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N PRACTICAL PATTERN-CLASSIFI- 
cation tasks such as medical diagnosis, a clas- 
sification function learned through an induc- 
tive learning algorithm assigns a given input 
pattem to one of a finite set of classes. Typi- 
cally, the representation of each input pattem 
consists of a vector of attribute, feature, or 
measurement values. The choice of features 
to represent the patterns affects several as- 
pects of pattern classification, including 

0 Accuracy. The features used to describe 
the pattems implicitly define a pattem lan- 
guage. If the language is not expressive 
enough, it fails to capture the information 
necessary for classification. Hence, re- 
gardless of the learning algorithm, the 
amount of information given by the fea- 
tures limits the accuracy of the classifica- 
tion function learned. 
Required learning time. The features 
describing the patterns implicitly deter- 
mine the search space that the learning 
algorithm must explore. An abundance of 
irrelevant features can unnecessarily in- 
crease the size of the search space and 
hence the time needed for learning a suf- 
ficiently accurate classification function. 
Necessavy number of examples. All other 
things being equal, the larger the number 
of features describing the patterns, the 
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PRACTICAL PATTERN- CLASSIFICATION AND KNOWLEDGE- 
DISCOVERY PROBLEMS REQUIRE THE SELECTION OF A SUBSET 

OF ATTRIBUTES OR FEATURES TO REPRESENT THE PATTERNS 
TO BE CLASSIFIED. THE AUTHORS’ APPROACH USES A GENETIC 

ALGORITHM TO SELECT SUCH SUBSETS, ACHIEJ4iVG 
MULTICRITERlA OPTIMIZATION IN TERMS OF GENERALIZATION 

ACCURACYAND C O S D  ASSOCIATED W T H  THE FEATURES. 

larger the number of examples needed to 
train a classification function to the 
desired accuracy. 
Cost. In medical diagnosis, for example, 
pattems consist of observable symptoms 
along with the results of diagnostic tests. 
These tests have various associated costs 
and risks; for instance, an invasive ex- 
ploratory surgery can be much more ex- 
pensive and risky than, say, a blood test. 

In the automated design of pattern classi- 
fiers, these variables present us with thefea- 
ture subset selection problem. This is the task 
of identifying and selecting a useful subset 
of pattem-representing features from a larger 
set of features. The features in the larger set 
have different associated measurement costs 
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and risks, and some may be irrelevant or 
mutually redundant. 

A significant, practical example of such a 
scenario is the task of selectmg a subset of clin- 
ical tests-each with a different financial cost, 
diagnostic value, and associated risk-to be 
performed for medical diagnosis. Other in- 
stances of the feature subset selection problem 
arise in, for example, large-scale data-mining 
applications and power system control. 

Several approaches to feature subset 
selection exist (see the “Related work” side- 
bar); ours employs a genetic algorithm. The 
experiments we describe in this article dem- 
onstrate the effectiveness of our approach 
in the automated design of neural networks 
for pattern classification and knowledge 
discovery. 
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Related work 
There havc bcen several proposals of approachcs to feature suh,ct 

selection. (We discuss only a few of these i n  this article; our rccent 
work’ contains a more complete list of references.) Some 01‘ these 
approachcs involve searching for an optimal subset of features hazed on 
particular criteria of interest. 

Feature weighting is a variant of feature sclcction. It involvcs assign- 
ing a real-valued weight to cach feature. The weight associated with a 
feature rwasures its relevance or significance in the classification task.2 
Feature subsct selection is a spccial case of wcighting with hinary 
weights. 

Several authors havc examined the USK ofa heurixtic search for fea- 
ture subset selection; this oftcn operates in conjunction with a branch.. 
and-bound swrch.3 Others havc explored mndomizctfl and random- 
ized, population-based heuristic search techniques such as genetic 
algorithms’-’to select feature subsels for USC with decision-trcc or 
nearest-neighbor classifiers. 

whe1:her or not they perfonn feature selection independently of the 
learning algorithm that constructs the classifier. If the techniquc 
performs feature selection indepentlenUy of the learning algorithni, it 
follows a,fiZfer approach. Otherwise, it follows a wrapper approach.? 

