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Abstract

GA-P algorithms combine genetic programming and genetic algorithms
to solve symbolic regression problems. In this work, we will learn a model
by means of an interval GA-P procedure which can use precise or imprecise
examples. This method provides us with an analytic expression that shows
the dependence between input and output variables, using interval arithmetic.
The method also provides us with interval estimations of the parameters on
which this expression depends.

The algorithm that we propose has been tested in a practical problem
related to electrical engineering. We will obtain an expression of the length
of the low voltage electrical line in some spanish villages as a function of
their area and their number of inhabitants. The obtained model is compared
to statistical regression-based, neural network, fuzzy rule-based and genetic
programming-based models.

1 Introduction

Learning a model from a set of precise examples {(X!, Y1), (X2,Y?),...} and a
given family of models G can be described as finding the model g € G for which the
similarities between the values g(X?) and the desired responses Y are the highest
ones. When a parametric family Gy = {fo}o is used, the learning process requires
estimating the value of the parameter 8* that makes g = fy« the best choice, by
mean of a suitable analytical or numerical procedure. Linear regression and some
kinds of neural network training methods belong to this type of problems.

If the expression of the function that defines the model is not known previously
and we need to determine both this expression (we will call it the “structure” of the
model) and the best values of the parameters on which it depends, the technique
is known as symbolic regression. Solving symbolic regression problems is one of the
main concerns of genetic programming [6].

On the other hand, learning models from imprecise examples is quite a different
problem. We will use intervals to represent imprecision (i.e. “The output is between
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Figure 1: Punctual and intervalar models. Intervalar models produce a range of
values for each input. That range contains the true value of the output with a high
probability. An intervalar model is equivalent to two punctual models that give
upper and lower limits of the range of outputs.

1 and 3”) and interval models to catch the relationship between input and output
data. The output of an interval model is a range of values delimited by two functions
g~ and g7 (see Figure 1). The output of the model is requiered to contain the
desired responses, i.e. g7 (X?) < Y? < gt (X?) with high probability, while keeping
the amplitude of the outputs gt (X?) — ¢~ (X?) as low as possible.

There are some works related to intervalar neural networks, and we take into
account that a-cuts of fuzzy models are also intervalar models [8] but, as far as we
know, symbolic regression methods have only been used to find punctual estimates.
We will extend these methods so that they can provide us with interval values.

2 Intervalar predictions

2.1 Multi-valued predictions

When learning a punctual model, we search for a function g such that the difference
Y — ¢g(X) is small for every value of X; in other words a function g so that g(X)
is a good estimate of Y.

From a stochastic point of view we can assume that there exists a random
experiment governed by a probability measure P with results in a set {2 such that
Y : Q — R is a random variable and X : @ — R? is a random vector. The
function g that minimizes the mean square error in that caseis g(z) = E[Y | X = 2]
[9].

In some practical problems it is also interesting to obtain the margins in which
we expect the variable Y is when the variable X (which can be multidimensional)
is known. When we need to solve the punctual problem, we search for a function
g such that g(X) estimates E[Y | X]. Now we need an interval of values I'g that
covers the value Y with probability higher than a confidence degree 8 and this
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interval must depend on the value of the variable X, so I'g is a function of X.
Since X is also a function of w, this mapping between the result w of a random
experiment and an interval I'3(X(w)) is a random set.

Formally, we will look for a multi-valued mapping I'g : Im(X) — I(R), where
I(R) is the set formed by all closed intervals in R, such that the random set
FgoX :Q— I(R) verifies

Plwe|Y(w)elgoX(w)} >4
for a given degree of confidence 3 (the symbol “o” means composition: ['go X (w) :=
I's(X(w)) and 3 is the probability that Y is in the interval I'g(X).)

We can assess an interval prediction in some different ways. For example, we
can say that given a value for 3, the shorter I'g is, the better it is. Let us define
two functions g7 and g~ so that g7 (X) is the minimum value of the confidence
interval I'g(X) and ¢ (X) is the maximum,

TgoX =[g7 o X,g" 0 X]

and let us impose that g™ and g~ are continuous (see Figure 1). Then, the margin
of validity will be better when the mean difference between g and ¢~

E(g™(X) - g7 (X))
is low. Since it must be true that
Plwe Qg (X(w) <Y(w) <g"(X(w)} 278

we can define the objective of the interval prediction as “find two functions gt
and g~ such that the distance between g7 (X) and g~ (X) is minimum and Y is
between g7 (X) and g~ (X) with a probability 3”.

