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Abstract

In previous studies, we have shown that an Adaboost-based fitness can be suc-
cessfully combined with a Genetic Algorithm to iteratively learn fuzzy rules from
examples in classification problems. Unfortunately, some restrictive constrains in
the implementation of the logical connectives and the inference method were as-
sumed. Alas, the knowledge bases Adaboost produce are only compatible with an
inference based on the maximum sum of votes scheme, and they can only use the
t-norm product to model the ’and’ operator.

This design is not optimal in face of linguistic interpretability. Using the sum
to aggregate votes allows many rules to be combined, when the class of an example
is being decided. Since it can be difficult to isolate the contribution of individual
rules to the knowledge base, fuzzy rules produced by Adaboost may be difficult to
understand linguistically.

Under this point of view, single winner inference would be a better choice,
but it implies dropping some non-trivial hypotheses. In this work we introduce our
first results in the search of a boosting-based genetic method able to learn weighted
fuzzy rules that are compatible with this last inference method.

1 Introduction

The first application of a boosting algorithm to learn fuzzy classifiers is given in [15]. In
this work, it was proposed to combine a search algorithm with a fitness function taken
from Real Adaboost to incrementally learn descriptive fuzzy rules from examples in
classification problems. There are subsequent works in which approximate rules [12]
are also learned. A comprehensive description of the use of boosting in fuzzy classifiers
is given in [4].

In [21][23], following the work of [7], Adaboost is regarded as an forward step-
wise estimation of the statistical parameters defining a logit transform of a Generalized
Additive Model, and this property is used to extend this last estimation to learn fuzzy
models in regression problems. A similar statistical interpretation has been used later
to improve the fuzzy Adaboost algorithm, again in classification problems. Adaboost
was considered as the application of the same forward stepwise procedure, so called
“Matching Pursuit” in signal theory related works [17][25], and an instance of the
matching pursuit algorithm was successfully used to extend the LogitBoost algorithm
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to learn descriptive fuzzy rules in classification problems [19], solving some difficulties
the AdaBoost algorithm poses in multiclass problems.

Besides all these methods are fast, and produce accurate classifiers and models, they
all share a common problem: their output has a low degree of interpretability. This is
rooted in their own definition. Fuzzy systems can only be compared to Generalized
Additive models when the sum of votes scheme [16] is adopted. But the use of the
sum to aggregate rules allows the existence of rules that have not linguistic meaning by
themselves, but when combined with other, overlapping ones. In other words, one can
not isolate the contribution of a single rule to the fuzzy classifier; they can be thought
of as weights in a neural network.

A better inference method, in terms of linguistic interpretability, is the “single win-
ner” [14]. This last mechanism is compatible with the idea of a fuzzy rule being an
imprecise assert, which states that all patterns in a given fuzzy region belong to the
same class. But the single winner inference does not combines the votes of the rules
with the arithmetic sum, but the maximum operator. Apparently, this prevents us from
using the analogy between fuzzy classifiers and additive models on which fuzzy Ad-
aboost depends. On the contrary, we will show later in this paper that this problem can
be reformulated so that a matching pursuit, with a prefitting stage, can be used to solve
it.

1.1 Summary

The structure of this paper is as follows: in the next section, fuzzy classifiers are intro-
duced and it is explained how boosting can be applied to induce them from data. Then,
it is explained how single winner inference can be expressed in terms of additive mod-
els, and a new algorithm is proposed. The paper finishes with an empirical evaluation
of the new algorithm and some preliminary numerical results.

2 Boosting Fuzzy Classifiers

2.1 Notation

At this point we introduce the basic notation employed throughtout the paper. LetX
be the feature space, and letx be a feature vectorx = (x1, . . . , xn) ∈ X. Let p be
the number of classes. The training set is a sample ofm classified examples(xi, yi),
wherexi ∈ X, 1 ≤ yi ≤ p, 1 ≤ i ≤ m.

The antecedents of all fuzzy rules in the classifier form a fuzzy partitionA of the
feature spaceA = {Aj}j=1...N , with Aj ⊂ P̃(X), whereP̃(X) stands for “fuzzy parts
of X”. In the remaining part of this paper, we will assume that the training examples
will be indexed by the letteri, the rules byj, the features byf and the classes byk; the
ranges of these variables are1 ≤ i ≤ m, 1 ≤ j ≤ N , 1 ≤ f ≤ n and1 ≤ k ≤ p. For
example, if we write “for allxi” we meanxi, 1 ≤ i ≤ m; from now on, this range will
not be explicitly stated unless its absence leads to confusion.

