1414

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 22, NO. 6, NOVEMBER/DECEMBER 1992

Generating Fuzzy Rules by Learning from Examples

Li-Xin Wang, Fellow, IEEE, and Jerry M. Mendel, Fellow, IEEE

Abstract— A general method is developed to generate fuzzy
rules from numerical data. This new method consists of five
steps: Step 1 divides the input and output spaces of the given
numerical data into fuzzy regions; Step 2 generates fuzzy rules
from the given data; Step 3 assigns a degree of each of the
generated rules for the purpose of resolving conflicts among
the generated rules; Step 4 creates a combined fuzzy rule base
based on both the generated rules and linguistic rules of human
experts; and, Step 5 determines a mapping from input space
to output space based on the combined fuzzy rule base using a
defuzzifying procedure. The mapping is proved to be capable of
approximating any real continuous function on a compact set to
arbitrary accuracy. Applications to truck backer-upper control
and time series prediction problems are presented. For the truck
control problem, the performance of this new method is compared
with a neural network controller and a pure limited-rule fuzzy
controller; the new method shows the best performance. For
the time series prediction problem, results are compared by
using the new method and a neural network predictor for the
Mackey—Glass chaotic time series.

I. INTRODUCTION

OR MOST real-world control and signal processing prob-
lems, the information concerning design, evaluation, re-
alization, etc., can be classified into two kinds: numerical
information obtained from sensor measurements, and, linguis-
tic information obtained from human experts. Most current
intelligent control and signal processing approaches are heuris-
tic in nature, i.e., they combine some standard control or signal
processing methods with expert systems in an ad hoc way for a
specific problem; simulations are then performed to show that
the new approaches work well for the specific problem. This
kind of approach has two weakpoints: 1) it is quite problem
dependent, i.e., a method may work well for one problem but
is not suited for another problem; and, 2) there is no common
framework for modeling and representing different aspects of
control or signal processing strategies, which makes theoretical
analyses for these approaches very difficult. In this paper, we
propose a general method for combining both numerical and
linguistic information into a common framework—a fuzzy rule
base.
Suppose we have the following problem: there is a complex
control system in which a human controller is an essential part;
the environment facing this human controller is so complicated

Manuscript received March 3, 1991, revised April 20, 1992.

L. X. Wang was with the Signal and Image Processing Institute, Department
of Electrical Engineering Systems, University of Southern California, Los
Angeles, CA 90089-2564 and is now with the Department of Electrical
Engineering and Computer Science, University of California, Berkeley, CA
94720.

J. M. Mendel is with the Signal and Image Processing Institute, Department
of Electrical Engineering Systems, University of Southern California, Los
Angeles, CA 90089-2564.

IEEE Log Number 9202126.

Environment

{ so complicated that no mathematical model exists
or, the mathematical model is severely non-linear)

control

states
Human Controller

(outputs)

(inputs)

Task : Design a control system to replace the human controller.

Fig. 1. A practical problem: Design a control system to replace the human

controller.

that no mathematical model exists for it, or, the mathematical
model is strongly nonlinear so that a design method does not
exist. The task here is to design a control system to replace
the human controller (see Fig. 1).

To design such a control system, we first need to see
what information is available. We assume that there is no
mathematical model, i.e., we consider a model-free design
problem. Since there already is a human controller who
is successfully controlling the system, there are two kinds
of information available to us: 1) the experience of the
human controller; and, 2) sampled input—output (state-control)
pairs that are recorded from successful control by the human
controller. The experience of the human controller is usually
expressed as some linguistic “IF-THEN” rules that state in
what situation(s) which action(s) should be taken. The sampled
input—output pairs are some numerical data that give the
specific values of the inputs and the corresponding successful
outputs.

Each of the two kinds of information alone is usually
incomplete. Although the system is successfully controlled
by a human controller, some information will be lost when
human controllers express their experience by linguistic rules.
Consequently, linguistic rules alone are usually not enough for
designing a successful control system. On the other hand, the
information from sampled input—output data pairs is usually
also not enough for a successful design, because the past

0018-9472/92803.00 © 1992 IEEE

WANG AND MENDEL: GENERATING FUZZY RULES BY LEARNING FROM EXAMPLES

operations usually cannot cover all the situations the control
system will face. If expert linguistic rules and numerical data
pairs are the only information we can get for such a control
system design, the most interesting case for us is when the
combination of these two kinds of information is sufficient for
a successful design.

Fuzzy control is an effective approach to utilizing linguistic
rules [3], [4], whereas neural control is suited for using
numerical data pairs (i.e., desired input—output pairs) [1], [4].
Present fuzzy controllers only use linguistic rules, whereas
present neural controllers only use numerical data pairs. This
leads to the following question: “Is it possible to develop a
general approach that combines both kinds of information into
a common framework, and uses both information, simultane-
ously and cooperatively, to solve the control design or similar
problems?” In this paper, we develop such a general approach.

The key ideas of our new approach are to generate fuzzy
rules from numerical data pairs, collect these fuzzy rules and
the linguistic fuzzy rules into a common fuzzy rule base, and,
finally, design a control or signal processing system based on
this combined fuzzy rule base.

In Section II, we propose a five step procedure for gener-
ating fuzzy rules from numerical data pairs and show how
to use these fuzzy rules to obtain a mapping from input
space to output space. Step 1 divides the input and output
spaces into fuzzy regions; Step 2 generates fuzzy rules from
given desired input—output data pairs; Step 3 assigns a degree
to each generated rule; Step 4 forms the combined fuzzy
rule base; and, Step 5 presents a defuzzifying procedure

for obtaining a mapping based on the combined fuzzy rule

base. In Section III, we prove that the resulting mapping is
capable of approximating any nonlinear continuous function
on a compact set to arbitrary accuracy using the well-known
Stone—Weierstrass theorem in analysis [5]. In Section IV, we
apply our new method to a truck backer-upper control problem
[1], [4]. We compare this new approach with pure neural and
fuzzy approaches. The power of our new approach becomes
apparent when it is used in the case where neither linguistic
fuzzy rules nor input—output pairs are sufficient to successfully
control the truck to a desired position, but the combination
of both is sufficient. In Section V, we show that our new
method can be used for time-series prediction; and, we use it to
predict the Mackey—Glass chaotic time series, and compare the
results with those obtained using a neural network predictor.
Conclusions are given in Section VI.

II. GENERATING Fuzzy RULES FROM NUMERICAL DATA

Suppose we are given a set of desired input—output data
pairs:

1 2 2
(@7, 2875y D), (@, 25754, - 6]

where z; and z, are inputs, and y is the output. This simple
two-input one-output case is chosen in order to emphasize
and to clarify the basic ideas of our new approach; extensions
to general multi-input multi-output cases are straightforward
and will be discussed later in this section. The task here is
to generate a set of fuzzy rules from the desired input—output

1415

pairs of (1), and use these fuzzy rules to determine a mapping
fi{z,m) — gy
Our approach consists of the following five steps:

Step 1—Divide the Input and Output Spaces into Fuzzy Regions

Assume that the domain intervals of xz;,z2 and y are
[ml_,z'f']., [z, x5] and [y~,y*], respectively, where “domain
interval” of a variable means that most probably this variable
will lie in this interval (the values of a variable are allowed to
lie outside its domain interval). Divide each domain interval
into 2N + 1 regions (/N can be different for different variables,
and the lengths of these regions can be equal or unequal),
denoted by SN (Small N),---,S1 (Small 1), CE (Center),
B1(Big1),---,BN (Big N), and assign each region a fuzzy
membership function. Fig. 2 shows an example where the
domain interval of z is divided into five regions (N = 2), the
domain region of z, is divided into seven regions (N = 3),
and the domain interval of y is divided into five regions
(N = 2). The shape of each membership function is triangular;
one vertex lies at the center of the region and has membership
value unity; the other two vertices lic at the centers of the
two neighboring regions, respectively, and have membership
values equal to zero. Of course, other divisions of the domain
regions and other shapes of membership functions are possible.

