
Proposal and Empirical Comparison of a Parallelizable
Distance-Based Discretization Method

Jesús Cerquides1 and Ramon López de Màntaras
Artificial Intelligence Research Institute, IIIA
Spanish Council for Scientific Research, CSIC

08193, Bellaterra, Barcelona, Spain
{cerquide,mantaras}@iiia.csic.es

Abstract

Many classification algorithms are designed to
work with datasets that contain only discrete at-
tributes. Discretization is the process of convert-
ing the continuous attributes of the dataset into
discrete ones in order to apply some classifica-
tion algorithm. In this paper we first review pre-
vious work in discretization, then we propose a
new discretization method based on a distance
proposed by López de Màntaras and show that
it can be easily implemented in parallel, with a
high improvement in its complexity. Finally we
empirically show that our method has an excel-
lent performance compared with other state-of-
the-art methods.

Introduction

Discretization is a process that transforms continu-
ous attributes into discrete ones. Performing this pro-
cess, we can apply discrete classification methods to
datasets containing continuous values.

In this work we introduce a discretization method
and show that it is parallelizable and that it achieves
a top performance. The work begins introducing the
problem and reviewing some work done in discretiza-
tion. Then we explain our algorithm, and perform its
parallelization. Next we give the results of a set of em-
pirical comparisons between the different discretization
methods, to end up with a set of conclusions in the final
section.

Current discretization methods

This section introduces into more detail the discretiza-
tion problem and five solutions that have been given
from different viewpoints.

1Jesús Cerquides research is supported by a doctoral
scholarship of the CIRIT (Generalitat de Catalunya).

Copyright 1997, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

Discretization methods classification

In (Dougherty, Kohavi, & Sahami 1995) three different
axis (Global vs. Local, Supervised vs. Unsupervised
and Static vs. Dynamic) are used to make a classifica-
tion of discretization methods. We will add two more
axis:

Direct vs. Incremental

Direct methods divide the range in k intervals simulta-
neously, needing an additional criterion to determine
the value of k. Incremental methods begin with a sim-
ple discretization and pass though a improvement pro-
cess, needing an additional criterion to know when to
stop the discretization.

Bottom-Up vs. Top-Down

Incremental methods usually can be divided into Top-
Down and Bottom-Up. Top-Down methods begin with
an empty discretization and its improvement process
is simply to add a new cutpoint to the discretization.
Bottom-Up methods begin with a discretization that
has all the possible cutpoints and its improvement pro-
cess consists in merging two intervals (delete a cut-
point).

Some discretization methods

Equal size The simplest discretization method is
an unsupervised direct method named equal size dis-

cretization. It calculates the maximum and the min-
imum for the attribute that is being discretized and
partitions the range observed into k equal sized inter-
vals.

Equal frequency is another unsupervised direct
method. It counts the number of values we have from
the attribute that we are trying to discretize and par-
titions it into intervals containing the same number of
examples.

ChiMerge is a supervised, incremental, bottom-up
method described in (Kerber 1992). ChiMerge uses
χ2 statistic to determine the independence of the class
from the two adjacent intervals, combining them if it

is independent, and allowing them to be separate
otherwise.

Entropy is a supervised, incremental, top-down me-
thod described in (Fayyad & Irani 1992),(Fayyad &
Irani 1993). Entropy discretization recursively selects
the cutpoints minimizing entropy until a stopping cri-
terion based on the Minimum Description Length cri-
terion ends the recursion.

D-2 is a supervised, incremental, top-down method
described in (Catlett 1991). D-2 recursively selects the
cutpoints maximizing Quinlan’s Gain until a stopping
criterion based on a set of heuristic rules ends the re-
cursion.

