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Abstract Recently, Adaboost has been compared to greedy
backfitting of extended additive models in logistic regression
problems, or “Logitboost". The Adaboost algorithm has been
applied to learn fuzzy rules in classification problems, and
other backfitting algorithms to learn fuzzy rules in modeling
problems but, up to our knowledge, there are not previous
works that extend the Logitboost algorithm to learn fuzzy
rules in classification problems.

In this work, Logitboost is applied to learn fuzzy rules
in classification problems, and its results are compared with
that of Adaboost and other fuzzy rule learning algorithms.
Contradicting the expected results, it is shown that the basic
extension of the backfitting algorithm to learn classification
rules may produce worse results thanAdaboost does. We sug-
gest that this is caused by the stricter requirements that Log-
itboost demands to the weak learners, which are not fulfilled
by fuzzy rules. Finally, it is proposed a prefitting based modi-
fication of the Logitboost algorithm that avoids this problem.

Keywords Genetic fuzzy systems ·Descriptive fuzzy rules ·
Fuzzy adaboost · Fuzzy LogitBoost

1 Introduction

Boosting consists in combining low quality classifiers with
a voting scheme to produce a classifier better than any of its
components. The most common version of Boosting is called
AdaBoost [5]. Recently, a close relationship between this
method and Generalized Additive Models has been shown.
Following [6], Adaboost is a specialization of the backfit-
ting algorithm – used since the 80’s to induce generalized
additive models – whose greedy version is also known as
“matching pursuit” in signal processing related works [17,
23]. This relationship explains the mechanisms of Adaboost
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in terms of iterative approximations to maximum likelihood
estimation over a family of additive models.

As a consequence of the new theoretical justification,
some corrections were introduced to Adaboost and a new
boosting method, called LogitBoost, was proposed in [6].
Logitboost should pose less numerical problems than Ada-
boost, and it was experimentally shown to improve the former
method, being specially efficient in multiclass problems, to
which Adaboost was difficult to extend.

Matching pursuit methods have been used to induce fuzzy
classifiers and models in different ways. In fact, Iterative Rule
Learning of models [8] and classifiers [2] are closely related
to matching pursuit algorithms and can be regarded as the pre-
cursors of these algorithms, and Adaboost itself was directly
applied to induce fuzzy classifiers [15,12,3]. Backfitting has
also been regarded as the counterpart of Adaboost in model
estimation and also used to induce fuzzy models in previous
works [20].

The structure of this paper is as follows: in the next sec-
tion, fuzzy classifiers are introduced and it is explained how
Adaboost can be applied to induce them from data. Then, the
Logitboost algorithm is explained, compared toAdaboost and
adapted to learn fuzzy classifiers. Some problems with this
adaptation are discussed, and an extension to Logitboost is
introduced. The paper finishes with an empirical evaluation
of the new algorithm.

2 Boosting fuzzy classifiers

2.1 Notation

At this point we introduce the basic notation employed through-
tout the paper. Let X be the feature space, and let x be a feature
vector x = (x1, . . . , xn) ∈ X. Let p be the number of classes.
The training set is a sample of m classified examples (xi , yi),
where xi ∈ X, 1 ≤ yi ≤ p, 1 ≤ i ≤ m.

The antecedents of all fuzzy rules in the classifier form
a fuzzy partition A of the feature space A = {Aj }j=1,... ,N ,
with Aj ⊂ P̃(X), where P̃(X) stands for “fuzzy parts of X”.
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In the remaining part of this paper, we will assume that the
training examples will be indexed by the letter i, the rules
by j , the features by f and the classes by k; the ranges of
these variables are 1 ≤ i ≤ m, 1 ≤ j ≤ N , 1 ≤ f ≤ n and
1 ≤ k ≤ p. For example, if we write “for all xi” we mean
xi , 1 ≤ i ≤ m; from now on, this range will not be explicitly
stated unless its absence leads to confusion.