Step 2—Generate Fuzzy Rules from Given Data Pairs

First, determine the degrees of given m(li)) and y® in
different regions. For example, ;17(11) in Fig. 2 has degree 0.8 in
B1, degree 0.2 in B2, and zero degrees in all other regions.
Similarly, z,(f) in Fig. 2 has degree 1 in C'E, and zero degrees
in all other regions.

Second, assign a given rgi), mg) or 49 to the region with
maximum degree. For example, xgl) in Fig. 2 is considered to
be B1, and z-gg) in Fig. 1 is considered to be CE.

Finally, obtain one rule from one pair of desired
input—output data, e.g.,

(i
71.2

(xgl),:cg);y(l)) = [argl)(().8in B1, max),:rg)(O.Tin 51, max);
y1(0.9in CE, max)] = Rule1:

IF z1 is B1 and x5 is S1, THEN y is CE;

(mgz),xéz);y@) = [asgz)(().ﬁin B1, max),xgz)(lin CFE, max);
¥*2(0.7inB1, max)] = Rule 2:

IF z is Bl and 1, is CE, THEN y is Bl.

The rules generated in this way are “and” rules, i.e., rules in
which the conditions of the IF part must be met simultaneously
in order for the result of the THEN part to occur. For the
problems considered in this paper, i.e., generating fuzzy rules
from numerical data, only “and” rules are required since the
antecedents are different components of a single input vector.

Step 3—Assign a Degree to Each Rule

Since there are usually lots of data pairs, and each data pair
generates one rule, it is highly probable that there will be some
conflicting rules, i.e., rules that have the same IF part but a

1416

m(x,)
S2 S1 CE B1 B2
1.0 — : —
" x; I “
(a)
m(x,)
1.0 S3 §2 S1 CE Bt B2 B3
0.0 1 2 X,
U T
(b)
m(y)
1.6 S2 S1 CE B1 B2
0.0 y
y- ym y@ y+
(©)

Fig. 2. Divisions of the input and output spaces into fuzzy regions and the
corresponding membership functions. (a) m(x1). (b) m(x2). (c) m(y).

different THEN part. One way to resolve this conflict is to
assign a degree to each rule generated from data pairs, and
accept only the rule from a conflict group that has maximum
degree. In this way not only is the conflict problem resolved,
but also the number of rules is greatly reduced.

We use the following product strategy to assign a degree to
each rule: for the rule: “IF z; is A and z, is B, THEN y is
C,” the degree of this rule, denoted by D(Rule), is defined as

D(Rule) = ma(z1)mp(z2)me(y). €)
As examples, Rule 1 has degree

D(Rulel) = mp;(z1)msi{z2)mce(y)
— 0.8 x 0.7 x 0.9 = 0,504 3)

(see Fig. 2) and Rule 2 has degree

D(Rule2) = mpi(z1)mer(ze)mp1(y)
=0.6 x1x0.7=0.42. 4)

In practice, we often have some a priori information about
the data pairs. For example, if we let an expert check given
data pairs, the expert may suggest that some are very useful
and crucial, but others are very unlikely and may be caused
just by measurement errors. We can therefore assign a degree
to each data pair that represents our belief of its usefulness. In
this sense, the data pairs constitute a fuzzy set, i.e., the fuzzy
set is defined as the useful measurements; a data pair belongs
to this set to a degree assigned by a human expert.

Suppose the data pair (xgl) , xgl); y™M) has degree m(1)| then
we redefine the degree of Rule 1 as '

D(Rulel) = mBl(ml)mSI(xz)mCE(y)m(l))

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 22, NO. 6, NOVEMBER/DECEMBER 1992

B3

B2

B1

S1

s2

S3

S2 81 CE Bl B2

Xy

Fig. 3. The form of a fuzzy rule base.

i.e., the degree of a rule is defined as the product of the
degrees of its components and the degree of the data pair that
generates this rule. This is important in practical applications,
because real numerical data have different reliabilities, e.g,
some real data can be very bad (“wild data”). For good data
we assign higher degrees, and for bad data we assign lower
degrees. In this way, human experience about the data is used
in a common base as other information. If one emphasizes
objectivity and does not want a human to judge the numerical
data, our strategy still works by setting all the degrees of the
data pairs equal to unity.

Step 4—Create a Combined Fuzzy Rule Base

The form of a fuzzy rule base is illustrated in Fig. 3.
We fill the boxes of the base with fuzzy rules according
to the following strategy: a combined fuzzy rule base is
assigned rules from either those generated from numerical
data or linguistic rules (we assume that a linguistic rule
also has a degree that is assigned by the human expert and
reflects the expert’s belief of the importance of the rule); if
there is more than one rule in one box of the fuzzy rule
base, use the rule that has maximum degree. In this way,
both numerical and linguistic information are codified into
a common framework—the combined fuzzy rule base. If a
linguistic rule is an “and” rule, it fills only one box of the
fuzzy rule base; but, if a linguistic rule is an “or” rule (i.e., a
rule for which the THEN part follows if any condition of the
IF part is satisfied), it fills all the boxes in the rows or columns
corresponding to the regions of the IF part. For example,
suppose we have the linguistic rule: “IF z; is S1 or za is
CE, THEN y is B2” for the fuzzy rule base of Fig. 3; then
we fill the seven boxes in the column of 51 and the five boxes
in the row of CE with B2. The degrees of all the B2’s in
these boxes equal the degree of this “or” rule.

Step 5—Determine a Mapping Based on
the Combined Fuzzy Rule Base

We use the following defuzzification strategy to determine
the output control y for given inputs (z1,z2): first, for given

WANG AND MENDEL: GENERATING FUZZY RULES BY LEARNING FROM EXAMPLES

inputs (x1,z2), we combine the antecedents of the ith fuzzy
rule using product operation to determine the degree, my,;, of
the output control corresponding to (z1,z2), i.€.,

Mo = my(w1)my; (z2), (6)

where O denotes the output region of Rule ¢, and Ij denotes
the input region of Rule ¢ for the jth component, e.g., Rule
1 gives

mgp = mp1(z1)ms1(z2) Q)

then, we use the following centroid defuzzification formula to
determine the output

K

i =

ZmOIy
_ =1
¥="%

7

> Mo

i=1

where 7' denotes the center value of region O' (the center
of a fuzzy region is defined as the point that has the smallest
absolute value among all the points at which the membership
function for this region has membership value equal to one),
and K is the number of fuzzy rules in the combined fuzzy
rule base.

From Steps 1 to 5 we see that our new method is simple
and straightforward in the sense that it is a one-pass build-
up procedure that does not require time-consuming training;
hence, it has the same advantage that the fuzzy approach has
over the neural approach, namely, it is simple and quick to
construct.