Distance-Based discretization

Our algorithm, based on Mantaras distance between
partitions (López de Màntaras 1991), is global, super-
vised, static and Top-Down incremental. This means
that it is required to have two main components, a cut-
point selection criterion and a stopping criterion. Once
the examples have been sorted by the attribute value,
the main loop of our implementation of the method is:

function MDiscretization(Set S,Attribute A)
Discretization = ∅
NewCutPoint = SelectNewCutPoint(S,A,Discretization)
While (ImprovesDiscretization(S,A,Discretization,NewCutPoint))

Discretization = Discretization ∪ {NewCutPoint}
NewCutPoint = SelectNewCutPoint(S,A,Discretization)

return Discretization

Our algorithm is iterative, considering the whole set
for the selection of each new cutpoint, while previously
seen Top-Down incremental methods were recursive di-
vide and conquer algorithms.

Cutpoint selection criterion

In the ID3 algorithm, we estimate the classification
power of an attribute by some measure (Gain, Gain
Ratio, 1 - Distance,...). We want to generate a set of
cutpoints so that the classification power of the result-
ing discretized attribute is the highest possible. Our
idea is to follow a greedy heuristic in this search.

Each discretization can be identified with a set of
cutpoints. We denote by PD the partition induced by
a discretization D. We will note PD∪{T} the partition
induced in our dataset when the discretization applied
to our attribute is the result of adding cutpoint T to
the discretization D. In these terms the requirement
is to find a cutpoint TA so that it accomplishes:

∀T, Dist(PC , PD∪{T}) ≥ Dist(PC , PD∪{TA}) (1)

Where PC is the partition generated in the dataset
by the class attribute and Dist stands for Mantaras

normalized Distance which is defined as:

Dist(PC , PD) =
I(PC |PD) + I(PD |PC)

I(PC ∩ PD)
(2)

where I(PC |PD),I(PC ∩ PD),I(PD) are the standard
Shannon measures of information. For more details
see (López de Màntaras 1991).

Once TA is found, the next step is checking whether
the cutpoint improvement is significant enough to ac-
cept it or if otherwise no further cutpoints are consid-
ered necessary for the discretization.

The stopping criterion

We needed a heuristic to evaluate improvement. We
developed a stopping criterion based on the Minimum
Description Length Principle (MDLP).

The development followed to apply MDLP to our
problem is parallel to that in (Fayyad & Irani 1993).
The problem that needs to be solved is a communi-
cation problem. We have to communicate a classifier
method, that allows the receiver to determine the class
of each example. The sender knows all the attributes
of the examples, plus the class, and the receiver knows
all the attributes of the examples but not the class.
The sender must choose the shortest description for
sending a message that allows the receiver to correctly
classify each example.

The encoding length of communicating the set of
classes based on a p-cutpoint discretization can be de-
composed as Len(Disc) + Len(Classes|Disc) . If we
note N the number of examples of the dataset, k the
number of classes, ki the number of classes in the in-
terval i of the discretization, Si the set of examples in
the same interval and Ent(S) Shannon Entropy for the
set S, we have:

Len(Disc) = p log(N − 1) + (p + 1)k +

p∑

i=0

kiEnt(Si)

Len(Classes|Disc) =

p∑

i=0

|Si|Ent(Si)

Given two discretizations, one with p and the other
with p+1 cutpoints, we will choose that with the min-
imal length. If it is the one with p cutpoints, then we
stop our algorithm and no more cutpoints are added
to the discretization, otherwise we consider including
another cutpoint.

Computational complexity

The computational complexity of the method is not
easily measurable, because the stopping criterion de-
pends on the data in which we are working. The com-

plexity of the sorting step is O(N logN). The com-
plexity of the function SelectNewCutPoint in our im-
plementation is O(k i N) where k is the number of
classes in the dataset, N the number of examples and i

the number of intervals of the discretization in this run.
The complexity of ImprovesDiscretization is O(k i).
We will not consider it, because O(k i) ⊂ O(k i N). If
we discretize the attribute with p cutpoints, the total
complexity of the method is given by:

O(N logN +

p∑

i=1

ikN) = O((logN + p2k) N) (3)

k is constant, and very small with respect to N . To
ease the evaluation of the complexity, we can use a
heuristic restriction as the one imposed in D-2, and
say that discretizations cannot have more than a fixed
number of intervals. With this assumptions, complex-
ity is bounded by the sorting step, as for Entropy, D-2
or ChiMerge.