The filter approach is generally computationally more etlicient. 
HOWCWF, its major drawback is that an optimal selection of features 
rnay not he independent of the inductive and representational biases of 
the leanling algorithm that constructs the classitier. The wrapper 
approach, on the olher hand, incurs the computational overhead of eval- 
ualing candidate reature subsets by executing a selected learning algo- 
rithm on the data sct using each feature subset undcr consideration. 

is iiot computationally feasible. most current approaches assume 
monotonicity of some measurc of classilication pcrfomiancc and then 
usc branch-and-bound search. This ensures that adding features does 
not worsen perforinance. Techniques that make this monotonicity 
assumption in some form appcar to work rcasonably wcll with linear 
classificrs. 1,Iowever. thcy can exhi.bit poor performancc with nonlinear 
classiliers such as neural networks.’ Furthermore, many practical sce- 
narios do not satisfy the monotonicity assumption. For example, irrcle- 
vant features (11or example; social sccurity numhers i n  n~cdicel records 

Feature fiubset selection algorithms fall into two categories based on 

‘Because exhaustivc search over all possible combinations of features 

. . . -. .. . . 

Why a genetic algorithm? 

Feature subset selection in the context of 
practical problems such as diagnosis presents 
a multicriteria optimization problem. The cri- 
teria to be optimized include the classifica- 
tion’s accuracy, cost, and risk. Evolutionary 
algorithms offer a particularly attractive 
approach to multicriteria optimization be- 
cause they are effective in high-dimensional 
search spaces. 

Neural networks are densely intercon- 
nected networks of relatively simple com- 
puting elements-for example. threshold or 
sigmoid neurons. Neural networks’ potential 
for parallelism and their fault and noise tol- 
erance make them an attractive framework 
for the design of pattern classifiers for real- 
world, real-time, pattern-classification tasks. 

The classification function realized by a 
neural network is determined by the func- 
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iii a diagnosis task) caii significantly worsen a decision tree clasifier’s 
gcneralization accuracy. Also, most of the proposcd l‘wture selection 
techniques (wiih thc exception of those using genetic algorithms) are 
not designed t o  handle multiple selection criteria (classification itccu- 
racy, feature mcasurement cost. and so on). 

l’hc multicriteria approach that we explore in this article is wrapper- 
based and uses B genetic algorithm in conjunction with a relatively fast, 
interpattern distance-based, ncural-network lcaining algorithm. How- 
ever, this gcncral approach works hith any inductive learning algorithm. 
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tions computed by the neurons, the connec- 
tivity of the network, and the parameters 
(weights) associated with the connections. 

Assume Cis a finite set of classes, II a finite 
number of discrete or real-valued attributes, 
R the set of real numbers, and D a finite set of 
discrete values. Multilayer networks of non- 
linear computing elements (such as threshold 
neurons) can realize any classification func- 
tion ip : Rn + Cor  ip: Dn + C. If the attributes 
are symbolic, they must first be mapped to 
numeric values using appropriate coding 
schemes. Evolutionary algorithms are gener- 
ally quite effective for rapid global search of 
large search spaces in multimodal optimiza- 
tion problems. Neural networks are particu- 
larly effective for fine-tuning solutions once 
promising regions in the search space have 
been identified.’ Against this background, 
genetic algorithms offer an attractive ap- 
proach to feature subset selection for neural- 

. . . . . . . . .. 

network pattern classifiers. 
However, if we use traditional neural- 

network training algorithms to train the pat- 
tern classifiers, the use of genetic algorithms 
for subset selection presents some practical 
problems: 

Traditional neural-network learning algo- 
rithms (such as back-propagation) per- , 

form an error gradient-guided search for 
a suitable setting of weights in the weight 
space determined by a user-specified net- 
work architecture. This ad hoc choice of 
network architecture often inappropri- 
ately constrains the search for weight set- 
ting. For example, if the network has too 
few neurons, the learning algorithm will 
miss the desired classification function. 
If the network has far more neurons than 
necessary, it can result in overfitting of 
the training data, which leads to poor gen- 
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eralization. Either case would make it dif- 
ficult to evaluate the usefulness of a fea- 
ture subset describing the training pat- 
terns for the neural network. 
Gradient-based learning algorithms, al- 
though mathematically well-founded for 
unimodal search spaces, can get caught 
in local mnima of the error function. This 
can complicate the evaluation of the use- 
fulness of a feature subset employed to 
describe the neural networks' training 
patterns. 
A typical run of a genetic algorithm in- 
volves many generations. In each gener- 
ation, evaluation of an individual (a fea- 
ture subset) involves training the neural 
network and computing its accuracy and 
cost. This can make the fitness evaluation 
rather expensive, because gradient-based 
algorithms are typically quite slow. The 
problem is exacerbated because we must 
use multiple neural networks to sample 
the space of ad hoc network architecture 
choices to get a reliable fitness estimate 
for each feature subset represented in the 
population. 