This five step procedure can easily be extended to general
multi-input multi-output cases. Steps 1 to 4 are independent of
how many inputs and how many outputs there are. In Step 5,
we only need to replace mi,, in (6) with m,;, where j denotes

®

J.
the jth component of the output vector (O; is the region of
Rule ¢ for the jth output component; m}), is the same for all
3

7), and change (8) to

i o=
Moil;
_ i=1
Yi= g

K
2 m
2o,

2=1

)

where 37'; denotes the center of region O;

If we view this five step procedure as a block, then the
inputs to this block are “examples” (desired input—output data
pairs) and expert rules (linguistic IF-THEN statements), and
the output is a mapping from input space to output space.
For control problems, the input space is the state of the plant
to be controlled, and the output space is the control applied
to the plant. For time-series prediction problems, the input
and output spaces are subsequences of the time series such
that the input subsequence precedes the output subsequence
(details are given in Section V). Our new method essentially
“learns” from the “examples” and expert rules to obtain a
mapping that, hopefully, has the “generalization” property

1417

that when new inputs are presented the mapping continues
to give desired or successful outputs. Hence, our new method
can be viewed as a very general model-free trainable fuzzy
system for a wide range of control and signal processing
problems, where: “Model-Free” means no mathematical model
is required for the problem; “Trainable” means the system
learns from “examples” and expert rules, and can adaptively
change the mapping when new “examples” and expert rules
are available; and, “Fuzzy” denotes the fuzziness introduced
into the system by linguistic fuzzy rules, fuzziness of data, etc.

III. Fuzzy SYSTEM AS A UNIVERSAL APPROXIMATOR

The five step procedure of the last section generates a fuzzy
system, i.e., a mapping from input space to output space.
Specifically, this mapping is represented by (6) and (8) for
the two-input one-output case. Using simplified notations, we
rewrite (6) and (8), for the general n-input one-output case, as

mt = HlSan[mé(xj)] (10)
K K ,
Zy’mz Zy’ﬂlgjgn[m}(mj)]
@) == = (1D

M=

S
m' Y Tigjcalm(z;)]
1 =1

.
Il

where m§ is the membership function of the ith rule for the
4th component of the input vector, and 7' is the center value
of the output region of the ith rule. We will prove that this
generated fuzzy system, i.e., (11), is a universal approximator
from a compact set @ C R" to R, i.e., it can approximate any
real continuous function defined on @ to any accuracy, where
the compact set @ is defined as

Q = [al,bl] X {az,bg] XX [an,bn] Cc R™. (12)
For notational convenience, we represent Rule i{i =
1,2,--+,K) in the fuzzy rule base as: “IF z; is RG},z is
RGi,---,xn is RGY, THEN y is RG§,” where RGY(j
1,2,---,n) denotes the region for the j’th input antecedent
of Rule i (e.g., it can be 52, CE, B1, etc.), and RG} denotes
the outupt region of Rule 1.

Let F be the family of functions of the form of (11) on
the compact set Q. There are three factors that determine a
member of F: 1) the definition of fuzzy regions, i.., how to
define and divide the domain intervals; 2) the specific form
of membership functions m}; and, 3) the specific statements
of fuzzy rules in the fuzzy rule base. By fixing fuzzy regions,
membership functions, and fuzzy rules, we obtain an element
of F. If f and f, are different elements of F, then at least one
of the three factors for f; and f> must be different. In order
to analyses the family F, we make the following assumptions
for these three factors:

AS.1: The fuzzy regions for the input and output spaces
can be arbitrarily defined.

1418

AS.2: The membership functions m; can be any continuous
functions from [a;, b;] to [0, 1] for j = 1,2,---,n (ie., for
inputs) and from (—o0,00) to [0, 1] for j = 0 (i.e., for
output); however, mj- must satisfy the following constraint:
mz(mJ) # 0 for z; € RG;-.,i =12,---,K,5=0,1,---,m,
with zo = y. This constraint means that the membership value
of an antecedent for a rule cannot equal zero if the actual input
value of this antecedent falls into the required region of the
rule.

AS.3: Any rule can be assigned to any box of the fuzzy
rule base.

These assumptions are usually satisfied in practice. Specifi-
cally, we have total freedom in defining fuzzy regions; we can
choose any membership functions subject to the constraint of
AS.2; and, we can assign any rule to any box of the fuzzy
rule base.

To analyses the properties of the function family F, we
must first establish that the mapping defined by (11) is well-
defined, i.e., for any input z € @, (11) will generate an
output f(z) € R. The following two lemmas give sufficient
conditions for (11) to be well-defined.

Lemma 1: If all the membership functions m? are nonzero,
and there is at least one rule in the fuzzy rule base, then the
mapping defined by (11) from @ to R is well-defined.

Proofs of lemmas and theorems are given in Appendix I

Lemma 2: 1f every box in the fuzzy rule base has a rule
associated with it, i.e., there are no empty boxes in the fuzzy
rule base, then the mapping defined by (11) from Q to R is
well-defined under AS.2.

In practice, the input space is usually high dimensional,
whereas the given successful data pairs and expert rules are
often quite limited; as a result, many boxes of the fuzzy rule
base may be empty. However, it is possible to fill up these
empty boxes based on the limited given rules using the method
of Section II. Specifically, Steps 1-4 are first used to generate
a fuzzy rule base based on the limited data pairs and linguistic
rules; then, the output for some typical input for which the
box in the fuzzy rule base is empty can be determined based
on the limited fuzzy rule base; finally, the range in which the
output has the maximum degree is assigned to the empty box
as a new rule. This can be an iterative procedure, i.c., when
a new rule is generated, this new rule and the existing rules
are combined into a fuzzy rule base that is used to generate
the next new rule. We can start the procedure from the empty
boxes that are the nearest neighbors of the full boxes; in this
way, the fuzzy rule base expands from existing rules until all
the boxes are filled up. This procedure always works if we
choose the nonzero regions of the membership functions to be
large enough such that the values of the membership functions
will not be zero for some points of their nearest neighbors. We
will not study this procedure in detail in this paper; we gave
the basic ideas of the procedure in order to show that the
conditions of Lemma 2 can be satisfied.

Now we state the main result of this section.

Theorem 1: If the mapping defined by (11) is well-defined,
and if AS.1-AS.3 are true, then the mapping defined by (11) is
capable of approximating any real continuous function over the
compact set @) to arbitrary accuracy. (The proof of Theorem 1

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 22, NO. 6, NOVEMBER/DECEMBER 1992

uses AS.4 and the definition of “active rule” that will be given
later in this section; hence, we suggest the reader read the rest
of this section before going to the proof of Theorem 1. The
rest of this section will not use the result of Theorem 1.)

Theorem 1 is an existence theorem showing that there
exists a way of defining fuzzy regions, a way of choosing
membership functions, and a way of assigning fuzzy rules
to the boxes of the fuzzy rule base, such that the resulting
mapping, (11), approximates an arbitrary nonlinear continuous
mapping from Q to R to any accuracy. This Theorem is
similar to the results of [6] and [7], which showed that a three-
layer feedforward neural network is a universal approximator
provided that there are sufficiently large numbers of hidden-
layer neurons. Theorem 1 provides the theoretical basis for
successful applications of our new method to many different
practical problems.

In many applications of fuzzy systems (e.g., [3], [4]), the
membership functions are triangular. We now study some
properties of the fuzzy systems that use the specific form of
membership functions that are defined as follows.

