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In this paper, we present a multistage genetic learning process for obtaining linguistic
fuzzy rule-based classification systems that integrates fuzzy reasoning methods cooperat-
ing with the fuzzy rule base and learns the best set of linguistic hedges for the linguistic
variable terms. We show the application of the genetic learning process to two well
known sample bases, and compare the results with those obtained from different learning
algorithms. The results show the good behavior of the proposed method, which maintains
the linguistic description of the fuzzy rules. Q 1998 John Wiley & Sons, Inc.

1. INTRODUCTION

In a supervised inductive learning process, a pattern classification system is
developed by means of a set of classified examples used to establish a correspon-
dence between the new pattern descriptions and the class labels. This system is a
description of the concepts learned and it can be expressed as a logic expression,
a set of fuzzy rules, a decision tree, or a neural network, among others. When
the classification system is composed of a set of fuzzy rules, it is called a fuzzy

Ž .rule-based classification system FRBCS .
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Ž .Fuzzy rule-based systems FRBSs have been successfully applied in pattern
classification problems.1,2 The interest in using FRBSs arises from the fact that
they provide a good platform to deal with noisy, imprecise, or incomplete
information, which is often handled in any human-cognition system. These kinds
of systems are an effort to reconcile the empirical precision of traditional
engineering techniques and the interpretability of artificial intelligence.

Ž . Ž .An FRBCS is formed by two main components: 1 a knowledge base KB ,
Ž . Ž .i.e., a rule base RB and a data base DB for a specific classification problem,

Ž . Ž .and 2 a fuzzy reasoning method FRM , which classifies a new pattern using
the information given by the KB. As regards the KB design process and,
specifically, the RB design process, several proposals have been widely used,
some of which can be found in Refs. 2]7. The most commonly used fuzzy
inference method, maximum matching,3,5 ] 9 classifies an example using the rule
consequent with the highest association degree, losing the information given by
other rules to a lesser degree. The generalization power provided by an FRBCS
that includes an FRM that uses the information given by all the rules has been
proven.1,2,10 ] 12

In this paper, we introduce a multistage genetic learning process to obtain
linguistic FRBCSs. It is based on a specific genetic learning methodology,

ŽMOGUL methodology to obtain genetic fuzzy rule-based systems under the
. 13iterative rule learning approach . The genetic learning process integrates

FRMs cooperating with the KB and learns the best set of linguistic hedges for
the linguistic variable terms. According to MOGUL guidelines, the process
contains the three following steps:

v The first step generates an RB regardless of the FRM used. The fuzzy partitions
for the linguistic variables are predefined by the classification system builder.

v In the second step, a genetic algorithm-based process selects the best subset of
fuzzy rules and learns the best set of linguistic hedges for the linguistic variables
cooperating with the FRMs.

v Finally, a genetic tuning process of the fuzzy partitions is carried out with the
linguistic hedges learned in the previous stage.

This automatic knowledge extraction process is based on genetic algorithms
Ž .GAs in two of its three stages. GAs are search algorithms that use operations
found in natural genetics to guide the trek through a search space.14 GAs are
theoretically and empirically proven to provide robust search capabilities in
complex spaces, offering a valid approach to problems requiring efficient and
effective searching.

We will show the behavior of the learning algorithm by applying it to two
sample bases widely studied, Iris and Pima. The results will be compared with
other learning algorithms C4.5,15 CN2,16 LVQ,17 and the Wang and Mendel
fuzzy rule learning process for classification problems, WM-FRLP.8,2

To do this, we organize this paper as follows. In Section 2, we explain the
components of an FRBCS and the assumptions of MOGUL. Section 3 intro-
duces the three stages of the genetic learning algorithm. In Section 4, the results



FUZZY RULE-BASED CLASSIFICATION SYSTEMS 1027

of the experiments as well as their analysis are shown. Finally, in Section 5, some
conclusions are reported.

2. PRELIMINARIES

In this section, we describe the components of the FRBCS, the KB, and the
FRM, and we briefly introduce MOGUL, the genetic learning methodology
based on the iterative rule learning approach.13,18

2.1. Fuzzy Rule-Based Classification Systems

A pattern classification problem consists of assigning a class C from aj
� 4predefined class set C s C , . . . , C to an object described as a point in a1 M

certain feature space x g S N.
The problem of designing a classification system is to find an optimal

mapping

D : S N ª C

Ž .in the sense of a certain criterion d D that determines the classification system
performance. This mapping is achieved by taking correctly classified examples,
training examples, as a starting point, with the final goal being the design of a
classifier that assigns class labels with the smallest possible error across the
whole feature space. Finally, the system performance on testing data is calcu-
lated to have an estimation of the classification system true error.

Classification systems can be divided into two main groups depending on
their later use: classification systems that are supposed to work autonomously,
and those that are used as a helping tool for the user in the decision processes.
In the former, the basic characteristic of the design process is the performance
level, i.e., the correct classification percentage. Other dimensions, such as
comprehensibility, robustness, versatility, modifiability, and coherence with pre-
vious knowledge, have to be considered in the latter, due to the fact that they
may be essential to allow the system to be accepted for use.

The goal of the proposed learning method is to develop classification
systems included in the second group, which can be considered ‘‘human-
centered’’19, and the desired characteristics, cited previously, determine the
structure of the fuzzy rules used as well as the process by which they are
obtained. This is why we consider a descriptive FRBCS composed of a descrip-
tive KB and a specific FRM. The KB composition is a set of fuzzy rules in which
the linguistic variables involved in their antecedents have a term set of possible
associated values that present a real-world meaning.

The FRBCS learning process, structure, and use are introduced in Figure 1.
In the next subsection, we will describe the components of the KB. In

addition, we will introduce some of the FRMs analyzed by the authors11 and
used in the learning algorithm.
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2.1.1. The Knowledge Base

As mentioned, the KB is composed of an RB and a DB. Their structures
are explained as follows.

Rule Base. We can generate RBs with one of the following three types of rules:

Ž . 3,5a Fuzzy rules with a class in the consequent. This kind of rule has the structure

R : If x is Ak and ??? and x is Ak , then Y is Ck 1 1 N N j

where x , . . . , x are the outstanding selected features for the classification1 N
problem, Ak, . . . , Ak are linguistic labels used to discretize the continuous1 N
domain of the variables, and Y is the class C to which the pattern belongs.j

Ž . 6b Fuzzy rules with a class and a certainty degree in the consequent :

R : If x is Ak and ??? and x is Ak , then Y is C with r k
k 1 1 N N j

where r k is the certainty degree of the classification in the class C for aj
pattern belonging to the fuzzy subspace delimited by the antecedent. This
certainty degree can be determined by the ratio

Sk
j
kS

where Sk is the sum of the association degrees for the class C patternsj j
belonging to the fuzzy region delimited by the if part. Sk is the same sum for
patterns in any class.

Ž . 7c Fuzzy rules with a certainty degree for all classes in the consequent :

R : If x is Ak and ??? and x is Ak , then r k , . . . , r kŽ .k 1 1 N N 1 M

where r k is the soundness degree for the rule k to predict the class C for aj j
pattern belonging to the fuzzy region represented by the antecedent of the
rule. This certainty degree can be determined by the same ratio used in

Ž .the type b rules.

