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Abstract. One relevant problem in data quality is the presence of missing
data. Despite the frequent occurrence and the relevance of missing data prob-
lem, many Machine Learning algorithms handle missing data in a rather naive
way. However, missing data treatment should be carefully thought, otherwise
bias might be introduced into the knowledge induced. In this work we analyse
the use of the k-nearest neighbour as an imputation method. Imputation is a
term that denotes a procedure that replaces the missing values in a data set by
some plausible values. One advantage of this approach is that the missing data
treatment is independent of the learning algorithm used. This allows the user
to select the most suitable imputation method for each situation. Our analysis
indicates that missing data imputation based on the k-nearest neighbour al-
gorithm can outperform the internal methods used by C4.5 and CN2 to treat
missing data, and can also outperform the mean or mode imputation method,
which is a method broadly used to treat missing values.

1 Introduction

One relevant problem in data quality is the presence of missing data. Missing data
may have different sources such as death of patients, equipment malfunctions, refusal
of respondents to answer certain questions, and so on. In addition, a significant fraction
of data can be erroneous, and the only alternative may be discarding the erroneous
data.

Data quality is a major concern in Machine Learning — ML — and other correlated
areas, such as Data Mining — DM — and Knowledge Discovery from Databases —
KDD. Despite the frequent occurrence of missing data in real world data sets, ML
algorithms handle missing data in a rather naive way. Missing data treatment should
be carefully thought, otherwise bias might be introduced into the knowledge induced.

In most cases, data sets attributes are not independent from each other. Thus,
through the identification of relationships among attributes, missing values can be de-
termined. Imputation is a term that denotes a procedure that replaces the missing
values in a data set by some plausible values. One advantage of this approach is that



the missing data treatment is independent of the learning algorithm used. This allows
the user to select the most suitable imputation method for each situation.

The objective of this work is to analyse the performance of the k-nearest neighbour
as an imputation method, comparing its performance with other three missing data
treatment methods. The first method is the mean or mode imputation. This method is
very simple and broadly used. It consists of replacing every missing value of an attribute
by the mean (if the attribute is quantitative) or mode (if the attribute is qualitative)
of its known values. The other two methods are the internal missing data treatment
strategies used by two well known ML algorithms: CN2 [3] and C4.5 [12].

This work is organized as follows: Section 2 describes the taxonomy proposed in
[10] to classify the degree of randomness of missing data in a data set, and surveys the
most widely used methods for missing data treatment; Section 3 describes the imputa-
tion method; Section 4 presents the k-nearest neighbour as an imputation method for
treating missing values; Section 5 describes how the ML algorithms C4.5 and CN2 treat
missing data internally; Section 6 performs a comparative study of the k-nearest neigh-
bour algorithm as an imputation method with the internal methods used by C4.5 and
CN2 to treat missing data, as well as the mean or mode imputation; finally, Section 7
presents the conclusions of this work.

2 Randomness of Missing Data and Methods for Treating Missing Data

Missing data randomness can be divided into three classes, as proposed by [10]:

1. Missing completely at random (MCAR). This is the highest level of randomness.
It occurs when the probability of an instance (case) having a missing value for an
attribute does not depend on either the known values or the missing data. In this
level of randomness, any missing data treatment method can be applied without
risk of introducing bias on the data;

2. Missing at random (MAR). When the probability of an instance having a missing
value for an attribute may depend on the known values, but not on the value of the
missing data itself;

3. Not missing at random (NMAR). When the probability of an instance having a
missing value for an attribute could depend on the value of that attribute.

Several methods have been proposed in the literature to treat missing data. Many
of these methods, such as case substitution, were developed for dealing with missing
data in sample surveys, and have some drawbacks when applied to the Data Mining
context. Other methods, such as replacement of missing values by the attribute mean
or mode, are very naive and should be carefully used to avoid insertion of bias.

In a general way, missing data treatment methods can be divided into the following
three categories [10]:

1. Ignoring and discarding data. There are two main ways to discard data with missing
values. The first one is known as complete case analysis. It is available in all statistical
packages and is the default method in many programs. This method consists of
discarding all instances (cases) with missing data. The second method is known



as discarding instances and/or attributes. This method consists of determining the
extent of missing data on each instance and attribute, and delete the instances
and/or attributes with high levels of missing data. Before deleting any attribute, it is
necessary to evaluate its relevance to the analysis. Unfortunately, relevant attributes
should be kept even with a high degree of missing values. Both methods, complete
case analysis and discarding instances and/or attributes, should be applied only if
missing data are MCAR, because missing data that are not MCAR have non-random
elements that can bias the results;

2. Parameter estimation. Maximum likelihood procedures are used to estimate the
parameters of a model defined for the complete data. Maximum likelihood proce-
dures that use variants of the Expectation-Maximization algorithm [4] can handle
parameter estimation in the presence of missing data;

3. Imputation. Imputation is a class of procedures that aims to fill in the missing values
with estimated ones. The objective is to employ known relationships that can be
identified in the valid values of the data set to assist in estimating the missing values.
This papers focus on imputation of missing data. More details about this class of
methods are described next.