AS.4: The membership function for any intermediate fuzzy
region (i.e., not the smallest or the largest region) is a triangle
whose vertices are at (z,m) = (z_1,0), (2o, 1), and (1,0},
where the z-axis denotes a coordinate of the input or output
space, the m-axis denotes the corresponding membership
value, zo denotes the center of the region, and x _1{x1) denotes
the center of the left (right) region. See Fig. 11 for an example.
The membership functions for the smallest and largest regions
are determined by the way shown in Fig. 11.

If every box of the fuzzy rule base has a rule and [a;}, b;] is
divided into r; fuzzy regions (j = 1,2,---,n), then there are
N =7y X 79 X -+ X 7y, rules in the fuzzy rule base. N can
be a huge number if the r;-s and n are large. However, under
the situation of AS.4, there are only a small fraction of these
rules that are really used in (11) for any given x € Q.

Definition: The ith fuzzy rule in the fuzzy rule base is
active for z € Q if mi(z;) # 0 for all j = 1,2,--,n.
Referring to (11), we see that a rule is active means that it
will be used in (11).

Lemma 3: Under AS.4, the following is true:

1) There are at most 2™ active rules for any z € Q.

2) If r components of z € @ are at the centers of some
fuzy regions (r = 0,1,2,---,n), there are at most 2"~"
active rules at the z (the center of a fuzzy region is
defined in Step 5 of Section II).

3) If r components of £ € @ are at the centers of some
fuzzy regions, and if ¢ components of the = are smaller
(greater) than the center values of the smallest (largest)
regions of the corresponding components, then there are
at most 2"~""7 active rules at the z.

Lemma 3 is useful in practice. Although we may need a
huge memory to store the fuzzy rule base, when we use the
fuzzy rule base for a given input z € Q, only a relatively
small number of rules are used..In practice, we may store the
fuzzy rule base in a cheap external memory; when we have an
input, we only take the active rules from the fuzzy rule base
into the host computer.

WANG AND MENDEL: GENERATING FUZZY RULES BY LEARNING FROM EXAMPLES

loading dock x=10 ¢ =90
1

1419

x=0

=20

Fig. 4. Diagram of simulated truck and loading zone.

IV. APPLICATION TO TRUCK BACKER-UPPER CONTROL

Backing a truck to a loading dock is a difficult exercise. It
is a nonlinear control problem for which no traditional control
system design methods exist. In [1I], Nguyen and Widrow
develop a neural network controller for the truck backer-upper
problem; and, in [4], Kong and Kosko propose a fuzzy control
strategy for the same problem. The neural network controller
[1] only uses numerical data, and cannot utilize linguistic rules
determined from expert drivers; on the other hand, the fuzzy
controller of [4] only uses linguistic rules, and cannot utilize
sampled data. Since the truck backer-upper control problem
is a good example of the control system design problem
discussed in the Introduction of this paper (i.e., replace a
human controller by a machine), it is interesting to apply the
approach developed in Section II to this problem. In order to
distinguish these methods, we call the method of [4] the “fuzzy
approach,” the method of [1] the “neural approach,” and our
new method the “numerical-fuzzy approach.”

The results of [4] demonstrated superior performance of the
fuzzy controller over the neural controller; however, the fuzzy
and neural controllers use different information to construct
the control strategies. It is possible that the fuzzy rules used in
[4] to construct the controller are more complete and contain
more information than the numerical data used to construct the
neural controller; hence, the comparison between the fuzzy and
neural controllers, from a final control performance point of
view, is somewhat unfair. If the linguistic fuzzy rules were
incomplete, whereas the numerical information contained lots
of very good data pairs, it is highly possible that the neural
controller would outperform the fuzzy controller.

Our new numerical-fuzzy approach provides a fair basis
for comparing fuzzy and neural controllers (the numerical-
fuzzy approach can be viewed as a fuzzy approach in the
sense that it differs from the pure fuzzy approach only in the
way it obtains fuzzy rules). We can provide the same desired
input-output pairs to both the neural and numerical-fuzzy
approaches; consequently, we can compare the final control
performances of both controllers fairly since they both use the
same information.

Example 1: In this example, we use the same set of desired

input—output pairs to simulate neural and numerical-fuzzy
controllers, and compare their final control performance.

Statement of the Truck Backer-Upper Control Problem: The
simulated truck and loading zone are shown in Fig. 4 [1],
[4]. The truck corresponds to the cab part of the neural truck
in the Nguyen—Widrow [1] neural truck backer-upper system.
The truck position is exactly determined by the three state
variables ¢,z, and y, where ¢ is the angle of the truck
with the horizontal as shown in Fig. 4. Control to the truck
is the angle 6. Only backing up is considered. The truck
moves backward by a fixed unit distance every stage. For
simplicity, we assume enough clearance between the truck and
the loading dock such that y does not have to be considered
as an input. The task here is to design a control system, whose
inputs are ¢ € [—90°,270°] and z € [0,20], and whose
output is # € [—~40°,40°], such that the final states will be
(z.f= d)f) = (10,90°).

Generating Desired Input-Output Pairs(z, $;8): We do
this by trial and error: at every stage (given ¢ and z) starting
from an initial state, we determined a control § based on
common sense (i.e., our own experience of how to control
the steering angle in the situation); after some trials, we chose
the desired input—output pairs corresponding to the smoothest
successful trajectory.

The following 14 initial states were used to generate desired
input—output pairs: (zo, ¢5) = (1, 0), (1, 90), (1, 270); (7,
0), (7, 90), (7, 180), (7, 270); (13, 0), (13, 90), (13, 180),
(13, 270); (19, 90), (19, 180), (19, 270). Since we performed
simulations, we needed to know the dynamics of the truck
backer-upper procedure. We used the following approximate
kinematics (see [8] for details):

z(t + 1) = z(t) + cos[p(t) + 0(t)] + sin[f(t)] sin[¢(t)] (13)
y(t+1) = y(t) + sin[¢(t) + 6(2)] - sin[f(t)] cos[p(t)] (14)

#(t+ 1) = $(t) —sin

o [?ﬂr@} (1s)

1420

TABLE 1
DESIRED TRAJECTORY STARTING FROM (Zo¢o) = (1,0°)
t | x 6" || ©°
0100 | 000 ||-1900
I {195 937 || -1795
2| 288 | 1823 || -1690
3 | 379 | 2659 || -1585
4 | 465 | 3444 || -1480
S | 545 | 41798 {[-1375
6 | 618 | 4860 ||-1270
7 | 748 | 5491 || -1165
8 | 799 | 6071 || -1060
9187 | 6599 -9055
10| 901 | 7075 || -850
11} 928 | 7498 || -7.45
12 | 946 | 7870 || 640
13| 959 | 8190 || 534
14| 972 | 8457 || 430
15(981 | 8672 || -325
16| 988 | 8834 || -220
17 991 | 8944 || 000
18
19]
20|

where b is the length of the truck. We assumed b = 4 in
the simulations of this paper. Equations (13)—(15) were used
to obtain the next state when the present state and control are
given. Since y is not considered a state, only (13) and (15) were
used in the simulations. We wrote (14) here for the purpose of
showing the complete dynamics of the truck. Observe, from
(13)—(15), that even this simplified dynamic model of the truck
is nonlinear. The 14 sequences of desired (x, ¢;) pairs are
given in [8]; we only include one such sequence in this paper
(Table I).

