
m
Sholom M. Weirs and Nitin Indurkhya, Rutgers University

proaching the processing speeds of super-
computers, and with databases exploding
in size, interest has heightened in computer-
based learning from data. Traditional knowl-
edge-based systems have faced significant
problems in acquiring and maintaining
knowledge. One model of learning, the
rule-based approach, has been extensively
used in these systems. Techniques for au-
tomatically learning decision rules could
have a profound effect on future intelligent
systems.

Although many different models of in-
duction, such as decision trees, neural nets,
and linear discriminants, have been used
for classification, they share a common
goal: predictive accuracy. A central issue
in the design of most classifiers is the
tradeoff of goodness of fit versus model
complexity. While we can usually improve
a complex classifier’s coverage of training
samples, its accuracy of prediction for new
cases might still be inferior to that of a
simpler classifier. For example, a fully
expanded decision tree might cover train-
ing samples completely, but a smaller tree
with a larger error on the training cases
might produce more accurate predictions
for new cases.

Classifier complexity and prediction

SWAP-I IS A STATE-OF-THE-ART SYSTEM FOR
LEARNING DECZSZON RULES FROM DATA. FOR MANY

APPLICATIONS, SUCH SYSTEMS CAN AUTOMATZCALLY
CONSTRUCT RELATNELY COMPACT RULE SETS WITH

HIGHLY PREDZCTNE PERFORMANCE.

accuracy are highly related. Learning from
sample data can be described as estimating
a model’s parameters. To find the appro-
priate complexity fit for a model, we deter-
mine the number of parameters that can be
accurately estimated from the samples.
Given two classifiers that cover the sample
data equally well, the simpler one is usually
preferred because fewer parameters are
estimated and therefore, predictions are
probably more accurate.’-3 Thus, there are
strong theoretical reasons for developing
learning methods that cover samples in the
most efficient and compact manner.

In practice, designers of learning sys-
tems have implicitly recognized these prin-
ciples, and many of their techniques for
simplifying models can be characterized as
finding relatively compact solutions with
an appropriate complexity fit.4 Examples

from decision trees are quite numerous,
including heuristic tree-splitting f ~ n c t i o n s , ~
tree and the one-standard-error
heuristic for selecting among pruned trees.5
For parametric statistical linear discrimi-
nants, heuristic methods for selecting vari-
ables have reduced the number of discrim-
inant features.’ Rule induction systems have
simplified solutions by pruning the implic-
it rules in decision trees6 For single hid-
den-layer backpropagation neural nets, the
number of hidden units can be used as a
measure of complexity fit, and the appar-
ent and true error rates follow the classical
statistical pattern.8

While short expressions in disjunctive
normal form (defined below) sometimes
offer superior solutions and therefore sup-
port the reduced-complexity a p p r ~ a c h , ~ they
apply only to problems with few attributes

1 DECEMBER 1993 0885/9000/93/1200-0061 $3.00 0 1993 IEEE 61
An earlier version of this article appears under the title “Reduced Complexity Rule Induction” on pages 678-684 in the

Proceedings of the 12th International Joint Conference on Artificial Intelligence. published by Morgan Kaufmann, San Mateo, Calif., 1991.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 15,2010 at 11:27:41 UTC from IEEE Xplore. Restrictions apply.

Table 2. Example of swapping rule components.

k := k t l
until (&IS empty)
find rule f i n Rkthat can be deleted without affecting performance on cases in S
while (rcan be found)

STEP PREDICTIVE RULE
VALUE (%)

endwhile
output Rkand halt tions, or rules, which are composed of

conjunctive propositions that are either true

Figure 1. The Swap-1 procedure.

~ ~~ ~

1 31 p3
2 36 p6
3 48 p 6 & p l
4 49 p4 & p l
5 69 p 4 & p l & p2
6 80 p4 & p l & p2 & p5
7 100 p3 & p l & p2 & p5

~

and classes. Our method generates reduced-
complexity solutions by inducing compact
solutions in larger dimensions, where many
rules might be needed to make accurate
predictions.

The rule=based classification
model

The chief advantage of disjunctive nor-
mal form models is their explanatory capa-
bility. They help users answer the question

“Why was the decision made?” in a far
more comprehensible manner than neural
networks or discriminant functions, so they
have been a popular approach to building
decision support systems and other knowl-
edge-based systems.

Both decision trees and rules can be
described as DNF models. They take as
input a set of sample cases S, each case
comprising observed features and a classi-
fication. The problem is to find the best
rule set. the one that minimizes the error
rate on new cases. Solutions are posed in

