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Abstract—The inductive learning of fuzzy rule based classi-
fication systems suffers from exponential growth of the fuzzy
rule search space when the number of patterns and/or variables
becomes high. This growth makes the learning process more
difficult and, in most cases, it leads to problems of scalability
(in terms of the time and memory consumed) and/or complexity
(with respect to the number of rules obtained and the number
of variables included in each rule).

In this work, we propose a fuzzy association rule-based
classification method for high-dimensional problems based on
three stages to obtain an accurate and compact fuzzy rule based
classifier with a low computational cost. This method limits
the order of the associations in the association rule extraction
and considers the use of subgroup discovery based on an
Improved Weighted Relative Accuracy measure to preselect the
most interesting rules before a genetic post-processing process
for rule selection and parameter tuning. The results obtained
over twenty-six real-world datasets of different sizes and with
different numbers of variables demonstrate the effectiveness of
the proposed approach.

Index Terms—Data mining, associative classification, classifi-
cation, fuzzy association rules, genetic algorithms, genetic fuzzy
rule selection, high-dimensional problems.

I. INTRODUCTION

FUZZY Rule Based Classification Systems (FRBCSs) [1],
[2] are useful and well-known tools in the machine learn-

ing framework, since they can provide an interpretable model
for the end user [3]–[6]. There are many real applications
in which FRBCSs have been employed, including anomaly
intrusion detection [7], image processing [8], among others.
In most of these areas the available or useful data consists
of a high number of patterns (instances or examples) and/or
variables. In this situation, the inductive learning of FRBCSs
suffers from exponential growth of the fuzzy rule search space.
This growth makes the learning process more difficult and, in
most cases, it leads to problems of scalability (in terms of the
time and memory consumed) and/or complexity (with respect
to the number of rules obtained and the number of variables
included in each rule) [9], [10].
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Association discovery is one of the most common Data
Mining techniques used to extract interesting knowledge from
large datasets [11]. Many efforts have been made to use its
advantages for classification under the name of associative
classification [12]–[19]. Association discovery aims to find
interesting relationships between the different items in a
database [20], while classification aims to discover a model
from training data that can be used to predict the class of
test patterns [21]. Both association discovery and classification
rules mining are essential in practical Data Mining applica-
tions [11], [22] and their integration could result in greater
savings and convenience for the user.

A typical associative classification system is constructed in
two stages:

1) discovering the association rules inherent in a database;
2) selecting a small set of relevant association rules to

construct a classifier.

In order to enhance the interpretability of the obtained
classification rules and to avoid unnatural boundaries in the
partitioning of the attributes, different studies have been
presented to obtain classification systems based on fuzzy
association rules [23]–[28]. For instance, in [24] the authors
have made use of a Genetic Algorithm (GA) [29], [30] to
automatically determine minimum support and confidence
thresholds, mining for each chromosome a fuzzy rule set
for classification by means of an algorithm based on the
Apriori algorithm [31] and adjusting the fuzzy confidence
of these rules with the approach proposed by Nozaki et al
in [32]. Consequently, this approach can only be used for small
problems since its computational cost is very high when we
consider problems that consist of a high number of patterns
and/or variables. On the other hand, in [25] the authors used an
algorithm based on the Apriori algorithm to mine association
rules only up to a certain level and to select the K most
confident ones for each class among them, in order to finally
employ a genetic rule selection method that obtains a classifier
from them. However, many patterns may be uncovered if we
only consider the confidence measure to select the candidate
rules.

In this paper we present a Fuzzy Association Rule-based
Classification method for High-Dimensional problems (FARC-
HD) to obtain an accurate and compact fuzzy rule-based
classifier with a low computational cost. This method is based
on three stages:
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1) Fuzzy association rule extraction for classification: A
search tree is employed to list all possible frequent
fuzzy itemsets and to generate fuzzy association rules
for classification, limiting the depth of the branches in
order to find a small number of short (i.e., simple) fuzzy
rules.

2) Candidate rule prescreening: Even though the order
of the associations is limited in the association rule
extraction, the number of rules generated can be very
large. In order to decrease the computational cost of
the genetic post-processing stage we consider the use
of subgroup discovery based on an improved Weighted
Relative Accuracy measure (wWRAcc’) to preselect the
most interesting rules by means of a pattern weighting
scheme [33].