In other words, given a region

Rig+ g ={(z,9) eER™ | g™ (2) <y < g™ (2)}

we need to minimize

E(g"(X) - g (X))

constrained to
P{lwe Q| (X,Y)(w) € R+ 4} > B.

If we are solving an interval modelling problem we need to find two functions
gt and g~ instead of the single function g that we needed to find in punctual
modelling. Let us suppose now that we define g7 and g~ by means of a function
of X that depends on some interval parameters, using interval arithmetic [1]. This
concept is similar to that introduced in [7] and many other works related to fuzzy
regression [8]. Formally, let g and g~ depend on a function hy : R™ — R so
that [g7(z), g7 (z)] = {t € R | t = ho(x),0 € [07,07] x ... x [0,60:5]} where the
expression of hg is known except for the value of 2m parameters i, k = 1,...2m
and hy is continuous with respect to @ and z (and then gt and g~ will also be
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continuous functions, as we had proposed). Given a function A, a random sample
of size N obtained from the random vector (X,Y),

(X1, Y7),...,(Xn,YNn))

(where (X}, Y;) are independent and identically distributed) and a confidence degree
1 — € we can estimate 0; (¢) and 6; (¢) with the 2m values that minimize

N
1 _
N Z(9+(Xi) -9~ (Xi))
i=1
constrained by

1
1-e< N#{z €{l...N} | (Xi,Y;) € Rig+ g}

that is, the number of elements in the sample that belong to R+ 4-)-
For a given value of € we can estimate the value of 3 by means of a second
sample
((X175/1/)’ e (X§\4,Y](4)),

independent from the first one, by means of
. 1
B = gp#Li € {1 MY (XL Y!) € Rige g}

The random variable M - BM follows a binomial distribution with parameters M
and § and, by the strong law of the large numbers, it converges almost surely to
the value 0 when M — oc.

The practical implications of those definitions are straightforward: let us sup-
pose that we define a family of interval valued models and we use a learning pro-
cedure to choose the model that best describes a set of N precise examples. We
first choose an arbitrary value ¢, and we decide that the output of any valid model
must contain the desired output in more than (1 —¢)N examples. If we also decide
that the sum of the amplitudes of the output of the model in those (1 —€)N points
defines how good the model is, we only need a procedure that searches over the
space of valid models the minimum of the sum of these amplitudes. But we will
obtain a model for which the expected fraction of covered points will be unknown
and likely to be higher than (1—¢). This fraction (which is a sort of “generalization
error”) can be estimated by the proportion of points that are covered by the output
of the model when confronted to a new sample; in other words, the generalization
error is estimated by one-fold cross validation.

The proposed procedure takes three steps:

1. Choose the familiy of functions {hp}¢ and the value of e.

2. Estimate the model (i.e., the values of the interval parameters [0, 6;]) from
the first sample, which we will call “training set”

3. Estimate the confidence degree 8 from the second sample (test set)
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Figure 2: Punctual and intervalar estimation from imprecise data. When data are
imprecise it is difficult to learn a punctual model, but we can still give a range of
values than contain the output, given an imprecise input, with high probability.

2.2 Imprecisely measured data

Let us suppose that the values of the random variable Y and the random vector
X cannot be precisely observed but we only know that for a given output w of the
random experiment

(X,Y)(w) € Aw),

where A = Ay X Ay, with Ay : @ — I(R?) and Ay : @ — I(IR) are random sets,
and I(IR?) is the set of all the rectangles in R? (see Figure 2.) For example, imagine
that we have a sensor that indicates “between 100 and 110” when X (w;) = 100
and also when X(ws) = 105; we model this behaviour by means of a random
set Ay such that Aj(wy) = [100,110] and Aj(we) = [100,110], and it is true that
X(wl) S Al(wl) and X(wg) S Al(wg).

In these conditions, there is not an extension of the classical modeling that is
universally accepted as the best one. But the previous model can deal with this
imprecision. Let us define two functions g*, g~ such that P{w € Q | ¢ (X (w)) <
Y(w) < g7(X(w)) VY(X,Y)e C(A)} > 8 and let C(A) = {U random variable |
U(w) € A(w) a.s. (P)} be the set of all random variables contained in A (see [2]).
The set C(A) includes all possible mappings (random variables) that can relate a
result w of the random experiment with values X (w) and Y (w) that are compatible
with the imprecise observations A; and As.