Neural Control and Simulation Results: We used a two-
input single-output three-layer back-propagation neural net-
work [9, 10] for our control task. Twenty hidden neurons
were used, and a sigmoid nonlinear function was used for
each neuron. The output of the third-layer neuron represents
the steering angle € according to a uniform mapping from
[0, 1] to [—40°,40°], i.e., if the neuron output is g(¢), the
corresponding output 6(¢) is

B(t) = 80g(t) — 40. (16)

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 22, NO. 6, NOVEMBER/DECEMBER 1992

l

(13,30°)

(v

1 ‘

(] s 10 15

20 *

Fig. 5. Truck trajectories using the neural controller and the numerical-fuzzy
controller.

In the simulations, we normalized [—40°,40°] into [—1,1].
Similarly, the inputs to the neurons were also normalized into
[-1,1].

Our neural network controller is different from the
Nguyen~Widrow neural controller [1]. First, we have only
one neural network that does the same work as the Truck
Controller of the Nguyen—Widrow network; the truck emulator
of the Nguyen—-Widrow network is not needed in our task.
Second, and more fundamentally, we train our neural network
using desired input—output (state-control) pairs, which are
obtained from the past successful control history of the truck,
whereas Nguyen and Widrow [1] connect their neural network
stage by stage and train the concatenated neural networks by
back-propagating the error at the final state through this long
network chain (the detailed algorithm is different from the
standard error back-propagation algorithm in order to meet the
constraint that the neural networks at each stage perform the
same transformation; for details see [1]). Hence, the training of
our neural network is simpler than that of the Nguyen—-Widrow
network. Of course, we need to know some successful control
trajectories (state-control pairs) starting from some typical
initial states; this is not required in the Nguyen—Widrow neural
network controller.

We trained the neural network using the standard error back-
propagation algorithm [9], [10] for the generated 14 sequences
of desired (z, #;8) pairs. We used the converged network to
control the truck whose dynamics are approximately given by
(13)«(15). Three arbitrarily chosen initial states, (zo, ¢§) =

WANG AND MENDEL: GENERATING FUZZY RULES BY LEARNING FROM EXAMPLES

m(o)

3 § §iC S2| 45 45
Sl 15 ®
CE 0 10
Bl 9% 165
B2 135 25

1421

S3} s s

90 45 0 45 90 135 180 225 270 B3| 195 25
m(x)
S2 Si CE Bj B2
0 15 4 7 9 1011 13 16 185 20 X
m(6)
3 S1 GE Bi B3
)

40 33 20 -14 74047 14 20 33 4

Fig. 6. Fuzzy membership functions for the truck backer-upper control problem.

(3,=30), (10, 220), and (13, 30), were used to test the neural
controller. The truck trajectories from the three initial states are
shown in Fig. 5. We see that the neural controller successfully
controls the truck to the desired position starting from all three
initial states.

Numerical-Fuzzy Control and Simulation Results: We used
the five-step procedure of Section II to determine the control
law f : (z,¢) — 6, based on the 14 generated sequences of
successful (z, ¢;#) pairs. For this specific problem, we used
membership functions shown in Fig. 6, which are similar to
those used in [4] for fuzzy control of the problem based only
on linguistic rules. The fuzzy rules generated from the desired
input—output pairs and their corresponding degrees are given
in [8]; we show only the generated rules for the data pairs
of Table I (in this paper) in Table II. The final fuzzy rule
base is shown in Fig. 7 (this is the result of Step 4 of our
method in Section II; here we assume that no linguistic rules
are available). We see from Fig. 7 that there are no generated
rules for some ranges of z and ¢. This shows that the desired
trajectories from the 14 initial states do not cover all the
possible cases; however, we will see that the rules in Fig,
7 are sufficient for controlling the truck to the desired state
starting from some given initial states.

Finally, Step 5 of our numerical-fuzzy method was used
to control the truck from the three initial states, (o, ¢3) =

S2 S1 CE Bt B2

83| S2 | 83

8282 | S3 | 83 | 83

S1| B1 S1 |82 S3 | 82

¢ Cce{B2|B2 JCE] s2| s2

B1| B2 | B3 | B2 | B1 | S1

B2 B3 | B3 | B3 | B2

B3 B3 | B2

Fig. 7. The final fuzzy rule base generated from the numerical data for the
truck backer-upper control problem.

(3,-30), (10, 220), and (13, 30), which are the same states
used in the simulations of the neural controller. The final
trajectories of the truck have no visible difference from Fig.
5; hence, Fig. 5 also shows the track trajectories using the
numerical-fuzzy controller.

We simulated the neural and numerical-fuzzy controllers
for other initial truck positions, and observed that the truck
trajectories using these two controllers were also almost the

1422

TABLE Il
Fuzzy RULES GENERATED FROM THE DESIRED INPUT—QUTPUT
PAIRS OF TABLE 1 AND THE DEGREES OF THESE RULES

Fuzzy IF THEN
rules Degree|
for t= | X is |6 is 8 is
o | s2 | s2 || s2 || 100
1 | s2 | s2 ||s2 ||og
2 [s2 [s2 ||s2 |{oss
s2 [s2 || s2 || o012
4 | s2 | s2 || s2 ||o007
5 | s1 | s2 || st ||oos
6 | s1 | st ||st |lo1s
7 | st | st ||st |fos2
8 | s1 | st || st |foss
9 | s1 | st || st ||los0
10 | CE | s1 || s1 || 035
11 | CE | S1 S1 || 0.21
12 | ce | s1 || cE || 0.16
13 | CE | CE || CE || 0.2
14 | CE | CE || CE || 045
1s | CE | CE || CE || 054
16 | CE | CE || CE || o088
17 | CE | cE || CE || 0.92
18 /
19 I
20

same. This is not surprising because both controllers used the
same information to construct their control laws.

Example 2: In this example we consider the situation where
neither linguistic fuzzy rules alone nor desired input—output
pairs alone are sufficient to successfully control the truck to
the desired position, i.e., neither the usnal fuzzy controller
with limited fuzzy rules nor the usual neural controller can
control the truck to the desired position, but a combination
of linguistic fuzzy rules and fuzzy rules generated from the
desired input—output data pairs is sufficient to successfully
control the truck to the desired position.

We consider the case where the beginning part of the
information comes from desired input—output pairs whereas
the ending part of the information comes from linguistic rules.
To do this we used only the first three pairs of each of the
14 desired sequences, and generated fuzzy rules based only
on these truncated pairs. The fuzzy rule base generated from
these truncated data pairs is the same as Fig. 7 except that

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 22, NO. 6, NOVEMBER/DECEMBER 1992

i

L/

0 5 10 15 20 *

Fig. 8. Truck trajectories using the fuzzy rules from the truncated data pairs
only.

there are no rules in the three center boxes outlined by the
heavy lines. The fuzzy rule base of linguistic rules for the
ending part was chosen to have only three rules that are the
same as the three center rules of Fig. 7.

We simulated the following three cases in which we used
the: 1) fuzzy rule base generated from only the truncated data
pairs; 2) fuzzy rule base of selected linguistic rules; and, 3)
fuzzy rule base which combined the fuzzy rule bases of 1) and
2). We see that for Case 3 the fuzzy rule base is the same as
in Fig. 7; hence, the truck trajectories for this case must be the
same as those using the fuzzy rule base of Fig. 7. For each of
the cases, we simulated the system starting from the following
three initial states: (29, ¢3) = (3,—30), (10, 220), and (13,
30). The resulting trajectories for cases 1), 2), and 3) for the
three initial states are shown in Figs. 8, 9 and 5, respectively.

We see very clearly from these figures that, for cases (1)
and (2) the truck cannot be controlled to the desired position,
whereas for case (3) we successfully controlled the truck to
the desired position.