3) Genetic rule selection and lateral tuning: Finally, we
make use of GAs to select and tune a compact set of
fuzzy association rules with high classification accuracy
in order to consider the known positive synergy that
both techniques present (selection and tuning). Several
works have successfully combined the selection of rules
with the tuning of membership functions (MFs) within
the same process [34], [35], taking advantage of the
possibility of different coding schemes that GAs provide.
The successful application of GAs to identify fuzzy
systems has led to the so-called Genetic Fuzzy Systems
(GFSs) [36]–[38].

In order to assess the performance of the proposed ap-
proach, we have used twenty-six real-world datasets with a
number of variables ranging from 4 to 90 and a number of
patterns ranging from 150 to 19020. We have developed the
following studies; first, we have shown the results obtained
from comparison with three other GFSs [38]. Second, we
have compared the performance of our approach with two
approaches to obtain fuzzy associative classifiers. Third, we
have shown the results obtained from the comparison with
four other classical approaches for associative classification
and with the C4.5 decision tree [39]. Furthermore, in these
studies we have made use of some non-parametric statistical
tests for pair-wise and multiple comparison [40]–[43] of the
performance of these classifiers. Then, we have shown a study
on the influence of the depth of the trees and the number of
evaluations in the genetic selection and tuning process. Finally,
we have analyzed the scalability of the proposed approach.

This paper is arranged as follows. The next section intro-
duces the type of rules, rule weights and inference model
used, and the basic definitions for fuzzy association rules
and associative classification. Section III describes in detail
each stage of the proposed approach. Section IV presents
the experimental set-up. Section V shows and discusses the
results obtained on the twenty-six real-world datasets. Finally,
in Section VI some concluding remarks are made.

II. PRELIMINARIES

In this section, we first describe FRBCSs. Then, we intro-
duce the basic definitions for fuzzy association rules. Finally,
we present fuzzy association rules for classification.

A. Fuzzy rule based classification systems

Any classification problem consists of N training patterns
xp = (xp1, ..., xpm), p = 1, 2, ..., N from S classes where xpi
is the i-th attribute value (i = 1, 2, ...,m) of the p-th training
pattern. In this work, we use fuzzy rules of the following form
for our classifier:

Rule Rj : If x1 is Aj1 and ... and xm is Ajm

then Class = Cj with RWj ;

where Rj is the label of the j-th rule, x = (x1, ..., xm) is an
m-dimensional pattern vector, Aji is an antecedent fuzzy set,
Cj is a class label and RWj is the rule weight.

The rule weight of each fuzzy rule Rj has a great effect on
the performance of fuzzy rule-based classifiers [44]. Different
specifications of the rule weight have been proposed and
examined in the literature. In [45] we can find some heuristic
methods for rule weight specification. In this work, we employ
the most common one, the fuzzy confidence value or Certainty
Factor (CF) [46].

RWj = CFj =

∑
xp∈ClassCj

µAj (xp)∑N
p=1 µAj (xp)

(1)

where µAj (xp) is the matching degree of the pattern xp
with the antecedent part of the fuzzy rule Rj . We use the
fuzzy reasoning method of the weighted vote or additive
combination [46] for classifying new patterns by the Rule Base
(RB). With this method, each fuzzy rule casts a vote for its
consequent class. The total strength of the vote for each class
is computed as follows:

VClassh(xp) =
∑

Rj∈RB; Cj=h

µAj
(xp) · CFj

h = 1, 2, ..., S; Rj ∈ RB (2)

The new pattern xp is classified as the class with the
maximum total strength of the vote. If multiple class labels
have the same maximum value for xp or no fuzzy rule is
compatible with xp, this pattern is classified as the class with
most patterns in the training data.

B. Fuzzy association rules

Association rules are used to represent and identify de-
pendencies between items in a database [11], [20]. They are
expressions of the type A → B, where A and B are sets of
items and A ∩ B = �. This means that, if all the items in
A exist in a transaction then all the items in B with a high
probability are also in the transaction, and A and B should not
have any common items [31]. There are many previous studies
for mining association rules focused on databases with binary
or discrete values, however the data in real-world applications
usually consist of quantitative values. Designing Data Mining
algorithms, able to deal with various types of data, presents a
challenge to workers in this research field.