CA > 0.5 And CP > 3.5 --f Class = 2
THAL > 6.5 + Class = 2
[True] + Class = 1

is a solution induced from heart disease
data (discussed in detail later). The left side
of each rule is a conjunction of proposi-
tions pI, each of which evaluates the truth
of a binary-valued feature or checks the
threshold of a numerical feature’s current
value. If the left side of the rule is satisfied,
the case is assigned to a class according to
the right side of the rule. We do not require
mutual exclusivity of rules, so we must
resolve conflicts when rules for two or
more classes are satisfied simultaneously:
We assign priorities to classes, with the

~~~ __~ 

Induced rules 
The following are the best answers we found. “LD 1 ”  is the linear discriminant for Class 1.  
Heart disease classification: 
LD1: (THAL.1 .73) t (CAs2.027) t (EXANG.3.665) t (TLCHs0.426) t (CPe5.907) t (OLDPK*2.149) t (SEXe2.394) t (-50.848) 
LD2: (THAL*1.206) t (CA*0.896) t (ExANG~2.451) t (TLCH*0.448) t (CP4.23) t (OLDPK.1.674) t (SEX*1.367) t (-46.929) 
LD1 + Class 1 
[True] + Class 2 

DNA pattern analysis: 
LD1: (F58.9.304) t (F68.6.426) t (F62*6.181) t (F156*-3.973) t (F60S7.256) t (-9.963) 
LD2: (F58.2.381) t (F68e1.508) t (F62.1.354) t (F156:.1.459) t (F60~2.488) t (-1.669) 
LD1 + Class 1 
[True] + Class 2 

GOTPA -+ PM 
RNP + MCTD 
SCLDY + PSS 
PSSBX + PSS 

[True] + SLE 

Rheumatic disease diagnosis: 

-MALAR & -FEV + RA 

Nettalk: A listing of the 253 rules is available from the authors, 

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 15,2010 at 11:27:41 UTC from IEEE Xplore.  Restrictions apply. 



last class considered the default. In our 
model, all the rules for each class are grouped 
together. The first rule that fires will deter- 
mine the class selection. 

Decision trees are a restricted version of 
DNF rules, since they are collections of 
ORed decision rules. In a decision tree, 
each path to a terminal node is represented 
as a rule consisting of a conjunction of 
tests on the path’s internal nodes; the 
rule’s conclusion is the label of the terminal 
node. One such rule is obtained for each 
terminal node. By ORing the rules together, 
we get a DNF rule set that is equivalent to 
the decision tree. However, since these 
rules are mutually exclusive, exactly one 
rule will apply in each case. This restric- 
tion can result in solutions that are not as 
compact as they might be. Thus, as a tree 
grows in size, its explanatory capability 
diminishes. 

The representation of decision rules re- 
sembles that of decision trees, but with 
some potential advantages. It is a theoret- 
ically stronger model and has potentially 
better explanatory capabilities. Unlike trees, 
decision rules need not be mutually exclu- 
sive; they directly reflect the model’s DNF 
structure. They are also simpler and more 
compact. 

While tree induction remains the most 
widely applied rule-based learning sys- 
tem, other learning techniques for nonmu- 
tually exclusive DNF rule induction have 
been developed, including C4I0 and the 
CN2” and Greedy3I2 variants of the AQ 
family of rule induction systems.I3 These 
methods can be described in terms of their 
covering schemes and rule refinement tech- 
niques. Although they seem quite differ- 
ent, only a few key variations emerge. The 
covering rule set is induced either by using 
a decision tree or by finding a single best 
rule, removing the cases covered by that 
rule from the training sample, inducing the 
next rule, and repeating this process until 
no cases remain. Current tree-covering and 
single-best-rule covering methods look 
ahead one attribute and try to specialize the 
tree or rule, often by using some heuristic 
mathematical f ~ n c t i o n . ~  For the tree- 
covering solutions, these heuristics tend to 
work well on many problems, and the com- 
binatorics of finding an optimal solution 
make alternative search procedures im- 
practical. Like the tree-covering methods, 
single-best-rule methods expand only one 
rule at a time and add propositions one by 

one until the rule has 100-percent predic- 
tive value, that is, until it makes no errors 
on the training cases. (Some variations 
such as CN2 sometimes stop earlier, based 
on a statistical significance test.) Although 
any single rule is relatively short, these 
single-best-rule procedures never look back 
or undo previous decisions, only ahead for 
a single new test. 

However, even though we have obtained 
a covering rule set, i t  often “overfits” the 
training data, performing poorly on new 

AS OPPOSED TO CURRENT 
SINGLE- BEST- R ULE 
PROCEDURES THAT ONLY LOOK 
AHEAD, SWAP-1 CONSTANTLY 
LOOKS BACK TO SEE WHETHER 
IT CAN IMPROVE THE RULE 
BEFORE EXPAhDlNG IT. 

cases. A second refinement step is needed 
to adjust the rule set to the right complexity 
fit, either by pruning or by applying some 
statistical test. Our method preserves this 
modular two-stage process of rule induc- 
tion, but we use a new procedure that ob- 
tains compact covering rule sets, and we 
provide a unified approach to finding the 
appropriate complexity fit among several 
competing rule sets. 

Swap1 

As opposed to current single-best-rule 
procedures that only look ahead, our Swap- 
1 procedure constantly looks back to see 
whether i t  can improve the rule before 
expanding it. To form the single best rule, 
Swap-I first makes the single best re- 
placement from among all possible rule 
component swaps, including deleting a 
component; if no swap is found, it adds 
the single best component to the rule (see 
Figure 1). “Best” is evaluated as predictive 
value, the percentage of correct  decision^.^ 
When the predictive values are equal, maxi- 
mum case coverage is a secondary criterion. 
Swapping and adding components end 

when the rule reaches 100-percent predic- 
tive value. 

As an example, Table 1 shows a single 
best rule being generated in seven steps. 
The initial rule is randomly assigned p3, 
which gets swapped out in favor of the 
single best test, p6. In step 3, p l  is the 
single best component that can be added to 
the rule. However, in step 4, p6 is swapped 
out for p4, which is found by refining 
previously selected rule components. In 
the final step, p3 gets swapped in again. 
Thus, if a test is swapped out, it does not 
necessarily stay out, but can be added back 
later on if it improves the current rule’s 