We will define a fuzzy rule based classifier by means of a
fuzzy relationship defined on A× {1, . . . , p}. Values of this
relationship describe the degrees of compatibility between
the fuzzy subsets of the feature space collected in A, and
each one of the classes. In other words, for every anteced-
ent Aj we have p numbers between 0 and 1 that represent
our degree of knowledge about the assert “All elements in
the fuzzy set Aj belong to class number k”. Values near to
1 mean “high confidence,” and values near 0 mean “absence
of knowledge about the assertion.”

2.2 Linguistic interpretation of fuzzy classifiers

Fuzzy rule based classifiers are understandable to humans
as they can be expressed as linguistic sentences. There are
different standards when translating the former fuzzy rela-
tionship into linguistic statements. In this paper, we combine
p instances of the fuzzy relationship,

compatibility(Aj , ck) = sk k = 1, . . . , p,

into a single sentence, as follows:

if x is Aj then truth(c1) = s
j

1 and · · · and truth(cp) = s
j
p.

Furthermore, the antecedents of various rules with the same
consequent

if x is A then truth(c1) = s1 and · · · and truth(cp) = sp

if x is A′ then truth(c1) = s1 and · · · and truth(cp) = sp

can be combined with the help of the “or” connective, giving
a compound rule:

if (x is A) or (x is A′) then truth(c1) = s1
and · · · and truth(cp) = sp.

In practical cases, we work with asserts Aj that can be
decomposed in a Cartesian product of fuzzy sets defined over
each feature, Aj = A

j

1 × A
j

2 × · · · × A
j
n, thus the rules are

if (x1 is A
j

1 and · · · and xn is A
j
n) or (x1 is etc. )

then truth(c1) = s
j

1 and · · · and truth(cp) = s
j
p.

The linguistic expression of the fuzzy classifier does not in-
clude the terms for which confidence values are null. In case
there exist fuzzy subsets for which all confidence values are
null, the rule base will comprise less sentences (fuzzy rules)
than elements exist in the fuzzy partition A.

We can restrict the definition further by defining n lin-
guistic variables (one linguistic variable for every feature)
and requiring that all terms sets A

j

f in the antecedents are
associated with one linguistic term in its corresponding lin-
guistic variable. In this case, we obtain a fuzzy rule based

descriptive classifier. If we do not apply the latter restriction,
we obtain an approximate classifier.

Observe that in a descriptive fuzzy classifier the set of
possible rules is finite due to the discrete number of possible
linguistic labels associated to each rule. Conversely, there
is an infinite number of possible approximate classifiers as
fuzzy rules use continuous parameters to define the charac-
teristic points of their underlying fuzzy sets.

2.3 Fuzzy inference

Fuzzy reasoning methods define how rules are combined and
how to infer from a given input to the corresponding output.
The actual inference method is solely defined in terms of
the fuzzy relationship, and is therefore independent of the
classifier being approximate or descriptive. An instance x is
assigned to the class

arg maxk=1,... , p

N∨

j=1

Aj(x) ∧ s
j

k (1)

where “∧” and “∨” can be implemented by different oper-
ators; for example, “∨” can be the maximum operator [16]
or the arithmetic sum, so called “maximum voting scheme”
[14]. “∧” is always a t-norm, usually the minimum or the
product. In this paper, we will combine the product with the
maximum vote scheme to do the fuzzy inference.

2.4 The Adaboost algorithm

Let us define a set {g1, g2, . . . , gN } of simple, but possibly
unreliable binary classifiers. Boosting consists in combining
these low quality classifiers (so called “weak hypotheses” in
boosting literature) with a voting scheme to produce an over-
all classifier that performs better than any of its individual
constituents alone. We will show later that a fuzzy rule can
be regarded as a particular case of weak hypothesis, and a
fuzzy rule base can be compared to a weighted combination
of weak hypotheses.