Parallelization of the method

We have found that the complexity of the algorithm,
without including the sorting step, is mainly related
with the complexity of the function SelectNewCut-

Point. We will parallelize this function to obtain a high
improvement in the performance of the algorithm.

To simplify the explanation we suppose we have as-
sign a processor to each example in the dataset. The
parallelized version of the algorithm is as follows:

• Step 1. The sorting step can be parallelized with
N processors in time O(logN). From now on we
assume the values are sorted by the attribute being
discretized.

• Step 2. We have to calculate a contingency table
for each processor, in order for the processor to be
able to evaluate the Distance between the partition
generated by the class and the partition generated
by fixing the cutpoint just between its value and
the value of the neighbour processor on its left side.
This can be done in O(k logN) time in two steps,
the first one by adding the information of all the
processors following a processor binary tree until it
arrives to the root, and the second one by descending
the processors tree, distributing the information we
have previously put together in the first step.

• Step 3. Now we have that each processor has its cor-
responding contingency table. Each processor evalu-
ates independently the Distance measure for its cut-
point. This is done in time O(k i).

• Step 4. We have to calculate the processor with min-
imal Distance. We use again the binary processor
tree, and this gives us a time O(logN).

• Step 5. The root processor evaluates the MDL cri-
terion. If it turns out that the new cutpoint is not
good enough, broadcasts it to the other processors,
and the algorithm stops here. Otherwise the new
cutpoint is annotated by the root processor. The in-
formation of where the cutpoint has been fixed, and
the contingency table of the processor whose cut-
point has been selected is broadcasted to all the pro-
cessors. This can be bounded in time by O(k i logN)

• Step 6. Each processor transforms its contingency
table considering that a new cutpoint has been fixed.
This step is bounded by O(k i)

• Step 7. We return to step 3.

The time complexity, when having h processors (h ≤
N) and the attribute discretized with p cutpoints, is
bounded by O(k p2 N

h
log h), just assigning N

h
of the

examples to each processor. Concretely, when hav-
ing N processors, the time is O(k p2 logN), which is
clearly better than the time found for the sequential
procedure. A parallel version of the method has been
implemented in MPI and its code can be examined in
(Cerquides 1997).

Empirical comparison

Comparison design

We will use the accuracy of two classification algo-
rithms to measure the discretization goodness. The
two algorithms will be ID3 (Quinlan 1986) (with no
pruning) and Naive-Bayes (Langley, Iba, & Thomp-
son 1992). We will run each algorithm in 9 different
domains with different characteristics (see Table 1).
For each learning algorithm, discretization method and
dataset we do 50 runs, each one with 70% of the ex-
amples as training set and the remainder 30% as test
set. We take the average of the 50 runs as a measure of
performance. We also keep the results of the 50 runs
to make two statistical significance tests: Rank and
Signed Rank. In (Cerquides 1997),(Gibbons 1971) one
can find a complete explanation of this tests.

Comparison results

Average accuracies comparison For each dataset
and classification algorithm we rank the 6 discretiza-
tion methods, from the first place (the most accurate)
to the sixth one. The results are displayed in the two
tables that appear below. The rows are ordered with
the best method on the top and the worst on the bot-
tom. In the tables 55555 means the algorithm ranked

Dataset Attributes Instances Classes Missing

crx 15 690 2 few

echo 7 131 2 some

glass 10 214 7 none

heartC 13 303 2 several

heartH 13 294 2 some

hep 19 155 2 some

horse 27 368 2 30 %

iris 4 150 3 none

wine 13 178 3 none

Table 1: Domains

five times in the position specified by the column under
which it appears, 4444 four times, 333 three times and
so on.