Fuzzy set theory has been used more and more frequently in
Data Mining because of its simplicity and similarity to human
reasoning [1]. The use of fuzzy sets to describe associations
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Fig. 1. Attributes and linguistic terms for the attributes X1 and X2

between data extends the types of relationships that may be
represented, facilitates the interpretation of rules in linguistic
terms, and avoids unnatural boundaries in the partitioning of
the attribute domains. For this reason, in recent years different
studies have proposed methods for mining fuzzy association
rules from quantitative data [47]–[54].

Let us consider a simple database T with two attributes (X1

and X2) and three linguistic terms with their associated MFs
(see Fig. 1). Based on this definition, a simple example of
fuzzy association rule is X1 is Middle→ X2 is High.

Support and confidence are the most common measures of
interest of an association rule. These measures can be defined
for fuzzy association rules as follows:

Support(A→ B) =

∑
xp∈T µAB(xp)

| N |
(3)

Confidence(A→ B) =

∑
xp∈T µAB(xp)∑
xp∈T µA(xp)

(4)

where | N | is the number of transactions in T , µA(xp) is
the matching degree of the transaction xp with the antecedent
part of the rule and µAB(xp) is the matching degree of the
transaction xp with the antecedent and consequent of the rule.

C. Fuzzy association rules for classification

In the last few years, different studies have proposed meth-
ods to obtain fuzzy association rule-based classifiers [23]–
[28]. The task of classification is to find a set of rules in
order to identify the classes of undetermined patterns. A fuzzy
association rule can be considered to be a classification rule
if the antecedent contains fuzzy item sets and the consequent
part contains only one class label (C = {C1, ..., Cj , ..., CS}).
A fuzzy associative classification rule A → Cj could be
measured directly in terms of support and confidence as
follows:

Support(A→ Cj) =

∑
xp∈ClassCj

µA(xp)

| N |
(5)

Confidence(A→ Cj) =

∑
xp∈ClassCj

µA(xp)∑
xp∈T µA(xp)

(6)

III. FARC-HD: FUZZY ASSOCIATION RULE-BASED
CLASSIFIER FOR HIGH-DIMENSIONAL PROBLEMS

In this section, we will describe our proposal to obtain a
fuzzy association rule-based classifier for high dimensional
problems. This method is based on three stages:

1) Fuzzy association rule extraction for classification: A
search tree is employed to list all the possible frequent
fuzzy itemsets and to generate fuzzy association rules
for classification.

2) Candidate rule prescreening: A rule evaluation criterion
is used to preselect candidate fuzzy association rules.

3) Genetic rule selection and lateral tuning: The best co-
operative rules are selected and tuned by means of
a GA, considering the positive synergy between both
techniques within the same process.

Finally, we add a default rule considering the class with the
most patterns in the training data. In the following subsections
we will introduce the three mentioned stages, explaining in de-
tail all their characteristics (subsections III-A, III-B and III-C)
and presenting a flowchart of the algorithm (subsection III-D).

A. Stage 1. Fuzzy association rule extraction for classification

To generate the RB we employ a search tree to list all the
possible fuzzy itemsets of a class. The root or level 0 of a
search tree is an empty set. All attributes are assumed to have
an order (in our case, the order of appearance in the training
data), and the one-itemsets corresponding to the attributes are
listed in the first level of the search tree according to their
order. If an attribute has j possible outcomes (qj linguistic
terms for each quantitative attribute), it will have j one-item
sets listed in the first level. The children of a one-item node
for an attribute A are the two-item sets that include the one-
item set of attribute A and a one-item set for another attribute
behind attribute A in the order, and so on. If an attribute
has j > 2 possible outcomes, it can be replaced by j binary
variables to ensure that no more than one of these j binary
attributes can appear in the same node in a search tree. An
example with two attributes (V1 and V2) with two linguistic
terms (L and H) is detailed in Figure 2. An itemset with
a support higher than the minimum support is a frequent
itemset. If the support of an n-item set in a node J is less than
the minimum support, it does not need to be extended more
because the support of any item set in a node in the subtree
led by node J will also be less than the minimum support.
Likewise, if a candidate item set generates a classification rule
with confidence higher than the maximum confidence, this rule
has reached the quality level demanded by the user and it is
again unnecessary to extend it further. These properties greatly
reduce the number of nodes needed for searching. The fuzzy
support of an itemset can be calculated as follows:

Support(A) =

∑
xp∈T µA(xp)

| N |
(7)

where µA(xp) is the matching degree of the pattern xp with
the itemset. The matching degree µA(xp) of xp to the different
fuzzy regions is computed using a conjunction operator, in our
case, the product T-norm.

