
Neural Networks, Vol. 6, pp. 525-533, 1993 0893-6080/93 $6.00 + .00
Printed in the USA. All rights reserved. Copyright ~9 1993 Pergamon Press Ltd.

ORIGINAL CONTRIBUTION

A Scaled Conjugate Gradient Algorithm
for Fast Supervised Learning

MARTIN FODSLETTE MEILLER

University of Aarhus

(Received 10 Januao' 1991; accepted 13 November 1991)

Abstract--A supervised learning algorithm (Scaled Conjugate Gradient, SCG) is introduced TIw pelformance of
SCG is benchmarked against that of the standard back propagation algorithm (BP) (Rumelhart. Hinton. & 14"illiams.
1986), the conjugate gradient algorithm with line search (CGL) (Johansson, Dowla. & Goodman, 1990) and the
one-step Broyden-Fletcher-Gold./arb-Shanno memoriless quasi-Newton algorithm (BFGS) (Battiti, 1990). SCG is
lhlly-automated, inJudes no critical user-dependent parametepw, and avoids a time consuming line search, which
CGL and BFGS use in each iteration in order to determine an appropriate step size. E.¥periments show that SCG
is considerablyJhster than BP, CGL, and BFGS.

Keywords--Feedforward neural network, Supervised learning, Optimization, Conjugate gradient algorithms.

1. INTRODUCTION

1.I. Motivation

Several adaptive learning algorithms for feedforward
neural networks have recently been discovered (Hinton,
1989). Many of these algorithms are based on the gra-
dient descent algorithm well known in optimization
theory. They usually have a poor convergence rate and
depend on parameters which have to be specified by
the user, as no theoretical basis for choosing them exists.
The values of these parameters are often crucial for the
success of the algorithm, An example is the standard
back propagation algorithm (BP) (Rumelhart, Hinton,
& Williams, 1986), which often behaves very badly on
large-scale problems and whose success depends of the
user dependent parameters learning rate and momen-
tum constant. The aim of this paper is to develop a
supervised learning algorithm that eliminates some of
these disadvantages.

Acknowledgment: I would like to thank Brian Mayoh (AAU),
Kim Plunken (University of Oxford), and Ole Osterby (AAU) for
many good discussions and advice. The work was supported by Statens
Teknisk-Videnskabelige Forkningsr~id, Denmark and The Carlsberg
Foundation, Denmark.

Requests for reprints should be sent to Martin F. Moiler, Computer
Science Department, University ofAarhus, Ny Munkegade, Building
540, Denmark.

From an optimization point of view, learning in a
neural network is equivalent to minimizing a global
error function, which is a multivariate function that
depends on the weights in the network. This perspective
gives some advantages in the development of effective
learning algorithms because the problem of minimizing
a function is well known in other fields of science, such
as conventional numerical analysis (Watrous, 1987).

Since learning in realistic neural network applica-
tions often involves adjustment of several thousand
weights, only optimization methods that are applicable
to large-scale problems are relevant as alternative
learning algorithms. The general opinion in the nu-
merical analysis community is that especially one class
of optimization methods, called the Conjugate Gradient
Methods, are well suited to handle large-scale problems
in an effective way (Fletcher, 1975; Gill, Murray, &
Wright, 1980; Hestenes, 1980; Powell, 1977). Se~ceral
conjugate gradient algorithms have recently been in-
troduced as learning algorithms in neural networks
(Battiti, 1989; Johansson, Dowla, & Goodman, 1990;
Moller, 1990). Johansson, Dowla, and Goodman de-
scribe the theory of general conjugate gradient methods
and how to apply the methods in feedforward neural
networks. They conclude that the standard conjugate
gradient method with line search (CGL) is an order of
magnitude faster than the standard BP when tested on
the parity problem. Battiti and Masulli have introduced

525

526 M. F Moiler

a variation of the standard conjugate gradient method,
the one-step Broyden-Fletcher-Goldfarb-Shanno me-
moriless quasi-Newton algorithm (BFGS), as an alter-
native learning algorithm (Battiti & Masulli, 1990).
They conclude that BFGS also yields an acceleration
of about one order of magnitude compared to BP when
tested on the parity problem. Both CGL and BFGS
raise the calculation complexity per learning iteration
considerably since they have to perform a line search
in order to determine an appropriate step size. A line
search involves several calculations of either the global
error function or its derivative, both of which raise the
complexity.

This paper introduces a new variation of the con-
jugate gradient method (Scaled Conjugate Gradient,
SCG), which avoids the line search per learning iter-
ation by using a Levenberg-Marquardt approach (Gill,
Murray, & Wright, 1980) in order to scale the step size.
During the development of SCG, a tutorial to the theory
of conjugate gradient related algorithms is given.