Fortunately, constructive neural-network 
learning algorithms2 eliminate the need for ad 
hoc and often inappropriate a priori choices 
of network architectures. In addition, such 
algorithms can potefitially discover near-min- 
imal networks whose size is commensurate 
with the complexity of the classification task 
implicitly specified by the training data. Sev- 
eral new, provably convergent, and relatively 
efficient constructive learning algorithms for 
multicategory real and discrete-valued pattern 
classification tasks have begun to appear in 
the l i t e ra t~re .~ .~  Many of these have demon- 
strated very good performance in terms of 
reduced network size, learning time, and gen- 
eralization in several experiments with both 
artificial and fairly large real-world data sets. 

I 

The results we present in this article are 
from experiments using neural networks con- 
structed by D i ~ t A l , ~  a simple and fast con- 
structive neural-network learning algorithm 
for pattern classification. DistAl's key fea- 
ture is to add hidden neurons one at a time, 
using a greedy strategy that ensures that each 
hidden neuron correctly classifies a maximal 
subset of training patterns belonging to a sin- 
gle class. Correctly classified examples can 
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then be eliminated from further considera- 
tion. The process terminates when this pro- 
cess results in an empty training set-that is, 
when the network correctly classifies the 
entire training set. At this point, the training 
set becomes linearly separable in the trans- 
formed space defined by the hidden neurons. 
In fact, it is possible to set the weights on the 
hidden-to-output neuron connections with- 
out going through an iterative process. 

DistAl is guaranteed to converge to 100% 
classification accuracy on any finite training 
set in time that is polynomial in the number 
of training pattems. Earlier experiments3 show 
that DistAl, despite its simplicity, yields clas- 
sifiers that compare quite favorably with those 
generated by leaming algorithms that are more 
sophisticated and substantially more demand- 

DIS'GqL ADDS HIDDEN NEU- 
RONS ONE AT A TlMl?, USING A 

GREEDY S7RA7EGY THAT EN- 
SURES THAT EACH HDDm 

NEURON CORRECTLY CLASSIFIES 
A iW4XlML SUBSET OF 'IIL4w- 

ING PATTERNS BELONGING TO A 
SINGLE CLASS. 

ing computationally. This makes DistAl an 
attractive choice for experimenting with evo- 
lutionary approaches to feature subset selec- 
tion for neural-network pattem classifiers. Fig- 
ure 1 shows the key steps in our approach. 

Implementation 

We ran our experiments using a standard 
genetic algorithm with a rank-based selec- 
tion strategy. The probability of selection of 
the highest ranked individual i sp  (where 0.5 
< p  < 1.0 is a user-specified parameter); that 
of the second highest ranked individual isp(1 
- p ) ;  that of the third highest ranked individ- 
ual is p(  1 - P ) ~ ;  and that of the last ranked 
individual is 1 - (sum of the probabilities of 
selection of all the other individuals).' Our 
results are based on ten random partitions for 
each classification task with the following 
parameter settings: 

* Population size: 50 
Number of generations: 20 
Probability of crossover: 0.6 
Probability of mutation: 0.001 

* Probability of selection of the highest 
ranked individual: 0 6 

We based these parameter settings on the 
results of several prelimnary runs The prob- 
abilities of crossover, mutation, and selec- 
tion of the highest ranked individual are close 
to the typical values used in standard genetic 
algorithms. 

Each individual in the population repre- 
sents a candidate solution to the feature sub- 
set selechon problem. Let m be the total num- 
ber of features available to choose from to 
represent the patterns to be classified. In a 
medical diagnosis task, these would be 
observable symptoms and a set of possible 
diagnostic tests that can be performed on the 
patient. (Given m such features, there exist 
2m possible feature subsets Thus, for large 
values of m, an exhaustive search is not fea- 
sible). Each feature subset is represented by 
a binary vector of hmension m If a bit is a 
1, it means that the corresponding feature is 
selected. A value of 0 indicates that the cor- 
responding feature is not selected 

We determine an individual's fitness by 
evaluating the neural network constructed by 
DistAl using a tranmg set whose pattenis are 
represented using only the selected subset of 
features If an individual has n bits tumed on, 
the correspondmg neural network has n input 
nodes. 