We wish that the mean margin between g* and g~ is the narrowest possible
one for a given 3, but now it is posed an additional difficulty, because we do not
know (X,Y) but a random set A which contains it. Taking a pessimistic criterion,
we search for a region R+, = {(2,y) € R | g (z) < y < gT(a)} for
which all points in the set PA(R(ng’g—)) = {P(X,Y)(R(gﬂg*)) | (X,Y) € C(A)}
={tel0,1]]|t=P{weQ|g oX(w)<Y(w) <groX(w)}(X,Y)ec C(A)} are
higher than the confidence 8. For every pair of variables (X,Y) contained in A we
obtain a value for the probability that (X,Y’) is in R+ ,-): the set Py (R g+ 4-))
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Figure 3: Calculations of the value of I' o Ax. When the input value is imprecise,
the output of an intervalar model is the projection over the output space of the
intersection between the cylindrical extension of the input and the “graph” of the
model. This mechanism is very similar to the used when making inference in fuzzy
rule-based models.

is the set of all these values and it is bounded by the numbers 3~ and 87 [2] where
87 =Plwe ]| Alw) C R(g+7g—)}

Bt = P{we Q| (Aw) N R+ 4-)) # 0}

Making
pT<p
so that
inf PlwecQ|g oX(w)<Y(w)<groX >
il Pl e R g0 X(w) < Yw) < g7 0 X(w)} 2§
we obtain a model that fulfills that the probability that Y is in the interval predic-
tion is higher that 8 in the worst case.

When data were precisely observed, we tried to minimize the expected length of
the random interval [g~ (X), g7 (X)] constrained by Plw € Q| ¢ (X (w)) < Y(w) <
g7 (X (w))] > B. This time we want to find the minimum expected length of the
random interval I+ ;- (see Figure 3)

Lgrgw) ={yeR|yelg(x),g7(@)] A zeA(w)}

=[ min ¢ (z), max ¢ (x
[ min g™ (x). mox g*(x)

(where the last assertion is true because g~ and g* are continuous functions and
we know I'(g+ -y is strongly measurable by the same reason) restricted to

b= (Xﬁr’r)lie%(A) PlweQ] g (X(w)) <Y(w) < gH(X(w)}
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To solve the problem, we propose the following estimation: let
(AY, .. AN) = (Al x AL, AN x AD)

be a size N random sample drawn from the random set A = A; x Ay. For a
given sample, we choose a value ¢ > 0 as before and also a function hy known
except for the values of m parameters, and we search for 2m constants 8, , 6;
so that [g7(2),g7(z)] = {t € R | t = hy(x),0 € [07,0]] x ... x [6;,,0}]} and
the value Lj, = + Zf;l |\ng+’g,)\| is minimum, where ng+’g,) ={yeR|yce
97 (2), gt (z)] Az € AY} and restricting the search to the set of functions g*, g~
that fulfill 1 — e < $#{i€{l...N}| A" C Riy+4-)}. That is, the number of
intervals in the sample that are contained in R+ ;).

Once g7 and g~ have been found, we cannot estimate 8 but a range of values
for 3 if we have a second independent sample

(AT x Ag . A < A
for which the value
A 1 ' p
By = {ie{l. .M} A" C Ry g

is an estimator of the belief measure [13] of the event “the imprecisely observed
pair (X,Y) is in R”?, and

N 1 . i
ﬁ]\} = M#{ZE {1...M} | N N R+ g-) 75(2)}
is an estimation of the plausibility [13] of the same event. In other words,

Bar = Plw € Q| Aw) € Rigrg)] =

inf P -
oo P (Bige o)

Oty Pl € QLAW) N Bigr ) 0] =

sup  Poey)(Bg+g-))-
(X,Y)eCc(A)

Finally, note that the case analyzed in the previous section is a particular case
of this one (where A; = X and Ay =Y). Conversely, if a family of interval valued
models is defined and a learning procedure used to choose the model that best
describes a set of N imprecise examples, we must first choose an arbitrary value ¢,
and decide that the output of any valid model must completely contain the desired,
imprecisely measured output in more than (1 — ¢)N examples. The fitness of the
model is similar to the mentioned in the preceeding section. Again, we will obtain
a model for which the expected fraction of covered points will be higher than (1—¢)
and this fraction can be pessimistically estimated by the proportion of examples in
a new random sample that are contained in the graph of the model.
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Figure 4: Individual in GA-P algorithms. It comprises two parts. The “structure”
is defined by a tree that combines input variables, parameter names and algebraic
operators. The values of the parameters are stored in a chain, like genetic algo-
rithms do. The GA-P algorithm searches both a suitable structure and the values
of the parameters that define the best model.