Once all frequent fuzzy itemsets have been obtained, the
candidate fuzzy association rules for classification can be
generated, setting the frequent fuzzy itemsets in the antecedent
of the rules and the corresponding class in the consequent. This
process is repeated for each class.
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Fig. 2. The search tree for two quantitative attributes V1 and V2 with two linguistic terms L and H

The number of frequent fuzzy itemsets extracted depends
directly on the minimum support. The minimum support is
usually calculated considering the total number of patterns in
the dataset, however the number of patterns for each class in a
dataset can be different. For this reason, our algorithm deter-
mines the minimum support of each class by the distributions
of the classes over the dataset. Thus, the minimum support for
class Cj is defined as:

MinimumSupportCj = minSup ∗ fCj (8)

where minSup is the minimum support determined by the
expert and fCj is the pattern ratio of the class Cj .

In this stage we can generate a large number of candidate
fuzzy association rules for classification. It is, however, very
difficult for human users to handle such a large number of
generated fuzzy rules and to intuitively understand long fuzzy
rules with many antecedent conditions. For this reason, we
only generate short fuzzy rules and with only a small number
of antecedent conditions. Thus, the depth of the trees is limited
to a fixed value (Depthmax) determined by an expert.

B. Stage 2. Candidate rule prescreening
In the previous stage, we can generate a large number of

candidate rules. In order to decrease the computational costs
of stage 3, we consider the use of subgroup discovery to
preselect the most interesting rules from RB obtained in the
previous stage by means of a pattern weighting scheme [33].
This scheme treats the patterns in such a way that covered
positive patterns are not deleted when the current best rule is
selected. Instead, each time a rule is selected, the algorithm
stores a count i for each pattern of how many times (with how
many of the selected rules) the pattern has been covered.

Weights of positive patterns covered by the selected rule
decrease according to the formula w(ej , i) = 1

i+1 . In the first
iteration all target class patterns are assigned the same weight
w(ej , 0) = 1, while in the following iterations the contribu-
tions of patterns are inversely proportional to their coverage
by previously selected rules. In this way the patterns already
covered by one or more selected rules decrease their weights
while uncovered target class patterns whose weights have not
been decreased will have a greater chance of being covered
in the following iterations. Covered patterns are completely
eliminated when they have been covered more than kt times.

TABLE I
THE FIVE PATTERNS IN THIS EXAMPLE

ID X1 X2 Class Weight
ID1 0.0 10.0 C1 1.0
ID2 2.5 4.0 C2 1.0
ID3 3.2 1.0 C2 0.0
ID4 9.0 5.0 C2 1.0
ID5 2.5 10 C1 0.5

Thus, in each iteration of the process the rules are ordered
according to a rule evaluation criteria from best to worst. The
best rule is selected, covered patterns are reweighted, and the
procedure repeats these steps until one of the stopping criteria
is satisfied: either all patterns have been covered more than kt
times, or there are no more rules in the RB. This process is
to be repeated for each class.

wWRAcc’ was used to evaluate the quality of intervalar
rules in APRIORI-SD [33]. This measure was defined as
follows:

wWRAcc′(A→ Cj) =
n′(A)

N ′
· (n

′(A · Cj)

n′(A)
− n(Cj)

N
) (9)

where N ′ is the sum of the weights of all patterns, n′(A)
is the sum of the weights of all covered patterns, n′(A · Cj)
is the sum of the weights of all correctly covered patterns,
n(Cj) the number of patterns of class Cj , and N is the
number of all patterns. For instance, let us consider a simple
database with two attributes (X1 and X2), two classes (C1

and C2) and five training patterns. Table I shows the five
training patterns and their weights in the p-th iteration of the
process. In this iteration, the wWRAcc’ value of a simple rule
R = If X1 is [0.0, 5.0[ and X2 is [5.0, 10.0] → C1 is
calculated as follows:

wWRAcc′(R) =
1.0 + 0.5

1.0 + 1.0 + 0.0 + 1.0 + 0.5
·(1.0 + 0.5

1.0 + 0.5
−2

5
)

