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Abstract--A supervised learning algorithm (Scaled Conjugate Gradient, SCG) is introduced TIw pelformance of  
SCG is benchmarked against that of the standard back propagation algorithm (BP) ( Rumelhart. Hinton. & 14"illiams. 
1986 ), the conjugate gradient algorithm with line search ( CGL ) ( Johansson, Dowla. & Goodman, 1990) and the 
one-step Broyden-Fletcher-Gold./arb-Shanno memoriless quasi-Newton algorithm ( BFGS) ( Battiti, 1990 ). SCG is 
lhlly-automated, inJudes no critical user-dependent parametepw, and avoids a time consuming line search, which 
CGL and BFGS use in each iteration in order to determine an appropriate step size. E.¥periments show that SCG 
is considerablyJhster than BP, CGL, and BFGS. 
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1. INTRODUCTION 

1.I. Motivation 

Several adaptive learning algorithms for feedforward 
neural networks have recently been discovered (Hinton, 
1989). Many of these algorithms are based on the gra- 
dient descent algorithm well known in optimization 
theory. They usually have a poor convergence rate and 
depend on parameters which have to be specified by 
the user, as no theoretical basis for choosing them exists. 
The values of these parameters are often crucial for the 
success of the algorithm, An example is the standard 
back propagation algorithm (BP) (Rumelhart, Hinton, 
& Williams, 1986), which often behaves very badly on 
large-scale problems and whose success depends of the 
user dependent parameters learning rate and momen-  
tum constant. The aim of this paper is to develop a 
supervised learning algorithm that eliminates some of 
these disadvantages. 

Acknowledgment: I would like to thank Brian Mayoh (AAU), 
Kim Plunken (University of Oxford), and Ole Osterby (AAU) for 
many good discussions and advice. The work was supported by Statens 
Teknisk-Videnskabelige Forkningsr~id, Denmark and The Carlsberg 
Foundation, Denmark. 

Requests for reprints should be sent to Martin F. Moiler, Computer 
Science Department, University ofAarhus, Ny Munkegade, Building 
540, Denmark. 

From an optimization point of view, learning in a 
neural network is equivalent to minimizing a global 
error function, which is a multivariate function that 
depends on the weights in the network. This perspective 
gives some advantages in the development of effective 
learning algorithms because the problem of minimizing 
a function is well known in other fields of science, such 
as conventional numerical analysis (Watrous, 1987 ). 

Since learning in realistic neural network applica- 
tions often involves adjustment of several thousand 
weights, only optimization methods that are applicable 
to large-scale problems are relevant as alternative 
learning algorithms. The general opinion in the nu- 
merical analysis community is that especially one class 
of optimization methods, called the Conjugate Gradient 
Methods, are well suited to handle large-scale problems 
in an effective way (Fletcher, 1975; Gill, Murray, & 
Wright, 1980; Hestenes, 1980; Powell, 1977). Se~ceral 
conjugate gradient algorithms have recently been in- 
troduced as learning algorithms in neural networks 
(Battiti, 1989; Johansson, Dowla, & Goodman, 1990; 
Moller, 1990). Johansson, Dowla, and Goodman de- 
scribe the theory of general conjugate gradient methods 
and how to apply the methods in feedforward neural 
networks. They conclude that the standard conjugate 
gradient method with line search (CGL) is an order of 
magnitude faster than the standard BP when tested on 
the parity problem. Battiti and Masulli have introduced 
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a variation of the standard conjugate gradient method, 
the one-step Broyden-Fletcher-Goldfarb-Shanno me- 
moriless quasi-Newton algorithm (BFGS),  as an alter- 
native learning algorithm (Battiti & Masulli, 1990). 
They conclude that BFGS also yields an acceleration 
of about one order of magnitude compared to BP when 
tested on the parity problem. Both CGL and BFGS 
raise the calculation complexity per learning iteration 
considerably since they have to perform a line search 
in order to determine an appropriate step size. A line 
search involves several calculations of either the global 
error function or its derivative, both of which raise the 
complexity. 

This paper introduces a new variation of the con- 
jugate gradient method (Scaled Conjugate Gradient, 
SCG), which avoids the line search per learning iter- 
ation by using a Levenberg-Marquardt approach (Gill, 
Murray, & Wright, 1980) in order to scale the step size. 
During the development of SCG, a tutorial to the theory 
of conjugate gradient related algorithms is given. 

1.2. Notation 

Let an arbitrary feedforward neural network be given. 
The weights in the network will be expressed in vector 
notation. A weight vector is a vector in the real euclidean 
space Y/N, where N is the number of weights and biases 
in the network. A weight vector will often be referred 
to as a point in y/N or just a point in weight space. Let 
~, be the weight vector defined by 

(I) I1 {/ ~(1+1) (I (/ 
~ ' = ( ' ' ' ,  Wij , ~ l i + l )  . . . . .  ~ N i j , ~ j  , ~tij+l, ~ti+lj+l . . . .  ) ,  

(1) 

• ( I )  
where w o is the weight from unit number i in layer 
number 1 to unit number j  in layer number l + 1, Nt 

