Learning with Product Units

Laurens R. Leerink C. Lee Giles
Department of Electrical Engineering NEC Research Institute
The University of Sydney 4 Independence Way
NSW 2006, Australia Princeton, NJ 08540, USA
laurens@sedal.su.oz.au giles@research.nj.nec.com
Bill G. Horne Marwan A. Jabri
NEC Research Institute Department of Electrical Engineering
4 Independence Way The University of Sydney
Princeton, NJ 08540, USA NSW 2006, Australia
horne@research.nj.nec.com marwan@sedal.su.oz.au
Abstract

Product units provide a method of automatically learning the
higher-order input combinations required for efficient learning in
neural networks. However, we show that problems are encoun-
tered when using backpropagation to train networks containing
these units. This paper examines these problems, and proposes
some atypical heuristics to improve learning. Using these heuristics
a constructive method 1s introduced which solves well-researched
problems with significantly less neurons than previously reported.
Secondly, product units are implemented as candidate units in the
Cascade Correlation (Fahlman & Lebiere, 1990) system. This re-
sulted in smaller networks which trained faster than when using
sigmoidal or Gaussian units.

1 Introduction

It 1s well-known that supplementing the inputs to a neural network with higher-order
combinations of the inputs both increases the capacity of the network (Cover, 1965)
and the the ability to learn geometrically invariant properties (Giles & Maxwell,

Published in Advancesin Neural Information Processing Systems 7, p. 537, MIT Press, 1995

1987). However, there is a combinatorial explosion of higher order terms as the
number of inputs to the network increases. Yet in order to implement a certain
logical function, in most cases only a few of these higher order terms are required

(Redding et al., 1993).

The product units (PUs) introduced by (Durbin & Rumelhart, 1989) attempt to
make use of this fact. These networks have the advantage that, given an appropriate
training algorithm, the units can automatically learn the higher order terms that
are required to implement a specific logical function.

In these networks the hidden layer units compute the weighted product of the inputs,

that 1s
N N
H x;TU’ mstead of E T W (1)
i=1 i=1

as in standard networks. An additional advantage of PUs is the increased infor-
mation capacity of these units compared to standard summation networks. It 1s
approximately 3N (Durbin & Rumelhart, 1989), compared to 2N for a single
threshold logic function (Cover, 1965), where N is the number of inputs to the
unit.

The larger capacity means that the same functions can be implemented by networks
containing less units. This is important for certain applications such as speech
recognition where the data bandwidth is high or if realtime implementations are
desired.

When PUs are used to process Boolean inputs, best performance is obtained
(Durbin & Rumelhart, 1989) by using inputs of {+1, —1}. If the imaginary compo-
nent is ignored, with these inputs, the activation function is equivalent to a cosine
summation function with {—1, 41} inputs mapped {1,0}. In the remainder of this
paper the terms product unit (PU) and cos(ine) unit will be used interchangeably
as all the problems examined have Boolean inputs.

2 Learning with Product Units

As the basic mechanism of a PU is multiplicative instead of additive, one would
expect that standard neural network training methods and procedures cannot be
directly applied when training these networks. This i1s indeed the case. If a neural
network simulation environment is available the basic functionality of a PU can be
obtained by simply adding the cos function cos(m * input) to the existing list of
transfer functions. This assumes that Boolean mappings are being implemented
and the appropriate {—1,+1} — {1,0} mapping has been performed on the input
vectors. However, if we then attempt to train a network on on the parity-6 problem
shown in (Durbin & Rumelhart, 1989), it is found that the standard backpropa-
gation (BP) algorithm simply does not work. We have found two main reasons for
this.

The first 1s weight initialization. A typical first step in the backpropagation proce-
dure is to initialize all weights to small random values. The main reason for this
is to use the dynamic range of the sigmoid function and it’s derivative. However,
the dynamic range of a PU is unlimited. Initializing the weights to small random

Published in Advancesin Neural Information Processing Systems 7, p. 537, MIT Press, 1995

values results in an input to the unit where the derivative is small. So apart from
choosing small weights centered around nw with n = +1,£2, ... this is the worst
possible choice. In our simulations weights were initialized randomly in the range
[—2,2]. In fact, learning seems insensitive to the size of the weights, as long as they
are large enough.

The second problem is local minima. Previous reports have mentioned this prob-
lem, (Lapedes & Farber, 1987) commented that “using sin’s often leads to nu-
merical problems, and nonglobal minima, whereas sigmoids seemed to avoid such
problems”. This comment summarizes our experience of training with PUs. For
small problems (less than 3 inputs) backpropagation provides satisfactory training.
However, when the number of inputs are increased beyond this number, even with
the weight initialization in the correct range, training usually ends up in a local
minima.