The fitness function combines two crite- 
ria-the accuracy of the classificahon func- 
tion realized by the neural network and the 
cost of performing the classification. We can 
estimate the classification function's accu- 
racy by calculating the percentage of patterns 
in a test set that the neural network in ques- 
hon correctly classifies Several measures of 
classification cost suggest themselves. the 
cost of measuring the value of a particular 
feature needed for classification (the cost of 
performing the necessary test in a medical 
diagnosis application), the nsk involved, and 
so on. To keep things simple, we chose this 
two-criteria fitness function. 

fztness(x) = uccurucy(x) 

cost(x) 
accuvucy(x) + 1 

- +cost,, 
(1) 

Here,fitizess(xj is the fitness of the feature 
subset represented by x; accuvucy(x) is the 
test accuracy of the neural-network classifier 
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trained by DistAl using the feature subset rep- 
resented by x; cosr(x) is the sum of measure- 
ment costs of the feature subset represented 
by x; and cost,,,, is an upper bound on the 
costs of candidate solutions. In this case, 
cost,, is simply the sum of the costs associ- 
ated with all of the features. This is clearly a 
somewhat ad hoc choice. However, it does 
discourage trivial solutions-such as a zero- 
cost solution with very low accuracy-from 
being selected over reasonable solutions that 
yield high accuracy at a moderate cost. It also 
ensures that 'dx 0 5 fitness (x) 5 (100 + 

In practice, we must define suitable trade- 
offs between the multiple objectives based 
on knowledge of the domain. In general, it is 
a nontrivial task to combine multiple opti- 
mization criteria into a single fitness func- 
tion. The literature on utility theory exam- 
ines a wide variety of appro ache^.^ 

C O S G I " .  

Experimental data sets 

The experiments we report here used real- 
world data sets as well as a carefully con- 
structed artificial data set (called1 3-bit par- 
ity) to explore the feasibility of using genetic 
algorithms for feature subset selection for 
neural-network classifiers. We obtained the 
real-world data sets from the machine- 
learning data repository at the University of 
California, Irvine (http://www. ics. uci.edu/ 
A I/MuMDBRepository. html) . 

3-bit parity data set. We constructed this 
data set to explore the genetic algorithm's 
effectiveness in selecting an appropriate sub- 
set of relevant features in the presence of 
redundant features. If successful, the genetic 
algorithm would minimize the cost and max- 
imize the accuracy of the resulting neural- 
network pattern classifier. 

To introduce redundancy to the training 
set, we replicated the original features once, 
thereby doubling the number of features. 
Then, we generated an additional set of irrel- 
evant features and assigned them random 
Boolean values. We generated 100 7-bit ran- 
dom vectors and augmented them with the 
6-bit vectors (corresponding to the original 
three bits plus an identical set of ihree bits). 
We assigned each feature in the resulting data 
set a random cost between 0 and 9. 

Real-world data sets. Our objective with 
real-world data sets was to compare the 

... pool of 
candidates candidates fitness values) 

.. ~. . . A 
1. Feature subset selection using a genetic algorithm with DistAl. Starting from the initial population.ofmdi- 

dates having different feature subsets, we generate new populations repeatedly from the previous ones by applying 
genetic operators (crossover and mutation) to the selected parents. DistAl evaluates the fitness values of offspring and 
ranks them according to their fitness values. The last generation of the process yields the best individual. 

neural networks built using feature subsets 
that the genetic algorithm selected with 
neural networks using the entire set of fea- 
tures available. Table 1 summarizes the data 
sets' characteristics. 

Some medical data sets include measure- 
ment costs for the features, but most sets lack 
this information. Thus, our experiments fo- 
cused on identifying a minimal subset of fea- 
tures to yield high-accuracy neural-network 
classifiers for all data sets. Where measure- 
ment costs were available, we compared the 

performance considering the cost in addition to 
the accuracy (see Equation 1) with that we 
obtained by considering the accuracy alone. 

Experimental results 

We partitioned each data set into a training 
and test set (with 90% of the data used for 
training and the remaining 10% for testing). 
We did this partition 10 times and used each 
partition in five independent runs of the gen- 

Table 1. Data sets used in the experiments. 