/] ( / + ~ )  
is the number of units in layer i, and ~j is the bias 
for unit number j in layer number l + 1. We assume 
that a global error function E ( ~ )  depending on all the 
weights and biases is attached to the neural network. 
E ( ~ )  could be the standard least square function or 
any other appropriate error function. E ( ~ )  can be cal- 
culated with one forward pass and the gradient E ' ( ~ )  
with one forward and one backward pass (Rumelhart,  
Hinton, & Williams, 1986). According to Hinton 
(1989), it is reasonable to assume that the number of 
patterns to be learned is proportional to the number 
of weights. ~ Using this assumption the complexity of 
calculating E(~,) and E ' ( ~ )  is O ( N  2) and O(3NZ), 
respectively, where N is the number of weights and 
biases (Yoshida, 1991 ). E ' ( ~ )  is given by 

Throughout this paper, this will be assumed if not stated oth- 
erwise. 

• " ' '  ~ '  j (I) ' " "  " '  
p = l  (.lT$ij p=l a~Ji+lj  

. 11) ' d B ( / + l )  ' j ( / )  ' " " " ' 
p = l  a~A~NIj p = l  ~ v j  p = l  awij+ I 

where P is the number of patterns presented to the 
network during training and Ep is the error associated 
with pattern p. 

We are now able to define some of the weight vector 
operations needed. The coordinates in a weight vector 
is referred to by superscript so that w; denotes the i 's  
weight in weight vector w. When matrix operations are 
used, a weight vector vb is a column-vector and w r, the 
transpose of ~,, will then be a row-vector. The ordering 
of the coordinates in the weight vectors are not im- 
portant as long as the chosen ordering is consistent 
throughout the implementation. Weight vectors and 
scalars are respectively indicated by Roman and Greek 
letters. 

The weight addit ion,  weight  subtraction,  and weight  
product  are defined, respectively, as 

I~ @ ff  = (~ 'd I "~ y l  . . . . .  i¢i .~_ y i  . . . . .  ki, N _~ y N ) T  

f f , _ p =  (w I_y~  . . . . .  w i _  ),i . . . . .  w u _  y u ) r  

N 

~,rf = ~ w,y,. (3) 
j = l  

The weight length is defined as 

I~'1 = ( wi) 2 . (4) 
I 

It might also be useful to recall that the error function 
E ( ~ )  in a given point (if, + .9) in ]~N can be expressed 
by the well known Taylor expansion 

E( it, + f,) = E(~,)  + E'(~?,) Tp + ½ 9rE,, ( ~t,)p + . . . .  ( 5 ) 

A N × N matrix A is said to be posi t ive  def ini te  if 

p r A p > O  V y E ~  u. (6) 

Let/~t . . . .  ,/~, be a set of nonzero weight vectors in 
y~N. The set is said to be a conjugate  s y s t em  with respect 
to a nonsingular symmetric N × N matrix A if the 
following holds ( Hestenes, 1980) 

/~rA/~j = 0 (i :~j, i = 1 . . . . .  k). (7) 

The set of points v~ in Y~ u satisfying 

I~  = ~'1 Jr- O~1/~ I -~ . . . "Jr Olkfik, Oli ~ ~ ,  ( 8 )  

where ~ is a point in weight space and ,6, . . . . .  /~k is 
a subset of  a conjugate system, is called a k-p lane  or 
rk ( Hestenes, 1980). 

2. OPTIMIZATION STRATEGY 

Most of the optimization methods used to minimize 
functions are based on the same strategy. The mini- 
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mization is a local iterative process in which an ap- 
proximation to the function in a neighbourhood of the 
current point in weight space is minimized. The ap- 
proximation is often given by a first or second order 
Taylor expansion of the function. The idea of the strat- 
egy is illustrated in the pseudo algorithm presented be- 
low, which minimizes the error function E ( ~ ) .  
1. Choose initial weight vector ~, and set k = 1. 
2. Determine a search direction ,Ok and a step size ak 

SO that E(  kk + Otk`ok) < E(v~k). 
3. Update vector: ~'k+, = kk + ak`ok- 
4. If E'(~'k) 4 :0  then set k = k + 1 and go to 2 else 

return ~'k+, as the desired minimum. 
Determining the next current point in this iterative 

process involves two independent steps. First a search 
direction has to be determined, i.e., in what direction 
in weight space do we want to go in the search for a 
new current point. Once the search direction has been 
found we have to decide how far to go in the specified 
search direction, i.e., a step size has to be determined. 