3 Imputation Methods

Imputation methods involve replacing missing values with estimated ones based on
information available in the data set. There are many options varying from naive meth-
ods, like mean imputation, to some more robust methods based on relationships among
attributes. A description of some widely used imputation methods follows:

1. Case substitution. This method is typically used in sample surveys. One instance
with missing data (for example, a person that cannot be contacted) is replaced by
another nonsampled instance;

2. Mean or mode imputation. This is one of the most frequently used methods. It
consists of replacing the missing data for a given attribute by the mean (quantitative
attribute) or mode (qualitative attribute) of all known values of that attribute;

3. Hot deck and cold deck. In the hot deck method, a missing attribute value is filled in
with a value from an estimated distribution for the missing value from the current
data. Hot deck is typically implemented in two stages. In the first stage, the data
are partitioned into clusters. In the second stage, each instance with missing data
is associated with one cluster. The complete cases in a cluster are used to fill in the
missing values. This can be done by calculating the mean or mode of the attribute
within a cluster. Cold deck imputation is similar to hot deck but the data source
must be other than the current data source;

4. Prediction model. Prediction models are sophisticated procedures for handling miss-
ing data. These methods consist of creating a predictive model to estimate values
that will substitute the missing data. The attribute with missing data is used as
class-attribute, and the remaining attributes are used as input for the predictive



model. An important argument in favour of this approach is that, frequently, at-
tributes have relationships (correlations) among themselves. In this way, those cor-
relations could be used to create a predictive model for classification or regression
for, respectively, qualitative and quantitative attributes with missing data. Some of
these relationships among the attributes may be maintained if they are captured by
the predictive model. An important drawback of this approach is that the model
estimated values are usually more well-behaved than the true values would be, i.e.,
since the missing values are predicted from a set of attributes, the predicted values
are likely to be more consistent with this set of attributes than the true (not known)
values would be. A second drawback is the requirement for correlation among the
attributes. If there are no relationships among attributes in the data set and the at-
tribute with missing data, then the model will not be precise for estimating missing
values.

4 Imputation with k-Nearest Neighbour

This work proposes the use of the k-nearest neighbour algorithm to estimate and sub-
stitute missing data. The main benefits of this approach are: (i) k-nearest neighbour
can predict both qualitative attributes (the most frequent value among the k nearest
neighbours) and quantitative attributes (the mean among the k nearest neighbours);
(ii) There is no necessity for creating a predictive model for each attribute with missing
data. Actually, the k-nearest neighbour algorithm does not create explicit models (like
a decision tree or a set of rules), since the data set is used as a “lazy” model. Thus,
the k-nearest neighbour algorithm can be easily adapted to work with any attribute as
class, by just modifying the attributes to be considered in the distance metric. Also,
this approach can easily treat examples with multiple missing values.

The main drawback of the k-nearest neighbour approach is that, whenever the k-
nearest neighbour looks for the most similar instances, the algorithm searches through
all the data set. This limitation can be very critical for KDD, since this research area
has, as one of its main objectives, the analysis of large databases. Several works that
aim to solve this limitation can be found in the literature. One method is the creation of
a reduced training set for the k-nearest neighbour composed only by prototypical exam-
ples [13]. This work uses an access method called M-tree [2, 6], that was implemented
in the k-nearest neighbour algorithm employed. Furthermore, M-trees can organize and
search data sets based on a generic metric space. M-trees can drastically reduce the
number of distance computations in similarity queries.

5 Missing Data Treatment by C4.5 and CN2

Both algorithm, C4.5 and CN2, were selected because they are well considered by the
ML community. They induce propositional concepts: decision trees and rules, respec-
tively. Furthermore, C4.5 seems to have a good internal algorithm to treat missing
values, as shown in [5]. On the other hand, CN2 seems to use a rather simple method
to treat missing data.

C4.5 and CN2 can handle missing values in any attribute, except the class attribute,
for both training and test sets.



C4.5 uses a probabilistic approach to handle missing data. Given a training set, T ,
C4.5 finds a suitable test, based on a single attribute, that has one or more mutually
exclusive outcomes O1, O2, . . . , On. T is partitioned into subsets T1, T2, . . ., Tn, where
Ti contains all the instances in T that satisfy the test with outcome Oi. The same
algorithm is applied to each subset Ti until a stop criteria is obeyed. C4.5 uses the
information gain ratio measure to choose a good test to partition the instances. If there
exist missing values in an attribute X, C4.5 uses the subset with all known values of
X to calculate the information gain.