predictive accuracy. Swap-1 selects the 
completed rule as the single best one, and 
proceeds with removing the covered cases 
and reapplying the single-best-rule con- 
struction procedure to the remaining cases. 
Classes are ordered in advance; Swap-1 
completes all rules for a class before con- 
sidering the next class. 

Swap- 1 has been compared to other rule- 
based methods for covering randomly gen- 
erated expressions from uniformly distrib- 
utedattributes.I4It performs better thanother 
rule induction methods and as well as Fringe, 
an iterative tree induction technique. l 5  

However, when applied to real-world 
data with numerical attributes, Swap- 1 can 
fragment data by covering with too many 
short rules. This is because it searches for 
the most compact 100-percent predictive 
rule. There might be longer rules that are 
also 100-percent predictive but cover more 
cases. Such rules are preferable because 
they result in  more compact covering rule 
sets. To induce a longer rule Rj after ob- 
taining a 100-percent predictive rule Ri, we 
swap on Rjfor minimum errors (not predic- 
tive value) to obtain Rk and then reinitial- 
ize RI  with R,. The process of swapping for 
minimum errors might result in a rule that 
is not 100-percent predictive: Unlike eval- 
uation based on predictive value, the cases 
in  class C that are now not covered are 
considered errors. For example, arule might 
be 100-percent predictive of a subset of 
cases for class C, but cover relatively few 
cases. Another rule with the same number 
of components might be less predictive but 
make fewer overall errors when the cases it 
does not cover are considered. 

Once the procedure obtains the longer 
rule, it compares Rj with the shorter rule Ri 
for coverage, and then iterates if Rj covers 
more cases than Ri (see Figure 2). The 

DECEMBER 1993 63 

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 15,2010 at 11:27:41 UTC from IEEE Xplore.  Restrictions apply. 



overwhelming. However, in a less stable 
environment than ours, with large numbers 
of possible configuration changes, the sec- 
ond alternative might not be feasible. 

repeat 
Rold := R 
make the single best swap for any component of R that 

if no swap can be found then 

endif 
D := True 
while ((R does not have 0 errors) And (D is True)) do 

reduces the errors made by R on cases in  S 

return the rule R 

make the single best swap for any component of R that 
reduces the errors made by R on cases in S 
if no swap is found then D := False 

endwhile 
consider adding components to R to make i t  100-percent predictive again 

until (number of cases covered by R 5 number of cases covered by Rold) 
return the rule R 

Figure 2. The revised Swap-1 algorithm (a) and its swap-min-error function (b). 

immediate objective of the revised Swap-I 
algorithm is to find fewer but longer rules, 
each of which covers many more cases. The 
overall goal is to find the smallest covering 
set that separates a class from the others. 

Finding the optimal combination of at- 
tributes and values for even one fixed-size 
rule i s  a complex task. In our approach, the 
central theme i s  to hold a model configura- 
tion constant except for a single local im- 
provement to that configuration, repeating 
this process until no further improvements 
are possible. Making local changes to a 
configuration is a widely used optimiza- 
tion technique to approximate a global 
optimum and has been applied successfully, 
for example to find near-optimal solutions 

64 

to traveling salesman problems. l 6  Another 
related local optimization technique, called 
backfitting, has been used in the context of 
nonlinear statistical regression. Thus, 
variations on selecting the next improve- 
ment could include either the first local 
improvement encountered (as in backfit- 
ting), or the best local improvement (as in 
Swap-I). 

While the first option i s  more efficient, 
the second gives us consistently better re- 
sults. Since the induced (and pruned) rule 
\et environment i s  mostly stable with rela- 
tively few local improvements before con- 
vergence. the additional overhead associ- 
ated with finding the best (a\  opposed to 
merely the first) local improvement is not 

Finding the rule set with the 
right complexity 

The objective of the algorithms just de- 
scribed is to cover the data with a concise 
rule set. However, the goal of machine- 
learning methods i s  not just to discriminate 
among known samples, but to predict and 
generalize to future unseen samples. The 
statistics literature describes good techniques 
for estimating future performance that are 
based on principles of training on certain 
data and testing on independent data. 

Some rules in a rule set can perform far 
better than others. Researchers have found 
that some rules do not generalize well be- 
cause they are too specific to the character- 
istics ofthe original samples. Often these are 
rules that cover a relatively small number of 
cases in the training samples. One success- 
ful approach in many machine-learning 
methods i s  to throw out part of the decision 
model (in our case, remove some of the 
rules) and see whether performance improves. 
With highly predictive rules, the covering 
set might be best. In the worst situation, with 
poorly predictive features, we might do bet- 
ter to remove all rules and simply decide by 
always picking the largest class. 

Thus we must accomplish two impor- 
tant tasks: decide which rules should be 
removed, and estimate the performance of 
what remains. The techniques for estimat- 
ing performance are straightforward when 
independent test cases are available; the 
question of how to eliminate rules from a 
rule set i s  less obvious. I t  i s  impractical to 
test every possible combination of rules. 
Our induction model relies on weakest-link 
pruning to select the next rule to eliminate: 
The initial rule set is the covering rule set, 
from which we remove the weakest rule or 
component. Then we evaluate the resulting 
smaller rule set. Intuitively, the weakest 
rule has the least effect on overall perfor- 
mance. But how do we measure this? Later 
we will define this precisely, but for now, 
an effective measure i s  to take into account 
the number of eliminated components 
and the number of cases involved in errors 
that are created by eliminating that rule. 