= 0.257

We have modified this measure to enable the handling of
fuzzy rules. The new measure is defined as follows:

wWRAcc′′(A→ Cj) =
n′′(A · Cj)

n′(Cj)
· (n

′′(A · Cj)

n′′(A)
− n(Cj)

N
)

(10)
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where n′′(A) is the sum of the products of the weights of all
covered patterns by their matching degrees with the antecedent
part of the rule, n′′(A · Cj) is the sum of the products of the
weights of all correctly covered patterns by their matching
degrees with the antecedent part of the rules, and n′(Cj) is
the sum of the weights of patterns of class Cj . Moreover, the
first term in the definition of wWRAcc’ has been replaced by
n′′(A·Cj)
n(Cj)

to reward rules which cover uneliminated patterns of
the class Cj .

Let us consider three linguistic terms for the attributes
X1 and X2 (see Fig. 1). Based on this definition, a simple
example of fuzzy association rule for classification is R =
If X1 is Low and X2 is High → C1. This rule covers
the training patterns in Table I with degrees: (ID1, 1.0), (ID2,
0.0), (ID3, 0.0), (ID4, 0.0) and (ID5, 0.5). In this situation,
the wWRAcc” value of this rule is calculated as follows:

wWRAcc′′(R) =
1.0 ∗ 1.0 + 0.5 ∗ 0.5

1.0 + 0.5
·

(
1.0 ∗ 1.0 + 0.5 ∗ 0.5
1.0 ∗ 1.0 + 0.5 ∗ 0.5

− 2

5
) = 0.5

This measure can obtain positive or negative values in the
interval [-1.0, 1.0]. A rule with a wWRAcc” value near to one
may be more useful for the classification.

C. Stage 3. Rule Selection and Lateral Tuning

We consider the use of GAs to select and tune a compact
set of fuzzy association rules with high classification accuracy
from the RB obtained in the previous stage. We consider the
approach proposed in [35] where rules are based on the lin-
guistic 2-tuples representation [55]. This representation allows
the lateral displacement of the labels considering only one
parameter (symbolic translation parameter), which involves
a simplification of the tuning search space that eases the
derivation of optimal models, particularly when it is combined
with a rule selection within the same process enabling it to take
advantage of the positive synergy that both techniques present.
In this way, this process for contextualizing the MFs enables
them to achieve a better covering degree while maintaining
the original shapes, which results in accuracy improvements
without a significant loss in the interpretability of the fuzzy
labels. The symbolic translation parameter of a linguistic term
is a number within the interval [-0.5, 0.5) that expresses the
domain of a label when it is moving between its two lateral
labels. Let us consider a set of labels S representing a fuzzy
partition. Formally, we have the pair, (Si, αi), Si ∈ S, αi ∈
[-0.5, 0.5). An example is illustrated in Fig. 3 where we show
the symbolic translation of a label represented by the pair (S2,
-0.3).

Let us consider the simple problem presented in the previous
section. Based on this definition, an example of classic rule
and linguistic 2-tuples represented rule is:

Classic Rule:
If X1 is Low and X2 is Middle
then Class is C1.

2-Tuples Representation:

a) Simbolic Translation of a Linguistic Term

(s  , - 0.3)

α = -0.3

0.5- 0.5

0.5- 0.5

0.5- 0.5

0.5- 0.5

0.5- 0.5

0 1 2 3 4

- 0.3

1.7

(s  ,-0.3)2

s0 s1 s2 s3 s4

0.5 1-0.5-1

s0 s1 s2 s3 s4

2

b) Lateral Displacement of a Membership Function

Fig. 3. Symbolic Translation of a Linguistic Label and Lateral Displacement
of the involved MF

If X1 is (Low, 0.1) and X2 is (Middle, -0.3)
then Class is C1

In [35], two different rule representation approaches were
proposed, a global approach and a local approach. In our
particular case, the tuning is applied to the level of linguistic
partitions (global approach). In this way, the pair (Xi, label)
takes the same α value in all the rules where it is considered,
i.e., a global collection of 2-tuples is considered by all the
fuzzy rules. For example, X1 is (High, 0.3) will present the
same value for those rules in which the pair ”X1 is High”
was initially considered. This proposal decreases the tuning
problem complexity, greatly easing the derivation of optimal
models. Another important issue is that, from the parameters α
applied to each label, we could obtain the equivalent triangular
MFs, by which a FRBCS based on linguistic 2-tuples could be
represented as a classical Mamdani FRBCS. Notice that the
class label and RW of the rule are not modified.