DATA SET DESCRIPTION 

SIZE INPUT OUTPUl 
(NO. OF FEATIRES CLASSES 

PATTERNS) (NO.\ FEATURE TYPE (NO.\ 

3P 
Annealing 
Audiology 
Bridges 
Cancer 
CRX 
Flag 
Glass 
Heart 
HeartCle 
HeartHun 
HeartLB 
HeartSwi 
Hepatitis 
Horse 
Ionosphere 
Liver 
Pima 
Promoters 
Sonar 
Soybean 
Votes 
Vehicle 
Vowel 
Wine 
zoo 

3-bit parity problem 
Annealing database 
Audiology database 
Pittsburgh bridges 
Breast cancer 
Credit screening 
Flag database 
Glass identification 
Heart disease 
Heart disease (Cleveland) 
Heart disease (Hungarian) 
Heart disease (Long Beach) 
Heart disease (Swiss) 
Hepatitis domain 
Horse colic 
Ionosphere structure 
Liver disorders 
Pima Indians diabetes 
DNA sequences 
Sonar classification 
Large soybean 
House votes 
Vehicle silhouettes 
Vowel recognition 
Wine recognition 
Zoo database 

100 13 
798 38 
200 69 
105 11 
699 9 
690 15 
194 28 
214 9 
270 13 
303 13 
294 13 
200 13 
123 13 
155 19 
300 22 
351 34 
345 6 
768 8 
106 57 
208 60 
307 35 
435 16 
846 18 
528 10 
178 13 
101 16 

Numeric 
Numeric, nominal 
Nominal 
Numeric, nominal 
Numeric 
Numeric, nominal 
Numeric, nominal 
Numeric 
Numeric, nominal 
Numeric, nominal 
Numeric, nominal 
Numeric, nominal 
Numeric, nominal 
Numeric, nominal 
Numeric, nominal 
Numeric 
Numeric 
Numeric 
Nominal 
Numeric 
Nominal 
Nominal 
Numeric 
Numeric 
Numeric 
Numeric, nominal 

2 
5 

24 
6 
2 
2 
8 
6 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

19 
2 
4 

11 
3 
7 
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etic algonthm. Tables 2,3, and 4 show aver- 
aged performance. The table entries corre- 
spond to means and standard deviations, 
shown in the form mean k standard deviation. 
(See our recent work6 for more thorough 
experiments .) 

Improving generalization. To study the 
effect of feature subset selection on general- 
ization, we ran expenments using classifica- 
tion accuracy as the fitness function. The 
results shown in Table 2 indicate that the net- 
works constructed using a GA-selected sub- 
set of features compare quite favorably with 
networks that use all of the features. In par- 
ticular, feature subset selection resulted in 
significant generalization improvement. 

Table 3 compares the results of our ap- 
proach with other GA-based approaches7 
and several non-GA-based approaches cited 
in our recent work.6 (These non-GA ap- 
proaches use a decision-tree algorithm.) We 
limited the comparisons to only those data 
sets for which at least one of the two stud- 
ies6,7 reported results that could be compared 
with the results of our experiments. (It is not 
generally feasible to do a completely fair and 
thorough comparison between different 
approaches without complete knowledge of 
the parameters and setup used in the exper- 
iments.) The results indicate that our 
approach provided higher generalization 
accuracy in almost all cases, although it 
occasionally used more features. 

Minimizing cost and maximizing accu- 
racy. For this experiment, we based subset 
selection on both generalization accuracy 
and the features’ measurement cost. (See the 
fitness function in Equation 1 .) We used the 
%bit parity problem, hepatitis, Cleveland 
heart disease, and the Pima Indians diabetes 
data sets (with random costs in the 3-bit par- 
ity problem.) Table 4 shows the results. 

The fitness function that combined both 
accuracy and cost outperformed that based 
on accuracy alone in every respect: the num- 
ber of features used, generalization accuracy, 
and the number of hidden neurons. This is 
not surprising, because the former tries to 
minimize cost while maximizing accuracy; 
this reduces the number of features. The lat- 
ter emphasizes only the accuracy. Some of 
the runs resulted in feature subsets that did 
not necessarily have minimum cost. This 
suggests that we can improve the results with 
a more principled choice of a fitness func- 
tion combining accuracy and cost. 