1.2. Notation

Let an arbitrary feedforward neural network be given.
The weights in the network will be expressed in vector
notation. A weight vector is a vector in the real euclidean
space Y/N, where N is the number of weights and biases
in the network. A weight vector will often be referred
to as a point in y/N or just a point in weight space. Let
~, be the weight vector defined by

(I) I1 {/ ~(1+1) (I (/
~ ' = (' ' ' , Wij , ~ l i + l) ~ N i j , ~ j , ~tij+l, ~ti+lj+l) ,

(1)

• (I)
where w o is the weight from unit number i in layer
number 1 to unit number j in layer number l + 1, Nt

/] (/ + ~)
is the number of units in layer i, and ~j is the bias
for unit number j in layer number l + 1. We assume
that a global error function E (~) depending on all the
weights and biases is attached to the neural network.
E (~) could be the standard least square function or
any other appropriate error function. E (~) can be cal-
culated with one forward pass and the gradient E ' (~)
with one forward and one backward pass (Rumelhart,
Hinton, & Williams, 1986). According to Hinton
(1989), it is reasonable to assume that the number of
patterns to be learned is proportional to the number
of weights. ~ Using this assumption the complexity of
calculating E(~,) and E ' (~) is O (N 2) and O(3NZ),
respectively, where N is the number of weights and
biases (Yoshida, 1991). E ' (~) is given by

Throughout this paper, this will be assumed if not stated oth-
erwise.

• " ' ' ~ ' j (I) ' " " " '
p = l (.lT$ij p=l a~Ji+lj

. 11) ' d B (/ + l) ' j (/) ' " " " '
p = l a~A~NIj p = l ~ v j p = l awij+ I

where P is the number of patterns presented to the
network during training and Ep is the error associated
with pattern p.

We are now able to define some of the weight vector
operations needed. The coordinates in a weight vector
is referred to by superscript so that w; denotes the i 's
weight in weight vector w. When matrix operations are
used, a weight vector vb is a column-vector and w r, the
transpose of ~,, will then be a row-vector. The ordering
of the coordinates in the weight vectors are not im-
portant as long as the chosen ordering is consistent
throughout the implementation. Weight vectors and
scalars are respectively indicated by Roman and Greek
letters.

The weight addit ion, weight subtraction, and weight
product are defined, respectively, as

I~ @ ff = (~ 'd I "~ y l i¢i .~_ y i ki, N _~ y N) T

f f , _ p = (w I_y~ w i _),i w u _ y u) r

N

~,rf = ~ w,y,. (3)
j = l

The weight length is defined as

I~'1 = (wi) 2 . (4)
I

It might also be useful to recall that the error function
E (~) in a given point (if, + .9) in]~N can be expressed
by the well known Taylor expansion

E(it, + f,) = E(~,) + E'(~?,) Tp + ½ 9rE,, (~t,)p + (5)

A N × N matrix A is said to be posi t ive def ini te if

p r A p > O V y E ~ u. (6)

Let/~t ,/~, be a set of nonzero weight vectors in
y~N. The set is said to be a conjugate s y s t em with respect
to a nonsingular symmetric N × N matrix A if the
following holds (Hestenes, 1980)

/~rA/~j = 0 (i :~j, i = 1 k). (7)

The set of points v~ in Y~ u satisfying

I~ = ~'1 Jr- O~1/~ I -~ . . . "Jr Olkfik, Oli ~ ~ , (8)

where ~ is a point in weight space and ,6, /~k is
a subset of a conjugate system, is called a k-p lane or
rk (Hestenes, 1980).

2. OPTIMIZATION STRATEGY

Most of the optimization methods used to minimize
functions are based on the same strategy. The mini-

Scaled Conjugate Gradient 527

mization is a local iterative process in which an ap-
proximation to the function in a neighbourhood of the
current point in weight space is minimized. The ap-
proximation is often given by a first or second order
Taylor expansion of the function. The idea of the strat-
egy is illustrated in the pseudo algorithm presented be-
low, which minimizes the error function E (~) .
1. Choose initial weight vector ~, and set k = 1.
2. Determine a search direction ,Ok and a step size ak

SO that E(kk + Otk`ok) < E(v~k).
3. Update vector: ~'k+, = kk + ak`ok-
4. If E'(~'k) 4 :0 then set k = k + 1 and go to 2 else

return ~'k+, as the desired minimum.
Determining the next current point in this iterative

process involves two independent steps. First a search
direction has to be determined, i.e., in what direction
in weight space do we want to go in the search for a
new current point. Once the search direction has been
found we have to decide how far to go in the specified
search direction, i.e., a step size has to be determined.

3. T H E BACK PROPAGATION ALGORITH M

If the search direction .Ok in the above pseudo algorithm
is set to the negative gradient -E ' (v~) and the step size
ak to a constant e, then the algorithm becomes the gra-
dient descent algorithm (Gill, Murray, & Wright,
1980). In the context of neural networks, this is the
BP without a momentum term (Rumelhart, Hinton,
& Williams, 1986). Minimization by gradient descent
is based on the linear approximation E(ff +)7) ~ E (k)
+ E ' (~) ry, which is the main reason why the algorithm
often shows poor convergence. Another reason is that
the algorithm uses a constant step size, which in many
cases is inefficient and makes the algorithm less robust.
The inclusion of a momentum term in the BP is an ad
hoc attempt to force the algorithm to use second order
information from the network. Unfortunately, the mo-
mentum term is not able to speed up the algorithm
considerably, and causes the algorithm to be even less
robust because of the inclusion of another user depen-
dent parameter, the momen tum constant. Back prop-
agation, including the momentum term, will be referred
to as BE

Usually two versions of BP are considered, the "'off-
line" version and the "online" version. They differ in
how often the weights are updated. The "oflqine" ver-
sion updates the weights after all patterns have been
propagated through the network, i.e., using information
from all the patterns in the training set. The "online"
version updates after every single pattern, i.e., using
only information from one pattern. The "online" ver-
sion is not consistent with the optimization theory but
it has nevertheless shown to be superior to the "offiine"
version on some specific problems. These problems
seems to be characterized by big training sets containing

a lot of redundant information (Le Cun, 1989) and by
error surfaces that are not too complex in structure.
The "of[line" version is, however, superior on problems
which does not have these properties. 2 This paper will
use the "offiine" version of BP in the comparison with
other algorithms. For a more detailed discusssion and
comparison with the "online" version of BP, see Moiler
(1991).

