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Abstract

The genotype—phenotype encoding of fuzzy rule bases in GA, along with their cor-
responding crossover and mutation operators, can be used by other search schemes,
improving the behavior of these last ones. As a practical consequence of this, a simu-
lated annealing-based method for inducting both parameters and structure of a fuzzy
classifier has been developed. The adjacency operator in SA has been replaced with a
macromutation taken from tree-shaped genotype GAs. We will show that results of SA
search are similar to those of GP in both the efficiency of the learned classifiers and in its
linguistic interpretability, while the memory consumption of the learning process is
lower. © 2001 Elsevier Science Inc. All rights reserved.

Keywords: Fuzzy classification; Simulated annealing; Genetic algorithms; Genetic
programming

1. Introduction

A linguistically understandable fuzzy classifier system is defined by a base of
fuzzy rules. Following Zadeh [17], a fuzzy rule base can be described in two
levels of detail. The surface structure of the base, so-called ‘‘linguistic rule
base”, comprises the linguistic rules, and the deep structure comprises the set of
rules plus the definition of linguistic partitions of all features used in the
classification system. Every linguistic term is tied to a fuzzy set defined over one
of the features.
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The algorithms used for inducting a fuzzy classifier from a classified sample
can operate in two different manners. Some of them separately learn the fuzzy
partitions and the surface structure, but others integrate both parts in the same
process. In the first case it is common to assume an equidistant partition and
learn iteratively the rule base [8,13,15] or by means of genetic algorithms [4,16].
The memberships can also be approximated with clustering techniques,
followed by projections [1,2]. The latter case relies on optimization or search
techniques [6], in many cases genetic algorithms, with linear [3] or tree genotype
[14].

Two different codifications of the base have been used when applying GA to
this problem: linear genotype and tree-shaped genotype algorithms, so-called
genetic programming. Linear genotype-based methods almost always use a kind
of rules for which antecedents comprise linguistic terms, linguistic modifiers
and the logical connective “and”. With tree-shaped genotypes, whole bases of
rules are regarded as single chains in a context-free grammar and are repre-
sented by means of their parse tree [4] or by a pair, composed by a syntactic
tree and a chain of parameters [14]. We will refer to both approaches as
“grammar-based GP”’. These genotypes should allow us to represent rule bases
more compactly than linear representation can, hence we are mainly concerned
with these representations.

In grammar-based GP, only subtrees generated by the same production rule
can be interchanged, to preserve the syntactic correctness of the offspring.
Mutation can be defined in different ways. We will cross the individual being
mutated with a randomly generated individual (which is a concept similar to
that of “headless chicken” crossover [9]) and select one of the offsprings. We
will show that this mutation operator can be used within an SA-based search to
learn simultaneously the fuzzy partitions and the surface structure of a rule
base. By comparing GP to SA solutions for a fixed number of fitness evalua-
tions, we will also show that SA is not worse than GP for this problem, thus SA
can be a good algorithm when the sizes of the rule bases are large. It suffices to
keep two individuals in memory at a time, while GA may need hundreds or
thousands of them.

This paper is organized as follows: first we will define how we will represent
a fuzzy classification system and define the objective of the learning algorithm.
Then we will propose an SA algorithm able to search for a solution in the space
of all tree shaped genotypes of fuzzy rule bases. Next, numerical results are
shown in which the behaviors of SA and GA are compared.

2. Representation of an individual. Grammar of a valid fuzzy rule base

A classifier system is a decision rule that assigns a class to every point in the
feature space [S]. We will regard fuzzy classifiers as linguistic representations of
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these decision rules, and say that two different linguistic expressions that rep-
resent the same decision surfaces are two equivalent fuzzy classifiers.

Not all decision surfaces can be represented by linguistic rules. The goals of
the linguistic classifier induction are two: (1) finding the most precise repre-
sentable decision surface for a problem, given a sample (i.e. minimizing the
expected classification error) and (2) finding the shortest individual in the
equivalence class defined by this surface (i.e., minimizing the complexity of
the linguistic description).