Weak hypotheses take feature values as input and pro-
duce both a class number as well as a degree of confidence
in the given classification. In two-class problems, these two
outputs can be encoded with a single real number, gj (x) ∈ R,
whose sign is interpreted as the label of x and whose absolute
value is interpreted as the confidence in the classification, the
higher the better. AdaBoost is intended to produce a linear
threshold of all hypotheses:

sign





N∑

j=1

αjgj (x)



 . (2)

An outline of the Adaboost algorithm is shown in Fig. 1.
Observe that Adaboost can operate with any learning algo-
rithm that generates a confidence rated classifier, given a
weighted data set. There are different algorithms for assign-
ing a number of votes to a weak hypothesis, and for adjusting
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Fig. 1 Generalized Adaboost algorithm. Two classes version

the weights of the examples. For example, in confidence-
rated Adaboost [22] the number of votes of the weak hypoth-
esis gh is given by the value αh that minimizes the following
function:

Z(α) =
m∑

i=1

wi exp(−αyig
h(xi )) (3)

and the weights of the examples are updated according to the
formula

wi ← wi exp(−αhyig
h(xi ))/v (4)

where v is the value that makes
∑

wi = 1. There are ana-
lytical approximations and even heuristics that may replace
this formula in specific problems.

2.5 Boosting fuzzy rules

Fuzzy rules are weak learners in fuzzy boosting. Each fuzzy
rule is a confidence rated classifier that can produce the output
‘0’ if the pattern is not covered by its antecedent, or both a
class number and a confidence value between 0 and 1 else
[3]. Therefore, boosting fuzzy rules can be based on an algo-
rithm able to fit one single fuzzy rule to a set of weighted
examples. This algorithm will be repeated so many times as
rules in the base, and the Adaboost algorithm produces the
number of votes each rule is assigned and recalculates the
weight of every example when the rule is added to the base.

For the sake of simplicity, we restrict the discussion for
the time being to two-class problems. A function Rj(·) can
be assigned to the rule

if x1 is A
j

1 and · · · and xn is A
j
n then t(c1) = s1

and t(c2) = s2

Rj(x) is defined as the product of the membership degree
of instance x with the rule antecedent and the difference be-
tween the degrees of truth of the two classes in its consequent:
Rj(x) = Aj(x)(s1 − s2). Assuming the product as the con-
junction operator ∧, the output of the fuzzy classifier given
in Eq. 1 can be written as

sign





N∑

j=1

Rj(x)



 .

Noticing, the similarity between the above expression and Eq.
2, it allows us to apply the boosting mechanism to descriptive
fuzzy rules. The space of weak hypotheses becomes identi-
fied with the fuzzy partition A.A linear threshold of elements
of A is

sign





N∑

j=1

αjAj (x)





and the values of αj , along with the N elements Aj selected
from A are obtained by the usual Adaboost algorithm. Pos-
itive values of α correspond to rules for which s1 > s2 and
negative ones to rules with s2 > s1. Since the values of αj

that Adaboost produces are not constrained to the interval
[0, 1], it may happen that they no longer constitute valid con-
fidence rates. Therefore, the degrees αj in the consequents
are normalized to a range [−1, 1] once the entire rule base
has been generated.

Figure 2 shows the outline of the final algorithm, as pro-
posed in [15,3].

3 Backfitting additive logistic classifiers: the Logitboost
algorithm

The Logitboost algorithm justifies the exponential bound
introduced in the preceding section as an approximation to the
objective function originated when a Generalized Additive
Linear Model is used to fit a classification problem after
certain logistic transform. Logitboost tries to minimize the
likelihood of the classifier, which in turn is restricted to a
parametric family of density functions. Before the algorithm
is introduced, we will revisit the notions of statistical classi-
fication problem and generalized additive model.