3. T H E  BACK PROPAGATION ALGORITH M 

If the search direction .Ok in the above pseudo algorithm 
is set to the negative gradient -E ' (v~)  and the step size 
ak to a constant e, then the algorithm becomes the gra- 
dient descent algorithm (Gill, Murray, & Wright, 
1980). In the context of neural networks, this is the 
BP without a momentum term (Rumelhart,  Hinton, 
& Williams, 1986). Minimization by gradient descent 
is based on the linear approximation E( ff + )7) ~ E ( k )  
+ E ' (~ )  ry,  which is the main reason why the algorithm 
often shows poor convergence. Another reason is that 
the algorithm uses a constant step size, which in many 
cases is inefficient and makes the algorithm less robust. 
The inclusion of a momentum term in the BP is an ad 
hoc attempt to force the algorithm to use second order 
information from the network. Unfortunately, the mo- 
mentum term is not able to speed up the algorithm 
considerably, and causes the algorithm to be even less 
robust because of the inclusion of another user depen- 
dent parameter, the momen tum constant. Back prop- 
agation, including the momentum term, will be referred 
to as BE 

Usually two versions of BP are considered, the "'off- 
line" version and the "online" version. They differ in 
how often the weights are updated. The "oflqine" ver- 
sion updates the weights after all patterns have been 
propagated through the network, i.e., using information 
from all the patterns in the training set. The "online" 
version updates after every single pattern, i.e., using 
only information from one pattern. The "online" ver- 
sion is not consistent with the optimization theory but 
it has nevertheless shown to be superior to the "offiine" 
version on some specific problems. These problems 
seems to be characterized by big training sets containing 

a lot of redundant information (Le Cun, 1989) and by 
error surfaces that are not too complex in structure. 
The "of[line" version is, however, superior on problems 
which does not have these properties. 2 This paper will 
use the "offiine" version of BP in the comparison with 
other algorithms. For a more detailed discusssion and 
comparison with the "online" version of BP, see Moiler 
(1991). 

4. CONJUGATE DIRECI'ION M E T H O D S  

Conjugate direction methods are also based on the 
above general optimization strategy but choose the 
search direction and the step size more carefully by 
using information from the second order approxima- 
tion E(  ~, + fi) ~ E(  ~)  + E'(  ~)r)7 + ½yrE"( ~))7. 

Quadratic functions have some advantages over 
general functions. Denote the quadratic approximation 
to E in a neighbourhood of a point • by Eqw()7) so that 
Eqw()7) is given by 

E~,~,(p) = E(~,)+ E'(~,)r~+ ½~rE"(~)fi. (9) 

In order to determine minima to Eo,.()7) the critical 
points for Eq,~,(fi) must be found, i.e., the points where 

E'q,.(.f,) = E"(~,)p + E'(~,) = 0. (10) 

The critical points are the solution to the linear system 
defined by eqn (10). If a conjugate system is available, 
the solution can be simplified considerably (Hestenes, 
1980). Johansson, Dowla, and Goodman ( 1990 ) show 
this in a very understandable manner. Let `O, . . . . .  ,ON 
be a conjugate system. Because .6, . . . . .  ÒN form a basis 
for Y~ N, the step from a starting point 37, to a critical 
point )7. can be expressed as a linear combination of  

`O, . . . . .  `ON 
N 

Y* -- Yt = ~ °tiPi, °ti E f¢. (11) 
i= l  

Multiplying eqn ( 11 ) w i t h / f i E " ( # )  and substituting 
E'(~,) for -E"(~,))7,  gives 

aj = Of ( -  E'( J,) - E"( ~(,) fi, )/.Of E"( ~r~)ffj 

= -,6rE'q,.(9~ ) /~fE"(  ~)~j. ( 12 ) 

The critical point 37. can be determined in N iterative 
steps using eqns ( 1 1 ) and (12). Unfortunately, )7, is 
not necessarily a minimum, but can be a saddle point 
or a maximum. Only if the Hessian matrix E " ( ~ )  is 
positive definite then Eqw(y) has a unique global min- 
imum (Hestenes, 1980). This can be realized by 

2 Such as the parity problem which is used in this paper as a 
benchmark problem. 
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Eo,,.(.v) = E,,,.(p, + (.~ - ~.))  

= E(~')  + E'(tT') r (~ ,  + (~ _ f , ) )  

+ ½(~ ,  4- (13 -- i ~ , ) ) r E " ( ~ i " ) ( p ,  + ()3 -- i f , ) )  

= E(~') + E'(~')r.~. + E' (~ ' )r ( f  ' - ~.)  

I ,T l yv  I + ½yTE"(~')P, + ~.3,-- , ~ ' ) ( P -  Y*) 

+ ~(P - f , ,)rE"(~.)p,  

+ ~(P -- ~,)rE"(~?.)(p -- p,)  

=3 Eqw(f,) + ( P -  .f',)r(E"(~').f', + E'(~')) 

+ ~(.f' - p,)TE"(~[,)(p -- .f,,) 

=' Eow(.f',) + ½(.f' - .f',)rE"(~')(f' - P,)- (13) 

It follows from eqn ( 13 ) that i f ~ ,  is a minimum, then 
(p - p ,  ) rE"( ~')(p - p , )  > 0 for every p, hence E"(~,) 

has to be positive definite. The Hessian E"(~,) in the 
following will be assumed to be positive definite, if not 
otherwise stated. 

The intermediate points Yk+~ = .Vk + akfk given by 
the iterative determination o f f ,  are in fact minima for 
Eqw(y) restricted to every k-plane rk: P = Yt + a~ft + 
• - • + akfk. How to determine these points recursively 
is shown in the following theorem. Its proof  can be 
found in Hestenes (1980). 