4. CONJUGATE DIRECI'ION M E T H O D S

Conjugate direction methods are also based on the
above general optimization strategy but choose the
search direction and the step size more carefully by
using information from the second order approxima-
tion E(~, + fi) ~ E(~) + E'(~)r)7 + ½yrE"(~))7.

Quadratic functions have some advantages over
general functions. Denote the quadratic approximation
to E in a neighbourhood of a point • by Eqw()7) so that
Eqw()7) is given by

E~,~,(p) = E(~,)+ E'(~,)r~+ ½~rE"(~)fi. (9)

In order to determine minima to Eo,.()7) the critical
points for Eq,~,(fi) must be found, i.e., the points where

E'q,.(.f,) = E"(~,)p + E'(~,) = 0. (10)

The critical points are the solution to the linear system
defined by eqn (10). If a conjugate system is available,
the solution can be simplified considerably (Hestenes,
1980). Johansson, Dowla, and Goodman (1990) show
this in a very understandable manner. Let `O, ,ON
be a conjugate system. Because .6, ÒN form a basis
for Y~ N, the step from a starting point 37, to a critical
point)7. can be expressed as a linear combination of

`O, `ON
N

Y* -- Yt = ~ °tiPi, °ti E f¢. (11)
i= l

Multiplying eqn (11) w i t h / f i E " (#) and substituting
E'(~,) for -E"(~,))7, gives

aj = Of (- E'(J,) - E"(~(,) fi,)/.Of E"(~r~)ffj

= -,6rE'q,.(9~) /~fE"(~)~j. (12)

The critical point 37. can be determined in N iterative
steps using eqns (1 1) and (12). Unfortunately,)7, is
not necessarily a minimum, but can be a saddle point
or a maximum. Only if the Hessian matrix E " (~) is
positive definite then Eqw(y) has a unique global min-
imum (Hestenes, 1980). This can be realized by

2 Such as the parity problem which is used in this paper as a
benchmark problem.

528 M. F Moiler

Eo,,.(.v) = E,,,.(p, + (.~ - ~.))

= E(~') + E'(tT') r (~ , + (~ _ f ,))

+ ½(~ , 4- (13 -- i ~ ,)) r E " (~ i ") (p , + ()3 -- i f ,))

= E(~') + E'(~')r.~. + E' (~ ')r (f ' - ~.)

I ,T l yv I + ½yTE"(~')P, + ~.3,-- , ~ ') (P - Y*)

+ ~(P - f , ,)rE"(~.)p,

+ ~(P -- ~,)rE"(~?.)(p -- p,)

=3 Eqw(f,) + (P - .f',)r(E"(~').f', + E'(~'))

+ ~(.f' - p,)TE"(~[,)(p -- .f,,)

=' Eow(.f',) + ½(.f' - .f',)rE"(~')(f' - P,)- (13)

It follows from eqn (13) that i f ~ , is a minimum, then
(p - p ,) rE"(~')(p - p ,) > 0 for every p, hence E"(~,)

has to be positive definite. The Hessian E"(~,) in the
following will be assumed to be positive definite, if not
otherwise stated.

The intermediate points Yk+~ = .Vk + akfk given by
the iterative determination o f f , are in fact minima for
Eqw(y) restricted to every k-plane rk: P = Yt + a~ft +
• - • + akfk. How to determine these points recursively
is shown in the following theorem. Its proof can be
found in Hestenes (1980).

THEOREM 1. Let f~ P N be a conjugate system and
.f't a point in weight space. Let the points .f5f'N+~
be recursiveh, defined by

.~k + I = ~k ~- o~kPk,

where ak =]dk/~k, # k = --fi[E~,,.(Ok), 5k =
pT E"(~')fk. Then Yk + ~ min imizes Eq.. restricted to the
k-plane rCk given by f t and f t Pk.

The conjugate direction algorithm as proposed by Hes-
tenes (1980) can be formulated as follows. Select an
initial weight vector fit and a conjugate system f t
PN. Find successive minima for Eq,,. on the planes ~rt,
. . . . rrN using Theorem 1, where rrk, 1 < k < N, is
given by ~ = ~ + atf~ + . . . + a~fk, O~i ~ -~. The
algorithm assures that the global min imum for a qua-
dratic function is detected in, at most, N iterations. If
all the eigenvalues of the Hessian E"(~,) fall into mul-
tiple groups with values of the same size, then there is
a great probability that the algorithm terminates in
much less than N iterations. Practice shows that this is
often the case (Fletcher, 1975).