3.1 Definition of an statistical classification problem

Let us suppose we have a set � that contains objects ω, each
one of them belonging to a class ci , i = 1, . . . , p, and we per-
form the set of measurements X(ω) = (x1(ω), . . . , xn(ω))
over every object (i.e., the features of an object are its im-
age under a transform given by certain random variable that
models the measuring process.) Let us also assume that the
mapping X fulfills all necessary conditions to be a random
variable. We will say that a classification system is a decision
rule that maps every element of X(�) to a class ci , whose
main objective is to produce a low number of errors.
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Fig. 2 Adaboost algorithm applied to the induction of a descriptive,
fuzzy rule based classification system. Two classes version

Since we did not assume that ω1 �= ω2 ⇒ X(ω1) �=
X(ω2) perhaps a decision rule that never fails cannot be de-
fined for this problem. Usually we evaluate the expectation
of a new random variable that quantifies the mean number
of errors, and try to optimize it. If the classifier is a decision
rule, D(X), and “class(ω)” is the class of the object ω then
the error is

err(D) =
∫

�

cost(D(X(ω)), class(ω)) dP

where cost(a, b) = 1 when a �= b and 0 else. This value is
called “minimum Bayes error”, and it is a lower bound of the
expected error of any classifier. It can be demonstrated that
the classifier that reaches this bound has the form [9]

D(x) = arg max
k

P (class(ω) = ck|X = x).

3.2 Generalized and extended additive models

As a consecuence of the last assert, the objective of the learn-
ing process can be rewritten as “estimate P(class(ω) = ck|X
= x).” Alternatively, we can also define p random variables

yk(ω) =
{

1 if class (ω) = ck

0 else
(5)

and reformulate the classification problem as a regression
problem, that of estimating the conditional expectations

E(yk|x) = P(class(ω) = ck|X = x). We will show next
that this allows us to apply certain statistical regression tech-
niques to the classification problem.

3.3 Additive models

Additive models were introduced in the 80’s to improve pre-
cision and interpretability of classical nonparametric regres-
sion techniques in problems with a large number of inputs.
These models estimate an additive approximation to the mul-
tivariate regression function, where each of the additive terms
is estimated using a univariate smoother.

Individual terms explain the dependence of the output
variable with respect to their corresponding input variables,
thus there exists a certain degree of interpretability in the
model. While this kind of estimation avoids the curse of
dimensionality, it is not able to approximate universally. Has-
tie and Tibshirani [10] addressed this issue and proposed gen-
eralized additive models. With these last models it is assumed
that the mean of the output depends on a sum of terms through
a nonlinear link function, and it is permitted that the response
probability distribution is any distribution in the exponential
family. Many statistical models belong to this class, including
additive models for Gaussian data and nonparametric logistic
models for binary data like the one we are interested in.

More formally, let y be the output random variable we
wish to model, and let x = (x1, . . . , xn) be the input ran-
dom vector. The objective of the modeling process consists
in estimating the conditional expectation of y given x. Linear
regression assumes

E(y|x) = f (x1, . . . , xn) = β0 + β1x1 + · · · + βnxn (6)

and obtains β0, . . . , βn by least squares. Additive models
generalize this schema by allowing the use of a sum of non-
linear univariate regressors

E(y|x) = f (x1, . . . , xn) = r0 + r1(x1)+ · · · + rn(xn) (7)

where ri are smooth functions that are estimated in a nonpara-
metric fashion. Generalized additive models extend additive
models by not assuming a Gaussian distribution of the output,
but any probability distribution in the exponential family,

fy(t; θ;φ) = exp

{
tθ − b(θ)

a(φ)
+ c(t, φ)

}

(8)

and making the additive component

f (x1, . . . , xn) = r0 + r1(x1)+ · · · + rn(xn) (9)

to depend on the mean of the output by means of a link func-
tion l, so that g(E(y|x)) = f (x1, . . . , xn). The most com-
monly used link function in practice is the canonical link
l(E(y|x)) = θ .

Additive models can be generalized furthermore. In
extended additive models, the univariate regressors ri are
replaced by functions of more than one feature. In our con-
text, these functions usually depend on a set of parameters γ
and a multiplier β,

rj = βj r(x; γj ) (10)
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thus the additive model becomes

E(y|x) = f (x1, . . . , xn)

= r0 +
N∑

j=1

βj r((x1, . . . , xn); γj ). (11)

For example, in radial basis neural networks the functions
s(x, γj ) = exp{||x − γj ||2} are the “basis functions”; γj are
their centers and βj are the weights that connect the input
layer with the output. In support vector machines, r(x, γ ) is
a kernel, and γj are the support vectors. In our case, we will
propose a model where (x, γj ) will be the membership Aj

of the antecedent of the i-th fuzzy rule, γj identifies the lin-
guistic terms that participate in the rule and βj is the degree
of truth of the consequent of the rule.