We eliminate the rule (or component) that 

IEEE EXPERT 

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 15,2010 at 11:27:41 UTC from IEEE Xplore.  Restrictions apply. 



produces the fewest number of errors per 
eliminated component. For example, con- 
sider two candidate rules for pruning: one 
with three components, whose elimination 
would yield three new errors; and one with 
a single component, whose elimination 
would yield two errors. The first rule would 
be eliminated. Clearly, we could develop 
alternative measures that are based solely 
on the number of errors per eliminated 
rule, but combining errors and rule com- 
plexity in a single measure has strong 
empirical support in the literature and is 
consistent with the concept of reduced- 
complexity solutions. 

In practice, we need not evaluate every 
pruned rule set that results from removing 
a single rule or component. Instead, we 
examine a limited number of pruned rule 
sets corresponding to rule sets with distinct 
degrees of performance on the training 
cases. The formal objective is to find a rule 
set that minimizes the true error rate on 
new cases, and this can be measured more 
directly by estimating the true error rates of 
varying-complexity rule sets using inde- 
pendent test cases. In practice, the optimal 
solution usually cannot be found because 
of incomplete samples and limitations on 
search time. Typically there are not enough 
cases to both train and accurately estimate 
a rule set’s error rate. It is also impossible 
to search all possible rule sets of a particu- 
lar complexity (such as the number of com- 
ponents in the rule set). 

Several thousand independent test cases 
are sufficient to give highly accurate esti- 
mates of a classifier’s error rate.Is When 
fewer cases are available, resampling gives 
the most accurate estimates. Cross-valida- 
tion’’ is generally the procedure of ~ h o i c e , ~  
and tenfold cross-validation (the average 
results of 10 runs using 90-percent training 
and 10-percent testing cases, with 10 mu- 
tually exclusive test partitions) is usually 
quite accurate when the cases number in 
the hundreds. Because cross-validation 
techniques average the estimates for clas- 
sifiers that are trained on about the same 
number of cases as the full sample, learn- 
ing techniques have been developed that 
can train on all sample cases. 

If the set { RSI,.  . .RS,,. . .RS, j is ordered 
by some complexity measure Cx(RSi), then 
the best one is selected by min[Err(RSi)]. A 
practical alternative is the minimum-com- 
plexity rule set that is near the minimum 
error rate solution (within one standard 

Table 2. Example summary table. 
RSi, i=  RULES Cx ERR,, EAR,,,, TEST SE MEAN(GX) WLj 

1 1 1  18 .OOOO ,1074 ,0282 17.9 .o 
2 10 15 ,0083 ,0909 ,0261 14.9 .3 
3 9 13 ,0165 ,0909 ,0261 13.0 .5 
4* 6 7 ,0661 ,0744 ,0239 7.0 1 .o 
5 6 6 ,0826 ,1322 ,0308 6.0 2.0 
6 4 4 ,1322 .I322 .0308 4.0 3.0 
7 3 3 ,2975 ,2975 ,0416 3.0 20.0 
8 2 2 ,5372 .5620 .0451 2.0 29.0 
9 1 1 ,6529 .6529 ,0433 1.0 14.0 

e r r ~ r ) . ~  A method must induce and order 
{RS,} by Cx(RS,) and estimate each 
Err(RSi); this has been developed for deci- 
sion trees. Minimizing a single complexity 
parameter in addition to the error rate esti- 
mator adds little bias to the estimates when 
used with resampling.’ 

We can use a variation of weakest-link 
pruning, also known as cost-complexity 
pruning, to prune arule set and form ( RSi) .5 

Let the rule set RS be the covering rule set. 
Find each subsequent RSj+l by pruning RS, 
at its weakest link. A rule set’s weakest 
link can be defined as 

1 Err(RSk ) - Err( RSi ) 
Size(RS;) - Size(RSk ) 

WL;+I = min 

for all k prunes, where Err(RS,) is the 
number of errors that RS; makes on the 
training cases, and Size(RS,) is the number 
of components in RS,. The weakest link is 
the point at which the fewest new errors per 
deleted component are introduced. A rule 
set can be pruned by deleting single rules 
or components.6 Repeated pruning of the 
least significant component or rule to RS, 
forms { RS,k j ,  with a global minimum of 
WL(1’). The rule set at that point becomes 
the next RSi+’. The process is repeated 
until the final RS, is generated, where RS, 
is the single-component rule that selects 
the largest class. 

Thus, the application of weakest-link 
pruning results in an ordered series of de- 
creasing-complexity rule sets (RS,}, as 
shown in Table 2. The complexity of RS, 
can be measured in terms of WL, or 
Size(RSi). For a large rule set that is pruned, 
little is usually lost when the weakest com- 
ponent or rule is deleted: WL, is relatively 
small. But when a small rule set is pruned, 
the effect of deleting a component is much 
greater, and this is reflected in a large WL,. 

With a large set of independent test cas- 
es and weakest-link pruning, we can esti- 
mate the true error rate of each rule set by 

its error rate on test cases. With smaller 
samples, where thousands of test cases are 
not available, resampling is preferable and 
more accurate: First we determine 
{ RSl, .  . .RS,,. . .RS, j by weakest-link prun- 
ing on the complete training set and then 
perform an n-fold (typically tenfold) cross- 
validation. We induce an auxiliary rule set 
in each iterative pass using the training set 
of that pass, and find by weakest-link prun- 
ing a new RSIk of about equal complexity. 
We then obtain test error rates using the 
test cases corresponding to that pass. The 
average of the error rates over all the passes 
for each rule set of Size(RS,), Errcv(RSf), is 
the cross-validation estimate of the true 
error rate of RS,. 

Consistent with the minimum length 
description approach, each rule covers the 
original cases with only the weakest rules 
and components removed. Pruning a rule 
set is less stable and accurate than tree 
pruning because coverage of the pruned set 
is highly variable. While pruning a subtree 
retains full coverage of the data set, prun- 
ing rules can leave gaps. Moreover, for RS, 
of a certain complexity, there might be a 
better RS,’ of the same size. Unlike deci- 
sion tree induction where the nodes are 
fixed, RS, can be refined by swapping 
single components to minimize the appar- 
ent training error Errapp(RSi). The process 
of refining any rule set RS into RS: can be 
described as modifying RSi such that 
Errapp(RS:) 5 Errapp(RSi) and Cx(RS:) 2 