3 Numerical optimization method. GA-P Algo-
rithms

The multivalued mapping I'j+ ;- proposed in last section depends on a function A
(whose expression is unknown to us), on 2m parameters §, , 924+ and on the value
Ly (which in turn depends on these parameters) and, by last, on a random sample
drawn from the random set A. For a given random sample and a structure of the
model (i.e., parametic expression for i), we can minimize Ly, with respect to 6,
and 9;‘ , restricted to the conditions about the fraction of covered examples that
were imposed before. The objective is to find the structure of the model with
produces the lowest value of Ly. But this problem is a particular case of symbolic
regression, and we can apply genetic programming algorithms to solve it.

GA-P algorithms are an evolutionary computation method, hybrid between
genetic algorithms and genetic programming, optimized to perform symbolic re-
gressions. In this algorithm we begin with a population formed by set of possible
solutions of the regression problem and by means of different operations, we create
new solutions and discard others until one of them is good enough. A complete
description of the GA-P method can be found in [4]. Briefly, we will remark that
each element of the population comprises a chain of parameters (so called GA part,
or coefficient part) and the description of a function (GP part, or expressional part)
which depends on the parameters that are codified in GA part and that codifies
the structure of the model.

The set of parameters contained in GA part is codified by means of any GA
method (for instance, by means of an array of bits partitioned in sections, where
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every section represents a real value). The expressional part is a mathematical
formula represented by a tree. In this component, internal nodes are mathematical
operators (like +,—,%,/); when we evaluate the solution codified in an individual,
terminal nodes are replaced by the value of its corresponding part in the chain of
parameters or by the value of one of the input variables (see Figure 4).

The two basic operations by means of which new members of the population
are generated are crossover and mutation. These operations are independently
performed over GP and GA parts of an individual, and we use the same operators
that GP and GA algorithms define.

3.1 Modifications to GA-P

The model proposed in last section will be defined in terms of a function hy and
m interval parameters [0, 9;‘ ]. We need that the terminal nodes of the tree that
codifies the expressional part can be intervals and we also need to program interval
arithmetic operators to evaluate the expressional part of the GA-P; apart from
this, the modifications to the GA-P codification scheme are straightforward.

The fitness function is not the same as the one used in conventional symbolic
regression problems. It does not depend on the evaluations of the expressional part
in the set of examples but on the mean separation between gg and g5, as shown

in the following expression:

fi= K- SIMYY) — MY(X))2 i Ne < N(1— )
2= SV (X)) i N, > N(1 - e)
f3 :p(Nc)f1+(1_p(Nc))f2 else

where M ([a,b]) = (a + b)/2, Y(X;) is the output of the model for an input X;,
which can be expressed as

Y (Xi)(y) = proy,cre(R(z,y) N Xi(z)),
N, is the number of samples contained in the graph R of the model:
Ne=#{ic{l...N} | Y: CY(Xi)}),

K is a real value high enough so that K - Y [M(Y?) — M (Y (X?))]? is always higher
than 32 [ (X)]| and p(N.) — (N(1 — e2) — No)/(N(e1 — €2)).

The explanation of this function follows: when we are in the initial stages of
the evolution, we replace each interval by its midpoint and search for the classical
least squares solution. As soon as N(1 — €1) examples are covered, we begin to
promote those individuals that get a narrower band of prediction values. This
fitness function always makes a model that covers more than N(1 — e3) examples
better than a model that covers less than N(1—¢;), so population evolves gradually
towards models with adequate covering that will be prefered on the basis of their
mean amplitude.

We penalize the solutions that do not cover N(1 — ¢3) examples by multiplying
their fitness by a value K that is determined empirically. We think that it is not
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necessary to resort to multicriteria optimization (see [3]) because the value of K is
not difficult to obtain. When the number of uncovered examples is lower than Neq,
the fitness is the mean amplitud of the model over the sample. In intermediate
situations we promediate both values.

4 Practical application

The practical problem which inspired the method developed here follows. The
problem will be solved by some different methods, and the obtained solutions will
then be compared.