3.4 Backfitting and the Logitboost algorithm

Extended additive models can be learned with a generalized
backfitting algorithm [6]. Given a cost function d, that mea-
sures the differences between the conditional expectation and
its approximation, this algorithm consists in finding N pairs
of values {βj , γj } minimizing each

E




d




y,

∑

α=1,... ,N

j �=α

βαr(x; γα)+ βr(x; γ )









 (12)

with respect to β, γ [6].A greedy approach, where the expec-
tation of the output is incrementally approximated, produces
good results in practice. Let f0(x), f1(x), . . . be successive
approximations to E(y|x); then, let us define

{βα, γα} ←
arg minβ,γ E[d (y, fα−1(x)+ βr(x; γ ))] (13)

where {βk, γk}α−1
1 are fixed at their corresponding solution

values at earlier iterations.
Algorithms that learn a weighted sum of basis functions,

by sequentially appending functions to an initially empty
basis, to approximate a target function in the least-squares
sense, are contained in the family of the matching pursuit
algorithms [17]. These algorithms have been compared to
support vector machines [25] and radial basis neural net-
works in machine learning problems [23]. One of the most
interesting properties of matching pursuit algorithms is that
they are good in keeping the sparsity of the solution; this
improves the generalization properties of the method and we
will also see in the following sections that the same property
guarantees a small number of rules in the fuzzy case that will
be described later.

We have mentioned that the objective of a binary classifi-
cation problem is to approximate the value E(y|x) = p(c =
1|x), which we will denote by p(x). The response variable
in a classification problem follows the binomial distribution,
and the link function is log(p(x)/(1− p(x))) [10]; therefore,
the additive model is

log
p(class(x) = 1)

p(class(x) = 0)
= f (x1, . . . , xn)

= r0 + β1r1(x)+ · · · (14)

and the output of the model, reversing the logistic transform,

p(x) = ef (x)

1+ ef (x)
(15)

If the greedy version of generalized backfitting, mentioned
in the preceding subsection, is applied to this model, it is
obtained the Logitboost algorithm [6].An outline of this algo-
rithm, extended to multiclass problems, is shown in Fig. 3.
Observe that our multiclass extension consists in fitting p
uncoupled additive logistic models, each class against the
rest. The term yik is defined as follows (recall Eq. 5:)

yik =
{

1 if class (xi ) = k

0 else
(16)

3.5 The smoothing operation

The “smooth” operation [10], consists in estimating the val-
ues βj and γj on which the j -th additive term depends, by
means of a suitable statistical or machine learning proce-
dure. Every step can be understood as fitting a new term to
a weighted set of residuals of the previous submodel. This
residual is

z = y − pj−1(x)

pj−1(x)(1− pj−1(x))
,

and the weight of the residual at the element x in the sam-
ple is pj−1(x)(1− pj−1(x)). Recall that this, in our case, is
equivalent to find the fuzzy rule that best fits the residual of
the j − 1 first rules in the knowledge base (this rule is given
by the parameter γj ) and assigning a degree of confidence to
this rule (the parameter βj .)

We have conducted the search of γj by means of a Genetic
Algorithm, hybridized with an analytical procedure. It is clear
that, once γj is selected, the value of βj that minimizes the
squared error over the residual can be found by differentiat-
ing with respect to βj and equating to 0. Let ωi be the weight

Fig. 3 Pseudocode of backfitting applied to a logistic extended addi-
tive model or Logitboost. After solving the step (2.a.i) as discussed in
the text, the algorithm shares certain similarities with Adaboost. For
two classes problems it is not needed the second loop, labelled (a), as
pj1(x) = 1− pj2(x)
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of the i-th example and zi its corresponding residual. The
factor βj is

βj =
∑

i ωizir(xi; γj )
∑

i ωir2(xi; γj )
(17)

Therefore, we will let the GA to select the combinations of
linguistic terms that form the antecedent of the rules, and
calculate the importance of the rules by means of the expres-
sion 17. The fitness value of a candidate rule is its squared
error over the residuals zi , for its optimal value of βi . Further
details about the genetic algorithm will be given in the next
section.