Cx(RSi). The rules are iteratively checked 
for the best component deletion, rule dele- 
tion, or component swap. Here, best means 
minimum errors. Thus a rule set can be 
refined so that it is smaller than or equal in 
size to the original rule set and makes 
fewer or an equal number of errors. 

The net result of this process is an error 
rate estimate for rule sets of varying com- 
plexity. Table 2 shows a typical result from 
resampling for rheumatic disease. For each 
rule set, the figure lists the number of rules 

DECEMBER 1993 65 

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 15,2010 at 11:27:41 UTC from IEEE Xplore.  Restrictions apply. 



I I of Class1 by the linear dircriminant, and 
RBPS is a test rewlt. 

Result E 

*Apparent 0 Cross-validated 

Figure 3. Error rates versus model complexity, with rule sets ordered by increosing complexity. 

The Swap-1 approach to automated rule 
learning has been explored In a wide 
ety of applications. In two small nondeter- 

and rule components, the apparent error rate 
on the training cases, the test error rate (by 
cross-validation), the standard error of the 
test error, the average number of compo- 
nents over all cross-validated test sets, and 
the complexity measured by weakest-link 
pruning. Plotting the error rates for increas- 
ingly complex RS,, as in Figure 3, illustrates 
the classical pattern of behavior for the 
apparent error rate on training cases versus 
the estimated true error on test cases. As 
model complexity increases, the apparent 
error rate decreases, but the true error rate 
flattens out and eventually increases. 

Mixed models for reduced 
complexity 

Our approach has been to minimize the 
complexity of rule sets. Although difficult 
to express in terms of a single unit, the true 
complexity of a solution can be further 
reduced by allowing for mixed models. 
This has led to a number of hybrid methods 
that incrementally embed alternative mod- 
els within decision trees, such as piecewise 
linear discriminantss and perceptrons.'" 

In contrast to these nonparametric, in- 
cremental methods, we used the standard 
parametric linear discriminant found in all 
general statistical texts and software pack- 
ages, and for many years the most widely 
used classification scheme.*' Assuming 
normality and equal-covariance matrices, 
we derive the discriminant by solving for 
the linear function fi(e) of the set of at- 
tributes e for each class i not equal t o j :  

where P(C,) is the prior probability of class 
i. Each function is characterized by a set of 
weights, one for each attribute. Our method 
classifies an unknown pattern by applying 
the functions (that i s ,  multiplying each fea- 
ture by a weight and adding up the score for 

). and choosing the class with the 
greatest magnitude. I n  addition, we can use 
heuristic stepwise feature selection to find a 
reduced-complexity linear solution by re- 
ducing the original set of features to a sub- 
set, thereby reducing the number of weights 
that are estimated. By adding relatively few 
weights. we expect to achieve greater accu- 
racy. but the tradeoff i s  less intelligibility of 
the resulting solution. 

The parametric stepwise linear discrimi- 
nant has a strong theoretical foundation and 
has been rigorously tested over many 
years.'." It tends to produce comparable 
results on training and test cases. In our 
design, we derive the discriminant function 
completely prior to rule induction, and use 
the training-case results to create artificial 
features. We create one binary higher order 
feature per class, where each feature is sim- 
ply whether or not the linear discriminant 
selects that class during training. To the rule 
induction system, each of these higher order 
features i s  no different than any of the orig- 
inal features. Unlike previous approaches 
that use the numerical result of applying a 
linear function, here the encoding is simpli- 
fied to a binary feature that preserves the 
classification result ofthe discriminant. This 
results in an interesting interplay between 
the linear discriminant and the original fea- 
tures in the induced rule set. For example, 
consider these mixed-model rules from a 
heart disease data set: 

66 

ministic applications, the well-known iris 
data and an appendicitis data set, Swap-1 
obtained the optimum rule sets.' In a study 
using artificial data with simulated noisy 
attributes, Swap-1 readily matched or ex- 
ceeded the performance of other rule in- 
duction techniques." Even more interest- 
ing is its performance on large-scale 
industrial applications with hundreds of 
features and thousands of samples, includ- 
ing predicting disk drive failure prior to 
final (expensive) testing,22 automatically 
classifying electronic documents based on 
word patterns,?' and diagnosing chronic 
problems in a long-distance telephone net- 
work.24 The scope of looking for patterns 
in  these large data sets exceeds human 
capacities. Swap- 1 found valuable new 
decision rules, in effect automatically in- 
ducing knowledge bases from data. 

Some of the applications we tested are 
proprietary, so we have taken a basic re- 
search approach here and compare our re- 
sults with published results on nonpropri- 
etary data. The four real-world applications 
contained generally noisy data, and the 
best solutions all had substantial error rates. 
We wanted to see whether Swap-1 could 
find less complex but still clear and in- 
sightful solutions to these problems. 

The applications compared different 
learning models, usually backpropagation 
neural nets and decision trees. We were 
particularly interested in these applications 
because decision trees performed relative- 
ly poorly compared to other learning mod- 
els. Table 3 summarizes the characteristics 
of the four data sets and the training and 
test variations used to estimate the true 
error rates. Table 4 summarizes the results 
of previous studies for standard learning 
models and our results for a reduced-com- 
plexity approach. For neural nets and lin- 
ear discriminants, the unit used to measure 

IEEE EXPERT 

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 15,2010 at 11:27:41 UTC from IEEE Xplore.  Restrictions apply. 



Table 3. Data set characteristics for four applications. Lv-1 stands for leaving one out. 