Ž . Ž .The last type of rule extends types a and b by using different values for
Ž k k .r , . . . , r . Considering1 M

r k s 1 r k s 0 j / h j s 1, . . . , Mh j

we have the first case, and with

r k s r k r k s 0 j / h j s 1, . . . , Mh j

we have the second.
In the rest of the paper, the developed learning algorithm will be presented

Ž .considering an RB composed of c type rules. The process is analogous for the
other two types of rules.
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Data Base. The DB contains the definition of the fuzzy sets related to the
linguistic terms used in the RB. This fact leads us to specify the next points:

v The number of linguistic terms for each variable considered.
v The membership function of the fuzzy sets related to these linguistic terms.

The number of linguistic terms as well as the membership functions of the
associated fuzzy sets are specified by the FRBCS designer to obtain the suitable
granularity level. It is known that the discretization carried out in the variable
domain exerts a strong influence on the system classification capacity.20 This
fact, as we will explain, can be solved with the final tuning process in the
proposed learning method.

On the other hand, it is difficult, even for an expert in the problem, to know
exactly the most suitable meaning for a specific linguistic label and that most
appropriate for proper system behavior. This is a determining factor in auto-
matic knowledge extraction processes because the semantic representation of
the linguistic hedges establishes a numerical value about the suitability of the
concept the hedges represent. A way to solve this problem without losing the
linguistic character of the classification system is to use linguistic hedges, which
let us modify the prefixed membership function to adapt it to the training data.
Zadeh21 highlighted the utility of linguistic hedges for knowledge representation
in approximate reasoning processes. In Refs. 1, 2, and 22, the reader can find
some examples of linguistic modifiers used in FRBSs.

A linguistic hedge is a function that lets us alter the membership functions
for the fuzzy sets associated to the linguistic labels, giving as a result a more or
less precise definition depending on the case. Two of the most well known
modifiers are the concentration linguistic modifier ‘‘very’’ and the dilation
linguistic modifier ‘‘more or less.’’ The first modifier leads to a reduction in the
membership degree of a value in the fuzzy set to which it is applied. The second
modifier ‘‘more or less,’’ is a fuzzy dilation operator because, on the contrary, it
increases the degree of membership. Their expressions are

2
k km x s m xŽ . Ž .Ž .very A Ai i

k km x s m xŽ . Ž .'more or less A Ai i

and their effects on a normalized fuzzy set with a triangular membership
function are shown in Figure 2.

2.1.2. Fuzzy Reasoning Methods

As mentioned earlier, an FRM is an inference procedure that derives
conclusion from a set of fuzzy if]then rules and a pattern. The power of fuzzy
reasoning is that we can achieve a result even when we do not have an exact

Ž .match to a degree 1 between a system observation and the antecedents of the
rules. In Ref. 11, we presented a general model of reasoning that involves
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Figure 2. Linguistic hedges.

different possibilities as reasoning methods, and we proposed six alternative
FRMs as some particular new proposals inside the general reasoning model.
This model is the following.

t Ž t t . � 4Considering a new pattern E s e , . . . , e and a RB R s R , . . . , R ,1 N 1 L
the steps of the general reasoning model are as follows:

1. Matching degree. To calculate the strength of actï ation of the if part for all rules in
the RB with the pattern Et, using a t-norm23,24,

Rk Et s T m k et , . . . , m k et k s 1, . . . , LŽ . Ž . Ž .Ž .A 1 A N1 N

2. Association degree. To calculate the association degree of the pattern Et with the M
classes according to each rule in the RB,

bk s h Rk Et , r k j s 1, . . . , M , k s 1, . . . , LŽ .Ž .j j

3. Weighting function. To weight the obtained values through a function g. One
possibility is to increase the higher values of the association degree and penalize
the lower ones:

B k s g bk j s 1, . . . , M , k s 1, . . . , LŽ .j j

4. Pattern classification soundness degree for all classes. We use an aggregation
function23,24 that combines}for each class}the positive degrees of association
calculated in the previous step and produces a system soundness degree for the
classification of the pattern in this class:

Y s f B k , k s 1, . . . , L and B k ) 0 j s 1, . . . , MŽ .j j j

with f being an aggregation operator verifying min F f F max. It is clear that if
we select f as the maximum oeprator, we have the classical FRM.

5. Classification. We apply a decision function F over the soundness degree of the
system for the pattern classification for all classes. This function will determine
the class label l corresponding to the maximum value:

C s F Y , . . . , Y such as Y s max YŽ .l 1 M l j
js1, . . . , M

The general reasoning model is represented graphically in Figure 3.
Some of the proposed alternatives for the different operators in the FRM,

are described in Table I.
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Figure 3. General fuzzy reasoning model.

Table I. Proposals for the operators in the FRM.11

k t k tŽ . Ž .1. Compatibility Degree R E s min m eA iiis1, . . . , N
k t k k t kŽ Ž . . Ž .2. Association Degree h R E , r s R E ? rj j
Ž . w x3. Weighting Function: Alternatï es g x s x ; x g 0, 11

2x if x - 0.5Ž .g x s2 ½ 'x if x G 0.5
a4. Aggregation Function: Proposals

tsjÝ ais1 iŽ .tNormalized sum f a , . . . , a s1 1 s j f1ma x
ts j

f s max aÝ1 ima x js1, . . . , M is1
tsjÝ ais1 iŽ .tArithmetic mean f a , . . . , a s2 1 s tj sj

ts j1
y1Ž .tQuasiarithmetic mean f a , . . . , a s H H aŽ .Ý3 1 s itj sj is1

pŽ .H x s x p g R
tsj1

Ž . Ž .tSowa and-like f a , . . . , a s a ? a q 1 y a aÝ4 1 s min itj sj is1
w x � 4ta g 0, 1 a s min a , . . . , amin 1 sj ts j1

Ž . Ž .tSowa or-like f a , . . . , a s a ? a q 1 y a aÝ5 1 s max itj sj is1
w x � 4ta g 0, 1 a s max a , . . . , amax 1 s j

ts aq1jÝ ais1 iŽ .tBadd f a , . . . , a s a g Rt6 1 sj s ajÝ ais1 i

a a , . . . , a t are the values to aggregate for an example Et with regard to class C .1 s jj
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2.2. Basic Aspects of the Methodology: MOGUL

In Ref. 13, we presented MOGUL, a methodology consisting of some
design guidelines that allow us to obtain different genetic fuzzy rule-systems
Ž . ŽGFRBSs able to cope with problems of different natures fuzzy modelling,

.fuzzy control, and fuzzy classification, among others .
MOGUL allows different users to obtain their own GFRBSs capable of

dealing with their specific problems. Therefore, any users may add their particu-
lar requirements to MOGUL guidelines for designing any kind of FRBS to solve
their problems in an adequate way. To do so, the users only have to design their
own evolutionary process for each one of the GFRBS learning stages, ensuring
that it verifies MOGUL assumptions.

In this subsection, we are going to briefly review the key aspects of
MOGUL, mainly focusing on the genetic learning approach and on the generic
structure of the GFRBSs obtained using the methodology.

The main problem that has to be solved to design a GFRBS is finding a
suitable representation capable of gathering the problem characteristics and
representing the potential solutions. Classically, two genetic learning ap-
proaches, adopted from the field of genetic-based machine learning systems,
have been used: the Michigan25 and the Pittsburgh26 approaches. In the Michi-
gan approach, the chromosomes are individual fuzzy rules and the KB is
represented by the entire population. The collection of fuzzy rules is adapted
over time using some genetic operators applied at the level of the individual
rule. This evolution is guided by a credit assignment system that evaluates the
adaption of each single fuzzy rule. On the other hand, in the Pittsburgh
approach, each chromosome represents an entire KB and the evolution is
developed by means of genetic operators applied at the level of fuzzy rule sets.
The fitness function evaluates the accuracy of the complete KB encoded in the
chromosome.