4 Logitboost-based learning of fuzzy rule based
classifiers

The basic version of learning algorithm proposed here is
shown in Fig. 4, and implements the outline depicted in Fig. 3.
Our algorithm produces rules with a single consequent in
two-class problems, and rules with more than one conse-
quent in multiclass problems. Observe that the antecedent
Aj of the fuzzy rule number j plays the role of the regressor
rj in the preceding section, and the confidence degrees sj are
the values βj , as given by Eq. 17.

The line “Find Aj . . . ” implements the smooth operation
described in the preceding section. The search is solved with
a genetic algorithm, that finds the combination of anteced-
ents (the fuzzy set A) which, in combination with its optimal
value of sj best approximates the residual, in the weighted
least squares sense.

Fig. 4 Outline of the basic version of backfitting applied to a logistic
extended additive model or Logitboost. For two classes problems it is
not needed the second loop, as pj1(x) = 1− pj2(x)

4.1 Genetic search of antecedents

Binary coded genetic algorithms are a natural choice for this
problem, and we have experimentally checked that the rules
that the GA finds are close to the optimal ones. But the choose
of a genetic algorithm is not mandatory for this problem.
Many other approaches could be used, including exhaustive
search, as the search space is finite and rather small for many
practical problems.

4.1.1 Coding scheme

We will use a coding scheme based in [7]. Let us codify a
linguistic term with a ‘1’ bit in a chain of so many bits as
different terms in the linguistic partition. For example, let
{Low, Med, High} be the linguistic labels of all features in a
problem involving three input variables and two classes. The
antecedent of the rule

Fig. 5 Pseudocode of the prefitting version of backfitting applied to a
logistic extended additive model or Logitboost. For two classes prob-
lems it is not needed the second loop, labelled (a), as pj1(x) = 1 −
pj2(x)
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Fig. 6 The basic implementation of Logitboost (see Fig. 4) does not improve the results of Adaboost. The prefitting based implementation (see
Fig. 5) improves significantly the results of this initial implementation. The figures show the results for Pima, Cancer, Gauss, Glass and Gauss-5.
Every boxplot contains the results for Adaboost, the Basic Version of Logitboost and the Prefitting Version of Logitboost.

If x1 is High and x2 is Med and x3 is Low
then class is C1 with seg = S1, C2 with seg = S2

is codified with the chain 001 010 100. We could use this
encoding to represent rules for which not all variables appear
in the antecedent and ‘OR’combinations of terms in the ante-
cedent. For example, the antecedent of the rule

If x1 is High and x3 is Low then . . .

is codified with the chain 001 000 100, and

If x1 is( High or Med) and x3 is Low then . . . ,

will be assigned the chain 011 000 100. With this structure,
the GA is also exploited to integrate a rule-wise feature selec-
tion process into the search scheme.

Since “OR” combinations of rules increase the complex-
ity of the knowledge base we have decided not to allow them,
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but we permit rules where not all input variables are present,
as we think that this improves the readability of the output.

4.1.2 Fitness function

The fitness of a fuzzy rule “if Aj(x) then class(x)=ck with
confidence sj " is the weighted squared error between the
logistic transform pijk of the output of fuzzy classifier and
the desired output yik [that was defined in Eq. (16)]

n∑

i=1

wijk

(

sj · Aj(xi)− yik − pijk

wijk

)2

and the expression 17 is rewritten as follows:

sj =
∑

i (yik − pijk)A(xi )
∑

i ωi[Aj(xi )]2
(18)

4.2 Prefitting version

The Logitboost algorithm did not improve the results of the
Adaboost algorithm (the experimentation is detailed in Sect.
5.2). This seems to contradict some of the claims made by
the Logitboost authors. It can be argued that neither Ada-
boost nor Logitboost were designed to deal with classifiers
that leave most of the feature space uncovered, as is the case
with single fuzzy rules. But, since our straight extension of
Adaboost was able to properly learn fuzzy rules in classi-
fication problems [3] we can conclude that the Logitboost
algorithm is more restrictive than Adaboost with respect to
the valid families of weak learners.