4.1 Introduction

In this work we will study the length of low voltage electrical line in rural vil-
lages, mainly located in mountain areas. These villages have a small number of
inhabitants and have a reduced consumption of energy, so they have only one
transformation center, with one, two or three main lines that serve all clients. The
houses are very disgregated (there is not an “urban center” and the density of
houses does not depend on the distance to the transformation center) and the ratio
length of line — number of inhabitants is much higher than the measured in bigger
villages or cities. Maintenance of the lines is more expensive too. Since this clients
do not produce benefits, the companies that serve them are compensated with an
amount that depends on the length of line installed. It is remarked than the com-
pany that paid for this study serves more than 10,000 villages of this type, so this
measurement is relevant.

To validate the model of the line length in a village the company provided us
with data: one file with the measured line length, the number of inhabitants and the
mean of the distances from the transformation center to the three furthest clients
in a sample of 491 rural nuclei. Our objective was to relate the line length with the
other, firstly by classical methods and later by applying GA-P methods. A simple
intervalar model that relates lengths with pairs clients-radius will be provided, and
its performance will be compared to fuzzy rule based methods.

Our variables will be named as follows:

Symbol Meaning
A; Number of clients in village ¢
R; Radius of village 4
n Number of villages in the sample
l; Line length, village ¢
I; Estimation of I;
S; Number of sectors in village ¢

4.2 Application of classical methods

In order to apply classical methods, we needed to make some hypothesis. In the
villages that are being studied, electrical networks are star-shaped and arranged in
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Figure 5: Idealized distributions of electrical networks

sectors. A main line passes near all clients inside them, and clients are connected
to these main lines by small segments (see figure 5).
To build a theoretical simplified model we have admitted that:

e A village comprises s; sectors. Each sector covers an angle 26;. All sectors in
the same village cover the same angle. Each sector is served by one output
of the only transformation center in the village.

o All sectors in a village have the same radius, R;.
e The density of clients is constant inside every sector.

e Inside a sector, the electrical line comprises a main line of length R; and so
many branches as consumers.

If we admit that customers are uniformly distributed, we can approximate the
total length by multiplying the mean distance between one of them and the line
by the number of inhabitants. Let us name this mean distance d; for village 1,
and let the sector be 20; wide. Then d; = 2(1+93591')Ri so cable length will be

T A; o 2(1—cosb;

S3

4.3 Classical regression

If the angles ¢; and the numbers s; were similar enough between them, we could
regard them as constants and estimate them by the parameters 8; = 6 and 5; = s
of a least squares linear regression

Ii/Ri = 5+ k(0)A;

to a set of pairs (z,y) = (4;,1;/Ri).
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Table 1: Cross-comparison of results

Method Training | Test | Complexity
Linear 365 443 7n., 2p.
Linear, 2 classes 338 458 17 n., 6 p.
Exponential 342 426 7 n., 2 p.
2th order poly. 332 393 | 22 n., 6 p.
3rd order poly. 318 941 | 53 n., 10 p.
Interval GA-P 332 420 8 n., 2p.
MLP 2-25-1 312 391 102 p.
W. M. fuzzy model 262 610 22 1.
TSK fuzzy model 272 462 34 r.
RSB fuzzy model [12] 241 410 39 r.

We can get a better fit by allowing a certain dependence between the number of
sectors, their angles and the number of inhabitants. This can be done by dividing
the sample into classes or by mean of a change of variables. Both cases were studied,
and the best fit was obtained with the model

l; X
L= kAR
R,

4.4 Interval GA-P

Let us apply GA-P algorithms to check whether we can obtain a formula that is
comparable in complexity with the last one, while getting better fit to the real
data. We will define “simple expression” as a formula that can be codified in a
tree with no more than 20 nodes and depending on no more than 10 parameters.
Binary operations will be sum, difference, product, ratio and power. The unary
operation will be the square root.

We use the steady state approach, with tournament selection and elitism. The
probability of crossover is 0.9, both in GP and GA parts. We do not perform
mutation in the GP part and we apply this operator with probability 0.01 in GA
part, which is encoded in floating point. We use local optimization (Nelder and
Mead’s simplex; this approach has not been used, as far as we know, in GA-P field,
but there are some related works. See, for example [5]. Its original definition in GA
field can be seen on [10, 11]) and overselection (1000 individuals). The population
has fixed size, 100 individuals.