In the last few years, a new genetic learning approach, iterative rule
Ž . 18learning IRL , has been proposed. It is based on coding a single rule per

chromosome, but, contrary to the Michigan approach, only the best individual in
the GA run is considered to form part of the final KB. Therefore, in this
approach the GA provides a partial solution to the problem of learning, and,
contrary to both previous approaches, it is run several times to obtain the
complete KB. Each time a new fuzzy rule is generated, the space zone in which
it is located is penalized so that it will not be considered in subsequent runs.
This operation mode substantially reduces the search space, because in each
sequence of iterations only one rule is searched for. This allows us to obtain
good solutions in GFRBSs for off-line learning problems. The IRL approach is
followed by MOGUL.

The problem of the IRL approach is that the cooperation between the rules
of the generated KB, a main characteristic of the FRBS because of the
interpolative reasoning it develops, may not be as good as desired due to the fact
that the iterative nature of the generation process does not envisage any
relationship between the generated fuzzy rules. To solve this problem, GFRBSs
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based on the IRL approach can use different tactics27:

v Adding new criteria to the evaluation of the rule to include this kind of
cooperation within the IRL approach.

v Dividing the genetic learning process into at least two stages, thereby forming a
Žmultistage GFRBS. Therefore, the aim of the second stage the postprocessing

.stage is to obtain the best possible cooperation between the fuzzy rules gener-
Ž .ated in the first stage the generation stage to obtain the best possible KB.

Both tactics are considered in MOGUL, depending on the type of FRBS
Žbeing designed MOGUL allows us to work with different ones: descriptive

.Mamdani-type, approximate Mamdani-type, and TSK . When dealing with de-
scriptive FRBSs, as in this paper, the second tactic is used. Usually, the second
learning stage improves the cooperation level of the fuzzy rules generated in the
previous one by refining them or by removing the redundant or unnecessary
rules. With the aim of improving the accuracy of the FRBSs designed, in
MOGUL we will tackle both tasks, the simplification of the KB and the
refinement of the fuzzy rules composing it, by adjusting their membership
functions.

To do so, the postprocessing stage will be broken down into two different
Žstages: the genetic multisimplification process genetic multiselection process in

.the GFRBS proposed in this paper, as we will show in the next sections and the
e¨olutionary tuning process. The former is capable of generating not only a single
simplified KB definition as output from the process, but different definitions
that present the best possible cooperation between the fuzzy rules composing
them, and thereby the best possible behavior. Then, the evolutionary tuning
process will be applied over these definitions and the most accurate will be the
definition given as the output of the multistage GFRBS. Therefore, a KB that
does not present the best behavior after the second stage may be the best after
the third stage due to the fact that the new membership function shapes make
its rules cooperate in a better way.

The remaining main aspects of MOGUL are the following:

v The designer is allowed to build the generation stage by using different kinds of
algorithms, rather than only a GA, as in the previously existing processes
following the IRL approach. It is possible to employ a nonevolutionary inductive

Ž . 28algorithm as in this paper or an evolution strategy instead of the usual GA.
The operation mode is still the same, but the difference is the speed of the
generation process, which is higher in the former case.

v Several important statistical properties have to be verified by the KB in order to
obtain an FRBS that presents good behavior.5 The satisfaction of completeness
and consistency is considered in the GFRBSs obtained from MOGUL in order to
improve the behavior of the generated KBs.

v Focusing on the EA search, there is a need to make use of suitable techniques to
develop an accurate trek on the search spaces tackled in each stage to obtain the
best possible solutions. Several factors have to be considered to reduce the search
space complexity and to perform an adequate exploration and exploitation over it
to allow the search process to be effective. MOGUL proposes the use of many
techniques.
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v The available knowledge is incorporated into the genetic learning process in
order to improve its performance by either directly incorporating partial defini-
tions obtained from expert knowledge or using the available knowledge to
generate the initial population of the EAs considered in each stage.

For more information about MOGUL, refer to Ref. 13.

3. GENETIC LEARNING PROCESS

The FRBCS genetic learning process is based on the MOGUL methodology
presented in the previous section. As mentioned, it has been used here to design
a descriptive FRBCS. To carry out this task, we have determined the algorithms
for the different steps in the general methodology, including a linguistic hedge
learning method for a better description of the system, and for the cooperation
of the FRM in the KB design.

According to the methodology, the learning algorithm can be divided into
three stages:

v A fuzzy rule generation process, which obtains a set of linguistic classification rules
representing the knowledge existing in the training samples.

v A genetic multiselection process, which generates several KB definitions integrat-
ing the FRMs and learning the linguistic hedges.

v A genetic tuning process, where the best values for the membership functions
parameters are obtained.

In the following subsection, we elaborate these three stages.

3.1. Fuzzy Rule Generation Process

This process has two components:

v A fuzzy rule generating method that generates the fuzzy rules from training
examples.

v An iterative covering method that puts into effect the usual operation mode of
the first phase of the evolutionary learning processes based on the IRL approach.

The next subsections show both methods.

3.1.1. Fuzzy Rule Generating Method

This method starts with a predefined DB, constituted of a uniform fuzzy
partition with triangular membership functions crossing at height 0.5 for each
variable. The system designer specifies the number of linguistic terms that form
each partition, in order to obtain the desired granularity level. An example
of this kind of partition for a linguistic variable with five labels is shown in
Figure 4.
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Figure 4. A uniform fuzzy partition with triangular membership functions.

Each time the fuzzy rule generating method is run, a set of candidate fuzzy
rules is obtained. The method finds the fuzzy rules that best cover each example
from the training set. The consequent creation is shown in Section 2. Therefore,
a set of candidate fuzzy rules is created and the best rule is selected from it,
according to a multicriteria function that considers the following criteria29:

Ž .a A high frequency ¨alue. The frequency of a classification rule R , in a set ofk
� 1 p4examples E s E , . . . , E , is defined as

Ý p bk ElŽ .ls1 j
C R sŽ .E k p

l Ž l l . k lsince E s e , . . . , e , C and b is the association degree of the example E1 N j j
with the class C to which it belongs, according to the rule R .j k

Ž .b A high co¨ering degree o¨er the positï e examples. The set of positive examples for
a rule R with an association degree greater than or equal to v is defined ask

Eq R s El g E N bk El G vŽ .Ž . � 4v k j

qŽ . < qŽ . < qŽ .where N R s E R . The average covering degree on E R may bev k v k v k
defined as

G R s bkrnq RŽ . Ž .Ýv k j v k
l qŽ .E gE Rv k

Ž .c Penalization associated to the nonsatisfaction of the k-consistency property. The set
of the negative examples for R is defined ask

Ey R s El g E N bk El s 0 and Rk El ) 0Ž . Ž .Ž . � 4k j

An example is considered negative for a rule when it best matches some
other rule that has the same antecedent, but a different consequent. The
negative examples are always considered over the complete training set.