4.1 . Conjugate Gradients

The conjugate d irect ion a lgor i thm above a s s u m e s that
a conjugate s y s t e m is given• But h o w does one deter-

3 E"(~ ') is symmetr ic .
4 E"(~t ') f ' , + E'(~t') = 0 by eqn (10) .

mine such a system? It is not necessary to know the
conjugate weight vectors f t fN in advance as they
can be determined recursively. Initially, f~ is set to the
steepest descent vector -Eq , , , () t) . Then fk+~ is deter-
mined recursively as a linear combination of the current
steepest descent vector --E~.,()~k+~) and the previous
direction .ilk. More precisely, fk+~ is chosen as the or-

' 3 thogonal projection of- -E~. , ()k+t) on the (N - k)-
plane Zrn-k conjugate to 7rk. Theorem 2, given in Hes-
tenes (1980), shows how this can be done.

THEOREM 2. Let fq be a point in weight space and f j
and ?~ equal to the steepest descent vector -Eqw(Y~).
Define Pk + ~ recursively b)'

~k÷l = ?k+l + ~kl~k

where ?k+t = Eq,.()'~k+t). /3k = (I/:k+l[z -- r/+t?k)
/ f r ? k and Yk + ~ is the point generated in Theorem 1.
Then Pk + ~ is the steepest descent vector to Eqw restricted
to the (N - k)-plane rN-k conjugate to rk given by Ym

and fit Pk.

The conjugate vectors obtained using Theorem 2 are
often referred to as conjugate gradient directions.
Combining Theorem 1 and Theorem 2 we get a con-
jugate gradient algorithm. In each iteration this algo-
rithm can be applied to the quadratic approximation
Eq,. of the global error function E in the current point
~' in weight space. Because the error function E(~,) is
nonquadratic, the algorithm will not necessarily con-
verge in N steps. If the algorithm has not converged
after N steps, the algorithm is restarted, i.e., initializing
fik+J to the current steepest descent direction ~k+~
(Fletcher, 1975; Powell, 1977). This also means that
Theorems 1 and 2 are only valid in the ideal case when
the error E is equal to the quadratic approximation
Eq,.. This is, of course, not often the case but it does
hold that the nearer the current point is to the mini-
mum the better is the quadratic approximation Eq,,. of
the error E. This property is, in practice, adequate to
give a fast convergence. A standard CG can now be
described as follows.
1. Choose initial weight vector ~ .

Setpl = 7 1 = - E ' (w l) , k = 1.
2. Calculate second order information:

gk = E"(~'k)fk,

3. Calculate step size:

Ot k = # k / 6 k .

4. Update weight vector:

}~'k+l = I~'~'k q'- O t k f k ,

r k + l = - - E ' (~ ' k + l) .

5. I f k mod N = 0 then restart algorithm: fk+~ = ?k+~
else create new conjugate direction:

/3k = (]?k+ll 2 - r L i r k) / # k ,

P k + l = r k + l -I'- ~ k f i k .

Scaled Conjugate Gradient 529

6. If the steepest descent direction/:k 4:0 then set k =
k + l a n d g o t o 2
else terminate and return ~t'k+~ as the desired min-
imum.

Several other formulas for ¢/k can be derived (Fletcher,
1975; Gill, Murray, & Wright, 1980; Hestenes, 1980),
but when the conjugate gradient methods are applied
to nonquadratic functions, the above formula, called
the Hestenes-Stiefel formula, for /3k is considered su-
perior. When the algorithm shows poor development,
the formula forces the algorithm to restart because of
the following relation

/~'k+l ~ /?k ~** /~k ~ 0 ~])k+l "~ /?k+l" (1 4)

For each iteration in CG the Hessian matrix E"(~'k)
has to be calculated and stored. It is not desirable to
calculate the Hessian matrix explicitly because of the
calculation complexity and memory usage involved;
actually, calculating the Hessian would demand O(N 2)
memory usage and O (N 3) in calculation complexity.
Usually this problem is solved by approximating the
step size with a line search. Using the fact that ffk+t =
ffk + ~kPk is a minimum for the k-plane fij /~k
(by Theorem 1) it is possible to show that

E'(~'k~l)Pk = 0. (1 5)

Equation (15) shows that ak is the solution to

min, E(ff'k + o~fi~.). (16)

So c~k is the minimum for E along the line ~'k + "/~k-
ak is in fact only an approximated solution to eqn (16)
since E is nonquadratic. The techniques for solving
eqn (16) are known as line-search techniques (Gill,
Murray, & Wright, 1980). The Appendix gives a de-
scription ofthe line-search algorithm used in this paper.
All line-search techniques include at least one user de-
pendent parameter which determine when the line
search should terminate. The value of this parameter
is often crucial for the success of the line search.

4.2. The CGL Algorithm

The CG shown above is often used with line search.
That means the step size is approximated with a line-
search technique, avoiding the calculation of the Hes-
sian matrix. Johansson, Dowla, and Goodman (1990)
used this scheme using a cubic interpolation algorithm.
We use the CG combined with the safeguarded qua-
dratic univariate minimization described in the Ap-
pendix. This algorithm will be referred to as CGL.