2.1. Rule-based and relation-based classifiers

There exists a correspondence between fuzzy relations and linguistic rules
under the standard fuzzy reasoning. Given the fuzzy partitions, a fuzzy rule
based classifier is ultimately a fuzzy relation defined over the Cartesian product
of the linguistic terms set and the class marks sets. For example, to decide
whether a piece of fruit is a banana or a pear, by examining its weight and
color, we can use some rules like this one:

if weight is low and color is yellow
then the fruit is a banana with confidence O. 8.

This rule give us the following information:

R(high, yellow, banana) =0,
R(high, yellow, pear) =0,
R(1ow, yellow, banana)= 0.8,

)

R(high, green, banana) =
R(high, green, pear) =

i

)
)
R(low, yellow, pear) =0
)=0,
)=0
R(1low, green, banana) =0,
R(low, green, pear)=0.

Observe that R(-) = 0 means “we know nothing”. We will combine fuzzy
rules to form a base by #-conorm by “adding” fuzzy relations associated to
every rule. The inference will consist in projecting over the linguistic output
space the intersection between the cylindrical extension of the input and the
fuzzy relation assigned to the base. We will propose later a grammar to define
which linguistic expressions are valid fuzzy rules (see Section 2.2) and their
semantics by means of fuzzy relations (see Section 2.4).

The linguistic expression of a fuzzy relation by means of a fuzzy rule base is
not unique: many different rule bases define the same fuzzy relation. Moreover,
there can be different fuzzy relations that are also equivalent, as shown in the
following example:
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Example. Let us measure the diameter and weight of some pieces of fruit: these
can be pears (class Cjy) or bananas (class C;). Measurements can take real
values ranking from 0 to 1, and we define for every measurement the labels
“low”, with low(x) = 1 — x and “high”, with high(x) = x. Let us define now the
following rule base:

if Xis lowand Y is low then (Co,Cy) = (0,1)

if Xis low and Y is high then (Co,C1) = (011, 0)
if X is high and Y is low then (Co,C1) = (07, 0p)
if Xis high and Y is high then (Cy,C;) = (1,0)

with oy, o, € [0,1]. Observe that, when using the standard fuzzy reasoning
method (see Fig. 1), for every «; all bases for which o, <oy will produce the
same partition, and vice versa.

2.2. Grammar of the deep structure of a fuzzy classifier and genotype of a rule
base

Stating the grammar of a rule based classifier is necessary in order to define
the genotype we have decided to use. For our purpose, a fuzzy classifier is a
valid chain in the context free grammar defined by the production rules shown
in Fig. 2. N, is the number of classes, xi,...,x, are the features and »; the
number of linguistic terms in feature i, i =1,...,m.

Observe that we allow using the logical connective “or” in antecedents. For
example, we would replace the pair of rules “if color is yellow and weight is
high then the fruit is a pear” and “if color is green and weight is high then the
fruit is a pear” with ““if color is yellow or color is green and weight is high then
the fruit is a pear”. We also allow that some features are absent from the
antecedent. For example, the rule “if color is yellow then the fruit is a pear” is

Fig. 1. Given a fuzzy partition of the universe of discourse and a fuzzy reasoning method, different
fuzzy relations can produce the same classification system. In this figure we show the decision
surfaces arising from the classifier defined in Section 2.1 for the values o; = 0.3, a, € [0,0.3], (left)
oy =0, oy = 0 (center) and oy = 0.5, o, € [0,0.5] (right).
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CLASSIFIER — if CONDITION then class is ¢
if CONDITION then class is ¢

if CONDITION then class is cy,
LOGICAL-CONS
PARTITION-CONS

CONDITION — ASSERT; | ASSERTy | ... | ASSERT,,
| (CONDITION V CONDITION)
| (CONDITION A CONDITION)
|K1|K‘2|---|K7VC

ASSERT; — left-trapezium(xq,Ki1,Kin ) |
triangle(xy,Ki1,Ki2,Ki3) |

right-trapezium(x; ,Kin,—1,Kin,)