2.1.1 Linguistic interpretation of fuzzy classifiers

We will define a fuzzy rule based classifier by means of a fuzzy relationship defined
onA × {1, . . . , p}. Values of this relationship describe the degrees of compatibility
between the fuzzy subsets of the feature space collected inA, and each one of the
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classes. In other words, for every antecedentAj we may have up top numbers between
0 and 1 that represent our degree of knowledge about the assert “All elements in the
fuzzy setAj belong to class numberk”. Values near to1 mean “high confidence,” and
values near0 mean “absence of knowledge about the assert.”

In practical cases, we work with antecedentsAj that can be decomposed in a Carte-
sian product of fuzzy sets defined over each feature,Aj = Aj

1 × Aj
2 × . . .× Aj

n, thus
the rules are

if x1 is Aj
1 and . . . andxn is Aj

n

then truth(c1) = sj
1 and · · · and truth(cp) = sj

p.

We can restrict the definition further by definingn linguistic variables (one linguistic
variable for every feature) and requiring that all terms setsAj

f in the antecedents are
associated with one linguistic term in its corresponding linguistic variable. In this case,
we obtain a fuzzy rule baseddescriptiveclassifier. If we do not apply the latter restric-
tion, we obtain anapproximateclassifier. This work deals with descriptive classifiers.

2.1.2 Fuzzy inference

Fuzzy reasoning methods define how rules are combined and how to infer from a given
input to the corresponding output.

An instancex is assigned to the class

arg maxk

∨
j

Aj(x) ∧ sj
k (1)

where “∧” and “∨” can be implemented by different operators. “∧” is always a t-norm,
usually the minimum or the product. In this work, we have chosen to use the product.

Selecting an implementation of the “∨” operator is not immediate. Fuzzy Adaboost
relies on the use of the “maximum voting scheme” [14], because of reasons explained in
[4]. It was mentioned in the introduction that this scheme may be criticized, because of
interpretability reasons. We are interested in defining “∨” to be the maximum operator
[16]. Observe that, in this case, all termssj

k in rule numberj but the maximum one
can be removed without affecting the output of the classifier, which will be formed by
rules as follows:

if x1 is Aj
1 and . . . andxn is Aj

n

then truth(cq(j)) = sj
q(j)

whereq(j) = arg maxk sj
k. There is an alternate linguistic expression for this rule:

if x1 is Aj
1 and . . . andxn is Aj

n

then class= q(j) with weight[sj
q(j)]

2.2 Learning Fuzzy Rules

The learning algorithm that will be introduced in this paper is based on the similarities
that exist between estimating additive models and boosting rules [7][19]. In the fol-
lowing sections, the concepts needed to understand these similarities are summarized.

The statistical problem solved when learning a classifier is “estimateP (class(x) =
ck).” When additive models are used to solve it, it is reformulated by means ofp
random variables

yk(x) =
{

1 if class(x) = ck

0 else
(2)
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that allow us to transform the classification problem into a regression one, that of esti-
mating the conditional expectationsE(yk|x) = P (class(x) = ck), which is solved as
shown in the next subsection.

2.2.1 Additive models

Additive models were introduced in the 80’s to improve precision and interpretability
of classical nonparametric regression techniques in problems with a large number of
inputs. These models estimate an additive approximation to the multivariate regression
function, where each of the additive terms is estimated using a univariate smoother.

Let us callE(y/x) = p(class(x) = 1) to the output random variable we wish to
model, and letx = (x1, . . . , xn) be the input random vector. The objective of the
modeling process consists in estimating the conditional expectation ofy givenx.

Linear regression assumes

E(y|x) = β0 + β1x1 + . . . + βnxn (3)

and obtainsβ0, . . . , βn by least squares. Additive models generalize this schema by
allowing the use of a sum of nonlinear univariate regressors

E(y|x) = u0 + u1(x1) + . . . + un(xn) (4)

whereui are smooth functions that are estimated in a nonparametric fashion.
Generalized additive models extend additive models by not assuming a Gaussian

distribution of the output, but any probability distribution in the exponential family and
making the additive component to depend on the mean of the output by means of a link
functiong, so that

g(E(y|x)) = u0 + u1(x1) + . . . + un(xn). (5)

