of a binary classi�cation taskwith 13 input attributes and 270 examples. With testsets of 27 examples (10-fold cross-validation) we show theperformance for C� = 1 and varying C+ in Figure 1and similarly with �� = 0 and varying �+in Figure 2. Forthe ROC curves in Figure 3 the former method performsbetter on the average though the di�erence between thetwo methods is not statistically signi�cant.
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0 5 10 15 20 25 30Figure 1: Heart data: the generalisation error (y-axis)versus C+ (x-axis) for a SVM trained using Gaussiankernels with � = 4:9 (C� = 1). As C+ decreases thenumber of false positives decreases (dashed curve) butat the expense of an increase in the number of false neg-atives (solid curve).
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Figure 2: Heart data: the generalisation error (y-axis)versus �+ (x-axis) for a SVM trained using Gaussian ker-nels with � = 4:9 (�� = 0:0). As �+ increases the num-ber of false positives decreases (dashed curve) but at theexpense of an increase in the number of false negatives(solid curve).
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2Figure 3: Heart data: true positives (y-axis) vs falsepositives (x-axis) (� = 4:9). The ROC curve generatedusing method 2.1 (varying C+ - solid curve) is very sim-ilar to the ROC curve generated by method 2.2 (varying�+ - dashed curve).

2. Diabetes Dataset. This dataset also came from theUCI repository [Blake et al., 1998] and consists of a bi-nary classi�cation task with 8 input attributes. We used768 examples and approximate 10-fold cross-validation(76 test examples). From the ROC curves (Figure 4) wesee that the �rst method with box constraints on �i isbetter on the average but not at a statistically signi�cantlevel.
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0 0.05 0.1 0.15 0.2 0.25 0.3Figure 4: Diabetes data: true positives (y-axis) vs falsepositives (x-axis) (� = 1:1). The ROC curve gener-ated using method 2.1 (varying C+ - solid curve) and2.2 (varying �+ - dashed curve).3. Liver Disorders Dataset. The BUPA liver dis-orders dataset has 6 inputs and we used approximate10-fold cross validation (34 test examples). There is lit-tle to distinguish the two methods from the ROC curves(Figure 5) though prohibitive training times for the sec-ond method meant only part of the latter curve could beplotted though this feature would depend on the trainingalgorithm used [Friess et al., 1998].4. TB dataset. This dataset derives from one ofour own projects [Veropoulos et al., 1998; 1999]. Thetask involves classi�cation of image objects (TB bacillior non-bacilli) on images captured using a microscope.It is intended as part of a system being developed forsemi-automated diagnosis to increase the volume of sam-ples investigated and improve accuracy (current screen-ing programmes may miss up to 30-50% of active cases[WHO, 1998]). A total of 1140 examples were used (eachwith 14 input attributes) together with 10-fold cross val-idation. Again (Figure 6) there is little to distinguish thetwo methods though we were not able to complete theROC curve for the second method for the same reasonas occured in experiment 3.
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4 Conclusion.In this paper we have outlined 2 schemes for controllingthe balance between false positives and false negatives.In our numerical experiments the method based on usingbox constraints (C+; C�) is better on the average for 2datasets (heart and diabetes). However, the di�erencebetween the two methods is not statistically signi�cantfor any of the 4 datasets considered. For the algorithmused [Friess et al., 1998] the method based on additionsto the kernel diagonal proved to be prohibitively slowfor large values of (�+; ��). However, the extent of thisproblem is likely to be related to the type of QP routineused.For many data mining applications the problem of im-balanced data sets or asymmetric loss functions is com-mon (with sensitivity and speci�city more importantthan overall performance). The techniques proposedhere are su�ciently simple to be promptly implementedwhile adding little further computational load to the al-gorithm. As demonstrated in the above case studies,they have the power to e�ectively control the sensitivityof the learning machine.
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