Once a test based on an attribute X is chosen, C4.5 uses a probabilistic approach
to partition the instances with missing values in X. When an instance in T with known
value is assigned to a subset Ti, this indicates that the probability of that instance
belonging to subset Ti is 1 and to all other subsets is 0. When the value is not known,
only a weaker probabilistic statement can be made. C4.5 associates to each instance in
Ti a weight representing the probability of that instance belonging to Ti. If the instance
has a known value, and satisfies the test with outcome Oi, then this instance is assigned
to Ti with weight 1; if the instance has an unknown value, this instance is assigned to
all partitions with different weights for each one. The weight for the partition Ti is the
probability that instance belongs to Ti. This probability is estimated as the sum of the
weights of instances in T known to satisfy the test with outcome Oi, divided by the
sum of weights of the cases in T with known values on the attribute X.

The CN2 algorithm uses a rather simple imputation method to treat missing data.
Every missing value is filled in with its attribute most common known value, before
calculating the entropy measure [3].

6 Experimental Analysis

The main objective of the experiments conducted in this work is to evaluate the effi-
ciency of the k-nearest neighbour algorithm as an imputation method to treat missing
data, comparing its performance with the performance obtained by the internal algo-
rithms used by C4.5 and CN2 to learn with missing data, and by the mean or mode
imputation method.

In these experiments, missing values were artificially implanted, in different rates and
attributes, into the data sets. The performance of all four missing data treatments were
compared using cross-validation estimated error rates. In particular, we are interested
in analysing the behaviour of these treatments when the amount of missing data is high
since some researchers have reported finding databases where more than 50% of the
data were missing [8].

The experiments were carried using four data sets from UCI [11]: Bupa, Cmc, Pima
and Breast. The first three data sets have no missing values. Breast has very few cases
with missing values (in total 16 cases or 2.28%) which were removed before starting the
experiments. The main reason for not using data with missing values is the wish to have
total control over the missing data in the data set. For instance, we would like the test
sets to have no missing data. If some test set has missing data, then the inducer’s ability
to classify missing data properly may influence the result. This influence is undesirable
since the objective of this work is to analyse the viability of the k-nearest neighbour as
an imputation method for missing data and the inducer learning ability when missing



values are present.
Table 1 summarizes the data sets employed in this study. It shows, for each data set,

the number of instances (#Instances), number and percentage of duplicate (appearing
more than once) or conflicting (same attribute-value but different class attribute) in-
stances, number of attributes (#Attributes), number of quantitative and qualitative
attributes, class attribute distribution and the majority class error. This information
was obtained using the MLC++ info utility [7].

Data set # Instances #Duplicate or #Attributes Class Class % Majority
conflicting (%) (quanti., quali.) Error

bupa 345 4 (1.16%) 6 (6,0) 1 42.03% 42.03%
2 57.97% on value 2

cmc 1473 115 (7.81%) 9 (2,7) 1 42.70% 57.30%
2 22.61% on value 1
3 34.69%

pima 769 1 (0.13%) 8 (8,0) 0 65.02% 34.98%
1 34.98% on value 0

breast 699 8 (1.15%) 9 (9,0) 2 65.52% 34.48%
4 34.48% on value 2

Table 1: Data sets summary descriptions.

Initially, the original data set was partitioned into 10 pairs of training and test sets
through the application of 10-fold cross validation resampling method. Then, missing
values were inserted into the training set. Six copies of this training set were used, two
were given directly to C4.5 and CN2 without any missing data treatment. Other two
copies had their missing values treated by the mean or mode imputation method and,
the last two copies were given to the k-nearest neighbour to estimate and substitute the
missing values. After the missing data treatment, the training sets were given to C4.5
and CN2. All classifiers, i.e. the two induced with untreated data and the other four
induced with treated data, were used to classify the test set. At the end of 10 iterations,
the true error rate was estimated by calculating the mean of the error rates of each
iteration. Finally, the performances of C4.5 and CN2 allied to the k-nearest neighbour
missing data treatment method were analysed and compared to the performances of
the methods used internally by C4.5 and CN2 to learn when missing values are present,
and to the performances of C4.5 and CN2 allied to the mean or mode imputation.

In order to insert missing data into the training sets, some attributes have to be
chosen, and some of their values modified to unknown. Which attributes will be chosen
and how many of their values will be modified to unknown is an important decision.
It is straightforward to see that the most representative attributes of the data set are
a sensible choice for the attributes that should have their values modified to unknown.
Otherwise, the analysis may be compromised by treating non-representative attributes
that will not be incorporated into the classifier by the learning system. Since finding
the most representative attributes of a data set is not a trivial task, we used the results
of [9] to select the three most relevant attributes according to several feature subset
selection methods such as wrapper and filter.