4.3. The BFGS Algorithm

Battiti and Massuli have proposed another method from
the optimization literature known as the BFGS (Battiti,
1990). The algorithm is also based on conjugate di-

rections combined with line search. The direction is
updated by the following rule:

Pk = Sk?k + .4kYk + SkBkqk, (17)

where ?k = --E'(~i"k), fik = ~'k -- ~'k-I and ~k = E'(6'k)
-- E'(~('k- 1)- The coefficients Sk, Ak, and Bk are defined
a s :

qrqk ~ B qrFk
k-- S k - - .4k = -- I q- Sk),kqk] yTqk "

f'rp k .f'ro~
Bk - "-r- ' Sk - - - . (18)

)'kqk qTOk

Sk, which is referred to as the scaling factor; is not
strictly necessary (Luenberger, 1984). Battiti and Ma-
sulli (1990) have used Sk = 1 with positive results.
Again, the safeguarded quadratic univariate minimi-
zation algorithm has been used in our experiments to
estimate an appropriate step size.

5. THE SCG ALGORITHM

It is possible to use another approach in estimating the
step size than the line-search technique. The idea is to
estimate the term Sk = E"(f fk)~k in CG with a non-
symmetric approximation of the form (Hestenes,
1980):

gk = E"(~¢'k)f~

E'(ffk + akfi~) - E'(ffk)
0 < ak'~ 1. (I9)

0" k

The approximation tends in the limit to the true value
of E"(~'k)fik. The calculation complexity and memory
usage ofgk are, respectively, O(3N 2) and O (N) . 5 If this
strategy is combined with the CG approach, we get an
algorithm directly applicable to a feedforward neural
network. This slightly modified version of the original
CG algorithm will also be referred to as CG.

The CG algorithm was tested on an appropriate test
problem. It failed in almost every case and converged
to a nonstationary point. Cause of this failure is that
the algorithm only works for functions with positive
definite Hessian matrices, and that the quadratic ap-
proximations on which the algorithm works can be very
poor when the current point is far from the desired
minimum. The Hessian matrix for the global error
function E has shown to be indefinite in different areas
of the weight space, which explains why CG fails in the
attempt to minimize E.

We propose a new solution to this problem. The
approach is new not only in the context of learning in
feedforward neural networks but also in the context of

s It is in fact possible to calculate gk exactly using automatic dif-
ferentiation (Yoshida. 1991) without explicitly calculating the Hessian.
This would involve O(9N-") calculations.

530 M. E Mailer

the underlying optimization theory which we have dis-
cussed so far. The idea is to combine the model-trust
region approach, known from the Levenberg-Mar-
quardt algorithm, 6 with the conjugate gradient ap-
proach. Let us introduce a scalar Xk in CG, which is
supposed to regulate the indefiniteness of E"(~'k).7 This
is done by setting

E'(v~' k + (TkPk) - - E'(~i':k)
gk = + Xk/~k, (20)

ffk

and adjusting %k in each iteration looking at the sign
of 5k, which directly reveals if E"(17,k) is not positive
definite. If6k < 0, then the Hessian is not positive def-
inite and %k is raised and Sk is estimated again. If the
new Sk is renamed as Sk and the raised Xk as X~., then
Sk is

H~k = Sk "l" (~k k -- Xk)Pk . (21)

Assume in a given iteration that 6k <-- O. It is possible
to determine how much Xk should be raised in order
to get 6k > 0. If the new 6k is renamed as ~k, then

= / ~ T (s k -I- (X k -- Xk)/~k) = 6 k ~1- (X k -- Xk)l/~kl" > 0

Xk > Xk -- 5-'--L-k (22)
I/~kl 2"

Equation (22) implies that if Xk is raised with more
than - - (6 k / [f i k [2) , then ~k > O. The question is: How
much should Xk be raised to get an optimal solution?
This question cannot yet be answered, but it is clear
that Xk in some way should depend on hk, 6k, and I fik] 2.
A reasonable choice is

{
Xk = 2tXk IP~l-] (23)

T h i s l e a d s t o

gk = 6~ + (Xk -- X,) l f f ,< l ~

~* - X,<)IP, I-" = 6~- + t 2),~ - 2

= --<$k + Xk l~k l 2 > 0. (2 4)

The step size is given by

#k #k
<~k -- 6k P[gk + X~I~kl ~ " (25)

The values of Xk directly scale the step size in such a
way that the bigger Xk is the smaller the step size, which
agrees well with our intuition of the function of Xk.

The quadratic approximation Eo,., on which the al-
gorithm works, may not always be a good approxi-

6 The Levenberg-Marquardt algorithm is a variation of the stan-
dard Newton algorithm (Fletcher, 1975).

7 Xk is also known as a Lagrange Multiplier (Fletcher, 1975).

mation to E (~) since Xk scales the Hessian matrix in
an artificial way. A mechanism to raise and lower X k is
needed which gives a good approximation, even when
the Hessian is positive definite. Define

E(~'k) -- E(t~'k + C~k~k)
A k =

g(14'k) - - gqw(OtkPk)

= 25k[E(I~k) -- E(ffk + ak~k)]
u~ (26)

Here Ak is a measure of how well Eq,.(ak~fk) approxi-
mates E(C'k + ak~k) in the sense that the closer Ak is
tO 1, the better is the approximation, hk is raised and
lowered following the formula

if Ak>0.75, then Xk= ~Xk

dik(1 -- A k)
if Ak<0.25, then Xk=Xk+ (27)

IPkl 2

The formula for Ak < 0.25 increases lambda such that
the new step size is equal to the minimum to a quadratic
polynomial fitted to E'(~bk)T~k, E(Vbk), and E (~ k +
ak~k) (Williams, 1990, personal communication). The
SCG algorithm is as shown below.
1. Choose weight vector rb~ and scalars 0 < a -< l0 -4,

0 < Xt -< l 0 -6, Xl = 0.