3 Training Algorithms

With these aspects in mind, the following training algorithms were evaluated: online
and batch versions of Backpropagation (BP), Simulated Annealing (SA), a Random
Search Algorithm (RSA) and combinations of these algorithms.

BP was used as a benchmark and for use in combination with the other algorithms.
The Delta-Bar-Delta learning rate adaptation rule (Jacobs, 1988) was used along
with the batch version of BP to accelerate convergence, with the parameters were
set to @ = 0.35,x = 0.05 and ¢ = 0.90. RSA is a global search method (i.e.
the whole weight space is explored during training). Weights are randomly chosen
from a predefined distribution, and replaced if this results in an error decrease. SA
(Kirkpatrick et al., 1983) is a standard optimization method. The operation of SA
is similar to RSA, with the difference that with a decreasing probability solutions
are accepted which increase the training error. The combination of algorithms were
chosen (BP & SA, BP & RSA) to combine the benefits of global and local search.
Used in this manner, BP is used to find the local minima. If the training error at
the minima is sufficiently low, training is terminated. Otherwise, the global method
initializes the weights to another position in weight space from which local training
can continue.

The BP-RSA combination requires further explanation. Several BP-(R)SA combi-
nations were evaluated, but best performance was obtained using a fixed number of
iterations of BP (in this case 120) along with one initial iteration of RSA. In this
manner BP is used to move to the local minima, and if the training error is still
above the desired level the RSA algorithm generates a new set of random weights
from which BP can start again.

The algorithms were avaluated on two problems, the parity problem and learning all
logical functions of 2 and 3 inputs. The infamous parity problem is (for the product
unit at least) an appropriate task. As illustrated by (Durbin & Rumelhart, 1989),
this problem can be solved by one product unit. The question is whether the training
algorithms can find a solution. The target values are {—1,+1}, and the output is
taken to be correct if it has the correct sign. The simulation results are shown in
Table 1. It should be noted that one epoch of both SA and RSA involves relaxing

Published in Advancesin Neural Information Processing Systems 7, p. 537, MIT Press, 1995

the network across the training set for every weight, so in terms of computation

their T poc, values should be multiplied by a factor of (N + 1).

Parity Online BP Batch BP SA RSA
N Neonv ﬁepoch Neonv ﬁepoch Neonv ﬁepoch Neonv ﬁepoch
6 10 30.4 7 34 10 12.6 10 15.2
8 8 101.3 2 700 10 52.8 10 45.4
10 6 203.3 0 - 10 99.9 10 74.1

Table 1: The parity N problem: The table shows n.4,, the number of runs out of
10 that have converged and T p,c5, the average number of training epochs required
when training converged.

For the parity problem it is clear that local learning alone does not provide good
convergence. For this problem, global search algorithms have the following advan-
tages: (1) The search space is bounded (all weights are restricted to [—2,42]) (2)
The dimension of search space is low (maximum of 11 weights for the problems
examined). (3) The fraction of the weight space which satisfies the parity problem
relative to the total bounded weight space is high.

In a second set of simulations, one product unit was trained to calculate all (22)V
logical functions of the N input variables. Unfortunately, this is only practical for
N € {2,3}. For N = 2 there are only 16 functions, and a product unit has no
problem learning all these functions rapidly with all four training algorithms. In
comparison a single summation unit can learn 14 (not the XOR & XNOR functions).
For N=3, a product unit is able to implement 208 of the 256 functions, while a single
summation unit could only implement 104. The simulation results are displayed in

Table 2.

Online BP
ﬁepoch

Batch BP

ﬁlogic

SA

ﬁepoch

RSA

ﬁlogic

BP-RSA

ﬁlogic

ﬁlogic ﬁepoch ﬁlogic ﬁepoch ﬁepoch

1473] 426 | 189.2] 205 [196.1] 438 [1674] 602 [208 | 443

Table 2: Learning all logical functions of 3 inputs: The rows display 7.4, the
average number of logical functions implemented by a product unit and fepoep, the
number of epochs required for convergence. Ten simulations were performed for
each of the 256 logical functions, each for a maximum of 1,000 iterations.

4 Constructive Learning with Product Units

Selecting the optimal network architecture for a specific application is a nontrivial
and time-consuming task, and several algorithms have been proposed to automate
this process. These include pruning methods and growing algorithms. In this section
a simple method is proposed for adding PUs to the hidden layer of a three layer
network. The output layer contains a single sigmoidal unit.