In the following, the main characteristics of the genetic
approach that combines rule selection and lateral tuning are
presented: genetic model, codification and initial gene pool,
chromosome evaluation, crossover operator and restarting ap-
proach.

1) CHC Genetic Model: The approach proposed in [35]
considers the use of a specific GA, the CHC algorithm [56].
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Fig. 4. Scheme of CHC

The CHC algorithm is a GA that presents a good trade-off
between exploration and exploitation, making it a good choice
for problems with complex search spaces [57]. This genetic
model makes use of a mechanism of Selection of Populations
in order to perform an adequate global search. P parents
and their corresponding offspring compete to select the best
P individuals to take part in the next population. The CHC
approach makes use of an incest prevention mechanism and
a restarting process to encourage diversity in the population,
instead of the well known mutation operator.

This incest prevention mechanism will be considered in
order to apply the crossover operator, i.e., two parents are
crossed if their hamming distance divided by 2 is over a
predetermined threshold, L. This threshold value is initialized
as the maximum possible distance between two individuals
(the number of genes in the chromosome) divided by four.
Following the original CHC scheme, L is decremented by
one when there are no new individuals in the population in
one generation. In order to make this procedure independent
of the number of genes in the chromosome, in our case L will
be decremented by a ϕ% of its initial value (with ϕ determined
by the user, usually 10%). When L is below zero the algorithm
restarts the population (for more information, see [58]).

A scheme of this algorithm is shown in Fig. 4.
2) Codification and Initial Gene Pool: To combine the

rule selection with the global lateral tuning, a double coding
scheme for both rule selection (CS) and lateral tuning (CT )
is used:
• For the CS part, each chromosome is a binary vector

that determines when a rule is selected or not (alleles
‘1’ and ‘0’ respectively). Considering the M rules con-
tained in the candidate rule set, the corresponding part
CS = {c1, ..., cM} represents a subset of rules composing
the final rule base, so that, If ci = 1 then (Ri ∈
RB) else (Ri 6∈ RB),
with Ri being the corresponding i-th rule in the candidate
rule set and RB being the final RB.

• For the CT part, a real coding is considered. This
part is the joint of the α parameters of each fuzzy
partition. Let us consider the following number of
labels per variable: (m1,m2, . . . ,mn), with n being
the number of system variables. Then, this part has
the following form (where each gene is associated to
the tuning value of the corresponding label): CT =
(c11, . . . , c1m1 , c21, . . . , c2m2 , . . . , cn1, . . . , cnmn).

Finally, a chromosome C is coded in the following way:
C = CSCT . To make use of the available information, all
the candidate rules are included in the population as an initial
solution. To do this, the initial pool is obtained with the first
individual having all genes with value ‘1’ in the CS part
and all genes with value ‘0.0’ in the CT part. The remaining
individuals are generated at random.

3) Chromosome Evaluation: To evaluate a determined
chromosome penalizing a large number of rules, we compute
the classification rate and the following function is maximized:

Fitness(C) =
#Hits

N
− δ · NRinitial

NRinitial −NR+ 1.0
, (11)

where #Hits is the number of patterns correctly classified
(see subsection II-C), NRinitial is the number of candidate
rules, NR is the number of selected rules and δ is a weighting
percentage given by the system expert that determines the
tradeoff between accuracy and complexity. If there is at least
one class without selected rules or if there are no covered
patterns the fitness value of a chromosome will be penalized
with the number of classes without selected rules and the
number of uncovered patterns.

4) Crossover Operator: The crossover operator will depend
on the chromosome part where it is applied:
• For the CT part, we consider the Parent Centric BLX

(PCBLX) operator [59] (an operator based on BLX-α).
This operator is based on the concept of neighbourhood,
which allows the offspring genes to be around the genes
of one parent or around a wide zone determined by both
parent genes. Let us assume that X = (x1 · · ·xn) and
Y = (y1 · · · yn), (xi, yi ∈ [ai, bi] ⊂ <, i = 1 · · ·n), are
two real-coded chromosomes that are going to be crossed.
We generate the two following offspring:

– O1 = (o11 · · · o1n), where o1i is a randomly (uni-
formly) chosen number from the interval [l1i , u

1
i ],

with l1i = max{ai, xi − Ii · α}, u1i = min{bi, xi +
Ii · α}, and Ii =| xi − yi |.