ASSERT,, — left-trapezium(x,,,Kmi,Km2) |
triallgle (Xm K1, Kma s Kn13) |

right-trapezium(x,, ,Kmn,,—1,Kmn,,)
PARTITION-CONS — Kiy ... K, - Kt - Ko,
LOGICAL-CONS — K; Ky ... Ky

A

Fig. 2. Grammar defining the phenotype of a fuzzy rule based classifier. The genotype will consist
in an acyclic graph built from the syntactic tree of the classifier. Observe that the linguistic ex-
pression comprises so many rules as classes, plus two chains of real numbers.

valid and has a different meaning than “if color is yellow and (weight is high or
weight is low) then the fruit is a pear”, because it may happen that “weight is
high or weight is low” is not true, for the properties of fuzzy partitions. left-
trapezium, triangle and right-trapezium are trapezoidal or trian-
gular fuzzy memberships defined by two or three parameters (see Fig. 3). All K
terminal symbols are real numbers. Since we allow using “or” in the ante-
cedents, there are so many rules as classes. Observe that we admit “logical
constants” in the expression of the antecedent; their meaning will be explained

left—trapezium(x,a,b) triangle(x,a,b,c) right—trapezium(x,b,c)

a b c

Fig. 3. Trapezoidal and triangular membership functions and the meaning of their arguments.
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in the next section. There are two semantic restrictions over the values of the
constants. All GA/SA operators must preserve them:

(1) Constants K; K ... Ky, take values between 0 and 1.

(2) The lists [Ky; ... Ky, ] - - - [Kni - - - Ky, |, are ordered and their values must

be inside the range defined for every one of the features.

For example, the surface structure of a linguistic classifier for which N, = 2,
m=2,n =3, n, =3 and all features range from 0 to 1 is as follows:

if x1 is MEDIUM — 1 and x2 is MEDIUM — 2

then class is ¢l with conf. 1
if x2 is LOW — 2 then class is ¢l with conf. 1
if x1 is HIGH — 1 then class is c2 with conf. 0.2

Its deep structure is defined by its surface structure plus the definition of the
fuzzy partitions of both features. For instance:

LOW — 1(x1) = trapezium — left(x1,0.1,0.2)
MEDIUM — 1(x1) = triangle(x1,0.1,0.2,0.5)
HIGH — 1(x1) = trapezium — right(x1,0.2,0.5)
LOW — 2(x2) = trapezium — left(x2,0.0,0.5)
MEDIUM — 2(x2) = triangle (x2,0.0,0.5,0.8)
HIGH — 2(x2) = trapezium — right(x2,0.5,0.8)

We represent the deep structure of this fuzzy classifier by means of the chain
that follows. The structure of the second rule will be explained in Section 2.4.2.

if triangle(x1, k11, k12, k13)
and triangle (x2, k21, k22, k23)
or trapezium-left (x2, k21, k22) then class is cl
if trapezium-right (x1, k12, k13) and k2 then class is c2
0.7 0.2 0.9
0.1 0.2 0.5 0.0 0.5 0.8

and the genotype is an acyclic directed graph formed by the syntactic tree of the
chain and an array with the values of all parameters, shown in Fig. 4. Not all
parameters need to be used; in this example, k1 =0.7 and k2=0.9 are not
referenced by any rule.

This graph must be labeled with the names of the production rules that
originate every subtree, which is a particular case of strongly typed GP [10].
Other authors [4] use the parse tree of the chain. In the following section we
will define the genetic operators.
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CLASSTIFIER

if CONDITION then class is cl if CONDITION then class is c2 LOGICAL-CONS PARTITION-CONS
SN
CONDITION or CONDITION 0.7 0.2 0.9 0.1 0.2 0.50.00.50.8
o
CONDITION and CONDITION CONDITION and CONDITION
\ trapezium-left (x2,k21,k22) ‘
triangle(x1l,k11,k12,k13) trapezium-right (x1,k12,k13) k2

triangle(x2,k21,k22,k23)