Several constructive algorithms proceed by freezing a subset of the weights and
limiting training to the newly added units. As mentioned earlier, for PUs a global

Published in Advancesin Neural Information Processing Systems 7, p. 537, MIT Press, 1995

300 T
Tiling Algorithm ~o—
Upstart Algorithm H—
SIM using Prodyét Units +5—
250 B
<
Q 200 E
2
[}
=4
£
1%
s
[150 g
[
f=
k<]
9]
e}
E 100}]
z
50 E
O Il Il Il Il Il
0 200 400 1000 1200

600
Number of patterns (2”N)

Figure 1: The number of units required for learning the random mapping problems
by the ‘tiling’, ‘upstart’ and SIM algorithms.

search is required to solve the local-minima problems. Freezing a subset of the
weights restricts the new solution to an affine subset of the existing weight space,
often resulting in non-minimal networks (Ash, 1989). For this reason a simple
incremental method (SIM) was implemented which retains the global search for all
weights during the whole training process. The method used in our simulations is
as follows:

e Train a network using the BP-RSA combination on a network with a spec-
ified minimum number of hidden PUs.

e If there is no convergence within a specified number of epochs, add a PU to
the network. Reinitialize weights and continue training with the BP-RSA
combination.

e Repeat process until a solution is found or the network has grown a prede-
termined maximum size.

The method of (Ash, 1989) was also evaluated, where neurons with small weights
were added to a network according to certain criteria. The SIM performed better,
possibly because of the global search performed by the RSA step.

The ‘upstart’ (Frean, 1990) and ‘tiling’ (Mézard & Nadal, 1989) constructive
algorithms were chosen as benchmarks. A constructive PU network was trained on
two problems described in these papers, namely the parity problem and the random
mapping problem. In (Frean, 1990) it was reported that the upstart algorithm

Published in Advancesin Neural Information Processing Systems 7, p. 537, MIT Press, 1995

required N units for all parity N problems, and 1,000 training epochs were sufficient
for all values of N except N = 10, which required 10,000. As seen earlier, one PU
is able to perform any parity function, and SIM required an an average of 74.1
iterations for N = 6,8, 10.

The random mapping problem is defined by assigning each of the 2V patterns its
target {—1, +1} with 50% probability. This is a difficult problem, due to the absence
of correlations and structure in the input. As in (Frean, 1990; Mézard & Nadal,
1989) the average of 25 runs were performed, each on a different training set. The
number of units required by SIM is plotted in Figure 1. The values for the tiling
and upstart algorithms are approximate and were obtained through inspection from
a similar graph in (Frean, 1990).

5 Using Cosine Candidate Units in Cascade Correlation

Initially we wanted to compare the performance of SIM with the well-known
‘cascade-correlation’ (CC) algorithm of (Fahlman & Lebiere, 1990). However, the
network architectures differ and a direct comparison between the number of units in
the respective architectures does not reflect the efficiency of the algorithms. Instead,
it was decided to integrate PUs into the CC system as candidate units.

For these simulations a public domain version of CC was used (White, 1993) which
supports four different candidate types; the asymmetric sigmoid, symmetric sig-
moid, variable sigmoid and gaussian units. Facilities exist for either constructing
homogeneous networks by selecting one unit type, or training with a pool of differ-
ent units allowing the construction of hybrid networks. It was thus relatively simple
to add PU candidate units to the system. Table 3 displays the results when CC was
trained on the random logic problem using three types of homogeneous candidate
units.

N CC Sigmoid CC Gauss CC PU

Nynits ﬁepochs Nynits ﬁepochs Nynits ﬁepochs

7 6.6 924.5 6.7 642.6 5.7 493.8
8 12.1 1630.9 | 11.6 | 1128.2 9.9 833.8
9 20.5 | 2738.3 | 184 | 1831.1 16.4 | 1481.8
10] 32.9 | 44109 | 30.2 | 2967.6 | 26.6 | 2590.8

Table 3: Learning random logic functions of N inputs: The table shows Tynts,
the average number of units required and Nepocns, the average number of training
epochs required for convergence of CC using sigmoidal, Gaussian and PU candidate
units. Figures are based on 25 simulations.

In a separate experiment the performance of hybrid networks were re-evaluated on
the same random logic problem. To enable a fair competition between candidate
units of different types, the simulations were run with 40 candidate units, 8 of each
type. The simulations were evaluated on 25 trails for each of the random mapping
problems (7,8,9 and 10 inputs, a total of 1920 input vectors). In total 1460 hidden
units were allocated, and in all cases PU candidate units were chosen above units
of the 4 other types during the competitive stage. During this comparison all

Published in Advancesin Neural Information Processing Systems 7, p. 537, MIT Press, 1995

parameters were set to default values, i.e. the weights of the PU candidate units
were random numbers initialized in the range of [—1, +1]. As discussed earlier, this
puts the PUs at a slight disadvantage as their optimum range is [—2, +2].

6 Discussion

The BP-RSA combination is in effect equivalent to the ‘local optimization with
random restarts’ process discussed by (Karmarkar & Karp, 1982), where the local
optimization is this case is performed by the BP algorithm. They reported that
for certain problems where the error surface was ‘exceedingly mountainous’, mul-
tiple random-start local optimization outperformed more sophisticated methods.
We hypothesize that adding PUs to a network makes the error surface sufficiently
mountainous so that a global search is required.