This last criterion penalizes fuzzy rules with many negative examples with
respect to the number of positive examples with a compatibility degree greater
than or equal to v. In this way, it penalizes the nonsatisfaction of the k-con-
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sistency property.5 The penalty function on the negatï e examples set of the rule Rk
will be

¡ y q1 if n F k ? n RŽ .R v kk

y ~ 1g R sŽ .n k otherwisey q¢n y kn R q exp 1Ž . Ž .R v kk

y < yŽ . <where n s E R is the number of negative examples.R kk

The three criteria are combined into an evaluation function using an
aggregation function, increasing in its three components. The good behavior of
the product operator was proven10 using the expression

F R s C R ? G R ? g RyŽ . Ž . Ž . Ž .k E k v k n k

The next algorithm summarizes the fuzzy rule generating method.

1. Set up the set of candidate rules to the empty set.
2. For each training example El g E, generate the fuzzy rule R that best coversk

that example, having for each attribute the linguistic label that has the best
matching. Include this rule in the set of candidate rules, Bc, if it has not been
included before.

3. Evaluate all the fuzzy rules contained in Bc and select the one with the highest
value of the rule selection function.

3.1.2. Co¨ering Method

This method is based on an iterative algorithm that allows us to obtain a set
of rules that cover the set of examples. In each iteration, it runs the fuzzy rule
generating method to obtain the best fuzzy classification rule according to the
current state of the training set, considers the relative covering value that this
rule provokes over it, and removes from it the examples with a covering value
greater than a value e provided by the designer.

The co¨ering method is developed as follows:

1. Initialization
Ž .a Introduce the value of the main parameters of this method, i.e., k, v, and e .
Ž . w xb Set up the examples covering degree to 0, i.e., CV l ¤ 0, l s 1, . . . , p.
Ž . gc Set up the final set of rules B to the empty set.

2. Over the set of examples E, apply the fuzzy rule generating method, obtaining as
output the best fuzzy classification rule R according to the current state of E.r

3. Introduce the rule R in B g.r
l Ž l l .4. For each example E s e , . . . , e , C g E do1 N j

Ž . w x w x rŽ l.a CV l ¤ CV l q b E .j
Ž . w xb If CV l G e , then remove it from E.

5. If E s B then stop; else return to step 2.
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3.2. The Multiselection Genetic Process

The method to obtain rules described previously generates a set of fuzzy
rules that verifies the completeness and k-consistency properties.13,5,30 However,
due to its iterative nature, the resulting KB may have unnecessary or redundant
rules that could cause an incorrect operation. To solve this problem, a multise-
lection genetic process is proposed. From the KB generated in the last stage,
this process obtains different simplified KBs, with the best cooperation between
the rules composing them.

This multiselection process includes

v 31The sequential niche technique to induce niches, using as the basic optimiza-
tion technique the genetic selection process proposed in Ref. 30, iterated in each
run of the multiselection process.

v A search process that looks for the best set of modifiers associated to the
linguistic labels of the variables.

v The intervention of the FRM used by the system in the rule and modifier
selection.

v A local search posterior to each selection process, so that for the best individual,
i.e., the best KB, it looks for the best modification, adding or eliminating a rule,
andror modifying a linguistic hedge.

Different KB definitions are obtained by selecting the rules that best
cooperate from the initial fuzzy rule set and by selecting the best hedges for
them by means of the abovementioned subprocesses.

In the following subsections, the genetic method and the composition of the
multiselection process are analyzed.

3.2.1. The Basic Genetic Selection Method

The genetic selection process eliminates unnecessary rules from the RB
obtained in the last phase and looks for the best set of hedges to modify these
fuzzy rules. The learning of the hedges may be carried out from two different
points of view:

v To obtain a hedge for each fuzzy set related to a linguistic label in the fuzzy
partitions of the DB. In this case, this set of hedges is shared for all rules in the
RB.

v To obtain the best set of hedges for each fuzzy rule in the RB.

In the first case, the semantic related to the linguistic variables is uniform
for all rules and it is specified in the DB. In the second case, the meaning is
specific for each individual rule, but it keeps the descriptive nature of the
FRBCS. In the following text, the first kind of hedges will be referred to as
Hedges I, and the latter as Hedges II.
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The selection process is based on a GA in which the selection of the
individuals is developed using the stochastic universal sampling procedure
together with an elitist selection scheme, and the generation of the offspring
population is put into effect by using the classical binary multipoint crossover
Ž .performed at two points and uniform mutation operators.

The coding scheme generates fixed-length chromosomes with two outstand-
ing parts, one related to the selected rules and the other referring to the hedges
associated to the linguistic labels. Considering the rules contained in the rule set
B g derived from the previous step, counted from 1 to m, and depending on the
hedge learning process that we want to carry out, there are two different coding
schemes:

v NHedges I: The chromosome length is h s m qÝ l , where l is the number ofis1 i i
Ž .linguistic labels for the variable i. A chromosome C s c , . . . , c is divided intoj 1 h

two parts. The first part has as many bits as the number of rules generated in the
previous phase, i.e., m bits. c , . . . , c represents a subset of candidate rules to1 m
form the RB finally obtained as this stage output, B s, such that

if c s 1, then R g B s ; else R f B s
1 i i

In addition, the second part will have as many genes as different linguistic terms
are considered for each variable. For these genes, as many digits will be used as
the number of different hedges to be considered. In Figure 5, this coding scheme
and the resulting KB are described.

v Ž .Hedges II: The chromosome length is h9 s m ? N q 1 , where N is the number
of variables. The chromosome is again divided into two parts. In the first part we
follow the coding scheme in the last point. The m ? N remaining genes represent
the hedges for each of the rules. In Figure 6, this coding scheme as well as the
type of resulting KB are described.

Figure 5. Hedges type I.
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Figure 6. Hedges type II.

The initial population is generated by introducing a chromosome that
represents the complete previously obtained rule set B g, that is, with all c s 1i

� 4i g 1, . . . , m , without hedges. For each type of hedge used, a chromosome that
represents the complete RB and has all the genes that code the linguistic hedges
with the value of the mentioned hedge is included. The remaining chromosomes
are selected at random.

Ž .The fitness function, Error ? , is based on an application-specific measure
usually employed in the design of the classifiers, the classifier’s error rate32 over
a training data set E. An empirical error rate can be defined as the ratio of the
number of errors to the number of cases examined:

number of errors
Error C sŽ .j number of cases

There is a need to keep the completeness property considered in the
previous stage. We ensure this condition by forcing every example El s
Ž l l .e , . . . , e , C contained in the training set to be covered by the encoded KB,1 N g
Ž .R C , to a degree greater than or equal to t ,j

C El s b j El G t ;El g E and R g R CŽ . Ž . Ž .DRŽC . g j jj
js1 ??? T
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where t is the minimal training set completeness degree accepted in the
selection process.

Ž . Ž .Therefore, we define a training set completeness degree TSCD of R Cj
over the set of examples E as

TSCD R C , E s C ElŽ .Ž .Ž . Fj RŽC .j
lE gE

and the final fitness function that penalizes the lack of the completeness
property is

Error C if TSCD R C , E G tŽ . Ž .Ž .j jF C sŽ .j ½ 1 otherwise.

3.2.2. The Multiselection Genetic Process

The multiselection genetic process takes as a base the sequential niche
technique31 to induce niches in the search space to obtain different KB
definitions.13 In each stage, the genetic selection process proposed in the last
subsection is used.