5 Comparison between methods

To compare classical, neural, fuzzy and GA-P methods we have divided the sample
into two sets comprising 246 and 245 samples. If we had chosen a higher percentage
of training data the numerical fit would have been better, but we want to compare
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Figure 6: Output of the interval GA-P model and test set (squares). The line in the
middle is the output of a punctual model built when replacing interval parameters
by their midpoints. The x-axis show the ordinal number of the example. Examples
are sorted by the value of the lower bound given by the model.

how well different methods generalize from few examples. In table 1 the mean
square error values over these two sets are labeled training and test. The initials in
the third row mean “nodes” and “parameters”; they are the number of nodes and
parameters that we would need to codify the model like GP does.

Fuzzy rule based models were automatically designed by means of a genetic
learning procedure. Observe that Wang and Mendel method and TSK cannot
generalize from the example set that was chosen; their number of parameters is too
high in relation to the size of the sample. Notice also that the TSK method is worse
than the modelled labelled “linear”, and that it is apparently incorrect, since the
linear model is a particular case of TSK model. This is not an error; linear models
shown here involve a change of variable and have one input variable but all the
remaining methods were confronted with raw data. Observe also the inestability
of high order polynomials and the good fit that the three layer perceptron gets.

By last, the model labeled “Interval GA-P” is as follows:

Y([R77 R+]a [Aia A+] =
[1356, 5347]®[R_’ R+] ® [0058, 0.064][A77A+]0.0625.

Since this model cannot be directly compared to punctual ones, we evaluated
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the mean squared error of the punctual model

Y(R, A) = 30.23 R0.061(4"*"*)

6 Conclusions

GA-P methods can discover an empirical law from a set of samples. The method
is very flexible, because it allows us to select the maximum complexity of the
expression, the maximum number of parameters and an arbitrary set of operations.
Therefore, GA-P’s are very convenient when compared to other methods able to
make this kind of study: trial and error, neural networks, classical regression.

In this work we have adapted the GA-P algorithm to fit a model to a set of
imprecise examples. The method produces multivalued estimations of the para-
meters that can be converted into robust punctual estimations and also gives an
estimation of a lower bound of the expected number of times the desired output is
in the range that the model generates.

Acknowledgments

I would like to thank Oscar Cordén and Francisco Herrera, from Granada Univer-
sity, for applying Wang-Mendel and TSK fuzzy modeling methods to the dataset
and for their useful comments about this draft.

References

[1] Bojadziev, G. Fuzzy Sets, Fuzzy Logic, Applications. World Scientific. 1995.

[2] Couso, I. La Envolvente Probabilistica. Definicidn y Propiedades. Trabajo de
Investigacién. Universidad de Oviedo. Departamento de Estadistica. 1997.

[3] Fonseca, C., Fleming, P.J. “An Overview of Evolutionary Algorithms in Mul-
tiobjective Optimization”. Evolutionary Computation 3, 1-16. 1995.

[4] Howard, L.; D’Angelo, D. “The GA-P: A Genetic Algorithm and Genetic
Programming Hybrid” IEEE Expert. June 1995. 11-15. 1995.

[5] Iba, H.,Sato, T. De Garis, H. “System Identification approach to genetic pro-
gramming”. Proc First IEEE Conf on Evolutionary Computation. 401-406. vol
1. 1994.

[6] Genetic Programming. On the programming of computers by mean of natural
selection. MIT Press. 1993.

[7] Ishibuchi, H., Tanaka, H., Okada, H. “An architecture of neural networks with
interval weights and its application to fuzzy regression analysis”. Fuzzy Sets
and Systems 57. 27-39. 1993.



Learning from Imprecise Examples with GA-P Algorithms 319

[8] Kacprzyk, J. Fuzzy Regression Analysis. Omnitech Press, Warsaw. 1992.
[9] Ljung, L. System Identification: Theory for the User Prentice Hall. 1987.

[10] Renders, J.M.; Bersini, H. “Hybridizing genetic algorithms with hill-climbing
methods for global optimization: two possible ways” Proc. first IEEE Conf.
Evolutionary Computation. 312-317, vol. 1. 1994.

[11] Renders, J.M., Flasse, S. P. “Hybrid Methods Using Genetic Algorithms for
Global Optimization”. IEEE Transactions on SMC. Part B: Cybernetics. Vol
26, NO. 2, April 1996.

[12] Sanchez, L. “A Random Sets Based Method for Identifying Fuzzy Models”.
To appear in Fuzzy Sets and Systems. 1998.

[13] Shafer, G. A Mathematical Theory of Fuvidence. Princeton University Press,
Princeton, New Jersey. 1986.