Related to the amount of missing data to be inserted into the training sets, we want
to analyse the behaviour of the methods with different amounts of missing data. In
this way, missing data was inserted completely at random (MCAR) in the following
percentages: 10%, 20%, 30%, 40%, 50% and 60% of the total of instances. The ex-
periments were performed with missing data inserted into one, two and three of the
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Figure 1: Comparative results for Bupa data set.

attributes selected as the most representatives. The missing values were replaced by
estimated values using 1, 3, 5, 10, 20, 30, 50 and 100 nearest neighbours. Unfortunately,
due to lack of space, only results with 10-nearest neighbour, identified as 10-NNI, will
be showed in this work.
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Figure 2: Comparative results for Cmc data set.

Considering the results shown in Figure 1, it can be observed that the performance
of 10-NNI is superior to the performances of C4.5 and CN2 internal algorithms, and
the mean imputation for Bupa data set. Furthermore, the C4.5 internal algorithm is
competitive to 10-NNI only when missing values were inserted into the attributes 2, 4
and 5. The mean or mode imputation obtained good results when missing values are
inserted into the attributes 2, 4 and 5, for the CN2 inducer.

Similar results are shown in Figure 2. The performance of 10-NNI is in most cases



24

25

26

27

28

29

30

31

0 10 20 30 40 50 60

E
rr

o
r

R
a

te

Percentage of Examples with Missing Values

Missing Data Artificially Inserted into Attribute 1.
Inducer C4.5.

No Treatment
10NN
Mean

25.5

26

26.5

27

27.5

28

28.5

29

29.5

30

30.5

31

0 10 20 30 40 50 60

E
rr

o
r

R
a

te

Percentage of Examples with Missing Values

Missing Data Artificially Inserted into Attribute 1.
Inducer CN2.

No Treatment
10NN
Mean

25

25.5

26

26.5

27

27.5

28

28.5

29

29.5

30

0 10 20 30 40 50 60

E
rr

o
r

R
a

te

Percentage of Examples with Missing Values

Missing Data Artificially Inserted into Attributes 1 and 5.
Inducer C4.5.

No Treatment
10NN
Mean

23

24

25

26

27

28

29

30

31

0 10 20 30 40 50 60

E
rr

o
r

R
a

te

Percentage of Examples with Missing Values

Missing Data Artificially Inserted into Attributes 1 and 5.
Inducer CN2.

No Treatment
10NN
Mean

24.5

25

25.5

26

26.5

27

27.5

28

28.5

0 10 20 30 40 50 60

E
rr

o
r

R
a

te

Percentage of Examples with Missing Values

Missing Data Artificially Inserted into Attributes 0, 1 and 5.
Inducer C4.5.

No Treatment
10NN
Mean

23

24

25

26

27

28

29

30

31

32

0 10 20 30 40 50 60

E
rr

o
r

R
a

te

Percentage of Examples with Missing Values

Missing Data Artificially Inserted into Attributes 0, 1 and 5.
Inducer CN2.

No Treatment
10NN
Mean

Figure 3: Comparative results for the Pima data set.

superior to the performance obtained without missing data treatment, for both C4.5
and CN2. The performance of 10-NNI is also superior or, in some few cases, competitive
to the performance of the mean or mode imputation method. In fact, the mean or mode
imputation method is competitive to 10-NNI only when missing values were inserted
into the attributes 0 and 3 and 0, 1, and 3, using CN2 as inducer.

Figure 3 shows the comparative results for Pima data set. In this data set, the 10-
NNI method shows a slightly superior performance compared with C4.5 without missing
data treatment, and a superior performance compared with CN2 without missing data
treatment. Besides, 10-NNI is superior to the mean or mode imputation when missing
data were inserted into attribute 1 for both inducers. With missing data inserted into
more than one attribute, 10-NNI and mean or mode imputation show similar results.

Table 2 shows some numerical results related to the graphs presented in Figures 1, 2
and 3. This table shows the error rates and standard deviations. More detailed results
can be found in [1].