Set/h = ?t = - E ' (~ , t) , k = 1 and success = true.
2. If success = true, then calculate second order in-

formation:

~-= ,~/Is~l,
Sk = (E ' (~k + akPk) -- E'(17'k))/ak,
6k = : [e k .

3. Scale ($~: 6k = 5k + (Xk -- X k)]ilk 12.
4. If 6k --< 0 then make the Hessian matrix positive

definite:

Xk = 2(Xk - 6k/1~12),
6, = - 6 , + x, IAi 2,
X k - - X k .

5. Calculate step size:

a~ = #kl 6k.
6. Calculate the comparison parameter:

Ak = 26k[E(~k) -- E(~'k + ak~k)] /a 2.
7. If Ak >--- 0 then a successful reduction in error can

be made:

(A) (B)
0,9- 0,18.
0,8-
0,7-

0,6-

~ 0,5-
0,4-
0,3-

0
0 lO 20 30 40 50

Iteration

0,16.
0,14.

0,1.
0,08.
0,06.
0,04.
0,02.

0 , ~

-0,02.0 10 20 30 40
Itmutlon

FIGURE 1. SCG functioning on the logistic map problem,

50

Scaled Conjugate Gradient 531

TABLE 1
Results From the Parity Problem

BP SCG CGL BFGS

Par. av./st, dev./fai, av./st, dev./fai./sp, av./st, dev./fai./sp, av./st, dev./fai./sp.

3 3475/1020/0 413/306/1/8.4 1232/1383/1/2.8 736/473/0/4.7
4 1 6 4 2 7 / 1 0 1 8 5 / 1 1 7 2 7 / 7 2 5 / 2 / 9 . 5 3320/3147/1/4.9 3004/3458/0/5.5
5 9864/5651/2 2131/1494/1/4.6 3682/2029/0/2.7 3246/2387/3/3.0
6 28671/20727/6 2811/1548/2/10.2 5435/6036/1/5.3 5601/3021/2/5.1
7 48878/38293/4 3801/3593/1/12.9 9903/12545/1/4.9 9343/10902/2/5.2
8 134130 /64572 /2 6206/3077/1/21.6 12518/14012/2/10.7 11426/8575/4/11.7
9 189453 /53535 /4 8105/5879/0/23.4 25855/22094/3/7.3 25748/24165/0/7.4

av. = Average Number of cu's. st. dev. = Standard Deviation. faL = Number of Failures. sp. = Speed-Up Relative to BP.

~k+l = ~k + akPk,
7k+t = - -E'(~ 'k+l) ,
X k = 0, success = true.
If k mod N = 0 then restart algorithm:

~/~k+l = Fk+l

else:
~k = ([? k + ! I 2 - - ? T + t ? k) / # k ,

~/~k+l = /~k+l q- #kPk"
If Ak >--- 0.75, then reduce the scale parameter:

Xk = ¼ Xk.
else:

~k = Xk,
success = false.

8. If Ak < 0.25, then increase the scale parameter:
)k k =)k k -[" (6 k (l - - Ak)/lPkl2).

9. If the steepest descent direction ?k :/: (), then set k =
k + 1 and go to 2 else terminate and return ~'k+, as
the desired minimum.
The value of a should be as small as possible, taking

the machine precision into account. When a is kept
small (<10-4) , experiments indicate that the value of
o- is not critical for the performance of SCG (see Section

1000000

100000

.~ I0000,

"8 1000~

10o

I0

l

B B B B B B B B B B .B'S.'---.

¢Jk j " ~ . . . ¢ _ ~

A/"

--II- BP

- O - SC0

COL

BFGS

3 4 5 6 7 8 9
Inlrat units

FIGURE 2. Number of complexity units vs. number of input units
for three layer networks on 3, 4, 5, 6, 7, 8, and 9 bit pari ty
problems when tested on the SCG, BP, CGL, and BFGS algo-
rithms. Notice the logarithmic scale.

6.3). Because of that, SCG seems not to include any
user dependent parameters which values are crucial for
the success of the algorithm. This is a major advantage
compared to the line search based algorithms which
include those kinds of parameters.

For each iteration there is one call orE(~,) and two
calls of E'(~i',), which gives a calculation complexity
per iteration of O(7N2). When the algorithm is im-
plemented, this complexity can be reduced to O(6N 2)
because the calculation of E(~,) can be built into one
of the calculations of E'(,(,). In comparison with BP,
SCG involves twice as much calculation work per it-
eration since BP has a calculation complexity of
O(3N 2) per iteration. The calculation complexity of
CGL and BFGS is about O(6-20N 2) since the line
search, on average, involves 6-20 calls orE(~i,) or E'(~,)
per iteration (Gill, Murray, & Wright, 1980).