Additive models can be generalized furthermore. In extended additive models, the
n univariate regressorsui are replaced byN functionsrj of more than one feature. In
our context, these functions usually depend on a set of parametersγ and a multiplierβ,

rj = βjr(x; γj) (6)

thus the additive model becomes

g(E(y|x)) = r0 +
N∑

j=1

βjr(x; γj). (7)

Generalized additive models embody many machine learning algorithms. For example,
in radial basis neural networks the functionsr(x, γj) = exp{||x−γj ||2} are the “basis
functions”;γj are their centers andβj are the weights that connect the input layer with
the output. In support vector machines,r(x, γj) is a kernel, andγj are the support
vectors. In our case, we will propose a model wherer(x, γj) is an expression that
contains the membershipAj of the antecedent of thej-th fuzzy rule,γj identifies the
linguistic terms that participate in the rule andβj is the weight of the rule (that we have
calledsj

q(j) before.) The precise expression will be made clear later.
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2.2.2 Backfitting and the Logitboost Algorithm

Extended additive models use to be estimated by maximum likelihood. The numerical
techniques involved can be very different, but they all share a common objective: given
a cost functiond, that measures the differences between the conditional expectation and
its approximation, the learning algorithm consists in findingN pairs of values{βj , γj}
minimizing each

E

d

y,
∑

α=1...N
j 6=α

βαr(x; γα) + βr(x; γ)


 (8)

with respect toβ, γ [7]. We are interested in a greedy learning algorithm, that finds
{β1, γ1} first, then{β2, γ2} and so on.

Algorithms that learn a weighted sum of basis functions, by sequentially appending
functions to an initially empty basis, to approximate a target function in the least-
squares sense, are contained in the family of thematching pursuitalgorithms [17].
These algorithms have been compared to those used to learn support vector machines
[27] and radial basis neural networks in machine learning problems [25], and also to
Genetic Iterative Learning of fuzzy rules [4].

One of the most interesting properties of matching pursuit algorithms is that they
are good in keeping the sparsity of the solution; this explains the good generalization
properties of the methods listed before. We will also see in the following sections that
the same property guarantees a short number of rules in the fuzzy case that will be
described later.

As we mentioned in the preceding section, the objective of a binary classification
problem is to approximate the valueE(y|x) = p(c = 1|x), which we will abbrevi-
ate byp(x). The response variable in a classification problem follows the binomial
distribution, whose corresponding extended additive model is [10]

log
p(class(x) = 1)
p(class(x) = 0)

= g(E(y|x)) = r0 + β1r(x, γ1) + . . . (9)

and the output of the model, reversing the logistic transform,

p(x) =
eg(E(y|x))

1 + eg(E(y|x))
(10)

If the greedy version of generalized backfitting (the “matching pursuit” algorithm,)
also mentioned in the preceding subsection, is applied to this model, it is obtained the
Logitboost algorithm [7]. At each iteration, an adjusted dependent variable is fitted by
weighted least squares. The adjusted variable that arises from the binomial distribution
is

z = g(E(y|x)0) +
1y=1 − p(x)

p(x)(1− p(x))
(11)

This response depends on the valuesp(x), defined by means of eq. 10.g(E(y|x)0) is
the output of the additive model in the previous iteration, as defined in eq. 9. When the
method is particularized to learn fuzzy rules,g(E(y|x)0) is the output of the fuzzy rule
base before the new rule is added, and the valuessj

k and the membership functionAj

are chosen to minimize

fitness(Aj) =
n∑
i

p(xi)(1− p(xi))
(

sj
k ·A

j(xi)−
d(xi)− p(xi)

p(xi)(1− p(xi))

)2

(12)
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fi0k = 0
For step numberj = 1, . . . , N

For class numberk = 1, . . . , p
for i = 1, . . . , n dopijk = efij−1k/(1 + efij−1k )
for i = 1, . . . , n dowijk = pijk(1 − pijk).
Find with a Genetic Algorithm the antecentAj that minimices

fitness(Aj) =

n∑
i

wijk

(
sj · Aj(xi) −

yik − pijk

wijk

)2

wheresj =

∑
i
(yik − pijk)Aj(xi)∑

i
wijk[Aj(xi)]2

for i = 1, . . . , n dofijk = fij−1k + sj · Aj(xi)
if sj > 0 then Emit the Rule “if x is Aj then t(ck)=sj”
else Emit the Rule

“ if x is Aj then t(c1)=-sj . . . t(ck)=0 . . . t(cp)=-sj”
End for

End for

Figure 1: Outline of the basic version of backfitting applied to a logistic extended
additive model orLogitboost. For two classes problems it is not needed the second
loop, aspj1(x) = 1−pj2(x). The knowledge base that this algorithm produces requires
the “sum of votes” inference.

and are searched by means of a genetic algorithm. An outline of the adaptation of this
method to learn fuzzy rules, as described in [19], is shown in Figure 1.