THEOREM 1. Let f~ . . . . .  P N  be a conjugate system and 
.f't a point in weight space. Let  the points .f5 . . . . .  .f'N+~ 
be recursiveh, defined by 

.~k + I = ~k ~- o~kPk, 

where ak = ]dk/~k, # k  = --fi[E~,,.(Ok), 5k = 
pT E"( ~')fk. Then Yk + ~ min imizes  Eq.. restricted to the 
k-plane rCk given by f t and f t  . . . . .  Pk. 

The conjugate direction algorithm as proposed by Hes- 
tenes (1980) can be formulated as follows. Select an 
initial weight vector fit and a conjugate system f t  . . . . .  
PN. Find successive minima for Eq,,. on the planes ~rt, 
. . . .  rrN using Theorem 1, where rrk, 1 < k < N, is 
given by ~ = ~ + atf~ + . . .  + a~fk, O~i ~ -~. The 
algorithm assures that the global min imum for a qua- 
dratic function is detected in, at most, N iterations. If 
all the eigenvalues of  the Hessian E"(~,) fall into mul- 
tiple groups with values of the same size, then there is 
a great probability that the algorithm terminates in 
much less than N iterations. Practice shows that this is 
often the case (Fletcher, 1975). 

4.1 .  Conjugate  Gradients  

The  conjugate  d irect ion  a lgor i thm above  a s s u m e s  that 
a conjugate  s y s t e m  is given• But  h o w  does  one  deter-  

3 E"(~ ')  is symmetr ic .  
4 E"(~t ' ) f ' ,  + E'(~t') = 0 by eqn (10) .  

mine such a system? It is not necessary to know the 
conjugate weight vectors f t  . . . . .  fN in advance as they 
can be determined recursively. Initially, f~ is set to the 
steepest descent vector -Eq , , , ( ) t ) .  Then fk+~ is deter- 
mined recursively as a linear combination of the current 
steepest descent vector --E~.,()~k+~) and the previous 
direction .ilk. More precisely, fk+~ is chosen as the or- 

' 3 thogonal projection of- -E~. , ( )k+t)  on the ( N -  k)-  
plane Zrn-k conjugate to 7rk. Theorem 2, given in Hes- 
tenes (1980), shows how this can be done. 

THEOREM 2. Let fq be a point in weight space and f j  
and ?~ equal to the steepest descent vector -Eqw(Y~ ). 
Define Pk + ~ recursively b)' 

~k÷l = ?k+l + ~kl~k 

where ?k+t = Eq,.()'~k+t). /3k = (I/:k+l[ z -- r/+t?k) 
/ f r ? k  and Yk + ~ is the point generated in Theorem 1. 
Then Pk + ~ is the steepest descent vector to Eqw restricted 
to the ( N  - k)-plane rN-k conjugate to rk given by Ym 

and fit . . . . .  Pk. 

The conjugate vectors obtained using Theorem 2 are 
often referred to as conjugate gradient directions. 
Combining Theorem 1 and Theorem 2 we get a con- 
jugate  gradient algorithm. In each iteration this algo- 
rithm can be applied to the quadratic approximation 
Eq,. of the global error function E in the current point 
~' in weight space. Because the error function E(~,) is 
nonquadratic, the algorithm will not necessarily con- 
verge in N steps. If the algorithm has not converged 
after N steps, the algorithm is restarted, i.e., initializing 
fik+J to the current steepest descent direction ~k+~ 
(Fletcher, 1975; Powell, 1977). This also means that 
Theorems 1 and 2 are only valid in the ideal case when 
the error E is equal to the quadratic approximation 
Eq,.. This is, of course, not often the case but it does 
hold that the nearer the current point is to the mini- 
mum the better is the quadratic approximation Eq,,. of 
the error E. This property is, in practice, adequate to 
give a fast convergence. A standard CG can now be 
described as follows. 
1. Choose initial weight vector ~ .  

Setpl = 7 1  = - E ' ( w l ) , k =  1. 
2. Calculate second order information: 

gk = E"( ~'k)fk, 

3. Calculate step size: 

Ot k = # k / 6 k .  

4. Update weight vector: 

}~'k+l = I~'~'k q'- O t k f k ,  

r k + l  = - - E ' ( ~ ' k + l ) .  

5. I f k  mod N = 0 then restart algorithm: fk+~ = ?k+~ 
else create new conjugate direction: 

/3k = (]?k+ll 2 - r L i r k ) / # k ,  

P k + l  = r k + l  -I'- ~ k f i k .  
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6. If the steepest descent direction/:k 4:0 then set k = 
k +  l a n d g o t o 2  
else terminate and return ~t'k+~ as the desired min- 
imum. 