When Xk is zero, SCG is equal to the CG shown
before. Figure 1 illustrates SCG functioning on an ap-
propriate test problem. 8 Graph (A) shows the error
development versus learning iteration. The error de-
creases monotonically towards zero, which is charac-
teristic for SCG because an error increase is not allowed.
At several iterations, the error is constant for one or
two iterations. 9 In these instances the Hessian matrix
has not been positive definite and Xk has been increased
using eqn (23). The development of Xk is shown in
graph (B). X~. varies between 0 and 25 iterations and
is 0 in the rest of the minimization. This reveals that
E"(~(') has not been positive definite in the beginning
of the minimization. This is not surprising since the
closer the current point is to the desired minimum, the
greater the probability that E" (~) is positive definite
(Hestenes, 1980). We observe that whenever eqn (23)
is used to increase Xk, a large reduction in error is
achieved, to

s The test problem was the logistic map problem described in
Battiti and Masulli (1990).

9 See iteration 6, 13, 20, and 23.
~o See iteration 7, 16, 21, and 24.

532 M. F. Mallet"

6. TEST RESULTS

6.1. Comparison Metr ic

In order to compare the performance of the different
algorithms, some kind of comparison metric is needed.
Obviously the number of iterations is not a valid metric
considering that the calculation complexity per iteration
is not the same for any of the algorithms. Forward and
backward passing of all the patterns through the net-
work costs in the order of O (N 2) and O(3N 2), respec-
tively, which is an order of magnitude greater than any
other calculation in a given iteration for any of the al-
gorithms. For that reason it seems reasonable to define
the comparison metric proportional to the amount of
forward and backward passings of patterns. Define a
complexiO' unit (cu) to be equivalent to the complexity
of one forward passing of all patterns in the training
set. Then calculating the error costs 1 cu while calcu-
lating the derivative cost 3 cu. The complexity unit will
be used to compare the performance of the different
algorithms.

6.2 . T h e Parity P r o b l e m

The aim of this test was to compare the performance
of SCG with BP, CGL, and BFGS. The algorithms were
tested on 3, 4, 5, 6, 7, 8, and 9 bit parity problems
using 20 different initial weight vectors. ~t Three layer
neural network architectures were used for each prob-
lem. t2 A training set containing all possible input pat-
terns was used, i.e., 2" patterns. The comparison metric
described above was used in comparing the perfor-
mance of the algorithms. The algorithms were termi-
nated when the average error was less than 10-4 or the
number of iterations had exceeded an appropriate large
number of iterations. BP was run with learning rate
0.2 on parity 3-6, 0.05 on parity 7, and 0.01 on parity
8-9. This lowering of the learning rate was done in
order to get BP to converge. The momentum parameter
was set to 0.9 for all problems. The line search param-
eter 77 in CGL and BFGS was set to 0.25. The results
are illustrated in Table 1. We observe that SCG is two
to three times faster than CGL and BFGS on all prob-
lems.

It would also be interesting to visualize how the
learning time is scaled by SCG, CGL, BFGS, and BP.
According to Hinton, the learning time for BP should
be approximately O(N3), i.e., the total number of
complexity units, each costing O (N 2) time, should be
approximately O(N) . This depends, however, on the

u Only 10 different initial weight vectors were used for BP on
parity 8 and 9 because of the large amount of cpu-time involved in
these experiments.

~-' n - n - 1 architectures where n is the number of bits.

9000 .

8000

7000

.~ 6000

.~ 5000

3ooo-]

10~ 000-~ I I I I I I I i I I I

Value of t~

FIGURE 3. SCG on parity 5 with different a-values.

nature of the task (Hinton, 1989; Tesauro, 1987). Judd
(1987) shows that in the worst case it is exponential.
Figure 2 uses a logarithmic plot to illustrate the number
of complexity units versus the number of input units.
The curves are clearly all sublinear indicating that all
four algorithms scale polynomial on this particular
problem. The BP curve and the increasing speed-ups
in Table 1 indicate that the scaling of BP is worse than
for the other algorithms. There seems to be no signif-
icant difference in the scaling ofSCG, CGL, and BFGS.

6.3. SCG Performance vs. Different Values of a.

The aim of this test was to determine how crucial the
value of the a-parameter is to the performance of SCG.
Twelve different values for a were used on the parity 5
problem using 20 different initial weight vectors. The
result is shown in Figure 3. We observe that the average
performance of SCG is not significantly affected when
the value of a is small (<10-4) . For a _< l0 -4, the
number of failures (local minima) was in the range 0 -
2 and the standard deviation was 330. When a was less
than 10-~2 roundoff errors began to have an effect.~3

7. C O N C L U S I O N

An optimization approach was used to introduce a
learning algorithm (SCG), which is more effective than
the standard BP, CGL, and the BFGS. SCG does not
contain any user-dependent parameters whose values
are crucial for the success of SCG. By using a step size
scaling mechanism, SCG avoids a time consuming line
search per learning iteration, which makes the algo-

o All the experiments was run on a SUN-4 machine.

Scaled Conjugate Gradient 533

r i t h m faster t h a n o ther second-order a lgo r i t hms re-
cent ly proposed (C G L , B F G S) .

REFERENCES

Battiti, R. (1989). Accelerated backpropagation learning: Two opti-
mization methods. Complex Systems. 3, 331-342.

Battiti, R. (1990). Optimization methods for back-propagation: Au-
tomatic parameter tuning and faster convergence. IJNNC-90-
I~ISH.DC. 1,593-596.

Battiti, R., & Masulli, E (1990). BFGS Optimization for faster and
automated supervised learning. INCC 90 Paris. International
Neural Network Conference. 2, 757-760.