V. APPLICATION TO TIME-SERIES PREDICTION

Time-series prediction is a very important practical problem
[2]. Applications of time-series prediction can be found in
the areas of economic and business planning, inventory and
production control, weather forecasting, signal processing,
control, and lots of other fields. Let z(k)(k = 1,2,3,---) be
a time series. The problem of time-series prediction can be
formulated as: given z(k —m + 1), 2(k — m + 2),-- -, z(k),

WANG AND MENDEL: GENERATING FUZZY RULES BY LEARNING FROM EXAMPLES

i

(10,220

(3,-30")

13, 30-)/

1 i :

0 5 10 15

20 X

Fig. 9. Truck trajectories using the selected linguistic rules only.

determine z(k + 1), where m and [are fixed positive integers;
i.e., determine a mapping from [2(k — m + 1),2(k — m +
2),--+,2(k)] € R™ to [2(k +)] € R.

A feedforward neural network can also be used for this prob-
lem [11]. For example, we can use a three-layer feedforward
neural network, which has m input neurons and one output
neuron, to represent the mapping from [z(k —m + 1), z(k —
m+2), - +,z(k)] to [z(k+1)]. The network is trained for the
known z(k)’s, and then the converged network is used for the
prediction. Specifically, assume that z(1), 2(2),- -, 2(M) are
given; then we form M — m desired input—output pairs:

[z(M - m)’ T ’Z(M - 1)7Z(M)]
[2(M —m—1), -+, z2(M = 2); 2(M - 1)]

[Z(l)a""z(m)?z(m"'l)]' a7

We train the neural network to match these M — m pattern
pairs using the error back-propagation algorithm [9], [10].
Our numerical-fuzzy method in Section II can also be used
" for this time series prediction problem. Similar to the neural
network approach, we assume that z(1),2(2),---,2(M) are
given, and we form the M — m desired input—output pattern
pairs in (17). Steps 1-4 of our numerical-fuzzy approach are
used to generate a fuzzy rule base based on the pattern pairs
(17); then this fuzzy rule base is used to forecast z(M + p)
for p = 1,2, - - using the defuzzifying procedure of Step 5 of
our numerical-fuzzy method, where the inputs to the network
are z(M +p—-m),z(M +p—m+1),--,z(M+p-1).

1423

1.4

1.2 A a

0.8 1

0.6 -

o.al B

02

100 200 300 <00 500 600 700 800 900 1000

Fig. 10. A section of the Mackey-Glass chaotic time series.

m(x)

§3 & St CE Bl B2 B3

x{)

03 05 07 09 11 13 15

Fig. 11. The first choice of membership functions for the chaotic time serics
prediction problem.

Example 3: Now we apply our numerical-fuzzy approach
to predict the Mackey—Glass chaotic time-series [11]. Chaotic
time series are generated from deterministic nonlinear sys-
tems and are sufficiently complicated that they appear to be
“random” time series; however, because there are underlying
deterministic maps that generate the series, chaotic time series
are not random time series. In [11], feedforward neural net-
works were used for chaotic time-series prediction, and were
compared with conventional approaches, like linear predictive
method, Gabor polynomial method, etc. The results showed
that the neural network approach gave the best prediction,
and the accuracy obtained using the neural network approach
was orders of magnitude higher than that obtained using the
conventional approaches. Here we use our numerical-fuzzy
approach to the same Mackey—Glass chaotic time secries in
[11], and compare the results obtained with those obtained
using the neural network approach.

The Mackey—Glass chaotic time series is generated from the
following delay differential equation:

dz(t) _ 02z(t—71) 0.15(t).
dt ~ 1+z0(t—7)
When 7 > 17, (18) shows chaotic behavior. Higher values of
7 yield higher dimensional chaos. In our simulation, we chose
the series with 7 = 30. Fig. 10 shows 1000 points of this
chaotic series that we used to test both the numerical-fuzzy
and neural approaches.

We chose m = 9 and [= 1 in our simulation, i.e., nine point
values in the series were used to predict the value of the next
time point. The membership functions for any point are shown
in Fig. 11 for the numerical-fuzzy predictor (later, we will use
other membership functions). 40 hidden-layer neurons were
used for the neural network predictor. The first 700 points
of the series were used as training data, and the final 300

(18)

1424

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 22, NO. 6, NOVEMBER/DECEMBER 1992

et rue value

-w-%.*. cetimate

—+-t—t- true value

s0 100 200 250 300

Fig. 12. Prediction of the chaotic time series from z(701) to 2(1000) using
the numerical-fuzzy predictor when 200 training data (from x(501) to x(700)
are used.

1.6

4t true valuc

1.4

1.2

1

o.8

0.6

0.4

o2t -

o,

50 100 200 250 300

Fig. 13. Prediction of the chaotic time series from x(701) to +(1000) using
the neural predictor when 200 training data (from r(501) to £(700)) are used.

- etet= true valuc

o sa

100 150 200 250 300

Fig. 14. Prediction of the chaotic time series from #(701) to 2(1000) using
the numerical-fuzzy predictor when 700 training data (from z(1) to x(700))
are used.

points were used as test data (for additional cases, see [8]).
We simulated two cases: 1) 200 training data (from 501 to
700) were used to construct the fuzzy rule base and to train the
neural network; and, 2) 700 training data (from 1 to 700) were
used. Figs. 12 and 13 show the results of the numerical-fuzzy
and neural predictors respectively for case 1); and, Figs. 14
and 15 show similar results for case 2). As in [11], the “past”
data needed to perform prediction is obtained from observing
the actual time series; thus, one makes a prediction and uses
the actual values to make the next prediction. We see from
Figs. 12 to 15 that our new numerical-fuzzy predictor gave
about the same results as the neural network predictor.

One advantage of the numerical-fuzzy approach is that it
is very easy to modify the fuzzy rule base as new data
become available. Specifically, when a new data pair becomes
available, we create a rule for this data pair and add the new
rule to the fuzzy rule base; then, the updated (i.e., adapted)
fuzzy rule base is used to predict the future values. By using

-
ELY 100 150 200 300

Fig. 15. Prediction of the chaotic time series from x(701) to 2(1000) using
the neural predictor when 700 training data (from (1) to x(700)) are used.

1.6

~*.+.. astimate ot true value

1.4

1.2

14

os

0.6

o.a

0.2+ -

o

o 30 100 150 200 250 300

Fig. 16. Prediction of the chaotic time series from 2(701) to x(1000) using
the updating fuzzy rule base procedure.

this “adaptive” procedure we use all the available information
to predict the next value of the series. We simulated this
adaptive procedure for the chaotic series of Fig. 10: we started
with the fuzzy rule base generated by the data x(1) to z(700),
made a prediction of z(701), then used the true value of
z(701) to update the fuzzy rule base, and this updated fuzzy
rule base was then used to predict z(702). This adaptive
procedure continued until z(1000). Its results are shown in
Fig. 16. Comparing Figs. 16 and 14 we see that we obtain
only a slightly improved prediction.

Finally, we show that prediction can be greatly improved
by dividing the “domain interval” into finer regions. We
performed two simulations: one with the membership function
shown in Fig. 17, and the other with the membership function
shown in Fig. 18. We used the adaptive fuzzy rule base
procedure for both simulations. The results are shown in Figs.
19 and 20, for the membership functions of Figs. 17 and
18, respectively. Comparing Figs. 16, 19 and 20 we see very
clearly that we obtain better and better results as the “domain
interval” is divided finer and finer. Fig. 20 shows that we
obtained an almost perfect prediction when we divided the
“domain interval” into 29 regions. Of course, the price paid
for doing this is a larger fuzzy rule base.