3 Proposed algorithm

3.1 Definition of the weak learners

Let us recall eq. 1. We mentioned that an instancex is assigned to the class

arg maxk

∨
j

Aj(x) ∧ sj
k (13)

where “∧” and “∨” could be implemented by different operators. In fuzzy boosting,
this last expression became

arg maxk

∑
j

Aj(x) · sj
k (14)

and that allowed to use the fuzzy membershipsAj in antecedents as weak learners, and
obtain the weights of the rulessj

k by means of a boosting algorithm, as shown in Figure
1.

To use single-winner inference, we want to use themax operator instead of the
sum. We have to obtain the weightssj

k of the expression that follows:

arg maxk{max
j

Aj(x) · sj
k} (15)
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which is not a sum of terms and therefore not an additive model thus boosting makes
no sense here. But, we can define a function

I(x, j) =
{

1 if j = arg maxAj(x) · sj
k

0 elsewhere
(16)

(in words,I(x, j) = 1 if the rule numberj is the winner when classifying the inputx,
and 0 if not) and rewrite eq. 15 as

arg maxk

∑
j

I(x, j) ·Aj(x) · sj
k. (17)

The rewritten expression is related to eq. 7 as follows. Observe that the products

r(x, γj) = I(x, j) ·Aj(x) (18)

can be regarded as weak learners, and their weightssj
k determined by backfitting.

Therefore, we have transformed the initial problem into another, that can be solved
after estimating the functionI. In the next subsection, we propose an iterative algo-
rithm to complete the task.

3.2 Recurrent estimation of the function I

Let us suppose for the time being that we have an initial rule base, comprisingN − 1
rules, to which we want to add a new fuzzy rule. The additive model we want to solve
is

g(E(yk|x)) =
∑

j

I(x, j) ·Aj(x) · sj
k. (19)

We know the values ofI(xi, j) for all the rules in the initial base, at the points in
the training set:I(xi, j) = 1 if the rule numberj was the winner in the examplei, 0
else. Now we want to improve the base by adding theN -th rule. It is clear that some
of these values ofI will change from1 to 0 after the new rule is added (otherwise, the
new rule would not win at any example in the training set and it would be useless to
add it to the base.) ButI participates in the definition of the weak learners, therefore all
valuessj

k must be recalculated every time a rule is added. Clearly, a prefitting version
of the matching pursuit algorithm [25] is mandatory for this problem: the consequents
of all the rules in the initial base are affected after a new rule is added to it.

If all the valuesI(xi, j) andAj(xi) were known, the least squares election ofsj
k

would be an standard problem of linear regression, that can be solved by means of a
pseudoinverse. Let us suppose that the initial rule base is empty, and definefi0k = 0,
pi0k = 1/2 anddik = 1 if class(xi) = k, and0 else. The adjusted dependent variable
is

zik = 0 +
dik − 1/2

1/2(1− 1/2)
(20)

and, givena set ofN membership functionsAj , theN · p valuessj
k can be found by

minimizing

fitness(A1, . . . , AN ) =

zik −
∑

j

I(xi, j) ·Aj(xi) · sj
k

2

. (21)
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procedureAddFuzzyRule
Input: A rule base of sizeN and the antecedent of the fuzzy ruleAN+1

Output: A rule base of sizeN + 1 and a numerical value of fitness
Skj = sj

k k = 1, . . . , p, j = 1, . . . , N
Initialize Sk,N+1 at random
Repeat

I ′ = I
For j = 1, . . . , N + 1, i = 1, . . . , m do

Iij =
{

1 rule j wins in examplexi

0 else
End For
Fji = Aj(xi) · Iij j = 1, . . . , N + 1, i = 1, . . . , m
Zki = 4(yk(xi) − 0.5) k = 1, . . . , p, i = 1, . . . , m
S′ = S
S = Z · F t · (F · F t)−1

S = αS + (1 − α)S′

Until ||S − S′|| < ε
OutputS and fitness=||Z − S · F ||

Figure 2: The procedure AddFuzzyRule takes as inputs a fuzzy classifier of sizeN
and the antecedent of a fuzzy rule. Its output consists of a new fuzzy classifier, of size
N + 1, and a numerical fitness value that measures the merit of the new rule. Adding
one rule to the base implies recalculating the importance of all consequents.