Each time the genetic selection process obtains a new KB definition, the
multiselection process penalizes the search space zone where it is located to not
generate this definition in future runs. A genotypic sharing scheme33 is used to
penalize individuals according to their proximity to the previous solutions found.
To do so, there is a need to define a distance metric, which, given two
individuals, returns a value of how close they are. In Ref. 13, we proposed using
the Hamming distance because we worked only with the first part of the
chromosome, the part encoding the selected rules, and thus had a binary-coded
chromosome. In the present case, chromosomes are not binary encoded because
their second part encodes the linguistic hedges. Therefore, we propose to use

Ž . Ž .the following distance function: With A s a , . . . , a and B s b , . . . , b1 h 1 h
being two individuals, the distance function is defined as

h

D A , B s dŽ . Ý i
is1

1 if a / bi id si ½ 0 otherwise

Making use of this distance function, the modified fitness function that
guides the search on the multiselection process is based on modifying the value
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associated to an individual by the basic algorithm fitness function, multiplying it
by a derating function that penalizes the closeness of this individual to the
solutions previously obtained. Hence, the modified fitness function used by the
multiselection process is

F9 C s F C ? G C , SŽ . Ž . Ž .j j j

� 4where F is the basic genetic selection process fitness function, S s s , . . . , s is1 k
Ž .the set containing the k solutions KB definitions yet found, and G is a kind of

derating function. Taking into account the fact we are dealing with a minimiza-
tion problem, we consider

` if d s 0¡
bd~G C , S sŽ . 2 y if d - r and d / 0j ž /r¢

1 if d G r

where d is the minimum value of the distance between C and the solutions sj i
� Ž .4included in S, i.e., d s Min H C , s , and the penalization is considered overi j i

the closest solution, r is the niche radius, and b is the power factor that
Ž . Ž .determines the concavity b ) 1 or convexity b - 1 of the derating curve.

Therefore, the penalization given by the derating function takes its maximum
value when the individual C encodes one of the solutions already found. Therej
is no penalty when C is far away from S in a value greater than or equal to thej
niche radius r.

Moreover, in addition to the original definition of the multiselection pro-
cess previously introduced,13 a local search algorithm is considered to individu-
ally optimize each one of the KB definitions obtained, inserting or eliminating a
rule, andror changing a hedge, changes that will lead to improve KB behavior.
As may be observed, this is a very simple and quick optimization process.

The local search is carried out at the end of each iteration stage in the
multiselection process. It is divided into two phases: First of all, the rule
selection is optimized by means of a search in the RB space with distance 1 to
the optimum, i.e., with one rule more or one less in the RB obtained as a result
of one of the stages of the multiselection process. To reduce the search space
when the RB part is optimized, the best set of hedges with distance 1 to the set
of hedges that belongs to the KB represented by the optimum is looked for.

The algorithm of the genetic multiselection process follows:

1. Initializing. Equate the multiselection modified fitness function to the basic
Ž . Ž .selection fitness function. F9 C ¤ F C .j j

2. Run the basic genetic selection process using the modified fitness function and
keep a record of the best individual found in the run.
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3. Run the local optimization process to optimize the KB definition generated.
4. Update the modified fitness function to give a depression in the region near this

individual, producing a new modified fitness function.
5. If all the simplified KBs desired have not been obtained, return to step 2.

ŽHence, the number of runs of the sequential algorithm performed stages of
.the multiselection process is the number of solutions to be obtained, i.e., the

number of selected KBs to generate. We allows the FRBCS designer to decide
this number as well as the values of the parameters r and b.

3.3. The Genetic Tuning Process

In this stage, the parameters that define the fuzzy set membership functions
are optimized by means of a genetic tuning process.13 This method, which is
performed in a superior DB level to keep the linguistic approach of the resulting
classification system, constitutes a solution to the problem of finding the search
space partition that best represents the knowledge about the problem. There-
fore, starting from a set of predefined fuzzy partitions}uniform and with
triangular membership functions as shown in Figure 4, in our case}a new set of
fuzzy partitions is found where the supports are modified in width and location.

Each chromosome forming the genetic population will encode a different
DB definition that will be combined with the existing RB and hedge definitions
to evaluate the individual adaptation. The GA designed for the tuning process
presents real coding issue.34 It uses the stochastic universal sampling as a
selection procedure and Michaelewicz’s nonuniform mutation operator. The
max]min arithmetical crossover operator which makes use of fuzzy tools to
improve the GA behavior, is employed.

As mentioned, the primary fuzzy sets considered in the initial fuzzy parti-
tions are triangular shaped. Thus, each of the membership functions has an
associated parametric representation based on a 3-tuple of real values, and a
primary fuzzy partition can be represented by an array composed of 3 ? L real
values, with L being the number of terms forming the linguistic variable term
set. The complete DB for a problem in which N input linguistic variables are
involved is encoded into a fixed length real coded chromosome C built byr
joining the partial representations of each of the variable fuzzy partitions as
shown in the following:

C s a , b , c , . . . , a , b , cŽ .r i i1 i1 i1 i L i L i Li i i

C s C C ??? Cr r1 r 2 rN

The initial gene pool is created by making use of the initial DB definition.
This definition is encoded directly into a chromosome, denoted as C . The1
remaining individuals are generated by associating an interval of performance,
w l r x Nc , c to every gene c in C , h s 1 ???Ý L ? 3. Each interval of performanceh h h 1 is1 i

w l r xwill be the interval of adjustment for the corresponding gene, c g c , c .h h h
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Ž .If t mod 3 s 1, then c is the left-hand value of the support of a fuzzyt
Ž .number. The fuzzy number is defined by the three parameters c , c , c ,t tq1 tq2

and the intervals of performance are

c y c c y ctq1 t tq1 tl rc g c , c s c y , c qt t t t t2 2
c y c c y ctq1 t tq2 tq1l rc g c , c s c y , c qtq1 tq1 tq1 tq1 tq12 2
c y c c y ctq2 tq1 tq2 tq1l rc g c , c s c y , c qtq2 tq2 tq2 tq2 tq22 2

Figure 7 shows these intervals.
Therefore, we create a population of chromosomes containing C as its first1

individual and the remaining ones initiated randomly, with each gene being in
its respective interval of performance.

Finally, the fitness function is the same one used in the multiselection
stage: if the KB is not complete to a t degree, the function will be equal to 1.
We should remember that the hedges and modifiers selected in the previous
phase are involved in the computation of this function.

4. EXPERIMENTS

To analyze the performance of our proposal, we have applied the multi-
stage genetic learning process to two well known sample sets: Iris and Pima.

To calculate an error estimation the FRBCS, we use, for both sample bases,
random resampling32 with five random partitions of each sample base on
training and test sets, 70% and 30%, respectively. The outcomes shown in every
table are means of correct classification percentages and number of rules, for all
five training and for all five test sets, respectively.

Figure 7. Intervals of performance.
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We shall compare our results with those obtained with other algorithms
based on learning techniques such as decision tress, C4.5 algorithm,15 neural
networks, LVQ,17 inductive rules, CN2,16 and FRBSs, WM-FRLP.8,2

The parameters used for the three processes in the experiments are shown
in the following:

v Generation process: v s 0.05, k s 0.1, e s 1.5.
v Multiselection process:

Number of generations, 500.
Number of individuals, 61.
t , 0.1
% of rules for the niche radius, 0.025.

Ž .b power factor , 0.5.
Number of solutions, 3.
Cross probability, 0.6.
Mutation probaiblity, 0.1.

v Tuning process:
Number of generations, 500.
Number of individuals, 61.
t , 0.1.
Ž .a crossover parameter , 0.35.
Ž .b mutation parameter , 5.

Cross probability, 0.6.
Mutation probability, 0.1.