V1. CONCLUSION

In this paper, we developed a general method to generate
fuzzy rules from numerical data. This method can be used
as a general way to combine both numerical and linguistic
information into a common framework—a fuzzy rule base.
This fuzzy rule base consists of two kinds of fuzzy rules: some
obtained from experts, and others generated from measured
numerical data using the method of this paper. We proved that

WANG AND MENDEL: GENERATING FUZZY RULES BY LEARNING FROM EXAMPLES

m(x)

S7 S6 S5 S4 $3 82 S1 CE Bi B2 B3 B4 BS B6 B7

t
e 05 o5 10 1z 1 1 0

Fig. 17. The second choice of membership functions for the chaotic time
series prediction problem.

m(x)

Si4 SI3 S12 811 S10 89w B9 Bi0 Bl1 B12 B13 Bl

02 03 04 Xt

12 14 16

Fig. 18. The third choice of membership functions for the chaotic time series

prediction problem.

... estimate

teatnten Erue value

@ 50 100 150 200 250 300
Fig. 19. Prediction of the chaotic time series from (701) to x(1000) using

the updating fuzzy rule base procedure with the membership functions of Fig.
18.

1.6

e e+ cstimate et true valuo

P—

50 100 150 200 250 300

Fig. 20. Prediction of the chaotic time series from x(701) to x(1000) using
the updating fuzzy rule base procedure with the membership functions of Fig.
19.

the generated fuzzy system is capable of approximating any
nonlinear continuous function on a compact set to arbitrary
accuracy. We applied our new method to a truck backer-upper
control problem [1], [4], and observed that: 1) for the same
training set (i.e., the same given input—output pairs), the final
control performance of our new method is indistinguishable

1425

from that of the pure neural network controller; and, 2) in the
case where neither numerical data nor linguistic rules contain
enough information, both the pure neural and pure fuzzy
methods failed to control the truck to the desired position, but
our new method succeeded. We also applied our new method
to a chaotic time-series prediction problem, and the results
showed that our new method worked quite well.

The main features and advantages of the new method
developed in this paper are: 1) it provides us with a gen-
eral method to combine measured numerical information and
human linguistic information into a common framework—a
combined fuzzy rule base; this could be viewed as a first step
to develop some theoretically analyzable control algorithms
that use both numerical and linguistic information; 2) it is
a simple and straightforward one-pass build-up procedure;
hence, no time-consuming iterative training is required, so
that it requires much less construction time than a comparable
neural network; 3) there is lots of freedom in choosing the
membership functions; this provides us with lots of flexibilities
to design systems according to different requirements; and, 4)
it can perform successful control for some cases where neither
a pure neural network control nor a pure fuzzy control can.

) APPENDIX [

Proof of Lemma 1: Since 0 < mi(z;) < 1, it is suf-
ficient to prove that for any z € @ there exist some ¢ such
that IT; < j<n[m¥(2;)] # 0. Under the condition of this lemma,
there exists at least one i such that IIj<;cn[mé(z;)] # O for
any £ € @, hence (11) is well-defined. Q.E.D.

Proof of Lemma 2: Since every box in the fuzzy rule
base has a rule, for any z € Q there must be a rule, say Rule ¢,
such that z; € RGj for j = 1,2,---,n. By AS.2, mi(z;) #0
forall j = 1,2,---,n, hence Il1<j<n[mi(x);)] # 0, ie., (11)
is well-defined. Q.E.D.

In order to prove Theorem 1 we need some definitions.
A family F of real functions defined on a set £ is an
algebra if F is closed under addition, multiplication, and scalar
multiplication. The family F' separates points on E if for every
z,y € E,x # y, there exists a function f € F such that
f(z) # f(y). The family F vanishes at no point of E'if for
each z € F there exists f € F such that f(z) # 0. Our proof
of Theorem 1 is based on the Stone-Weierstrass Theorem [5],
which we state here for convenience of the reader.

Stone-Weierstrass Theorem: Let F' be an algebra of real
continuous functions on a compact set K. If F separates points
on K and if F vanishes at no point on K, then the uniform
closure B of F consists of all real continuous functions on K.

The uniform closure B of F is the union of F' and its limit
points; hence, if B consists of all real continuous functions on
K, then F is capable of approximating any real continuous
function on K to arbitrary accuracy.

Proof of Theorem 1: Let F be the family of well-defined
functions of the form of (11) on the compact set ¢} under
AS.1, AS.2, and AS.3. If we prove that F' is an algebra of
real continuous functions, F separates points on @, and F
vanishes at no point of @, then the Stone—Weierstrass Theorem
guarantees the conclusion of Theorem 1.

1426

By AS.2, the mj- (x;)’s are assumed to be real continuous
functions; hence, F' is a family of real continuous functions.
Let fi1, f2 € F, so that we can write them as

K1

> T g cnlmli(a;)]
=1

filz) = =5
Z I <j<n[mly(z;)]

=1
K2 _
Y 2T cn[m2i(z;)]

i=1

(19)

folz) =

= (20)
Z ngjgn[ng (z5)]

i=1

Thus we have (21), shown at the bottom of the next page. Now
Define m1% (x;)m2i*(z;) as a new membership function of
z;, say m}l"z(zj), and define y1'* —|—gT2L2 as the output center
of a new rule, say 7*%*%; then, (21) is of the form of (11);
hence, f1 + f; € F. Similarly, f;(z)f2(z) can be written as

K1 K2

—i1—i2 il 72

o DTy Thgjcnlmli (a;)m2 (x;)]

h(@)fo(z) = 2222

DY Migjcnmli(z)m2 (a;)]

i1=142=1
(22)
which is of the form (11); hence, f, f, € F. Finally, for any
c € R:

K1 .
Z yT Tigjgnlmli(z;)]
chiz) = = :

Y Migjcn[mli(z;)]

=1

(23)

which is also of the form of (11); hence cfi(z) € F. In
summary, F is an algebra of real continuous functions.
Next, we prove that F' separates points on Q. Let 2,z € Q
and = # z. We now construct f € F with f(x) # f(z). First,
we define the fuzzy regions of the input space @ such that
each element of z and z is at the center of a fuzzy region
(recall that the center of a fuzzy region is defined as the point

[EEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 22, NO. 6, NOVEMBER/DECEMBER 1992

that has the smallest absolute value among all the points at
which the membership function for this region has membership
value equal to one; see Section I, Step 5). Then, we choose
the membership functions for the input space @ to be of the
specific triangular form defined by AS.4 of Section III. By
such a choice of fuzzy regions and membership functions, we
have mi(z;) = m4(z;) = 1 for each active Rule i at z, and
each active Rule { at 2z, and all j = 1,2,---,n (the definition
of active rule is given in Section III); additionally, there is one
and only one active rule for and one and only one active
rule for z, because (11) is well-defined (which guarantees that
there is at least one active rule for & and at least one active
rule for 2), and since only the membership functions for the
regions with centers at the components of z or z are nonzero
at x or z, whereas all other membership functions are zero at
z and z (which guarantees that there is at most one active rule
for z and at most one active rule for z). Since = # z, there
must be at least one j such that z; # z;, hence, the only active
rule for z and the only active rule for z are at two different
boxes of the fuzzy rule base. Since we are free to assign any
rules to the boxes of the fuzzy rule base (AS.3), we just assign
two different rules to these two boxes, and obtain the required
f € Fwith f(z) =3 # 7 = f(2) (see (11)), where 7'(7)
is the center of the output region of the active rule for z(z).
Finally, we prove that F' vanishes at no point of Q. By
AS.1 and AS.2, we can make all the 7* > 0. Since (11) is well-
defined, there exists at least one 7 such that HlSan[m§ (z;)] #
0 for any z € Q. Since (11) is a weighted average of positive
7"’s with some nonzero weights, the result is also positive,
i.e., we obtain f € F" such that f(z) # 0 (in fact, f(z) > 0)
for any z € Q. ; Q.E.D.
Proof of Lemma 3: For arbitrary € Q and fixed 7, there
are at most two m}’s which are nonzero at z; under AS.4.
Since a rule, say Rule 4, is active only when mi(x;) # 0 for
all j = 1,2,--+,n, there are at most 2" active rules for any
x € Q; this proves (1). If r components of z € Q are at the
centers of some fuzzy regions, there is only one m;, which
is nonzero at each of these + components (in fact, these ™m;s
are equal to unity at these » components), and for each of the
other n — r components there are at most two nonzero mj-’s,
hence the total number of active rules is at most 2"~"; this
proves (2). If r components of z € @ are at the centers of

K1 K2

Kl K2

—il i i —5i2 i i
> > v hgea[my (@)m22(@)] + Y. Y 72 Mgjcalmli (@;)m22(c,)]

i1=1:2=1

f1(@) + folz) = 2=1E2=L K1 K2

Z Z HlSan[ml;l(xj')m2;2($j)]

il=1142=1
K1 K2

3 ST+ g cnlmliM e)m2E (a)]

il=11:2=1

K1 K2

@1

YN Migjcalmli (@)m22(x;)

il=1:2=1

WANG AND MENDEL: GENERATING FUZZY RULES BY LEARNING FROM EXAMPLES

some fuzzy regions and ¢ components of the z are smaller (or
greater) than the center values of the corresponding smallest
(or the corresponding largest) fuzzy regions, then there is only
one nonzero m§~ for each of these 7 + ¢ components, and the
other n—r — g components have two nonzero m/’s associated
with each of them; hence, the total number of active rules is
at most 2"~"~%; this proves 3). QE.D.

REFERENCES

[1] D. Nguyen and B. Widrow, “The truck backer-upper: An example of
self-learning in neural network,” JEEE Contr. Syst. Mag., vol. 10, no.
3, pp. 18-23, 1990.

[2] G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and
Control. Qakland, CA: Holden-Day, 1976.

[3] Y. F. Li and C. C. Lan, “Development of fuzzy algorithms for servo
systems,” IEEE Contr. Syst. Mag., vol. 9, no. 3, pp. 65-72, 1989.

[4] S. G. Kong and B. Kosko, “Comparison of fuzzy and neural truck
backer upper control systems,” in Proc. JCNN-90, vol. 3, June 1990,
pp. 349-358.

[5] W. Rudin, Principles of Mathematical Analysis.
Hill, 1964.

{6] K. Hornik, M. Stinchcombe and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, pp.
359-366, 1989.

[7] G. Cybenko, “Approximations by superpositions of a sigmoidal func-
tion,” Mathematics of Control, Signals, and Systems, 1989.

[8] L. X. Wang and J. M. Mendel, “Generating fuzzy rules from numerical

data, with applications,” USC SIPI Rep. No. 169, Univ. Southern Calif,,

Los Angeles, 1991.

P. Werbos, “New tools for predictions and analysis in the behavioral

science,” Ph.D. dissertation, Harvard Univ. Comm. Appl. Math., 1974.

D. E. Rumelhart and J. L. McClelland, Eds., Parallel Distributed

Processing, Vol. 1. Cambridge, MA: MIT Press, 1986.

A. Lapedes and R. Farber, “Nonlinear signal processing using neural

networks: Prediction and system modeling,” LA-UR-87-2662, 1987.

New York: McGraw-

9

—

{10

[11]

Li-Xin Wang received the B.S. and M.S. degrees
from the Northwestern Polytechnical University,
Xian, People’s Republic of China, in 1984 and
1987, respectively, and the Ph.D. degree from the
University of Southern California, Los Angeles in
1992, all in electrical engineering.

From 1987 to 1989, he was with the Department
of Computer Science and Engineering, Northwest-
ern Polytechnical University, Xian, People’s Repub-
lic of China. From Fall 1989 to Spring 1992, he was
a Research/Teaching Assistant in the Department of
Electrical Engineering-Systems at the University of Southern California, Los
Angeles. He is now a Postdoctoral Fellow in the Department of Electrical
Engineering and Computer Science, University of California at Berkeley. His
research interests are fuzzy systems and neural computing.

Dr. Wang received the Phi Kappa Phi Student Recognition Award for his
work on fuzzy systems.

1427

Jerry M. Mendel (S’59-A’61-M’72-F’78) re-
ceived the B.S. degree in mechanical engineering
and the M.S. and Ph.D. degrees in electrical
engineering from the Polytechnic Institute of
Brooklyn, Brooklyn, NY, in 1959, 1960, and 1963,
respectively.

His experience has included teaching courses in
Electrical Engineering at the Polytechnic Institute of
Brooklyn, from 1960 to 1963, and has also included
various consulting positions. From July 1963 to
January 1974 he was with McDonnell Douglas
Astronautics Company. Currently he is Professor of Electrical Engineering-
Systems at the University of Southern California in Los Angeles, and is
Director of the Signal & Image Processing Institute. He was Chairman of
the EE-Systems Department from March 1984 to August 1991.

He teaches courses in estimation theory, deconvolution, and higher-
order statistics, He has published more than 240 technical papers and is
author of the monographs Maximum-Likelihood Deconvolution: a Journey
into Model-Based Signal Processing (Springer-Verlag, 1990) and Optimal
Seismic Deconvolution: An Estimation-Based Approach (Academic Press,
1983), the texts Lessons in Digital Estimation Theory (Prentice-Hall, 1987),
and Discrete Techniques of Parameter Estimation: The Equation Error
Formulation (Dekker, 1973), and, co-editor (with K. S. Fu (deceased)) of
Adaptive, Learning and Pattern Recognition Systems (Academic Press, 1970).
He is also author of the IEEE Individual Learning Program, Kalman Filtering,
and Other Digital Estimation Techniques. He served as Editor of the IEEE
Control Systems Society’s IEEE TRANSACTIONS ON AUTOMATIC CONTROL, and
is on the Editorial Board of the IEEE PROCEEDINGS.

Dr. Mendel is a Fellow of the IEEE, Distinguished Member of the
IEEE Control Systems Society, member of the IEEE Geoscience and
Remote Sensing Society, the IEEE Signal Processing Society, the Society of
Exploration Geophysicists, the European Association for Signal Processing,
Tau Beta Pi and Pi Tau Sigma, and a registered Professional Control Systems
Engineer in California. He was President of the IEEE Control Systems Society
in 1986. He received the SEG 1976 Outstanding Presentation Award for a
paper on the application of Kalman Filtering to deconvolution; the 1983 Best
Transactions Paper Award for a paper on maximum-likelihood deconvolution
in the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING; a Phi Kappa
Phi book award for his 1983 research monograph on seismic deconvolution;
a 1985 Burlington Northern Faculty Achievement Award; and a 1984 I[EEE
Centennial Medal.