As expected, the higher separating capacity of the PU enables the construction of
networks with less neurons than those produced by the tiling and upstart algorithms.
The fact that SIM works this well is mainly a result of the error surface; the surface
is so irregular that even training a network of fixed architecture is best done by
reinitializing the weights if convergence does not occur within certain bounds. This
again is in accordance with the results of (Karmarkar & Karp, 1982) discussed
above.

When used in CC we hypothesize that there are three main reasons for the choice
of PUs above any of the other types during the competitive learning phase. Firstly,
the higher capacity (in a information capacity sense) of the PUs allows a better
correlation with the error signal. Secondly, having N competing candidate units is
equivalent to selecting the best of N random restarts, and performs the required
global search. Thirdly, although the error surface of networks with PUs contains
more local minimathan when using standard transfer functions, the surface is locally
smooth. This allows effective use of higher-order error derivatives, resulting in fast
convergence by the quickprop algorithm.

In (Dawson & Schopflocher, 1992) it was shown that networks with Gaussian units
train faster and require less units than networks with standard sigmoidal units.
This 18 supported by our results shown in Table 3. However, for the problem
examined, PUs outperform Gaussian units by approximately the same margin as
Gaussian units outperform sigmoidal units. It should also be noted that these
problems where not chosen for their suitability for PUs. In fact, if the problems are
symmetric/regular the difference in performance is expected to increase.

7 Conclusion

Of the learning algorithms examined BP provides the fastest training, but is prone
to nonglobal minima. On the other hand, global search methods are impractical
for larger networks. For the problems examined, a combination of local and global
search methods were found to perform best. Given a network containing PUs, there
are some atypical heuristics that can be used: (a) correct weight initialization (b)
reinitialization of the weights if convergence is not rapidly reached. In addition,
the representational power of PUs have enabled us to solve standard problems

Published in Advancesin Neural Information Processing Systems 7, p. 537, MIT Press, 1995

using significantly smaller networks than previously reported, using a very simple
constructive method. When implemented in the CC architecture, for the problems
examined PUs resulted in smaller networks which trained faster than other units.
When included in a pool of competing candidate units, simulations showed that in
all cases PU candidate units were preferred over candidate units of the other four

types.

References

Ash, T. (1989). Dynamic node creation in backpropagation networks. Connection

Science, 1(4), 365-375.

Cover, T. (1965). Geometrical and statistical properties of systems of linear inequal-
ities with applications in pattern recognition. ITEEFE Transactions on Electronic

Computers, 14, 326-334.

Dawson, M. & Schopflocher, D. (1992). Modifying the generalized delta rule to train
networks of nonmonotonic processors for pattern classification. Connection

Science, 4, 19-31.

Durbin, R. & Rumelhart, D. (1989). Product units: A computationally power-
ful and biologically plausible extension to backpropagation networks. Neural
Computation, 1, 133-142.

Fahlman, S. & Lebiere, C. (1990). The cascade-correlation learning architecture.
In Touretzky, D. (Ed.), Advances in Neural Information Processing Systems,
volume 2, (pp. 524-532)., San Mateo. (Denver 1989), Morgan Kaufmann.

Frean, M. (1990). The upstart algorithm: A method for constructing and training
feedforward neural networks. Neural Computation, 2, 198-209.

Giles, C. & Maxwell, T. (1987). Learning, invariance, and generalization in high-
order neural networks. Applied Optics, 26(23), 4972-4978.

Jacobs, R. (1988). Increased rates of convergence through learning rate adaptation.

Neural Networks, 1, 295-307.

Karmarkar, N. & Karp, R. (1982). The differencing method of set partitioning.
Technical Report UCB/CSD 82/113, Computer Science Division, University of
California, Berkeley, California.

Kirkpatrick, S., Jr.,, C. G., , & Vecchi, M. (1983). Optimization by simulated

annealing. Science, 220.

Lapedes, A. & Farber, R. (1987). Nonlinear signal processing using neural net-
works: Prediction and system modelling. Technical Report LA-UR-87-2662,
Los Alamos National Laboratory, Los Alamos, NM.

Mézard, M. & Nadal, J.-P. (1989). Learning in feedforward layered networks: The
tiling algorithm. Journal of Physics A, 22, 2191-2204.

Redding, N., Kowalczyk, A., & Downs, T. (1993). A constructive higher order
network algorithm that is polynomial-time. Neural Networks, 6, 997.

White, M. (1993). A public domain C implemention of the Cascade Correlation al-
gorithm. Department of Computer Science, Carnegie Mellon University, Pitts-

burgh, PA.

Published in Advancesin Neural Information Processing Systems 7, p. 537, MIT Press, 1995