CONDITION

triangle(x1l,k11,k12,k13) )
CONDITION}

S

‘ k11 k12 k13 k21 k22 k23 k1 k2‘

Fig. 4. Phenotype-genotype representation of the chain shown in Section 2.2 following Geyer
Schulz’s approach (upper part) and ours (lower part). In Geyer’s the chain is the frontier of its parse
tree and genotype crossover takes place between subtrees labeled with the same symbol in the root.
In our method an acyclic graph derived from the syntactic tree of chain and GA-P crossover is
used. The names of the production rule that originate each subtree are written in parentheses and
act as types in strongly typed GP.

2.3. Crossover and macromutation operators

As in strongly typed GP crossover, we only interchange subtrees that are
evaluated to values of the same type. Since we have defined the type of a
node as the name of the production rule which originates it, typed crossover
preserves grammatical correctness (i.e., any crossover of two trees is the
syntactic tree of a valid chain in the grammar). Observe that this crossover
can be seen as an extension of the two-point crossover to tree shaped
genotype.

There are not numbers in the terminal nodes of the trees but pointers to an
array (see Fig. 4). The macromutation operation we will adapt to SA is derived
from GA-P algorithm crossover [7]. GA-P algorithms merge two kinds of
crossovers at random: the usual subtree interchange crossover (see Fig. 5) and
crossover between the arrays of real numbers that we have mentioned (see
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trapezium-right (x1,k12,kI
(CONDITION[ -~

0.1 0.2 0.8 0.2 0.6 0.9 0.1 1.0

trapezium-right (x1,k12,k1
(CONDTTIONT.

trapezium-left (x2,k21,k22) R L
(conprTION) |t e L

ST
2T 27NN

[0-10.2080206050.11.0]

Fig. 5. Subtree macromutation: A subtree of the syntactic tree of the individual being mutated
(upper part, left) is interchanged with a subtree of the same type in a random individual (upper
part, right.) The array of parameters is not altered.

Fig. 6). Hence, we will alternate random subtree replacement and random
subchain replacement in SA, as we will show in Section 3.

2.4. Semantic of a fuzzy rule base

We have defined all valid linguistic fuzzy classifiers by means of a
grammar, their codification and the genetic operators. It lasts to state the
meaning of a fuzzy rule in terms of a fuzzy relation, and how logical
connectives and rule concatenation are interpreted. These semantics are
defined by recursively applying the conditions that follow. Recall that a
fuzzy classifier is defined by a fuzzy relation that assigns values between 0
and 1 to tuples of m + 1 values. Each tuple reflects the confidence we have
on a combination of linguistic values of all features and corresponds to one
of the classes; in other words: the first value is a linguistic label defined over
the first feature, the second value is a label in the second feature, and so on,
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_ A/,,,rr/////““AA/\\\\\“\\\\\\\\\s
CONDITION

trapezium-right (x1,k12, kI
(CONDITION] -~

BN ‘

> v
‘ 0.1[0.20.8 0.2 0.6 p.9]0.1 1.0 ‘ ‘llliiiiilll’

triangle (x2,k21,k22,k23)
(conDTTION) M _ >

(x1,k12,k1
(CONDITION -

trapezium-left (x2,k21,k22
(conpITION) !t

[ ca[ZPbeoivapal.1 1.0 |

Fig. 6. Chain macromutation: The array of parameters in the individual being mutated (upper
part, left) is crossed with the array of parameters of a random individual (upper part, right). The
linguistic expression of the rule base is not modified (lower part.) We have used two-point crossover
in the figure for clarity, but intermediate recombination in the real algorithm.

until the value number m + 1, which is the class number (see the example in
Section 2.1.)