4.1. Iris Data

The Fisher Iris data are a set of 150 examples of iris flowers with four
Ž .attributes and three classes setosa, versicolor, and virginica . Taking into

account the characteristics of this example set, we consider it interesting to use,
as the initial DB, a fuzzy partition constituted of five triangular fuzzy sets. To
show the performance of an FRBCS obtained using the proposed genetic
learning process, as well as the influence of the fuzzy rule type and the FRM
utilized to structure the knowledge about the problem, the organization of the
experiments is explained in the following paragraphs:

1. We will obtain, by means of the fuzzy rule generation process, a RB of each of the
Ž . Ž . Ž .considered type of rules a , b , and c . Because this learning process stage is

independent of the FRM used, the system performance will be computed with
the different FRMs studied in Ref. 11. Columns 2]7 of the table in Appendix I
show the results with all the FRMs; Table II presents the best results. The table
in Appendix I also shows the final number of rules.

2. The postprocessing stages, i.e., the multiselection and tuning stages, which have
as inputs the three types of RBs and the FRMs with the best behavior, will be

Ž . Ž . Ž .run to obtain a a simplified RB, b a set of linguistic hedges, and c a set of
membership function parameters, cooperating with the FRM.

As we mentioned earlier, this optimization proces will be carried out from
two points of view: looking for the best set of hedges common to all fuzzy rules
in the RBs, as well as the best set of hedges for each rule. Moreover, to analyze



´CORDON, DEL JESUS, AND HERRERA1046

Table II. Iris generation process.

Ž . Ž . Ž .Type a RB Type b RB Type c RB

FRM Training Test FRM Training Test FRM Training Test

1 94.487 94.256 1 97.312 95.208 1 97.312 95.208
2 98.580 95.797 2 98.575 96.222 3 97.679 95.734
3 97.469 94.357 5 97.144 95.797 5 97.495 95.734
4 95.304 94.256 4 97.506 95.298 4 97.506 95.208

the bias introduced by the use of the hedges, the multiselection nd tuning
processes will be run with the same RBs and FRMs, but in this case, without
linguistic hedges. All the results are shown in Appendix II in the following form:

v Ž � 4.The rows denoted S with i g 1, 2, 3 correspond to the results obtained by thei
KB selected in the stage number i of the multiselection process.

v Ž � 4.The rows indicated by T with i g 1, 2, 3 show the classification resultsi
obtained by the tuned KB that was generated starting from the KB selected in
stage i.

The best results are shown in Table III, in which the column denoted S-H
Ž .stage]hedges describes whether the results are obtained in the multiselection

Ž . Ž .stage MS or if the results correspond to the tuned FRBCS T for the linguistic
hedges denoted H0, a multiselection or tuning process without use of the
linguistic modifiers, H1, the postprocessing process with a Hedges I learning
process, and H2, the process with a Hedges II learning process.

For the FRMs that produced the best results, we used the following
notation:

1. Classical FRM.
2. FRM based on normalized sum.
3. FRM based on weighted normalized sum.

Ž .4. FRM based on quasiarithmetic mean p s 20 .
5. FRM based on weighted arithmetic mean.
6. FRM based on arithmetic mean.

Ž .7. FRM based on sowa or like a s 0.7 .
Ž .8. FRM based on weighted quasiartihmetic mean p s 20 .

Table III. Iris postprocessing process.

Ž . Ž . Ž .Type a RB Type b RB Type c RB

FRM Training Test S-H FRM Training Test S-H FRM Training Test S-H

1 99.379 96.246 MS-II 1 99.644 95.657 T-II 1 98.764 95.758 T-II
2 99.649 95.797 T-I 2 99.649 96.710 MS-0 3 98.580 95.797 T-0
3 99.821 96.222 T-I 5 100 96.184 MS-II 5 98.757 95.309 T-0
4 99.438 95.169 MS-I 4 99.293 96.184 MS-I 4 98.401 96.184 T-II
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Table IV. Other Iris algorithms.

Algorithm Training Test

C4.5 98.38 92.7
CN2 98.92 94.16
LVQ 98.55 95.72

Ž .In our experiments we use the word ‘‘weighted’’ or W to indicate use of
Ž .the weighted function g see Section 2.1.2 .2

To establish the behavior of the proposed multistage learning process for
the FRBCSs design, our results will be compared with those obtained by other

15 16 17 Ž .learning algorithms such as C4.5, CN2, , and LVQ see Table IV , and
WM-FRLP8,2 with three types of fuzzy if]then rules. The results of the
WM-FRLP method with the FRMs that obtain the best classification percent-
ages for the proposed learning method are shown in Table V.

The results indicate that the classification system obtained with our genetic
learning method in cooperation with the alternative FRMs has a greater
generalization ability, i.e., a higher percentage of success in the classification of
test samples than the classification systems obtained by means of other algo-
rithms. In addition, our classifiers present a greater interpretability.

An analysis of the results of our model leads to the following observations:

v ŽThe use of linguistic hedges causes an increasing cardinality of the RB see
.Appendix II . The linguistic hedge ¨ery produces a reduction of the example’s

membership degree, which means that the RB must include a greater number of
rules to be able to verify the completeness property.

v Ž .Learning a set of linguistic hedges for each fuzzy rule Hedges II may result in a
KB that is overtuned to the training samples and lead to a loss in the classifica-
tion system’s generalization ability.

v Ž .The type b fuzzy rules are the most suitable structures, for this method, to
represent the knowledge that we can extract from the training sets. The an-
tecedent of a fuzzy rule represents a fuzzy area in the search space, and if the
consequent describes information about all the classes, noise could be introduced
into the classification process for the other classes due to another antecedent, i.e.,
another fuzzy area, could better represent the knowledge for those classes.

v The selection mechanism in the genetic stages of the learning process}multi-
selection and tuning}might mean that, among several individuals with the same
percentage of success in the training examples and different success in the tests,

Table V. Iris WM-FRLP algorithm.

Ž . Ž . Ž .Type a RB Type b RB Type c RB

FRM Training Test FRM Training Test FRM Training Test

1 90.97 88.25 1 97.31 94.32 1 96.96 94.32
2 97.29 92.88 2 96.43 93.20 3 96.95 93.40
3 98.56 94.38 5 96.23 93.89 5 96.25 92.72
4 91.18 90.34 4 97.31 94.32 4 96.96 94.32
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one that has a worse behavior in the testing data may be selected. The reason is
that the selection of individuals with the same value for the fitness function is
carried out using the position in the ordering of the population.

v We notice that the best results are obtained for an FRBCS composed of a type
Ž .b RB. These results are obtained before the tuning process. As mentioned, the
generation process of these types of rules extracts knowledge from the problem in
a more accurate way. Therefore, the tuning of the membership function parame-

Ž .ters for the FRBCS with a type b RB may not be significant.
v Ž .On the contrary, for those RBs with structure c , the tuning process is very

important because it allows us to tune the fuzzy area represented by the rule
antecedent, so that the multiple consequent introduces the minimum amount of
noise in the classification process.

v Ž .In type a rules, which only show information about the class label that is
presented in a greater proportion in that area of the space, the tuning process or
the hedge learning for each rule affords a greater precision to the FRBCS.

4.2. Pima Data

Pima is a set of 768 cases involving the diagnosis of diabetes, where eight
Žvariables are taken into account, with two possible classes having or not having

.the complaint . Considering the characteristics of this sample set, i.e., the
number of variables and their domain, among others, we considered interesting
to use a fuzzy partition constituted by three triangular fuzzy sets as the initial
DB.

The results from the experiments on the Iris sample base have shown that
Ž .the type b RB, as a knowledge representation structure, has the best behavior.