C4.5 CN2
Data set Attr. %? No Imputation Mean/Mode 10-NNI No Imputation Mean/Mode 10-NNI

0% 36.82 ± 2.69 - - 35.39 ± 2.47 - -
10% 38.56 ± 1.74 36.50 ± 1.76 29.87 ± 1.76 33.58 ± 1.94 31.91 ± 1.88 34.19 ± 1.45
20% 35.95 ± 1.24 35.66 ± 1.61 34.78 ± 2.43 36.82 ± 0.96 33.95 ± 1.70 32.45 ± 0.95

4 30% 37.36 ± 1.89 39.14 ± 2.41 35.36 ± 2.71 38.53 ± 2.16 36.52 ± 1.74 31.56 ± 2.71
40% 40.56 ± 2.05 36.78 ± 1.72 31.55 ± 1.86 39.13 ± 1.09 33.91 ± 1.36 28.96 ± 2.24
50% 37.62 ± 2.35 38.22 ± 3.03 33.34 ± 2.54 37.35 ± 2.74 35.92 ± 2.09 31.28 ± 1.91
60% 42.31 ± 2.11 43.45 ± 2.08 31.22 ± 3.33 39.41 ± 1.20 34.51 ± 2.78 33.29 ± 2.64
0% 36.82 ± 2.69 - - 35.39 ± 2.47 - -
10% 35.32 ± 2.36 34.20 ± 2.23 34.18 ± 1.72 34.75 ± 2.01 35.45 ± 2.21 33.63 ± 1.77
20% 36.22 ± 2.18 38.21 ± 2.54 34.51 ± 2.16 33.81 ± 3.23 33.89 ± 1.49 31.81 ± 2.65

Bupa 4, 2 30% 37.70 ± 2.40 37.07 ± 2.44 35.96 ± 2.05 37.66 ± 1.48 33.61 ± 1.96 33.34 ± 1.88
40% 37.08 ± 1.42 34.25 ± 1.76 32.45 ± 1.09 39.67 ± 1.98 33.88 ± 1.27 33.02 ± 2.44
50% 39.71 ± 2.76 40.89 ± 2.31 33.28 ± 3.07 41.72 ± 1.38 36.83 ± 1.88 34.51 ± 2.40
60% 36.21 ± 1.84 39.36 ± 2.30 33.57 ± 2.38 38.81 ± 1.58 36.51 ± 2.33 31.01 ± 1.48
0% 36.82 ± 2.69 - - 35.39 ± 2.47 - -
10% 35.36 ± 1.76 39.71 ± 1.91 31.56 ± 2.44 37.09 ± 2.55 34.50 ± 1.81 30.71 ± 2.47
20% 33.92 ± 2.07 35.92 ± 1.17 33.05 ± 2.09 34.18 ± 2.03 35.39 ± 1.75 34.81 ± 1.49

4, 2, 5 30% 35.97 ± 2.90 36.52 ± 1.68 35.61 ± 3.00 35.94 ± 2.14 34.18 ± 1.92 35.35 ± 1.39
40% 36.19 ± 2.39 40.29 ± 2.47 35.11 ± 2.14 38.25 ± 1.49 31.59 ± 2.51 32.49 ± 1.20



50% 34.39 ± 2.84 34.45 ± 1.75 36.75 ± 2.12 41.97 ± 1.58 32.18 ± 2.24 31.56 ± 1.58
60% 34.48 ± 1.77 36.46 ± 1.71 34.47 ± 3.02 40.56 ± 1.88 39.72 ± 1.63 34.82 ± 2.04

0% 48.27 ± 0.83 - - 51.25 ± 0.80 - -
10% 49.35 ± 1.14 50.24 ± 1.15 48.20 ± 1.16 51.19 ± 1.51 49.69 ± 1.34 50.64 ± 1.22
20% 50.23 ± 1.12 49.35 ± 0.85 47.59 ± 0.98 51.73 ± 1.17 49.15 ± 1.42 49.08 ± 0.95

3 30% 49.49 ± 0.95 50.78 ± 1.45 47.39 ± 1.48 52.27 ± 0.94 52.21 ± 1.13 49.70 ± 1.71
40% 49.97 ± 0.87 48.54 ± 1.46 48.54 ± 1.12 53.56 ± 1.47 51.60 ± 0.73 50.51 ± 1.11
50% 50.71 ± 1.11 50.51 ± 1.15 49.36 ± 0.91 54.92 ± 0.95 51.39 ± 1.39 49.56 ± 1.74
60% 52.88 ± 1.25 49.90 ± 1.07 47.73 ± 0.95 54.24 ± 1.31 51.93 ± 1.50 50.51 ± 1.12
0% 48.27 ± 0.83 - - 51.25 ± 0.80 - -
10% 48.27 ± 0.67 48.27 ± 1.37 47.32 ± 1.30 51.26 ± 0.80 49.83 ± 0.77 48.75 ± 1.42
20% 48.27 ± 0.99 49.62 ± 1.42 48.61 ± 1.30 52.48 ± 1.51 50.78 ± 1.20 48.88 ± 1.46