Several other formulas for ¢/k can be derived (Fletcher, 
1975; Gill, Murray, & Wright, 1980; Hestenes, 1980), 
but when the conjugate gradient methods are applied 
to nonquadratic functions, the above formula, called 
the Hestenes-Stiefel formula, for /3k is considered su- 
perior. When the algorithm shows poor development, 
the formula forces the algorithm to restart because of 
the following relation 

/~'k+l ~ /?k ~** /~k ~ 0 ~ ])k+l "~ /?k+l" ( 1 4 )  

For each iteration in CG the Hessian matrix E"(~'k) 
has to be calculated and stored. It is not desirable to 
calculate the Hessian matrix explicitly because of the 
calculation complexity and memory usage involved; 
actually, calculating the Hessian would demand O(N 2) 
memory usage and O ( N  3) in calculation complexity. 
Usually this problem is solved by approximating the 
step size with a line search. Using the fact that ffk+t = 
ffk + ~kPk is a minimum for the k-plane fij . . . . .  /~k 
(by Theorem 1 ) it is possible to show that 

E'(~'k~l)Pk = 0.  ( 1 5 )  

Equation (15) shows that ak is the solution to 

min, E(ff'k + o~fi~.). (16) 

So c~k is the minimum for E along the line ~'k + "/~k- 
ak is in fact only an approximated solution to eqn (16) 
since E is nonquadratic. The techniques for solving 
eqn (16) are known as line-search techniques (Gill, 
Murray, & Wright, 1980). The Appendix gives a de- 
scription ofthe line-search algorithm used in this paper. 
All line-search techniques include at least one user de- 
pendent parameter which determine when the line 
search should terminate. The value of this parameter 
is often crucial for the success of the line search. 

4.2. The CGL Algorithm 

The CG shown above is often used with line search. 
That means the step size is approximated with a line- 
search technique, avoiding the calculation of the Hes- 
sian matrix. Johansson, Dowla, and Goodman (1990) 
used this scheme using a cubic interpolation algorithm. 
We use the CG combined with the safeguarded qua- 
dratic univariate minimization described in the Ap- 
pendix. This algorithm will be referred to as CGL. 

4.3. The BFGS Algorithm 

Battiti and Massuli have proposed another method from 
the optimization literature known as the BFGS (Battiti, 
1990). The algorithm is also based on conjugate di- 

rections combined with line search. The direction is 
updated by the following rule: 

Pk = Sk?k + .4kYk + SkBkqk, (17) 

where ?k = --E'(~i"k), fik = ~'k -- ~'k-I and ~k = E'(6'k)  
-- E'( ~('k- 1 )- The coefficients Sk, Ak, and Bk are defined 
a s :  

qrqk ~ B qrFk 
k-- S k - -  .4k = -- I q- Sk ),kqk ] yTqk " 

f'rp k .f'ro~ 
Bk - "-r- ' Sk - - - .  (18) 

)'kqk qTOk 

Sk, which is referred to as the scaling factor; is not 
strictly necessary (Luenberger, 1984). Battiti and Ma- 
sulli (1990) have used Sk = 1 with positive results. 
Again, the safeguarded quadratic univariate minimi- 
zation algorithm has been used in our experiments to 
estimate an appropriate step size. 

5. THE SCG ALGORITHM 

It is possible to use another approach in estimating the 
step size than the line-search technique. The idea is to 
estimate the term Sk = E"(f fk)~k in CG with a non- 
symmetric approximation of the form (Hestenes, 
1980): 

gk = E"( ~¢'k)f~ 

E'( ffk + akfi~) - E'( ffk) 
0 < ak'~ 1. (I9) 

0" k 

The approximation tends in the limit to the true value 
of E"(~'k)fik. The calculation complexity and memory 
usage ofgk are, respectively, O( 3N 2) and O ( N ) .  5 If this 
strategy is combined with the CG approach, we get an 
algorithm directly applicable to a feedforward neural 
network. This slightly modified version of the original 
CG algorithm will also be referred to as CG. 

The CG algorithm was tested on an appropriate test 
problem. It failed in almost every case and converged 
to a nonstationary point. Cause of this failure is that 
the algorithm only works for functions with positive 
definite Hessian matrices, and that the quadratic ap- 
proximations on which the algorithm works can be very 
poor when the current point is far from the desired 
minimum. The Hessian matrix for the global error 
function E has shown to be indefinite in different areas 
of the weight space, which explains why CG fails in the 
attempt to minimize E. 

We propose a new solution to this problem. The 
approach is new not only in the context of learning in 
feedforward neural networks but also in the context of 

s It is in fact possible to calculate gk exactly using automatic dif- 
ferentiation (Yoshida. 1991 ) without explicitly calculating the Hessian. 
This would involve O( 9N-" ) calculations. 
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the underlying optimization theory which we have dis- 
cussed so far. The idea is to combine the model-trust 
region approach, known from the Levenberg-Mar- 
quardt algorithm, 6 with the conjugate gradient ap- 
proach. Let us introduce a scalar Xk in CG, which is 
supposed to regulate the indefiniteness of E"( ~'k).7 This 
is done by setting 

E'(v~' k + (TkPk) - -  E'(~i':k) 
gk = + Xk/~k, (20) 

ffk 

and adjusting %k in each iteration looking at the sign 
of 5k, which directly reveals if E"(17,k) is not positive 
definite. If6k < 0, then the Hessian is not positive def- 
inite and %k is raised and Sk is estimated again. If the 
new Sk is renamed as Sk and the raised Xk as X~., then 
Sk is 

H~k = Sk "l" (~k k -- Xk)Pk .  (21) 

Assume in a given iteration that 6k <-- O. It is possible 
to determine how much Xk should be raised in order 
to get 6k > 0. If the new 6k is renamed as ~k, then 