In matrix form, letS = [σkj ], Z = [θki] andF = [φji], whereσkj = sj
k, θki = zik

andφji = fi1k. Then, the least squares solution ofS is

S = ZF t(F · F t)−1. (22)

We can use a search algorithm (a genetic algorithm, in this case) to find the set of values
of Aj andI that minimize eq. 21, but the simultaneous search ofAj andI would not
be efficient. We propose to use instead the recurrent algorithm shown in Figure 2 to do
the task. In the next section it will be explained where this function is called from, and
an outline of the complete procedure given.

Notice that the values ofsj
k are randomly generated first to obtain an initial guess

of I; then sj
k are calculated by means of eq. 22.I is estimated again; if old and

new values are the same, the procedure stops. Otherwise, the process is repeated. In
practical simulations we have observed that an smoothing termα, as shown in the
figure, improves the speed of convergence.

3.3 Scheme of the algorithm

An outline of the algorithm is shown in Figure 3. Fitness values computed by the
function “AddOneRule” are optimized by a Genetic Algorithm, which is launched once
every time a new rule is added to the base. The algorithm is incremental, because
antecedents of rules do not change between iterations, but their weights can be modified
by the mentioned function.

Binary coded genetic algorithms are a natural choice for this problem, and we have
experimentally checked that the rules that the GA finds are close to the optimal ones.
We will use a coding scheme based in [8]. Let us codify a linguistic term with a ’1’
bit in a chain of so many bits as different terms in the linguistic partition. For example,
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For step numberj = 1, . . . , N
Call AddOneRule from a GA and select

the rule base of sizej with the minimum fitness value.
End For
For j = 1, . . . , N

Make allsj
k = 0 but the maximum one,sj

q(j)

Emit the Rule “if x is Aj then class= q(j) with confidence[sj
q(j)]”

End For

Figure 3: Outline of the backfitting algorithm applied to a logistic extended additive
model under single-winner inference, orMax-Fuzzy Logitboost.

let {LOW, MED, HIGH} be the linguistic labels of all features in a problem involving
three input variables and two classes. The antecedent

x1 is High and x2 is Med and x3 is Low

is codified with the chain 001 010 100. We could use this encoding to represent rules
for which not all variables appear in the antecedent and ’OR’ combinations of terms in
the antecedent. For example, the antecedent of the rule

If x1 is High and x3 is Low then . . .

is codified with the chain 001 000 100, and

If x1 is( High or Med) and x3 is Low then . . . ,

will be assigned the chain 011 000 100. With this structure, the GA is also exploited to
integrate a rule-wise feature selection process into the search scheme.

4 Preliminary benchmark results

The datasets used in this article to test the accuracy of the proposed algorithm are taken
from the UCI Repository Of Machine Learning Databases and Domain Theories [18],
from the literature [11] or synthetic [4]. The following datasets are used:

• PIMA (Pima Indians Diabetes Database): two classes problem. The patient
shows signs of diabetes according to World Health Organization criteria or not.
Eight numerical attributes (related to blood pressure, number of pregnancies,
age,...). The number of instances are 768, many attributes have missing values
and these have been encoded with the numerical value 0.

• Cancer (Wisconsin Breast cancer): the so called “original dataset” in [18]. Two
classes problem, malignant or benign, nine integer attributes (cell size, cell shape,
and so on) from 1 to 10, 699 instances.

• Gauss: two classes problem, proposed in [11]. 4000 points taken from two over-
lapping bi-dimensional Gaussian distributions (centered in(0, 0) and(2, 0))with
different covariance matrix (I and4I).

• Glass (Glass Identification Database): 6 class problem, the type of glass. Ten
attributes (different oxide content, refractive index), all numerical.
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• Gauss-5: synthetic 5 class problem proposed in [4], comprising 50, 100, 150,
200 and 250 samples from 5 bi-dimensional Gaussian distribution with centers
in (0, 0), (−1,−1), (−1, 1), (1,−1), (1, 1), and unity covariances matrix.

In order to compare the accuracy of two learning algorithms, Dietterich analyzes in
[5] five statistical tests and states that 5x2cv t-test has low type I error and good power.
Later, in [1], a new test called 5x2cv-f, that improves both type I error and power, is
proposed. We have adopted this last test in all our experiments.