Cmc 3, 0 30% 48.88 ± 1.40 50.58 ± 0.98 49.02 ± 1.36 52.68 ± 0.91 50.92 ± 0.95 48.54 ± 1.34
40% 48.61 ± 1.20 49.56 ± 1.33 47.59 ± 1.53 52.35 ± 1.10 50.11 ± 1.43 50.44 ± 1.09
50% 49.49 ± 0.84 49.15 ± 1.38 46.23 ± 1.06 52.68 ± 0.81 48.68 ± 1.18 50.03 ± 1.76
60% 50.64 ± 1.16 50.24 ± 0.91 47.39 ± 1.87 51.12 ± 1.53 50.10 ± 1.38 50.85 ± 1.49
0% 48.27 ± 0.83 - - 51.25 ± 0.80 - -
10% 46.78 ± 1.46 47.32 ± 0.78 47.18 ± 1.19 51.32 ± 1.19 49.56 ± 1.46 49.70 ± 1.61
20% 49.56 ± 1.34 51.40 ± 1.49 48.34 ± 1.29 52.14 ± 1.04 51.12 ± 1.07 51.66 ± 1.06

3, 0, 1 30% 48.20 ± 1.19 51.18 ± 0.89 48.13 ± 1.51 52.95 ± 1.25 52.34 ± 1.45 51.46 ± 1.15
40% 51.26 ± 1.33 48.54 ± 1.12 47.45 ± 1.46 53.36 ± 1.23 49.83 ± 0.85 50.10 ± 1.49
50% 50.31 ± 1.23 50.84 ± 1.61 47.38 ± 1.74 52.68 ± 1.02 51.94 ± 1.29 51.73 ± 1.82
60% 52.75 ± 1.16 51.46 ± 1.06 48.75 ± 1.86 52.88 ± 0.76 52.75 ± 1.05 50.92 ± 1.35

0% 26.56 ± 1.16 - - 25.77 ± 1.12 - -
10% 26.17 ± 1.03 26.42 ± 1.48 24.86 ± 0.88 27.99 ± 0.98 28.38 ± 0.87 25.91 ± 0.86
20% 28.65 ± 1.15 26.68 ± 1.18 26.04 ± 1.68 28.51 ± 1.06 28.76 ± 1.51 26.18 ± 0.78

1 30% 28.25 ± 1.85 27.59 ± 1.38 27.35 ± 1.03 27.47 ± 1.11 29.30 ± 1.23 26.69 ± 1.61
40% 26.95 ± 1.67 28.90 ± 1.23 25.38 ± 1.15 30.21 ± 1.08 30.34 ± 1.59 26.82 ± 0.98
50% 28.11 ± 1.14 27.86 ± 0.84 26.17 ± 1.11 30.34 ± 1.21 29.68 ± 1.58 27.35 ± 1.47
60% 30.59 ± 1.13 27.34 ± 1.05 26.29 ± 1.90 30.21 ± 1.28 30.72 ± 1.47 25.78 ± 1.33
0% 26.56 ± 1.16 - - 25.77 ± 1.12 - -
10% 25.25 ± 1.10 26.56 ± 1.08 27.86 ± 1.15 28.38 ± 0.87 26.69 ± 1.31 27.08 ± 0.98
20% 26.94 ± 1.22 25.91 ± 1.34 26.43 ± 1.08 28.76 ± 1.51 23.43 ± 0.68 28.25 ± 1.09

Pima 1, 5 30% 27.73 ± 1.60 26.42 ± 1.27 25.39 ± 0.81 29.30 ± 1.23 27.86 ± 1.16 25.65 ± 1.13
40% 27.21 ± 1.45 28.12 ± 1.11 26.29 ± 1.69 30.34 ± 1.59 26.57 ± 1.73 26.17 ± 1.07
50% 25.78 ± 1.13 27.99 ± 1.37 27.46 ± 1.16 29.68 ± 1.58 26.17 ± 0.82 25.91 ± 1.08
60% 29.81 ± 1.43 27.46 ± 1.67 27.85 ± 1.51 30.72 ± 1.47 27.47 ± 0.75 27.60 ± 1.47
0% 26.56 ± 1.16 - - 25.77 ± 1.12 - -
10% 25.11 ± 1.70 25.51 ± 1.90 25.13 ± 0.90 27.48 ± 1.00 28.38 ± 0.99 27.73 ± 0.68
20% 26.30 ± 1.01 27.33 ± 1.42 25.65 ± 1.35 29.82 ± 0.82 26.30 ± 1.13 27.87 ± 1.26

1, 5, 0 30% 26.17 ± 1.35 27.48 ± 1.19 25.51 ± 1.75 31.25 ± 0.89 27.73 ± 0.91 26.17 ± 1.32
40% 26.82 ± 1.28 25.65 ± 0.84 25.91 ± 1.44 29.03 ± 0.90 27.35 ± 0.92 25.92 ± 1.32
50% 28.11 ± 1.32 28.11 ± 1.65 24.61 ± 1.16 29.69 ± 0.41 26.83 ± 1.29 25.26 ± 0.68
60% 27.60 ± 1.05 27.34 ± 1.53 27.86 ± 1.55 31.51 ± 1.17 23.83 ± 0.95 26.05 ± 0.86