DATA SET TRAINING CASES TEST CASES FEATURE TYPE FEATURES CLASSES IN 
TRAINING SET 

complexity was the number of weights; for Nettalk 7,229 7,242 Boolean 203 
297 (10) 70%/30% Numerical 13 
106 Lv-1 Boolean 228 rules, it was the number of propositions; 

and for trees, it was the number of nodes. Rheum 121 Lv-1 Boolean and 140 
While the complexity of different models 

:rLt 
numerical 

99 
2 
2 
5 

is not strictly comparable, these are the 
most natural measures for each model. 

Text-to-speech recognition. The Net- 
talk text-to-speech application addresses 
the problem of recognizing “letters,” or 
classes of phoneme-stress pairs.25 Although 
previous studies used a relatively complex 
nonmutually exclusive encoding for classes 
(based on domain knowledge and suitabil- 
ity for a neural-net we 
used the traditional classification mold of 
mutually exclusive classes, The training 
set contains 47 phoneme classes and four 
stress classes but only 99 phoneme-stress 
pairs (letters) with at least two cases. Even 
though the set comprises more than 7,000 
cases, many of these 99 classes have rela- 
tively few cases in them. The rule sets 
{RS,) are induced from the training set. 
Given the large number of test cases, the 
appropriate complexity fit Cx(RSi) can be 
determined. The classes were ordered by 
the decreasing predictive value of their 
rule sets. 

The previously reported best result was 
for a neural net with an error rate of ,291 
and more than 27,000 weights. Swap-1 
found a reduced-complexity rule-based 
solution with an error rate of ,260 and 663 
rule components. (With 99 classes, we were 
unable to get a useful linear discriminant.) 
The first reported error rate for a tree-based 
solution was a relatively weak ,344, later 
improved to ,292 when a single relatively 
unprunedtree wasinducedforall126classes 
in the training set.” However, with the 99- 
class representation and some pruning, the 
error rate of a Cart-induced tree was the 
same as the Swap-1 rule-based solution, 
although with greatercomplexity. A slightly 
better result of ,256 was reported for trees 
using a 157-bit error-correcting code that 

induced a separate tree for each bit, yield- 
ing a total complexity of 207,804 nodes.27 

Classifying heart disease. A heart dis- 
ease application2* compared ID3 decision 
trees with backpropagation neural nets, 
using the average test results for 10 exper- 
iments. In each experiment, 70 percent of 
the cases were randomly selected for train- 
ing and the rest were used for testing.29 The 
best result was for a neural net with an error 
rate o f .  194 and 86 weights. The result of a 
tenfold (and a threefold) cross-validation 
with Swap-1 yielded a simple four-rule, 
six-component solution with an estimated 
error rate of .215, as compared with .288 
for the decision tree. We obtained better 
results by pruning the rule sets and not 
using binary encodings of numerical vari- 
ables. When we added the linear discrimi- 
nant to the original features, it was the best 
rule set, with 16 weights and an estimated 
error rate of ,176 (the average of three 
threefold cross-validations). The estimate 
for a tenfold cross-validation was .168. 

DNA pattern analysis. Researchers also 
compared several learning methods on a 
DNA pattern recognition task.30 In this 
study, a human expert’s theory (described 
in terms of a grammar) was reformulated 
as a neural network and refined, yielding 
somewhat better results than pure empiri- 
cal learning systems. (We used the leav- 
ing-one-out method, in which a single case 
is used as a test case, and the remaining 
cases are used for training. This is repeated 
for all cases in the sample. Using this 

method, we estimated the human-assisted 
solution at an error rate of 0.038.) The best 
learning result was for a neural net with an 
error rate of .075 and more than 3,600 
weights. The tree solution did relatively 
poorly, with an error rate of ,179; a re- 
duced-complexity three-rule solution with 
five components performed better (with an 
error rate of .132). Still, the rule-based 
solution was not fully competitive. By in- 
cluding the results of the linear discrimi- 
nant in the feature set, the researchers ob- 
tained an induced rule set that was pruned 
back to the linear discriminant alone. This 
function had only 12 weights and an error 
rate estimate of .047; its reduced complex- 
ity was due to the success of stepwise 
feature selection. With 228 features and 
only 106 cases, there were far too many 
weights to be estimated if all the features 
were used, so a reduced-complexity dis- 
criminant was desirable. 

Diagnosing rheumatic disease. More 
than a decade ago, researchers described 
and evaluated a rule-based expert system 
for diagnosing rheumatic diseases.31 The 
knowledge base and data were later used in 
heuristic refinement systems that could 
modify a theory (that is, an expert-speci- 
fied rule base) to improve its performance.32 
These systems were restricted to minor 
refinements that would assure the preser- 
vation of the expert’s knowledge base close 
to its original form. These same data were 
used to evaluate an alternative theory revi- 
sion approach, called RTLS, which used 
the expert knowledge base as a starting 

Table 4. Comparison of best reaorted. decision tree, and Swap-1 results. NN stands for neural net. Cx-LD stands for complexity of linear discriminant. 

Rheum ~0.07 

. .  

0.179 25 
0 3 7 2  63 

DECEMBER 1993 
__ 
67 

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 15,2010 at 11:27:41 UTC from IEEE Xplore.  Restrictions apply. 



Toble 5. CPU times for swopping rule 
components on o Sporc-10. 

DATA SET FINO A COVERING SET PERFORM A 
ON ALL CASES FULL ANALYSES 

covering set on all cases and for doing a 
1 hour 3 hours seconds 2, seconds complete analysis, including full pruning Nettalk 

Heart 
DNA 1 second 5 seconds 
Rheum 1 second 5 seconds 

point and allowed unrestricted changes to 
the rule The error rate for the five- 
class problem was estimated at zero. Be- 
cause this new rule set was radically differ- 
ent from the expert’s knowledge base, it 
was worth considering how well a purely 
empirical learning system might do. 

The RTLS solution was far too complex 
(with hundreds of rules and thousands of 
components to provide a good complexity 
fit to the data. The true error rate of RTLS 
was also higher than cited, because error 