Interestingly enough, the Logitboost algorithm derives
from previous works about backfitting of generalized addi-
tive models where it was stated that the expectation of the
multivariate regressors rj must be null [10]. The fuzzy mem-
berships Aj(x), being positive, do not fulfill this requirement.

The simplest modification needed to convert a fuzzy mem-
bership into an unbiased weak learner consists in adding it a
constant term. This way, the weak learner has not the form
sj · Aj(x), but s

j

0 + sj · Aj(x), where −s
j

0 is the weigthed
mean of the membership Aj over the feature space. These
constant terms can be absorbed into a fuzzy rule that fully
covers the feature space, as shown in the algorithm in Fig. 5.
Observe that this modification of the Logitboost algorithm
can be understood as a partial prefitting, as defined in [23].

5 Numerical results

The datasets used in this article to test the accuracy of the
proposed algorithm are taken from the UCI Repository Of
Machine Learning Databases and DomainTheories [18], from
the literature [11] or synthetic [3]. The following datasets are
used:

• PIMA (Pima Indians Diabetes Database): two classes
problem. The patient shows signs of diabetes accord-
ing to World Health Organization criteria or not. Eight

numerical attributes (related to blood pressure, number
of pregnancies, age,...). The number of instances are 768,
many attributes have missing values and these have been
encoded with the numerical value 0.
• Cancer (Wisconsin Breast cancer): the so called “origi-

nal dataset” in [18]. Two classes problem, malignant or
benign, nine integer attributes (cell size, cell shape, and
so on) from 1 to 10, 699 instances.
• Gauss: two classes problem, proposed in [11]. 4000 points

taken from two overlapping bi-dimensional Gaussian
distributions (centered in (0, 0) and (2, 0))with different
covariance matrix (I and 4I ).
• Glass (Glass Identification Database): six class problem,

the type of glass. Ten attributes (different oxide content,
refractive index), all numerical.
• Gauss-5: synthetic five class problem proposed in [3],

comprising 50, 100, 150, 200 and 250 samples from five
bi-dimensional Gaussian distribution with centers in (0, 0),
(−1,−1), (−1, 1), (1,−1), (1, 1), and unity covariances
matrix.

Adaboost and Logitboost were terminated after the gener-
ation of seven rules for Pima, four for Cancer, five for Gauss,
ten for Glass and 25 for Gauss5. The number of linguistic
labels discretizing input variables are 3, 2, 5, 3 and 5, respec-
tively. The genetic algorithm in both descriptive Adaboost
and Logitboost is steady-state, with ten subpopulations of
size 100 each. Every rule is obtained from the best individ-
ual after 2500 crossover operations.

5.1 Pairwise comparisons, 5×2cv f test

In order to compare the accuracy of two learning algorithms,
Dietterich analyzes in [4] five statistical tests and states that
5×2cv t-test has low type I error and good power. Later, in
[1], a new test called 5×2cv-f, that improves both type I error
and power, is proposed. We have adopted this last test in all
our experiments.

This test performs five replications of twofold cross-val-
idation. In each replication, the data set is divided into two
sets of equal size. The statistic used in this test is:

f =
∑5

i=1

∑2
j=1[p(j)

i ]2

2
∑5

i=1 s2
i

where p
(j)

i is the difference between the error of the two
learning algorithms on the j -th fold of the i-th replication.
The f statistic is F distributed with 10 and five degrees of
freedom.