2.4.1. Semantics of fuzzy rules
Let /;; be the linguistic label number j in the feature number i. The rule

“if x; is [; then class is ¢, with conf. o”

defines the relation that follows:

if x,=/,and c =c
R(xi,...,xpc) =% WX=1y ks
(v ) {0 otherwise.
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The chain
“if o then class is ¢;”

is valid in our grammar. It means “all points belong to class ¢; with truth o”.
Besides it should not appear in the final base, its definition is useful to make
clear the meaning of logical constants in antecedents, as will be shown in
Section 2.4.2. This rule defines the following relation:

o if c=¢
R(Xl7 R C) = { 0 OtherWiSé~

2.4.2. Semantics of logical expressions in antecedents
If the rules

“if A4 then class is ¢,”
“if B then class is ¢,”
define the relations R, and Rjp, then the rules
if AANB then class is ¢
if AV B then class is ¢
define the relations
RA/\B(X) = min(RA(x)7RB(x)),
Ryvp(x) = max(R,(x), Rp(x)),
respectively. As a consequence of this, the rule
“if ANo then class is ¢”
describes the same relation as the rule
“if A then class is ¢ with confidence a”.

Therefore, if we allow the presence of logical constants in the antecedents, all
relations can be described by rules with confidence 1. For this reason, we do
not use degrees of confidence in the linguistic expression of the rules, as was
shown in the example in Section 2.1.

2.4.3. Semantics of a concatenation of rules

The concatenation of N rules defined by relations Ry, R,, ..., Ry defines the
relation R(x) = max{R;(x),...,Ry(x)}. Two rules with the same consequent
can be combined in one. The construction

if A then class is ¢

if B then class is ¢
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is identical to
if AV B then class is ¢.

3. Genetic programming and simulated annealing

In this section we will incorporate the macromutation operator, and the
representation of a fuzzy rule base we developed before, to the SA Metropolis
algorithm. There are small differences between GA mutation and the operation
needed in SA. The “adjacent’” operation in SA produces a random individual
which is near the individual being mutated in some sense. This is immediate in
real optimization, but not so evident when optimizing a function defined over
the chains of a grammar. We have used an edition distance to measure simi-
larity between surface structures of classifiers. This is the minimum number of
insertions, deletions and replacements of terminal symbols needed to convert
one classifier into the other one.

Let C be the genotype of the individual, param(C) its array of parameters
and expr (C) the syntactic tree of the chain. T is the current temperature in
SA. p defines the balance between subtree mutation and chain mutation, as
defined in the previous section. p=1 means ‘“only chain mutation”, p=0
means “only subtree mutation”. Chain mutation consists in applying inter-
mediate recombination [11] between the individual and a randomly generated
one with an amplitude parameter that depends on the current temperature by a
constant K;. Subtree mutation is inside a loop that finishes when the distance
between the result and the individual is lower than a limit that also depends on
the current temperature by a factor K.

algorithm macromutation
needs:C, p, T, K1, K 2
produces: Cl
ifU(0,1)<p then
A=random real vector
param(C) =
param(C)*(T/K_1)+(1-(T/K_1))*A
else
repeat
E=expr(C)
select a subtree of E
replace it by a randomly generated subtree
until edition_distance(E, expr(C))<T/K_ 2
expr(C)=E
end if
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The macromutation operator is called from the algorithm that follows. It
depends on an initial temperature and a final temperature, that serve to stop
the learning process; alternatively one can stop when the number of fitness
evaluations is high enough.

algorithm sa
needs: cooling factor, Tinitial, Tfinal, p, K 1, K 2
produces: Cbest

T=Tinitial
C=Cbest=random individual
while T>Tfinal do
Cl=macromutation(C,p,T,K_1,K_2)
delta=error(Cl)-error(C)
v=random value with uniform distribution U(0, 1)
if delta<O or v<exp(-delta/T) then
C=C1l
if C<Cbest then Cbest=C end if
end if
T=Txcooling factor
end while

4. Numerical results

All values defining SA algorithm execution parameters are displayed in
Table 1. Every experiment has been repeated 10 times starting from different,
random candidates. SA was rather more sensible to initial temperature and
cooling pattern than GA is to its own execution parameters, so tuning the
learning was more difficult in SA than it was in GA. As a rule of thumb, we