rates were measured in a nontraditional 
way. Some ties were scored as correct, and 
answers were marked correct when they 
agreed with the output of a second refine- 
ment program, Seek2. However, the output 
of Seek2 had an error rate estimate of ,074, 
so the true error rate of the refined rule set 
must be greater than that. 

Most empirical learning systems could 
not handle this data set because almost half 
the feature values were missing. Inducing 
a decision tree using Cart (with its surro- 
gate strategy for handling missing values) 
yielded a high error rate of .405. Swap-I 
found a six-rule, seven-component solu- 
tion with an estimate of .074. Even with 
missing values, the covering of the 121 
cases was quite compact. With so many 
missing values, the advantage of the rule- 
based solution over the decision tree can be 
traced to the rules’ nonmutual exclusivity. 
(Although the results were quite good, cau- 
tion is still warranted. With missing val- 
ues, there is always the question of whether 
a prediction is based on a feature value or 
on the event that a value is missing.) 

Computational timings. Swapping com- 
ponents in a large rule set might appear to be 
computationally prohibitive. This article has 
presented the algorithms in a way that clar- 
ifies their functionality, but in practice they 
can be encoded far more efficiently (though 
less intuitively) to take advantage of the 
strong computational bounds. Thus, these 
computations are usually quite tractable. 
Table 5 shows the CPU times for finding a 

and swapping, on a Sparc-IO workstation. 
For all data sets except Nettalk, the times are 
for a tenfold cross-validation; for Nettalk, 
the time is for a single training and test cycle. 

F O R  SOME APPLICATIONS, SUCH 
as parity checking, a disjunctive normal 
form model might be weaker than a neural 
net, since the latter can theoretically ap- 
proximate any function. In practice though, 
a DNF model induced from data can often 
outperform other types of models, includ- 
ing neural nets, by more efficiently search- 
ing arestricted solution space. Our reduced- 
complexity rule induction approach 
performed as well as or better than previous 
solutions in terms of estimated error rates, 
but equally important, they were far less 
complex than previously reported solutions. 

However,intwoinstances, thepurerule- 
based solution was weaker than the neural 
nets. By combining the results of the step- 
wise parametric linear discriminant with 
the original feature set, we were able to 
exceed previous results at the expense of a 
mixed-model solution. Solutions based on 
incorporating a traditional classifier model 
into a rule-based approach can offer new 
insight into an application and are fully 
compatible with knowledge-based systems. 

While our approach is directed toward a 
rule-based solution, the notion of minimiz- 
ing complexity is not restricted to any par- 
ticular model. Neural-net solutions that are 
compact and minimize the number of 
weights are also likely to increase predic- 
tive accuracy. For the applications cited 
here, similar simplifications to other mod- 
els might yield improved results. For ex- 
ample, the Nettalk model might benefit 
from a reduced number of weights. The 
limiting factor is not only the specific 
model, but the effectiveness of the learning 
technique and computational time. 

With increasingly available computa- 
tional power, we can look forward to more 
computationally intensive attempts to ex- 
tract the maximum amount of information 
from sample data, since computation is 
clearly far less expensive than human ef- 
fort. For applications with very large data- 
bases, these intensive computational ef- 
forts might supplement or even replace 
human knowledge-engineering efforts. 

68 

References 
1. C. Wallace and P. Freeman, “Estimation 

and Inference by Compact Encoding,” J.  
Royal Statistical Soc. Series B. ,  Vol. 49B, 
NO. 3, 1987, pp. 240-265. 

2. J. Rissanen, “Modeling by Shortest Data 
Description,” Automatica, Vol. 14, 1978, 
pp. 465-471. 

3. J. Rissanen, “Stochastic Complexity.” J.  
Royal Statistical Soc. Series B . ,  Vol. 49. 
NO. 3, 1987, pp. 223-239. 

4. R. Holte, “Very Simple Classification Rules 
Perform Well on Most Data Sets,” Tech. 
ReportTR-91-16,ComputerScienceDept., 
U. of Ottawa, Canada, 1991. To be pub- 
lished in Machine Learning. 

5. L. Breiman et al., Classification and Re- 
gression Trees, Wadsworth, Monterrey, 
Calif., 1984. 

6. J. Quinlan, “Simplifying Decision Trees,” 
Int’lJ. Man-MachineStudies,Vol.27,1987, 
pp. 221 -234. 

7. M. James, Classification Algorithms, John 
Wiley & Sons, New York, 1985. 

8. S. Weiss and I. Kapouleas, “An Empirical 
Comparison of Pattern Recognition, Neu- 
ral Nets, and Machine Learning Classifica- 
tion Methods,” Int’l Joint Con$ Artificial 
Intelligence (IJCAI-89), Morgan Kaufmann, 
San Mateo, Calif., 1989, 781-787. 

9. S. Weiss, R. Galen, andP. Tadepalli, “Max- 
imizing the Predictive Value of Production 
Rules,”Artificiallntelligence, Vol. 45,1990, 
pp. 47-71. 

10. J. Quinlan, “Generating Production Rules 
fromDecision Trees,”Proc. Int’l Joint Con$ 
Artificial Intelligence (IJCAI-87), Morgan 
Kaufmann, San Mateo, Calif., 1987, pp. 
304-307. 

11. P. Clark and T. Niblett, “The CN2 Induc- 
tion Algorithm,” Machine Learning, Vol. 
3, 1989, pp. 261-283. 

12. G. Pagallo and D. Haussler, “Boolean Fea- 
ture Discovery in Empirical Learning,” 
Machine Learning, Vol. 5, No. 1, 1990, pp. 
71-99. 

13. R. Michalski et al., “The Multipurpose In- 
cremental Learning System AQl5 and Its 
Testing Application to Three Medical Do- 
mains,” Nat’l Conf. Artificial Intelligence 
(AAAI-86), MIT Press, Cambridge, Mass., 
1986, pp. 1,041-1,045. 

14. N. Indurkhya and S. Weiss, “Iterative Rule 
Induction Methods,” Applied Intelligence, 
Vol. 1, 1991, pp. 43-54. 

15. G.  Pagallo, “Learning DNF by Decision 
Trees,” Proc. Int’l Joint Con$ Artificial 

IEEE EXPERT 

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 15,2010 at 11:27:41 UTC from IEEE Xplore.  Restrictions apply. 



Intelligence ‘89, Morgan Kaufmann, San 
Mateo, Calif., 1989, 639-644. 

16. S. Lin and B. Kernighan, “An Efficient 
Heuristic for the Traveling Salesman Prob- 
lem,” OperationsResearch, Vol. 21, No. 2, 
1973, pp. 498-516. 

17. T. Hastie and R. Tibshirani, Generalized 