That is why the experiments on the Pima sample base are oriented to developing
Ž .FRBCSs with type b RB.

The best results obtained in the different stages of the genetic learning
process are shown in Table VI, according to the best results obtained in the

Žgeneration process by the different FRMs see columns 8 and 9 in the table in
.Appendix I . Using the remaining algorithms, the results obtained for this

sample base are as shown in Table VII. Again, note that the FRBCS obtained
using the multistage genetic learning process has a greater percentage of correct
classifications in the testing samples than the classification systems obtained
with the C4.5, CN2, and LVQ techniques and the WM-FRLM.

Ž .Table VI. Classification results for Pima with a type b RB.

Generation Process Postprocessing Processes

FRM Training Test Training Test S-H

1 74.872 73.668 81.806 74.061 T-0
3 76.161 74.488 83.272 75.811 MS-II
7 74.037 73.872 80.866 75.676 MS-I
8 74.769 73.564 78.144 74.173 MS-0
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Table VII. Classification results for
Pima with other learning algorithms.

Algorithm Training Test

C4.5 96.06 71.4
CN2 85.4 74.5
LVQ 83.68 67.71
WM-FRLP

FRM 1 85.81 73.23
FRM 3 83.93 72.60
FRM 7 85.88 72.81
FRM 8 85.85 73.23

5. CONCLUSIONS

In this work, we described a genetic learning process for obtaining linguistic
FRBCSs that integrates FRMs cooperating with the KBs. Furthermore, this
process learns the best set of linguistic hedges for the linguistic variables terms
thus maintaining the descriptive capabilities of the classification system.

We analyze the behavior of different types of fuzzy rules and the FRMs in
the learning of the FRBCS using our genetic learning process. The most
powerful type of fuzzy rule to extract the knowledge is the rule that the
consequent must indicate a class and the associated certainty degree. With an
FRBCS with this type of rule, the best results are obtained.

As we know, the FRMs can be classified into two categories, i.e., those
which use a single rule to classify and those based on a combination of
information provided by different rules. Methods in the first category classify
only with the best rule, so they consider the rules as intervals and ignore the
information provided by overlapped fuzzy subsets. The use of an FRM that
considers the information given by all the rules in the FRBS design process
increases the generalization ability of the resulting system. Nevertheless, it
cannot determine a unique FRM as the best suitable for any type of problem, so
it will be necessary to carry out a small study on the different FRMs’ behavior
to obtain the best FRBCS to solve it.

As future work, we intend to extend the multistage genetic learning process
to design a new kind of FRBCS, the approximate one, in which the antecedent
part of the fuzzy rule presents an approximate nature13, and to design FRBCSs
with fuzzy rules in a disjunctive normal form where each linguistic variable may
have different linguistic valus associated in the same rule.5,35

This research was supported by CICYT TIC 96-0778.
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APPENDIX I

Classification results of the FRBCSs obtained in the generating process with different
FRMs.

Ž . Ž . Ž . Ž .Iris Type a Iris Type b Iris Type c PIMA Type b
Ž . Ž . Ž . Ž .RB 61.8 Rules RB 70 Rules RB 64.4 Rules RB 279.6 Rules

FRM Based on TRA Test TRA Test TRA Test TRA Test

Classic 95.487 94.256 97.312 95.208 97.312 95.208 74.873 73.668
Normalized sum 94.580 95.797 98.575 96.222 96.750 94.093 76.754 73.960
W. normalized sum 97.469 94.357 98.224 95.797 97.680 95.734 76.161 74.488
Arithmetic mean 92.157 91.779 97.495 95.371 96.566 93.668 71.178 70.057
W. arithmetic mean 94.202 93.280 97.144 95.797 97.496 95.734 71.981 70.780
Sowa or like 0.3 93.835 93.280 97.500 95.270 97.496 95.734 73.060 71.910
W. Sowa or like 0.3 94.575 93.280 97.327 95.208 97.690 95.208 73.652 72.946
Sowa or like 0.5 94.564 93.280 97.495 95.208 97.862 95.208 73.513 73.044
W. Sowa or like 0.5 94.753 93.280 97.323 95.208 97.506 95.208 74.072 73.566
Sowa or like 0.7 94.937 94.256 97.323 95.208 97.506 95.208 74.037 73.872
W. Sowa or like 0.7 94.753 94.256 97.506 95.208 97.506 95.208 94.595 73.461
Sowa or like 0.8 94.937 94.256 97.506 95.208 97.506 95.208 74.490 73.461
W. Sowa or like 0.8 94.753 94.256 97.506 95.208 97.506 95.208 74.664 73.461
Sowa or like 0.9 94.937 94.256 97.506 95.208 97.506 95.208 74.664 73.461
W. Sowa or like 0.9 94.753 94.256 97.506 95.208 97.506 95.208 74.803 73.668
Quasiarithmetic 94.937 93.281 97.328 95.208 97.506 95.208 74.280 72.946

mean 10
W. quasiarithmetic 94.586 94.256 97.506 95.208 97.506 95.208 74.629 73.564

mean 10
Quasiarithmetic 95.304 94.256 97.506 95.208 97.506 95.208 74.629 73.564

mean 20
W. quasiarithmetic 94.586 94.256 97.506 95.208 97.506 95.208 74.769 73.564

mean 20
Badd 10 94.758 94.256 97.506 95.208 97.506 95.208 75.115 73.564
W. badd 10 94.937 94.256 97.312 95.208 97.312 95.208 75.011 73.668
Badd 20 95.293 94.256 97.312 95.208 97.312 95.208 75.011 73.668
W. badd 20 95.120 94.256 97.312 95.208 97.312 95.208 74.838 73.769
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APPENDIX II

Classification results of the FRBCSs obtained in the postprocessing processes with
different FRMs.

Without Hedges Hedges I Hedges II

Training Test NR Training Test NR Training Test NR

Ž .1. Iris Type a RB and Classic FRM
S 97.663 94.357 30 S 99.115 93.769 39.8 S 99.379 94.643 44.41 1 1
S 97.663 93.831 39.4 S 99.115 94.256 39.2 S 99.379 96.246 49.22 2 2
S 97.663 94.256 38 S 99.115 94.744 39.4 S 99.644 93.242 46.63 3 3
T 99.293 94.367 30 T 99.638 95.333 39.8 T 98.821 93.405 44.41 1 1
T 99.293 92.979 39.4 T 99.817 94.256 39.2 T 99.644 94.256 49.22 2 2
T 99.465 92.855 38 T 99.816 94.907 39.4 T 99.644 92.352 46.63 3 3

Ž .2. Iris Type a RB and FRM Based on Weighted Normalized Sum
S 99.465 95.634 41.4 S 99.828 94.782 43.4 S 100 94.256 50.81 1 1
S 99.465 95.309 38 S 99.638 95.696 40.6 S 99.828 95.309 502 2 2
S 99.465 94.256 38.8 S 99.649 95.270 43.8 S 100 92.879 51.43 3 3
T 99.649 94.782 41.4 T 99.828 93.769 43.4 T 100 93.831 50.81 1 1
T 99.466 95.208 38 T 99.821 96.222 40.6 T 100 93.831 502 2 2
T 99.466 93.242 38.8 T 99.649 94.782 43.8 T 100 93.042 51.43 3 3