Table 1
Execution parameters of SA. Distance in subtree mutation is not limited, K, = 0, distance in in-
termediate recombination is limited to a 20%, K; = 5

Parameter Meaning Value

Cooling rate Temperature decrease/iteration 0.9999

To Initial temperature 5

Iterations Maximum number of iterations 50000

K Inverse of maximum (per unit) distance in 5
intermediate recombination

K> Inverse of maximum jump in subtree mutation 0

P Probability of mutation in the chain of numbers 0.5
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obtained good results with an initial temperature approximately equal to the
expected per cent error of the classifier (i.e., Ty = 5 if we expect 5% error in the
final classifier).

We used 10 subpopulations of 100 individuals each in all genetic pro-
gramming experiments. A niching scheme was combined with every subpop-
ulation (10 niches of constant size), and 1% of the offspring of crossovers was
inserted into a subpopulation different than their parents’. Steady-state and
tournament selection of size 3 was used. Two tournament losers were replaced
by the offspring in every crossover. One per cent of the offspring is mutated.
Chain crossover is always applied when both parents belong to the same niche,
and 50%/50% subtree/chain crossover otherwise. Experiments were repeated 10
times from random populations. Evolution finishes after 50 000 fitness evalu-
ations in both SA and GA-P algorithms.

In Table 2 we can see that SA is not different from genetic programming in
all datasets. In Table 3 the results of applying A-NN, linear classifiers and
multilayer perceptrons to the same datasets are included. “Not different”
means that differences are not statistically significant if 5 x 2cv test is applied
(95%).

Table 2
Comparison of results between genetic programming and simulated annealing when inducting
fuzzy rule bases in classification problems

Dataset GA-P Rules Variables SA Rules Variables
Mean Dev. uses/tot uses/tot
Cancer-1 2.58 0.78 5 5.1/9 2.93 1.07 4.9 4.9/9
Cancer-2 591 1.20 5.1 4.719 5.74 1.28 5.4 5.2/9
Cancer-3 5.34 1.33 5.4 4.3/9 5.28 0.56 5 5.3/9
Mean 4.62 4.7/9 4.65 5.1/9
Thyroid-1 5.18 0.67 5.3 4.8/21 4.51 1.08 5.5 5121
Thyroid-2  4.51 0.80 5.9 3.9/21 4.16 1.34 52 5.2/21
Thyroid-3  4.90 0.70 5.6 4.3/21 4.38 1.66 4.8 5.1/21
Mean 4.87 4.3/21 4.35
Pima-1 25.57 1.12 4.7 4.5/8 25.41 1.86 3.9 4.1/8
Pima-2 28.07 2.10 4.7 4.2/8 27.29 1.66 3.7 4.1/8
Pima-3 24.06 1.66 4.7 4/8 22.86 0.94 3.4 4.2/8
Mean 25.90 4.2/8 25.19 4.1/8
Glass-1 43.96 7.91 9.1 6.2/9 41.88 4.97 7.8 5.519
Glass-2 41.13 2.03 8.7 5.9/9 42.07 5.34 9.1 6.6/9
Glass-3 44.52 7.55 10.2 7.219 42.45 7.41 8.6 5.8/9
Mean 43.20 6.4/9 42.13 6/9

In this table, means and standard deviation of the test results obtained after repeating 10 times
every experiment are shown. The equivalent “only and” number of rules and the mean number of
variables used are also displayed.
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Table 3
Results obtained with k-NN, linear and multilayer perceptron classifiers over the same datasets
used in the fuzzy rule induction problem