= / ~ T ( s  k -I- (X k --  Xk)/~k) = 6 k ~1- (X k --  Xk)l/~kl" > 0 

Xk > Xk -- 5-'--L-k (22) 
I/~kl 2" 

Equation (22) implies that if Xk is raised with more 
than - - ( 6 k / [ f i k [ 2 ) ,  then ~k > O. The question is: How 
much should Xk be raised to get an optimal solution? 
This question cannot yet be answered, but it is clear 
that Xk in some way should depend on hk, 6k, and I fik] 2. 
A reasonable choice is 

{ 
Xk = 2tXk IP~l-] (23)  

T h i s  l e a d s  t o  

gk = 6~ + (Xk  --  X,) l f f ,< l  ~ 

~* - X,<)IP, I-" = 6~- + t 2),~ - 2 

= --<$k + Xk l~k l  2 > 0. ( 2 4 )  

The step size is given by 

#k #k 
<~k -- 6k P[gk + X~I~kl ~ " (25) 

The values of Xk directly scale the step size in such a 
way that the bigger Xk is the smaller the step size, which 
agrees well with our intuition of the function of Xk. 

The quadratic approximation Eo,., on which the al- 
gorithm works, may not always be a good approxi- 

6 The Levenberg-Marquardt algorithm is a variation of the stan- 
dard Newton algorithm (Fletcher, 1975 ). 

7 Xk is also known as a Lagrange Multiplier ( Fletcher, 1975). 

mation to E ( ~ )  since Xk scales the Hessian matrix in 
an artificial way. A mechanism to raise and lower X k is 
needed which gives a good approximation, even when 
the Hessian is positive definite. Define 

E(~'k) -- E(t~'k + C~k~k) 
A k = 

g(14'k) - -  gqw( OtkPk) 

= 25k[E(I~k) -- E( ffk + ak~k)] 
u~ (26) 

Here Ak is a measure of  how well Eq,.(ak~fk) approxi- 
mates E( C'k + ak~k) in the sense that the closer Ak is 
tO 1, the better is the approximation, hk is raised and 
lowered following the formula 

if Ak>0.75, then Xk= ~Xk 

dik( 1 --  A k )  
if Ak<0.25, then Xk=Xk+ (27) 

IPkl 2 

The formula for Ak < 0.25 increases lambda such that 
the new step size is equal to the minimum to a quadratic 
polynomial fitted to E'(~bk)T~k, E(Vbk), and E ( ~ k  + 
ak~k) ( Williams, 1990, personal communication ). The 
SCG algorithm is as shown below. 
1. Choose weight vector rb~ and scalars 0 < a -< l0 -4, 

0 < Xt -< l 0  -6, Xl = 0. 

Set/h = ?t = - E ' ( ~ , t ) ,  k = 1 and success = true. 
2. If  success = true, then calculate second order in- 

formation: 

~-= ,~/Is~l, 
Sk = (E ' (~k  + akPk) -- E'(17'k))/ak, 
6k = : [ e k .  

3. Scale ($~: 6k = 5k + ( Xk -- X k) ]ilk 12. 
4. If 6k --< 0 then make the Hessian matrix positive 

definite: 

Xk = 2(Xk - 6k/1~12), 
6, = - 6 ,  + x,  IAi  2, 
X k - -  X k .  

5. Calculate step size: 

a~ = #kl  6k. 
6. Calculate the comparison parameter: 

Ak = 26k[E(~k) -- E(~'k + ak~k) ] /a  2. 
7. If Ak >--- 0 then a successful reduction in error can 

be made: 
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FIGURE 1. SCG functioning on the logistic map problem, 
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TABLE 1 
Results From the Parity Problem 

BP SCG CGL BFGS 

Par. av./st, dev./fai, av./st, dev./fai./sp, av./st, dev./fai./sp, av./st, dev./fai./sp. 

3 3475/1020/0 413/306/1/8.4 1232/1383/1/2.8 736/473/0/4.7 
4 1 6 4 2 7 / 1 0 1 8 5 / 1  1 7 2 7 / 7 2 5 / 2 / 9 . 5  3320/3147/1/4.9 3004/3458/0/5.5 
5 9864/5651/2 2131/1494/1/4.6 3682/2029/0/2.7 3246/2387/3/3.0 
6 28671/20727/6 2811/1548/2/10.2 5435/6036/1/5.3 5601/3021/2/5.1 
7 48878/38293/4 3801/3593/1/12.9 9903/12545/1/4.9 9343/10902/2/5.2 
8 134130 /64572 /2  6206/3077/1/21.6 12518/14012/2/10.7 11426/8575/4/11.7 
9 189453 /53535 /4  8105/5879/0/23.4 25855/22094/3/7.3 25748/24165/0/7.4 

av. = Average Number of cu's. st. dev. = Standard Deviation. faL = Number of Failures. sp. = Speed-Up Relative to BP. 