0% 4.24 ± 0.67 - - 4.68 ± 0.60 - -
10% 3.80 ± 0.93 3.66 ± 0.82 4.25 ± 0.67 4.39 ± 0.44 4.24 ± 0.46 5.12 ± 0.84
20% 3.95 ± 0.90 3.51 ± 0.88 5.11 ± 0.99 4.68 ± 0.75 4.83 ± 0.69 4.39 ± 0.57

1 30% 3.95 ± 0.90 3.80 ± 0.93 4.09 ± 0.91 4.97 ± 0.82 4.67 ± 1.03 4.97 ± 0.62
40% 3.95 ± 0.90 3.95 ± 0.90 4.53 ± 0.82 4.53 ± 0.73 5.12 ± 0.90 4.53 ± 0.70
50% 3.95 ± 0.90 3.95 ± 0.90 5.41 ± 1.00 4.53 ± 0.91 4.82 ± 0.87 4.53 ± 0.63
60% 3.95 ± 0.90 3.95 ± 0.90 6.00 ± 0.88 4.83 ± 0.84 4.83 ± 1.07 5.12 ± 0.69
0% 4.24 ± 0.67 - - 4.68 ± 0.60 - -
10% 4.83 ± 0.61 3.80 ± 0.85 4.10 ± 0.61 4.38 ± 0.65 3.80 ± 0.66 4.38 ± 0.75
20% 4.97 ± 0.65 4.68 ± 0.64 3.80 ± 0.88 3.65 ± 0.84 4.53 ± 0.67 5.56 ± 0.77

Breast 1, 5 30% 4.68 ± 0.61 4.39 ± 0.65 4.83 ± 0.69 3.95 ± 0.54 4.09 ± 0.97 4.69 ± 0.57
40% 4.39 ± 0.65 4.97 ± 0.44 4.98 ± 0.54 3.95 ± 0.87 3.51 ± 0.66 4.96 ± 0.99
50% 4.98 ± 0.73 4.69 ± 0.37 3.81 ± 0.63 4.53 ± 0.63 4.68 ± 0.75 4.98 ± 0.76
60% 4.54 ± 0.71 4.68 ± 0.65 5.85 ± 0.53 4.39 ± 0.95 3.66 ± 0.66 4.25 ± 0.64
0% 4.24 ± 0.67 - - 4.68 ± 0.60 - -
10% 4.68 ± 0.75 4.10 ± 0.61 4.83 ± 0.81 4.25 ± 0.71 4.10 ± 0.52 4.83 ± 0.76
20% 5.12 ± 0.73 4.83 ± 0.69 4.69 ± 0.68 4.97 ± 0.79 4.39 ± 0.66 3.80 ± 0.62

1, 5, 0 30% 5.42 ± 0.69 4.98 ± 0.50 4.69 ± 1.02 5.12 ± 0.54 5.41 ± 0.78 4.24 ± 0.80
40% 4.97 ± 0.62 4.09 ± 0.68 5.27 ± 0.85 5.13 ± 0.55 3.65 ± 0.82 4.83 ± 0.62
50% 5.41 ± 0.57 4.83 ± 0.61 4.10 ± 0.84 5.85 ± 0.76 3.07 ± 0.82 4.24 ± 0.91
60% 4.97 ± 0.73 4.68 ± 0.78 4.68 ± 0.80 5.85 ± 0.61 3.80 ± 0.73 5.11 ± 0.97

Table 2: Comparative results for Bupa, Cmc, Pima and Breast data sets.

It is important to say that, for Bupa, Cmc and Pima data sets, the internal meth-
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Figure 4: Comparative results for the Breast data set.

ods used by C4.5 and CN2 to treat missing data show a lower error rates compared to
10-NNI in only 11 of 108 measurements (8 for C4.5 and 3 for CN2). In none of these
11 measurements the internal methods show a statistically significant difference. On
the other hand, 10-NNI shows statistically significant difference in 35 measurements
(13 of them are highly significant). Comparing 10-NNI to the mean or mode impu-
tation method, the mean or mode imputation shows a lower error rate in 20 of 108
measurements (5 for C4.5 and 15 for CN2), 1 of them is a highly significant difference.
10-NNI shows statistically significant differences in 11 measurements (3 of them are
highly significant).