Problem k-NN Linear MLP

Mean Dev. Mean Dev.
Cancer-1 1.7 2.93 0.18 1.38 0.49
Cancer-2 4.0 5.00 0.61 2.38 0.35
Cancer-3 4.5 5.17 0.00 3.70 0.52
Media 34 4.36 3.28
Thyroid-1 5.95 6.56 0.00 2.38 0.35
Thyroid-2 6.00 6.56 0.00 1.91 0.24
Thyroid-3 6.50 7.23 0.02 2.27 0.32
Media 6.15 6.78 2.18
Pima-1 25.5 25.83 0.56 24.10 1.91
Pima-2 27.6 24.69 0.61 26.42 2.26
Pima-3 23.5 22.92 0.35 22.59 2.23
Media 25.5 24.48 24.37
Glass-1 35.8 46.04 2.21 32.70 5.34
Glass-2 33.9 55.28 1.27 55.57 3.70
Glass-3 35.0 60.57 3.82 58.40 7.82
Media 349 53.96 48.89

MLP and linear classifier results are taken from [12].

In Table 4 the results of applying SA to PIMA dataset are tabulated for
train and test partitions for different limits in the jumps in the subtree muta-
tion. Best results are obtained when no restrictions are imposed over these
jumps. This result suggests to us that the edition distance is not correlated with
the fitness landscape: two similar individuals do not always have small differ-
ences in their classification error.

Finally, in Table 5, the most relevant characteristics, as found with statistical
methods, and the most frequently used variables in GP and SA are displayed.
The statistical method is a greedy algorithm that selects characteristics by
querying mutual information between the class and every variable. It is clear
that there exists a relation between the order of the variables as determined by
their mutual information and the order defined by their relative frequency of
use. This frequency is calculated repeating SA or GP induction 10 times from
random starting values and counting how many times each feature appears in
the final classifier. This shows that allowing a variable number of features in
the antecedents causes both GP and SA to perform a meaningful feature se-
lection in the learning process.

5. Concluding remarks and future work

In this work we have shown that the research devoted to new representa-
tions of fuzzy rule bases and to application-dependent crossover operators can



Table 4

Comparative results: SA with subtree mutation limited to different degrees. Best results are obtained when limits are not applied
K Pima-1 Pima-2 Pima-3 Pima-1 Pima-2 Pima-3 uTRA u TST
5 39.28  11.68 39.06 12.54 41.61 1443 40.63  10.17 41.15  8.69 41.03 14.46 36.65 4093
1 21.65 0.59 21.15 0.35 22.38 0.44 25.88 1.42 28.22 141 22.60 1.53 21.72 25.55
0.5 21.14 0.46 20.83 0.47 22.25 0.38 25.15 1.51 2895 145 23.54 1.37 21.40  25.86
0.2 21.28 0.41 20.87 0.44 21.86 0.46 25.78 2.00 27.66 1.87 23.39 1.39 21.34 25.61
0 21.18 0.41 20.63 0.43 21.89 0.42 25.42 1.81 27.29 1.66 22.86 0.94 21.23  25.19

[61-SLT (100Z) 9EI $22ud108 uonvULIOfu] | b 12 Zoyouns T
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Table 5

There exists a relation between the order of the variables as determined by their mutual information
and the order defined by their relative frequency of use when SA or GP induction is repeated a
number of times from random starting values

Variables (IM) Variables (GA) Variables (SA)
Cancer 01256 01257 01257
Pima 0157 1567 1567
Glass 123456 234567 123567
Thyroid 21617 18 20 02161920 21617 18 19

The numbers of the most relevant features (the first feature has number 0) are shown for statistical
methods (mutual information), Genetic Algorithms and Simulated Annealing.

be applied to different search schemes, allowing them to be applied to new
fields. It remains to be studied whether this technique is also useful for in-
ducting rules in other problems. Preliminary results in fuzzy modeling go in
this direction. The ability of this method to perform a feature selection is also
interesting and it should be studied in depth whether the quality of this se-
lection is high enough to be used in combination with other learning algorithms
(i.e., using GP or SA to do the feature selection and then applying a different
learning method over the reduced dataset).

With respect to the practical usefulness of this method, SA was more diffi-
cult to adjust than GP, but the memory requirements of this algorithm are very
reduced and this can be an advantage when the size of the individuals (the
number of rules) is large.
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