Table 1 P -values of the statistical tests that assess the influence of the
prefitting term. The influence of the term was significant in all cases
but Gauss, where the dispersion of the results prevent us from making
a decision

Pima Cancer Gauss Glass Gauss5

0.05 0.07 0.50 0.04 0.03
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Fig. 7 Boxplots with a comparison between black-boxes (linear and quadratic discriminant analysis, three layer perceptron, k-nearest neighbours,
kernel estimation of densities) and fuzzy rule based classifiers (Wang and Mendel’s[24], Ishibuchi[13], Pal and Mandal[19], Genetic Iterative
Learning, Random Set based, Fuzzy Adaboost and Fuzzy Logitboost) The datasets are Pima, Cancer, Gauss, Glass and Gauss5
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Table 2 Mean values of the experiments shown in Figure 7

LIN QUA NEU KNN KER WM HL PM GIL KRE ABD LGB

pima 0.227 0.251 0.238 0.270 0.313 0.287 0.301 0.464 0.269 0.308 0.253 0.237
cancer 0.044 0.051 0.034 0.048 0.099 0.039 0.096 0.145 0.099 0.221 0.041 0.041
gauss 0.239 0.190 0.193 0.216 0.191 0.329 0.322 0.306 0.205 0.215 0.206 0.197
glass 0.404 - 0.382 0.354 0.621 0.453 0.503 0.647 0.363 0.606 0.522 0.463

gauss5 0.318 0.317 0.324 0.343 0.332 0.410 0.345 0.974 0.338 0.321 0.343 0.332

Table 3 p-values of the differences between Adaboost and LogitBoost.
It is clear from the previous table that Logitbost produces better results
than Adaboost, but not all the differences are statistically significant

Pima Cancer Gauss Glass Gauss5

0.07 0.28 0.19 0.10 0.16

5.2 Influence of the prefitting term

The first set of experiments is designed to decide whether
the prefitting version of the Logitboost algorithm (see Fig. 5)
improves the basic version. In Fig. 6 the results for Pima,
Cancer, Gauss, Glass and Gauss-5 are shown. Every boxplot
plots the median, the 25 and 75% quartiles and the outliers
(points outside 1.5 times the length of the inner quartiles).
This way, we graphically describe the tests errors over the
ten partitions defined by the 5×2cv-f method, for Adaboost,
the Basic Version of Logitboost and the Prefitting Version of
Logitboost. The p-values of the statistical tests that assess
the differences between the two versions of Logitboost are
shown in Table 1. The influence of the term was significant
in all cases but Gauss, where the dispersion of the results
prevent us from making a decision.

5.3 Benchmark results

Five statistical methods (linear and quadratic discriminant
analysis, neural networks, kernel estimation of densities and
k-nearest neigbours) plus six fuzzy descriptive rule based
methods (Wang and Mendel’s [24], Ishibuchi’s [13], Pal and
Mandal’s [19], Iterative Genetic Learning [2], Random Sets
Based [21], Fuzzy Descriptive Adaboost [3]) were compared
to Logitboost. The combined boxplots are shown in Fig. 7.
The Logitboost method was better than fuzzy Adaboost in
all datasets, and also the best fuzzy rule learning method in
all datasets but one, as shown in Table 2, but the differences
between Logitboost and Adaboost were not significant in all
cases, as shown in Table 3.

As a reference, the reader can compare the results here
with those in [21] and [3] for the same datasets. In these
papers it is shown that lower error rates are attainable when
using more fuzzy rules.

6 Concluding remarks

The Logitboost algorithm has a solid statistical background,
that makes it an interesting choice between boosting algo-
rithms. It has been shown that fuzzy rules are not valid weak

learners under Logitboost, contrary to Adaboost. A prefitting
based algorithm that solves this problem is proposed, and
the behaviour of this algorithm is moderately better than our
former Adaboost based genetic fuzzy classification system.

The advantages of boosting methods when learning fuzzy
classifiers are two: as far as we know, the size of the rule base
is between the lowest values attainable with other genetic
fuzzy classisiers, and the learning is very fast (between sec-
onds and minutes for the problems used in this paper). But
there are also drawbacks: the inference is not standard, and
the quality of the rule base is low, because the interaction
between rules is very high. In future works, we intend to
modify the boosting algorithm in order to produce knowl-
edge rules with higher linguistic quality.
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