~k+l = ~k + akPk, 
7k+t = - -E'(~ 'k+l) ,  
X k = 0, success = true. 
If k mod N = 0 then restart algorithm: 

~/~k+l = Fk+l  

else: 
~k = ( [ ? k + !  I 2 - -  ? T + t ? k ) / # k ,  

~/~k+l = /~k+l q- #kPk"  
If Ak >--- 0.75, then reduce the scale parameter: 

Xk = ¼ Xk. 
else: 

~k = Xk, 
success = false. 

8. If Ak < 0.25, then increase the scale parameter: 
)k k = )k k -[" ( 6 k (  l - -  Ak)/lPkl2). 

9. If the steepest descent direction ?k :/: (), then set k = 
k + 1 and go to 2 else terminate and return ~'k+, as 
the desired minimum. 
The value of a should be as small as possible, taking 

the machine precision into account. When a is kept 
small (<10-4) ,  experiments indicate that the value of 
o- is not critical for the performance of SCG (see Section 
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FIGURE 2. Number of complexity units vs. number of input units 
for three layer networks on 3, 4, 5, 6, 7, 8, and 9 bit pari ty 
problems when tested on the SCG, BP, CGL, and BFGS algo- 
rithms. Notice the logarithmic scale. 

6.3). Because of that, SCG seems not to include any 
user dependent parameters which values are crucial for 
the success of the algorithm. This is a major advantage 
compared to the line search based algorithms which 
include those kinds of parameters. 

For each iteration there is one call orE(~,)  and two 
calls of E'(~i',), which gives a calculation complexity 
per iteration of O(7N2). When the algorithm is im- 
plemented, this complexity can be reduced to O(6N 2) 
because the calculation of E(~,) can be built into one 
of the calculations of E'(,(,). In comparison with BP, 
SCG involves twice as much calculation work per it- 
eration since BP has a calculation complexity of 
O(3N 2) per iteration. The calculation complexity of 
CGL and BFGS is about O(6-20N 2) since the line 
search, on average, involves 6-20 calls orE(~i,) or E'(~,) 
per iteration (Gill, Murray, & Wright, 1980). 

When Xk is zero, SCG is equal to the CG shown 
before. Figure 1 illustrates SCG functioning on an ap- 
propriate test problem. 8 Graph (A) shows the error 
development versus learning iteration. The error de- 
creases monotonically towards zero, which is charac- 
teristic for SCG because an error increase is not allowed. 
At several iterations, the error is constant for one or 
two iterations. 9 In these instances the Hessian matrix 
has not been positive definite and Xk has been increased 
using eqn (23). The development of Xk is shown in 
graph (B). X~. varies between 0 and 25 iterations and 
is 0 in the rest of the minimization. This reveals that 
E"(~(') has not been positive definite in the beginning 
of the minimization. This is not surprising since the 
closer the current point is to the desired minimum, the 
greater the probability that E" (~ )  is positive definite 
( Hestenes, 1980). We observe that whenever eqn (23) 
is used to increase Xk, a large reduction in error is 
achieved, to 

s The test problem was the logistic map problem described in 
Battiti and Masulli (1990). 

9 See iteration 6, 13, 20, and 23. 
~o See iteration 7, 16, 21, and 24. 
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6. TEST RESULTS 

6.1. Comparison Metr ic  

In order to compare the performance of the different 
algorithms, some kind of comparison metric is needed. 
Obviously the number of iterations is not a valid metric 
considering that the calculation complexity per iteration 
is not the same for any of the algorithms. Forward and 
backward passing of all the patterns through the net- 
work costs in the order of O ( N  2) and O( 3N 2), respec- 
tively, which is an order of  magnitude greater than any 
other calculation in a given iteration for any of the al- 
gorithms. For that reason it seems reasonable to define 
the comparison metric proportional to the amount  of 
forward and backward passings of  patterns. Define a 
complexiO' unit ( cu ) to be equivalent to the complexity 
of one forward passing of all patterns in the training 
set. Then calculating the error costs 1 cu while calcu- 
lating the derivative cost 3 cu. The complexity unit will 
be used to compare the performance of the different 
algorithms. 

6.2 .  T h e  Parity P r o b l e m  

The aim of this test was to compare the performance 
of SCG with BP, CGL, and BFGS. The algorithms were 
tested on 3, 4, 5, 6, 7, 8, and 9 bit parity problems 
using 20 different initial weight vectors. ~t Three layer 
neural network architectures were used for each prob- 
lem. t2 A training set containing all possible input pat- 
terns was used, i.e., 2" patterns. The comparison metric 
described above was used in comparing the perfor- 
mance of the algorithms. The algorithms were termi- 
nated when the average error was less than 10-4 or the 
number of iterations had exceeded an appropriate large 
number of iterations. BP was run with learning rate 
0.2 on parity 3-6, 0.05 on parity 7, and 0.01 on parity 
8-9. This lowering of the learning rate was done in 
order to get BP to converge. The momentum parameter 
was set to 0.9 for all problems. The line search param- 
eter 77 in CGL and BFGS was set to 0.25. The results 
are illustrated in Table 1. We observe that SCG is two 
to three times faster than CGL and BFGS on all prob- 
lems. 