AN attractive approach to solving the fea- 
ture subset selection problem in inductive 
learning of pattern classifiers in general and 
neural-network pattern classifiers in partic- 
ular. This task finds applications in the cost- 
sensitive design of classifiers for tasks such 
as medical diagnosis and computer vision. 
Other applications of interest include auto- 
mated data-mining and knowledge discov- 
ery from data sets with an abundance of 

THE FITNESS FUNCTION THAT 
COMBINED BOTH ACCURACY 
AND COST OUTPERFORMED 
THAT BASED ON ACCURACY 
ALONE IN EVERY RESPEC?: THE 
NUMBER OF FEATURES USED, 
GENERALIZATION ACCURACI; 
AND THE NUMBER OF HIDDEN 
NEURONS. 

irrelevant or redundant features. In such 
cases, identifying a relevant subset that ade- 
quately captures the regularities in the data 
can be particularly useful. 

Some directions for further research in this 
field include 

the application of approaches based on 
genetic algorithms to feature subset selec- 
tion for large-scale pattern classification 
tasks that anse in power systems control,8 
gene sequence recognition, and data-min- 
ing and knowledge discovery: 
extensive experimental and theoretical 
comparison of the performance of our 
approach with that of conventional meth- 
ods for feature subset selection; 
more principled design of multiobjective 
fitness functions for feature subset selec- 
tion using domain knowledge along with 
mathematically well-founded tools of 
multiathribute utility the01-y.~ 

* 

Some of these research directions are cur- 
rently being explored. 
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Table 2. Neural-network pattern classifiers constructed using the entire set of features compared with those con- 
structed using the most accurate subsets selected by the genetic algorithm. The column labeled accuracy shows the 

generalization accuracy, and the column labeled hidden shows the number of hidden neurons generated in the 
neural networks. 

ALL ATTRlBUrES GA-SELECTED SUBSET 

(NO.) (YO) HIDDEN (NO.) W O )  HIDDEN 
DATA SET FEATURES ACCURACY FEATURES ACCURACY 

3P 13 
Annealing 38 
Audiology 69 
Bridges 11 
Cancer 9 
CRX 15 
Flag 28 
Glass 9 
Heart 13 
HeartCle 13 
HeartHun 13 
HeartSwi 13 
HeartVa 13 
Hepatitis 19 
Horse 22 
Ionosphere 34 
Liver 6 
Pima 8 
Promoters 57 
Sonar 60 
Soybean 35 
Vehicle 18 
Votes 16 
Vowel 10 
Wine 13 
zoo 16 

79.0 f 12.2 
96.6 f 2.0 
66.0 f 9.7 
63.0 f 7.8 
97.8 f l.;! 
87.7 f 3.3 
65.8 f 9.5 
70.5 f 8.5 
86.7 f 7.6 
85.3 f 2.7 
85.9 f 6.3 
94.2 f 3.8 
80.0 f 7.4 
84.7 f 9.5 
86.0 f 3.6 
94.3 f 5.0 
72.9 k 5.1 
76.3 f 5.1 
88.0 f 7.5 
83.0 f 7.8 
81 .O f 5.6 
65.4 f 3.5 
96.1 f 1.5 
69.8 f 6.4 
97.1 f 4.0 
96.0 f 4.9 

5.0 f 2.0 
12.1 f 2.4 
24.7 f 4.8 
5.2 f 3.3 
2.9f1.2 
7.7 f 6.9 
9.1 f 6.2 
9.8 f 6.9 
5.7 f 4.4 
3.4f1.1 
5.0 f 2.9 
2.2 f 0.6 
5.1 f 2.6 
6.2 f 4.0 
5.3 f 4.5 
5.5f1.6 
21.5 f 27.3 
8.1 f4 .9  
2.2 f 0.4 
6.4 f 2.7 
20.2 f 3.2 
23.7 f 5.0 
3.2 f 1.5 
38.0 f 8.3 
5.5f1.7 
6.1 + 1.1 

6.6k1.6 
21 .O f 3.1 
36.4 f 3.5 
5.6 f 1.5 
5.4f1.4 
8.0 f 2.1 
14.0 f 2.6 
5.5 f 1.4 
7.2 f 1.6 
7.3 f 1.7 
7.0f1.2 
6.6k1.7 
7.1 f- 1.7 
9.2 f 2.3 
11.1 f 2 . 3  
17.3 f 3.5 
4.1 f 0.7 
3.8 f 1.5 
28.8 f 3.3 
30.7 f 3.7 
19.4 f 2.7 
9.1 f 1.7 
8.9 ? 1.8 
6.5 f 1.2 
6.7 f 1.6 
9.3f1.6 