First Second Third Fourth Fifth Sixth

Distance 55555 4444

Entropy 4444 55555

Size 55555 333 1

D2 22 4444 22 1

ChiMerge 22 1 1 55555

Frequency 1 55555 333

Table 2: Average accuracy ID3 results

First Second Third Fourth Fifth Sixth

Distance 55555 22 22

Entropy 1 333 22 1 1 1

Frequency 22 333 1 22 1

Size 1 333 22 1 22

D2 22 333 1 22 1

ChiMerge 22 333 4444

Table 3: Average accuracy Naive-Bayes results

We can extract some conclusions from this two ta-
bles:

• Distance seems to be globally the best performer,
while ChiMerge seems to be the worst.

• For the ID3 classification algorithm, either Distance
or Entropy have always the first place.

Significance test comparison For each dataset
and each classification algorithm we have performed
the pairwise comparison of accuracies for the six dis-
cretization methods. This has given us a partial order-
ing of the methods for each dataset. The full results
are in (Cerquides 1997). We will try to extract the
most important conclusions in a few statements:

• Rank and Signed Rank tests differ only in one over
twenty of the comparisons. We have decided to an-
alyze only Signed Rank results.

• For ID3, Entropy and Distance are better than the
rest in a statistically significant way for all the
datasets.

• For the Bayesian classifier, Distance seems to per-
form better than the rest, but in most of the cases it
is not statistically significantly better than Entropy.

Conclusions

We have introduced a new method for discretization
of continuous values. We have seen that our new me-
thod has as good time complexity as the other existing
methods. We have also shown that our method is eas-
ily parallelizable, and we have implemented a parallel
version of it. This characteristic is specially impor-
tant for its use in Knowledge Discovery in Databases
(KDD), because databases in that area are supposed
to have a high number of registers. The time complex-
ity constraints of algorithms used in the KDD area are
very strong, and parallelism seems the better way for
reducing it.
We have also compared our discretization method, in
terms of accuracy, with other five methods, and for two
different classification algorithms observing that it has
better average accuracy than the best of the methods
proposed until now (the Entropy method), but this dif-
ference is not statistically significant. We can say then
that our method can be a good alternative to Entropy
discretization, especially for very large datasets, where
a time complexity O(N logN) may be unacceptable.

Future work

The datasets we have used for comparing the perfor-
mance of our method have at most several hundreds
of elements. A new study must be done for larger
datasets.

References
Catlett, J. 1991. On Changing Continuous Attributes into Ordered
Discrete Attributes. In Kodratoff, Y., ed., Proceedings of the Eu-

ropean Working Session on Learning, 164–178. Springer-Verlag.

Cerquides, J. 1997. Mantaras Distance for Discretization. Proposal
and Empirical Comparison of a New Parallelizable Discretization
Method. Technical report, IIIA-97-03.

Dougherty, J.; Kohavi, R.; and Sahami, M. 1995. Supervised and
Unsupervised Discretization of Continuous Features. In Prieditis,
A., and Rusell, S., eds., Machine Learning: Proceedings of the

Twelfth International Conference.

Fayyad, U. M., and Irani, K. B. 1992. On the Hadling of
Continuous-Valued Attributes in Decision Tree Generation. Ma-
chine Learning 8:87–102.

Fayyad, U. M., and Irani, K. B. 1993. Multi-Interval Discretiza-
tion of Continuous-Valued Attributes for Classification Learning.
In 13th International Joint Conference of Artificial Intelligence,
1022–1027.

Gibbons, J. 1971. Nonparametric statistical inference. Series in
probability and statistics. New York: McGraw-Hill.

Kerber, R. 1992. ChiMerge: Discretization of Numeric Attributes.
In Proceedings of the Tenth National Conference on Artificial

Intelligence, 123–128. MIT Press.

Langley, P.; Iba, W.; and Thompson, K. 1992. An Analysis of
Bayesian Classifiers. In Proceedings of the Tenth National Con-

ference on Artificial Intelligence, 223–228. AAAI Press and MIT
Press.

López de Màntaras, R. 1991. A Distance Based Attribute Selection
Measure for Decision Tree Induction. Machine Learning 6:81–92.

Quinlan, J. 1986. Induction of decision trees. Machine Learning

1:81–106.