Ž .3. Iris Type a RB and FRM Based on Normalized Sum
S 99.465 95.634 41 S 99.649 94.194 43.8 S 100 94.194 51.81 1 1
S 99.465 95.108 40.6 S 99.649 95.309 44.6 S 100 93.203 53.22 2 2
S 99.465 94.156 41.6 S 99.465 95.332 45 S 100 93.730 52.83 3 3
T 99.465 94.782 41 T 99.649 94.357 43.8 T 100 93.831 51.81 1 1
T 99.465 95.634 40.6 T 99.649 95.797 44.6 T 100 92.716 53.22 2 2
T 99.466 94.395 41.6 T 99.649 95.797 45 T 100 92.290 52.83 3 3

Ž . Ž .4. Iris Type a RB and FRM Based on Quasiarithmetic Mean p s 20
S 97.663 93.341 36.4 S 99.438 95.169 40.8 S 99.816 93.281 48.41 1 1
S 97.663 93.869 37 S 99.477 92.290 39.4 S 100 93.831 50.62 2 2
S 97.663 93.242 37.4 S 99.649 94.782 38.8 S 99.644 93.241 46.83 3 3
T 99.293 93.970 36.4 T 99.644 94.256 40.8 T 100 93.768 48.41 1 1
T 99.293 94.782 37 T 99.293 93.204 39.4 T 100 94.907 50.62 2 2
T 99.993 93.831 37.4 T 99.649 94.179 38.8 T 100 92.731 46.83 3 3

Ž .5. Iris Type b RB and Classic FRM
S 98.569 94.720 40.6 S 99.293 94.357 45.4 S 99.644 94.480 47.41 1 1
S 98.569 93.606 39 S 99.477 93.668 44.8 S 99.816 91.113 46.22 2 2
S 98.569 95.208 43.8 S 99.649 93.180 44.8 S 100 94.031 51.23 3 3
T 99.114 93.281 40.6 T 99.472 93.444 45.4 T 99.644 95.657 47.41 1 1
T 99.114 93.281 39 T 99.477 93.343 44.8 T 99.817 91.601 46.22 2 2
T 99.465 94.782 43.8 T 99.649 93.281 44.8 T 100 94.256 51.23 3 3

Ž .6. Iris Type b RB and FRM Based on Normalized Sum
S 99.466 94.620 45.6 S 99.828 93.280 49.8 S 99.828 94.744 53.21 1 1
S 99.649 96.710 48 S 99.465 95.309 47.4 S 100 93.281 58.62 2 2
S 99.649 95.208 47.4 S 99.655 94.295 48.6 S 100 94.156 60.83 3 3
T 99.466 94.256 45.6 T 99.828 92.855 49.8 T 99.828 93.730 53.21 1 1
T 99.649 96.222 48 T 99.465 95.309 47.4 T 100 94.357 58.62 2 2
T 99.649 95.208 47.7 T 99.649 93.845 48.6 T 100 94.256 60.83 3 3
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Classification results of the FRBCSs obtained in the postprocessing processes with
Ž .different FRMs. Continued

Without Hedges Hedges I Hedges II

Training Test NR Training Test NR Training Test NR

Ž .7. Iris Type b RB and FRM Bassed on Weighted Arithmetic Mean
S 99.470 94.720 43.2 S 99.649 94.845 43.6 S 100 96.184 49.21 1 1
S 99.470 94.094 41 S 99.821 93.242 44.6 S 100 93.954 44.62 2 2
S 99.643 94.782 40 S 99.821 93.730 43.6 S 100 93.668 52.63 3 3
T 99.649 94.357 43.2 T 99.649 94.232 43.6 T 100 95.208 49.21 1 1
T 99.828 95.758 41 T 99.821 92.917 44.6 T 100 93.567 44.62 2 2
T 99.821 93.869 40 T 99.821 93.831 43.6 T 100 93.668 52.63 3 3

Ž . Ž .8. Iris Type b RB and FRM Based on Quasiarithmetic Mean p s 20
S 98.764 93.706 38.4 S 99.293 94.682 44 S 99.649 94.342 52.81 1 1
S 98.764 94.194 41 S 99.293 96.184 44.4 S 100 94.605 45.22 2 2
S 98.764 94.682 43.8 S 99.465 93.730 49 S 99.649 96.184 48.23 3 3
T 99.293 92.368 38.4 T 99.293 94.245 44 T 99.649 94.845 52.81 1 1
T 99.293 93.706 41 T 99.821 92.917 44.4 T 100 93.567 45.22 2 2
T 99.293 94.266 43.8 T 99.821 93.831 49 T 100 93.668 48.23 3 3

Ž .9. Iris Type c RB and Classic FRM
S 97.851 94.682 42 S 98.380 93.768 40.6 S 98.563 95.533 49.61 1 1
S 97.851 93.644 37 S 98.397 94.031 40.2 S 98.569 95.633 41.42 2 2
S 97.851 94.682 36.6 S 98.558 93.730 41 S 98.585 96.184 50.63 3 3
T 98.218 94.256 42 T 98.574 94.782 40.6 T 98.746 93.544 49.61 1 1
T 98.397 94.194 37 T 98.397 94.194 40.2 T 98.931 95.270 41.42 2 2
T 98.401 93.281 36.6 T 98.472 94.295 41 T 98.764 95.758 50.63 3 3

Ž .10. Iris Type c RB and FRM Based on Weighted Normalized Sum
S 98.401 85.208 40.6 S 98.942 93.080 41.8 S 99.115 93.343 48.41 1 1
S 98.580 95.634 37.6 S 98.580 93.343 41.6 S 99.115 93.304 49.42 2 2
S 98.752 95.633 39.4 S 99.108 94.782 38.2 S 98.757 94.782 50.23 3 3
T 98.585 93.304 40.6 T 99.115 92.066 41.8 T 99.287 93.807 48.41 1 1
T 98.580 95.797 37.6 T 99.115 95.309 41.6 T 99.115 93.768 49.42 2 2
T 98.925 95.309 39.4 T 99.108 94.845 38.2 T 98.930 94.782 50.23 3 3

Ž .11. Iris Type c RB and FRM Based on Weighted Arithmetic Mean
S 98.401 95.208 39 S 98.759 93.304 43.2 S 99.287 95.270 47.21 1 1
S 98.580 94.682 40 S 99.114 93.792 39.2 S 98.942 94.720 53.42 2 2
S 98.401 94.093 41.2 S 98.752 94.256 42.2 S 99.287 94.682 47.83 3 3
T 98.757 95.309 39 T 98.942 93.831 43.2 T 99.287 94.782 47.21 1 1
T 98.764 94.782 40 T 99.115 92.252 39.2 T 98.942 94.295 53.42 2 2
T 98.585 94.821 41.2 T 98.931 94.357 42.2 T 99.287 94.256 47.83 3 3

Ž . Ž .12. Iris Type c RB and FRM Based on Quasiarithmetic Mean p s 20
S 98.046 94.093 38.2 S 98.401 94.093 43.4 S 98.936 94.744 47.21 1 1
S 98.046 94.782 39.6 S 98.752 92.754 41.6 S 98.569 92.615 49.42 2 2
S 98.046 94.720 35.8 S 98.574 93.606 41.8 S 98.401 94.581 523 3 3
T 98.574 93.668 38.2 T 98.757 94.682 43.4 T 99.287 93.831 47.21 1 1
T 98.757 94.682 39.6 T 98.931 93.730 41.6 T 98.920 93.180 49.42 2 2
T 98.401 94.295 35.8 T 98.574 93.180 4.18 T 98.401 96.184 523 3 3
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