It would also be interesting to visualize how the 
learning time is scaled by SCG, CGL, BFGS, and BP. 
According to Hinton, the learning time for BP should 
be approximately O(N3),  i.e., the total number  of 
complexity units, each costing O ( N  2) time, should be 
approximately O(N) .  This depends, however, on the 

u Only 10 different initial weight vectors were used for BP on 
parity 8 and 9 because of the large amount of cpu-time involved in 
these experiments. 

~-' n - n - 1 architectures where n is the number of bits. 
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FIGURE 3. SCG on parity 5 with different a-values. 

nature of the task (Hinton, 1989; Tesauro, 1987). Judd 
(1987) shows that in the worst case it is exponential. 
Figure 2 uses a logarithmic plot to illustrate the number 
of complexity units versus the number  of input units. 
The curves are clearly all sublinear indicating that all 
four algorithms scale polynomial on this particular 
problem. The BP curve and the increasing speed-ups 
in Table 1 indicate that the scaling of BP is worse than 
for the other algorithms. There seems to be no signif- 
icant difference in the scaling ofSCG, CGL, and BFGS. 

6.3. SCG Performance vs. Different Values of a. 

The aim of this test was to determine how crucial the 
value of the a-parameter is to the performance of SCG. 
Twelve different values for a were used on the parity 5 
problem using 20 different initial weight vectors. The 
result is shown in Figure 3. We observe that the average 
performance of SCG is not significantly affected when 
the value of a is small (<10-4) .  For a _< l0 -4, the 
number of failures (local minima)  was in the range 0 -  
2 and the standard deviation was 330. When a was less 
than 10-~2 roundoff errors began to have an effect.~3 

7. C O N C L U S I O N  

An optimization approach was used to introduce a 
learning algorithm (SCG), which is more effective than 
the standard BP, CGL, and the BFGS. SCG does not 
contain any user-dependent parameters whose values 
are crucial for the success of SCG. By using a step size 
scaling mechanism, SCG avoids a time consuming line 
search per learning iteration, which makes the algo- 

o All the experiments was run on a SUN-4 machine. 



Scaled Conjugate Gradient 533 

r i t h m  faster t h a n  o ther  second-order  a lgo r i t hms  re- 
cent ly  proposed  ( C G L ,  B F G S ) .  
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APPENDIX. LINE SEARCH 

A well known line search technique is that of Successive polynomial 
approximation (Gill & Murray, 1974), where the function E( )i 9 is 
approximated by a simple function e()~') which agrees exactly with 
E( )i ~') in either function value or function value and derivatives at a 
certain number of points, e(~') is normally chosen to be a quadratic 
or cubic polynomial depending on whether or not the derivatives of 
E()i.) are available or easily calculated. We will use a quadratic poly- 
nomial and thereby avoiding calculating the derivatives of the error 
function, which involves approximately three times as many calcu- 
lations than calculating the error. Define the function f ( x )  as 

.f(x) = E()~,~ + xA) .  (28) 

Assume that the minimum for.f(x)  is bracketed by (u,  f (u)) ,  (v. 
.f(v)) and that a third point (x, f ( x ) )  in between is known. The 
minimum a for the quadratic polynomial passing through the three 
points is given by x + s/q where s, q is: 

s = [( v - x)"(f(u) - . f (x))  - (u - x)-'(f(v) - f ( x ) ) ]  

q = - 2 [ ( u  - x)( f (v)  - f ( x ) )  - (v - x)( f (u)  - f ( x ) ) ] .  (29) 

Successive applications of eqn (29) can be shown to be superlinearly 
convergent when some mild conditions of E()~') are satisfied. The 
disadvantage of line search techniques is, obviously, that each suc- 
cessive step involves several calculations of the error which is of the 
order of O( N 2) calculations, where N is the number of weights and 
biases in the network. Even initializing the line search algorithm, i.e.. 
bracketing the minimum, can cost several calculations of the error, 
Because of the calculation complexity involved in each step, the line 
search should terminate after a small amount of steps. The termination 
criteria used in this paper is (Gill, Murray, & Wright, 1980): 

E( ~'~) - E( )~'~ + %Pk) ~ ))%E'( ~'k)~. 0 < )7 _< 0.5, (30) 

where aj is the quadratic minimum for the j - th  iteration in the suc- 
cessive line search. Other termination criteria exists. Common for all 
is that they include at least one user dependent parameter, such as )1 
in eqn (30). The values of these parameters are often crucial for the 
amount of computations involved in the line search and can also be 
crucial for the success of the line search dependent algorithm. Ter- 
minating the line search before the actual minimum is found is called 
ine~act line sear~4). When the function to be minimized is nonquad- 
ratic, like the error function, making an exact line search is not 
worthwhile because the direction of search is also only an approxi- 
mation to the exact direction. A slightly extended version of the qua- 
dratic line search technique is used in the experiments called safe- 
guarded quadratic univariate minimization ( Gill & Murray, 1974 ). 

NOMENCLATURE 

N 
P 

~ N  

D 
~ r  
Di 

E(~i") 
E'()~') 
E"()g,) 

number of weights and biases. 
number of patterns in the training set. 
N-dimensional euclidean space 
vector 
transpose of 0 
the i-th coordinate of D 
length of vector 
global error function 
gradient to global error function 
Hessian matrix to global error function 