Although missing data imputation with k-nearest neighbour can provide good re-
sults, there are occasions that its use should be avoided. This is illustrated by the Breast
data set. Breast was chosen because its attributes have strong correlations among each
other. These correlations cause an interesting situation: in one hand, the k-nearest
neighbour can predict the missing values with precision; on the other hand, the in-
ducer can decide not to use the treated attribute, replacing it by another attribute with
high correlation. The results for Breast data set are shown in Figure 4, where it can
be seen that 10-NNI does not outperform the others missing data treatment methods.
This scenario is interesting because 10-NNI was able to predict the missing data with
higher precision than the mean or mode imputation. As missing values were artificially
implanted into the data, the mean square error (MSE) between the predicted values
and the actual ones can be measured. These errors are presented in Table 3.

Attribute MSE 10-NNI MSE Mean/Mode
0 (Clump Thickness) 4.02 ± 0.14 7.70 ± 0.28
1 (Uniformity of Cell Size) 1.72 ± 0.11 8.96 ± 0.36
5 (Bare Nuclei) 4.23 ± 0.30 13.29 ± 0.46

Table 3: Mean square error (MSE) between predicted and actual values for 10-NNI and mean or mode
imputation — Breast data set.

If 10-NNI method was more accurate in predicting the missing values, why this



higher accuracy is not translated into a more precise classifier? The answer may be
in the high correlation among the data set attributes and, because (or consequently)
Breast data set has several attributes with similar predicting power.

In order to perform a deeper analysis, we need to verify how each attribute is used
into the induced classifier. For instance, it is interesting to understand how C4.5 was
able to obtain a constant error rate even with high levels of missing values inserted into
attribute 1 (Figure 4). Analysing the decision trees generated by C4.5, it is possible
to verify that C4.5 was able to substitute attribute 1 — Uniformity of Cell Size — by
attribute 2 — Uniformity of Cell Shape. This substitution was possible because these
two attributes have a high level of correlation (linear correlation coefficient r = 0.9072).
In a general way, for Breast data set, C4.5 was able to replace every attribute with
missing values by others attributes, and still be competitive with 10-NNI. Using the
highest level of the decision tree in which the attribute was incorporated as a heuristical
measure of attribute importance in the model, Table 4 shows that C4.5 was able to
gradually discard the attributes with missing values as the amount of missing data
increased. In a similar way, C4.5 shows a tendency to discard the attributes with missing
values when those attributes were treated with mean or mode imputation. This result is
expected since in mean or mode imputation all missing values are replaced by the same
value (the attribute mean or mode). Consequently, the attribute discriminatory power
(measured by the C4.5 decision tree algorithm through entropy) tends to decrease. The
same did not occur when the missing data were treated by 10-NNI. In this scenario,
C4.5 kept the attributes with missing values as the upmost attributes into the decision
tree. This situation would had been an advantage if Breast data set do not have other
attributes with similar predicting power.

% of Missing No Imputation Mean/Mode 10-NNI
Attr. 1 Attr. 5 Attr. 0 Attr. 1 Attr. 5 Attr. 0 Attr. 1 Attr. 5 Attr. 0

0% 1 2 3 1 2 3 1 2 3
10% 2 2 3 2 2 3 1 2 3
20% - 2 3 - 3 3 1 2 3
30% - 5 - - 3 - 1 2 3
40% 5 4 - 3 - - 1 2 3
50% - - - 6 7 3 1 3 2
60% - 5 - - 3 - 1 2 3

Table 4: Level in which the attributes 1, 5 and 0 of Breast data set were incorporated into the decision
tree induced by C4.5. “-” means that the attribute was not selected to be part of the tree. Level 1 is
the root of the decision tree.

7 Conclusions and Limitations

This work analyses the behaviour of four methods for missing data treatment: the 10-
NNI method using a k-nearest neighbour algorithm for missing data imputation; the
mean or mode imputation; and the internal algorithms used by C4.5 and CN2 to treat
missing data. These methods were analysed inserting different percentages of missing
data into different attributes of four data sets, showing promising results. The 10-NNI
method provides very good results, even for training sets having a large amount of
missing data.

The Breast data set provided a valuable insight into the limitations of the missing
data treatment methods. The first decision to be taken is if the attribute should be



treated. The existence of others attributes with similar information (high correlation), or
similar predicting power can make the missing data imputation useless, or even harmful.
Missing data imputation can be harmful because even the most advanced imputation
method is only able to approximate the actual (missing) value. The predicted values
are usually more well-behaved, since they conform with other attributes values. In the
experiments carried out, as more attributes with missing values were inserted and as the
amount of missing data increased, more simple were the induced models. In this way,
missing data imputation should be carefully applied, under the risk of oversimplifying
the problem under study.

In future works, the missing data treatment methods will be analyzed in other
data sets. Furthermore, in this work missing values were inserted completely at random
(MCAR). In a future work, we will analyze the behaviour of these methods when missing
values are not randomly distributed. In this case, there is a possibility of creating invalid
knowledge. For an effective analysis, we will have to inspect not only the error rate, but
also the quality of the knowledge induced by the learning system.
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