100 f 0.0 
99.5 f 0.9 
83.5 f 8.2 
81.6 f 7.6 
99.3 f 0.9 
91.5 f 2.8 
78.1 f 7.8 
80.8 f- 5.0 
93.9 f 3.8 
92.9 f 3.6 
93.0 f 4.0 
98.3 k 3.3 
91 .O f 5.7 
97.1 f 4.3 
92.6 f 3.4 
98.6 f 2.4 
77.8 f 4.0 
79.5 f- 3.1 
1 0 0 ~ 0 . 0  
97.2 f 2.9 
92.8 f 5.9 
68.8 f 4.3 
98.8 f 1.2 
78.4 f 3.8 
99.4 f 2.1 
100f 0.0 

9.2 f 4.9 
11.1 f 2 . 9  
27.4 f 5.6 
17.6 f 12.4 
5.7 f 2.9 
12.5 f 7.6 
11.2 f 6.5 
14.5 f 6.6 
7.5 k 3.9 
7.6 f 4.2 
7.1 f 3.7 
3.7f1.5 
8.5 f 3.0 
8.1 f 2 . 8  
9.5 f 4.1 
7.5 f 2.4 
25.9 f 24.3 
20.8 f 21.2 
2.7fl .O 
7.2 f 3.0 
23.3 f 4.3 
36.2 f 18.2 
4.0 f 1.8 
41.5 f 7.7 
5.9 f 2.1 
6.2 f 1.1 

Table 3. Comparison between various approaches for feature subset selection. The non-GA column shows the best 
performance among several approaches not based on genetic algorithms: the Richeldi column shows the perfor- 

mance reported by Richeldi and ilanzi; and the DistAl column shows the performance of our approach. 

NON-GA RICHELDI DISTAL 
DATA SET FEATURES ACCURKY FEATURES ACCURACY FEATURES ACCURACY 

Annealing 
Cancer 
C RX 
Glass 
Heart 
Hepatitis 
Horse 
Pima 
Sonar 
Vehicle 
Votes 4 

74.7 
85.0 
62.5 
79.2 
84.6 
85.3 

97.0 

8 

7 
4 
5 

3 
16 
7 
5 

95.0 f 2.3 

85.1 f 6.1 
70.5 f 7.8 
80.8 f 6.5 

73.2 f 3.8 
76.0 f 9.0 
69.6 f 6.1 
95.7 f 3.5 

21 .O f 3.1 
5.4 f 1.4 
8.0 f2.1 
5.5f1.4 
7.2 f 1.6 
9.2 f 2.3 
11.1 f 2 . 3  
3.8 f 1.5 
30.7 f 3.7 
9.1 f 1.7 
8.9f1.8 

99.5 f 0.9 
99.3 f 0.9 
91.5 f 2.8 
80.8 f 5.0 
93.9 k3.8 
97.1 f 4.3 
92.6 f 3.4 
79.5 f 3.1 
97.2 f 2.9 
68.8 f 4.3 
98.8 f 1.2 
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Table 4. Performunce comparison: neural-network pattern classifiers that use features selected based on accuracy alone compared to 
those that use features selected based on both accuracy and cost. 

ACCURACY ONLY ACCURACY AND COST 
DATA SET FEATURES ACCURACY HIDDEN FEATURES ACCURACY COST HIDDEN 

3P 6.6f1.6 1OOfO.O 9.2 f 4.9 4.3f1.2 1OOfO.O 26.7 f 7.6 7.3 f 4.2 
Hepatitis 9.2 f 2.3 97.1 f 4 . 3  8.1 f 2 . 8  8.3 f 2.4 97.3 f 3.5 19.0 f 8.1 7.4 f 2.8 
HeartCle 7.3f1.7 92.9 f 3.6 7.6 f 4.2 6.1 f1 .6  93.0 f 3.4 261.5 f94.4 7.2 f5.1 
Pima 3.8 f 1.5 79.5 f 3.1 20.8 f 21.2 3.1 f1 .0  79.5 f 3.0 22.8 f 9.7 16.0 f 11.1 
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