Additive Models, Chapman and Hall, Lon- 
don, 1990. 

18. W. Highleyman, “The Design and Analysis 
of Pattern Recognition Experiments,” Bell 
System Tech. J . ,  Vol. 41, 1962, pp. 723- 
744. 

19. M. Stone, “Cross-Validatory Choice and 
Assessment of Statistical Predictions,” J.  
the Royal Statistical Society, Vol. 36,1974, 
pp. 111-147. 

20. P. Utgoff, “Perceptron Trees: A Case Study 
in Hybrid Concept Representation,” Proc. 
Nat’l Con$ Artificial Intelligence (AAAI-  
88). Morgan Kaufmann, San Mateo, Calif., 
1988, pp. 601-606. 

21. R. Fisher, “The Use of Multiple Measure- 
ments in Taxonomic Problems,” Annals of 
Eugenics, Vol. 7, 1936, pp. 179-188. 

22. C. Apte, S. Weiss, and G. Grout, “Predict- 
ing Defects in Disk Drive Manufacturing: 
A Case Study in High-Dimensional Classi- 
fication,” Proc. IEEE Computer Soc. Con$ 
on Artificial Intelligence for  Applications 
(CAIA-93), IEEEComputer Soc. Press, Los 
Alamitos, Calif., 1993, pp. 212-218. 

23. C. Apte,F. Damerau, and S. Weiss, “Auto- 
mated Learning of Decision Rules for Text 
Categorization,” to be published in ACM 
Trans. on OflceInformation Systems, 1994. 

24. R. Sasisekharan, V. Seshadri, and S.M. 
Weiss, “Proactive Network Maintenance 
Using Machine Learning,” to appear in 
Proc. IEEE Globecom ’93, IEEE Service 
Center, Piscataway, N.J., 1993. 

25. T. Sejnowski and R. Rosenberg, “Parallel 
Networks that Learn to Pronounce English 
Text,” Complex Systems, Vol. 1, 1987, pp. 
145-168. 

26. T. Dietterich, H. Hild, and G. Bakiri, “A 
Comparative Study of ID3 and Backpropa- 
gation for English Text-to-Speech Map- 
ping,” Proc. Seventh Int’l Con$ Machine 
Learning, Morgan Kaufmann, San Mateo, 
Calif., 1990, pp. 24-31. 

27. T. Dietterich and G. Bakiri, “Error-Cor- 
recting Output Codes: A General Method 
for Improving Multiclass Inductive Learn- 
ing Programs,” Proc. Nat’l Con$ Artificial 
Intelligence ‘91, Morgan Kaufmann, San 
Mateo, Calif., 1991, pp. 572-577. 

28. R. Detrano et al., “Int’l Application of a 
New Probability Algorithm for the Diagno- 
sis of Coronary Artery Disease,” Amer. J .  
Cardiology, Vol. 64, 1989, pp. 304-310. 

29. J. Shavlik, R. Mooney, and G. Towell, 
“Symbolic and Neural Learning Algorithms: 
An Experimental Comparison,” Machine 
Learning, Vol. 6, 1991. 

30. G. Towell, J .  Shavlik, and M. Noordeweir, 
“Refinement of Approximate Domain The- 
ories by Knowledge-Based Neural Net- 
works,” Proc. Nat’l Con$ Artificial Intelli- 
gence ‘90, Morgan Kaufmann, San Mateo, 
Calif., 1990, pp. 861-866. 

3 I .  D. Lindberget al., “Computer-BasedRheu- 
matology Consultant,” Medinfo-80: Proc. 
Third World Con$ Medical Informatics 
1980, North Holland, Amsterdam, 1980, 
pp. 1,311-1,315. 

32. A. Ginsberg, S. Weiss, and P. Politakis, 
“Automatic Knowledge Base Refinement 
for Classification Systems,” Artificial In- 
telligence, Vol. 35, 1988, pp. 197-226. 

33. A. Ginsberg, “Theory Reduction, Theory 
Revision, and Retranslation,” Proc. Nat ’1 
Con$ Artificial Intelligence ‘90, Morgan 
Kaufmann, San Mateo, Calif., 1990, pp. 
777-782. 

Sholom M. Weirs is a 
research professor of 
computer science at Rut- 
gers University and the 
author of Computer Sys- 
tems that Learn: Classi- 
fication and Prediction 
Methods from Statistics, 
Neural Nets, Machine 
Learning, and Expert 
Systems (Morgan Kauf- 

mann, 1991). His current research interests 
emphasize machine learning from data. He is a 
fellow of the American Association for Artifi- 
cial Intelligence, serves on numerous editorial 
boards, including that of IEEE Expert, and has 
extensive industrial collaborations on the prac- 
tical application of machine-learning techniques. 

Nitin lndurkhya is a 
research scientist in the 
Artificial Intelligence 
Section at Telecom Aus- 
tralia Research Labora- 
tories. He received his 
BS in computer science 
and engineering from the 
Indian Institute of Tech- 
nology, Kanpur, India, 
and his MS and PhD in 

computer science from Rutgers University. His 
current research focuses on automatic model 
construction and time-series data analysis, with 
particular interest in hidden Markov modeling, 
rule-based induction, decision trees, neural nets, 
and nonparametric statistics. He is a member of 
AAAI. 

The authors can be reached in care of Weiss 
at the Department of Computer Science, Rutgers 
University, New Brunswick, NJ 08903; Inter- 
net, weiss@cs.rutgers.edu 

DECEMBER 1993 

ENCYCLOPEDIA 
O F  

C O M P U T E R  
SCIENCE 
3rd Edition 

edited by Anthony Ralston and 
Edwin D. Reilly 

PUBLISHED BY IEEE PRESS AND VAN 

NOSTRAND REINHOLD 

This landmark book is the reference 
work to  include on every school, college, 
corporate and public library, computer 
laboratory and hacker’s bookshelf. With 
nearly2,OOOpages andover6OOarticles, 
it is the most comprehensive, up-to-date 
source to  cover the field of computer 
science. In just one volume the Encyclo- 
pedia of Computer Science explores the 
history of electronic computing to the 
most current research work in the field. 

This new, fully revised third edition 
includes almost 175 totally new articles 
covering areas of computer science that 
did not exist or were of little importance 
ten years ago. It  encompasses the who, 
what, where, and why of computer sci- 
ence and technology including all major 
computing systems, distributed comput- 
ing environments, and new software - 
this book covers it all. 

A Sample of New Topics: 
Biocomputing, Bulletin Boards, Computer 
Graphics Standards, Computer Literacy, 
Computer Construction, CASE, CD-ROM, 
Cognitive Science, Computational Geom- 
etry, Computer Animation, Data Communi- 
cation Standards, Discrete Mathematics, 
Electronic Mail, Groupware, Distributed 
Computing,Embedded Systems, Local Area 
Networks, Fiber Optics, Knowledge Repre- 
sentation, Logic Programming, Medical 
Imaging, Network Protocols, Neural Net- 
works, Object-Oriented Programming, 
Relational Databases, RISC Architecture, 
Software Metrics, Software Prototyping, 
Fractals, Systolic Arrays, Transputers, User 
Interfaces, Workstations. 

1.8lOpages. December 1992. Hardcover. 

Catalog # 4592-21 
$129.95 Members $89.95 

ISBNO- 7803-0432-2. 

To order call toll-free 
1 -800-CS-BOOKS 

in CA-714/821-8380 

FAX - 71 41 821 -4641 

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 15,2010 at 11:27:41 UTC from IEEE Xplore.  Restrictions apply. 

mailto:weiss@cs.rutgers.edu