5 statistical methods (linear and quadratic discriminant analysis, neural networks,
kernel estimation of densities and k-nearest neighbors) plus 6 fuzzy descriptive rule
based methods (Wang and Mendel’s [26], Ishibuchi’s [13], Pal and Mandal’s [20], Iter-
ative Genetic Learning [2], Random Sets Based [22], Fuzzy Descriptive Adaboost [4])
were compared to Max-Logitboost. The combined boxplots are shown in figure 4.

The genetic algorithm in both descriptive Adaboost and Max-Logitboost is steady-
state, with ten subpopulations of size 100 each. Every rule is obtained from the best
individual after 2500 crossover operations. Special care was taken to select the mini-
mum number of rules that produce a meaningful classification for all datasets, in order
to keep the rule bases linguistically understandable. Learning in either Adaboost and
Max-Fuzzy Logitboost is stopped when knowledge bases are of the following sizes:

• 7 rules for Pima (3 linguistic labels in all input variables)

• 4 rules for Cancer (2 labels)

• 5 rules for Gauss (5 labels)

• 10 rules for Glass (3 labels)

• 10 rules for Gauss5 (3 labels.)

Observe that the numerical values of the error could be further lowered if the number
of rules was allowed to increase. As a reference, the reader can compare the results
here with those in [22] and [4] for the same datasets.

After examining Figure 4, we can conclude that the extra linguistic quality has
little cost in accuracy; differences are never statistically significant (95% confidence,)
and in fact this method improves Fuzzy Adaboost in multiclass problems, as expected
(this is one of the advantages of Logitboost over Adaboost, according to its author [7].)
Therefore, Max-Fuzzy Logitboost is the preferred learning algorithm when linguistic
quality is the primary concern. Unfortunately, the learning time of the proposed method
is much longer that the needed by fuzzy Adaboost (between 6 and 10 times, in our
implementation) and ranks between 15 and 30 minutes on a personal computer (Intel
Pentium III, 500Mhz) for each problem contained in the proposed benchmark.

5 Concluding Remarks

The advantages of boosting methods when learning fuzzy classifiers are two: as far as
we know, the size of the rule base is much smaller than the obtained with any other
genetic fuzzy classifier, and the learning is very fast (between seconds and minutes for
the problems used in this paper.) But there are also drawbacks: the inference is not
standard, and the quality of the rule base is low, because the interaction between rules
is very high.
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Figure 4: Boxplots with a comparison between black-boxes (linear and quadratic dis-
criminant analysis, 3 layer perceptron, k-nearest neighbors, kernel estimation of densi-
ties) and fuzzy rule based classifiers (Wang and Mendel’s, Ishibuchi, Pal and Mandal,
Genetic Iterative Learning, Random Set based, Fuzzy Adaboost and Max-Fuzzy Boost-
ing.) The datasets are Pima, Cancer, Gauss, Glass and Gauss5.

LIN QUA NEU KNN KER WM ISH PM GIL KRE ABD AMM
pima 0.227 0.251 0.234 0.270 0.313 0.287 0.301 0.464 0.269 0.308 0.255 0.257

cancer 0.044 0.051 0.035 0.048 0.099 0.039 0.096 0.145 0.099 0.221 0.038 0.039
gauss 0.239 0.190 0.194 0.216 0.191 0.329 0.322 0.306 0.205 0.215 0.206 0.200
glass 0.404 - 0.389 0.354 0.621 0.453 0.503 0.647 0.363 0.606 0.522 0.388

gauss5 0.318 0.317 0.321 0.343 0.332 0.410 0.345 0.974 0.338 0.321 0.344 0.337

Figure 5: Mean values of the experiments shown in the preceding figure
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The high interaction between rules in Adaboost and Logitboost is a consequence
of the “sum of votes” inference scheme. The preferred inference method, in terms of
linguistic interpretability, is the “single winner” one. This last mechanism is compati-
ble with the idea of a fuzzy rule being an imprecise assert, which states that all patterns
in a given fuzzy region belong to the same class. But the single winner inference does
not combines the votes of the rules with the arithmetic sum, but the maximum oper-
ator, and this difficulties the application of boosting algorithms. We have solved the
problem by the introduction of an intermediate function in the definition of the weak
learner, and a recurrent algorithm to estimate it. The final algorithm produces fuzzy
rule bases of high descriptive quality, while preserving a good accuracy. A drawback
of this new procedure is related to its computational complexity, which is higher than
that of fuzzy Adaboost and Logitboost.
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