Fletcher, R, (1975). Practical methods ofoptimi=ation. New York:
John Wiley & Sons. Gill, P. E., Murray, W., & Wright, M. H.
(1980). Practical optimization. New York: Academic Press Inc.

Gill. P. E., & Murray, W. (1974). Sqfeguardedsteplength algorithms
.for optimization using descent methods. NPL Report NAC 37,
National Physica Laboratory, Division of Numerical Analysis and
Computing, Middlesex, England.

Hestenes, M. (1990). Conjugate direction methods in optimization.
New York: Springer-Verlag.

Hinton, G. (1989). Connectionist learning procedures. Artificial In-
telligence, 40, 185-234.

Johansson, E. M., Dowla, E U., & Goodman, D. M. (1991). Back-
propagation learning for multi-layer feed-forward neural networks
using the conjugate gradient method. International Journal o.f
Neural Systems, 2(4), 291-302.

Judd, J. S. (1987). Complexit)' of connectionist learning with various
nodefimctions. COINS Technical Report 87-60, University of
Amherst, Amherst, MA.

Le Cun, Y. (1989). Generalization and network design strategies. In
M. Pfeifer (Ed.), Connectionism in perspective (pp. 143-155).
Amsterdam: North Holland.

Luenberger, D. (1984). Linear and nonlinear programming. Reading,
MA: Addison-Wesley Publishing Company, Inc.

Moiler, M. E (1990). Learning by conjugate gradients. Proceedings
of the 6th International Meeting of Yottng Computer Scientists,
Czechoslovakia, LNCS, 464, 184-195.

Moiler, M. E (1991). Supervised learning on large redundant training
sets (in preparation).

Powell, M. (1977). Restart procedures for the conjugate gradient
method. Mathematical Programming. 12(2), 241-254.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning
internal representations by error propagation. In D. E. Rumelhart,
& J. L. McClelland (Eds.), Parallel distributed processing. Ex-
ploration in the microstructure of cognition (pp. 318-362). Cam-
bridge, MA: MIT Press.

Tesauro, G. (1987). Scaling relationships in back-propagation learn-
ing: Dependence on training set size. Complex Systems, 2, 367-
372.

Yoshida, T. (1991). A learning algorithm for multilayered neural net-
works: A Newton method using automatic differentiation. IJCNN-
91 Seattle, Poster.

Watrous, R. L. (1987). Learning algorithms for connectionist net-
works: Applied gradient methods of nonlinear optimization. Pro-
ceedings IEEE I st International Conference on Neural Networks,
2, 619-628.

Williams, P. School of Cognitive and Computing Sciences, University
of Sussex, UK. (1990). Personal communication.

APPENDIX. LINE SEARCH

A well known line search technique is that of Successive polynomial
approximation (Gill & Murray, 1974), where the function E()i 9 is
approximated by a simple function e()~') which agrees exactly with
E()i ~') in either function value or function value and derivatives at a
certain number of points, e(~') is normally chosen to be a quadratic
or cubic polynomial depending on whether or not the derivatives of
E()i.) are available or easily calculated. We will use a quadratic poly-
nomial and thereby avoiding calculating the derivatives of the error
function, which involves approximately three times as many calcu-
lations than calculating the error. Define the function f (x) as

.f(x) = E()~,~ + xA) . (28)

Assume that the minimum for.f(x) is bracketed by (u, f (u)) , (v.
.f(v)) and that a third point (x, f (x)) in between is known. The
minimum a for the quadratic polynomial passing through the three
points is given by x + s/q where s, q is:

s = [(v - x)"(f(u) - . f (x)) - (u - x)-'(f(v) - f (x))]

q = - 2 [(u - x)(f (v) - f (x)) - (v - x)(f (u) - f (x))] . (29)

Successive applications of eqn (29) can be shown to be superlinearly
convergent when some mild conditions of E()~') are satisfied. The
disadvantage of line search techniques is, obviously, that each suc-
cessive step involves several calculations of the error which is of the
order of O(N 2) calculations, where N is the number of weights and
biases in the network. Even initializing the line search algorithm, i.e..
bracketing the minimum, can cost several calculations of the error,
Because of the calculation complexity involved in each step, the line
search should terminate after a small amount of steps. The termination
criteria used in this paper is (Gill, Murray, & Wright, 1980):

E(~'~) - E()~'~ + %Pk) ~))%E'(~'k)~. 0 <)7 _< 0.5, (30)

where aj is the quadratic minimum for the j - th iteration in the suc-
cessive line search. Other termination criteria exists. Common for all
is that they include at least one user dependent parameter, such as)1
in eqn (30). The values of these parameters are often crucial for the
amount of computations involved in the line search and can also be
crucial for the success of the line search dependent algorithm. Ter-
minating the line search before the actual minimum is found is called
ine~act line sear~4). When the function to be minimized is nonquad-
ratic, like the error function, making an exact line search is not
worthwhile because the direction of search is also only an approxi-
mation to the exact direction. A slightly extended version of the qua-
dratic line search technique is used in the experiments called safe-
guarded quadratic univariate minimization (Gill & Murray, 1974).

NOMENCLATURE

N
P

~ N

D
~ r
Di

E(~i")
E'()~')
E"()g,)

number of weights and biases.
number of patterns in the training set.
N-dimensional euclidean space
vector
transpose of 0
the i-th coordinate of D
length of vector
global error function
gradient to global error function
Hessian matrix to global error function