– O2 = (o21 · · · o2n), where o2i is a randomly (uni-
formly) chosen number from the interval [l2i , u

2
i ],

with l2i = max{ai, yi−Ii ·α} and u2i = min{bi, yi+
Ii · α}.

• In the CS part, the half uniform crossover scheme
(HUX) is employed [58]. The HUX crossover exactly
interchanges the mid of the alleles that are different in
the parents (the genes to be crossed are randomly selected
from among those that are different in the parents). This
operator ensures the maximum distance of the offspring
to their parents (exploration).

In this case, four offspring are generated by combining the
two from the part CT with the two from the part CS . The
two best offspring obtained in this way are considered as the
two corresponding descendents. Notice that since we consider

a real coding scheme for the CT part, the incest prevention
mechanism has to transform each gene considering a Gray
Code (binary code) with a fixed number of bits per gene
(BITSGENE) that is determined by the expert to calculate the
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Fig. 5. Scheme of FARC-HD method

hamming distance between two individuals in order to apply
the crossover operators.

5) Restarting Approach: To get away from local optima,
this algorithm uses a restart approach. In this case, the best
chromosome is maintained and the remaining are generated at
random. The restart procedure is applied when the threshold
value L is below zero, which means that all the individuals
coexisting in the population are very similar.

D. Flowchart

In accordance with the above description, the proposed
algorithm to obtain a fuzzy association rule-based classifier
is described below.

INPUT: A dataset with size T and m attributes, each with qj
predefined linguistic terms.
OUTPUT: A fuzzy associative classifier.

Stage 1. Fuzzy Association Rule Extraction for Classification.
For each class Cj:
Step 1: Calculate the minimum support of the class Cj

according to eq. (8).
Step 2: Create the levels 0 and 1 of the tree.
Step 3: Create a new level in the tree.
Step 4: Prune nodes.
Step 5: If there are more than 2 nodes in the new level and
the depth of the tree is less than Depthmax, go to Step 3.
Step 6: Generate the rules with the class Cj on the right-hand
side.

Stage 2. Candidate Rule Prescreening.
For each class Cj:
Step 7: Set the weight of the patterns as 1.
Step 8: Calculate the wWRAcc” value for each rule.
Step 9: Select the best rule as a part of the initial RB for
Stage 3 and remove it from the candidate rule set.
Step 10: Decrease the weight of the patterns covered by the
selected rule.
Step 11: If any pattern has been covered less than kt times
and there are more rules in the candidate rule set, go to Step 8.

Stage 3. Rule Selection and Lateral Tuning.
Step 12: Generate the initial population with P chromosomes.
Step 13: Evaluate the population.
Step 14: Initialize the threshold value taking into account Gray
codings, L = Linitial.
Step 15: Generate the next population:

• Shuffle the population.
• Select the parents two by two. Each pair is crossed if

the hamming distance between the parent Gray codings
divided by 2 is over L.

• Evaluate the new individuals.
• Join the parents with their offspring and select the best
P individuals to take part in the next population.

Step 16: If the best chromosome does not change or there are
no new individuals in the population, L = L− (Linitial ∗0.1).
Step 17: If L < 0, restart the population and initialize L.
Step 18: If the maximum number of evaluations is not reached,
go to Step 15.

A scheme of this algorithm is shown in Fig. 5.

IV. EXPERIMENTAL SET-UP

Several experiments have been carried out in this paper
to evaluate the usefulness of our proposal. In the following
subsections, firstly we describe the real-world databases used
in these experiments, secondly we introduce a brief description
of the methods considered for comparison, thirdly we show the
configuration of the methods (determining all the parameters
used), and finally we describe the statistical analysis adopted
in this study.
A. Data sets

In order to analyze the performance of the proposed
approach, we have considered 26 real-world datasets. Ta-
ble II summarizes the main characteristics of the 26 datasets
and shows the link to the Knowledge Extraction based on
Evolutionary Learning (KEEL)-dataset repository [60] from
which they can be downloaded, where Attributes(R/I/N)
is the number of (Real/Integer/Nominal) attributes in the data,
Patterns is the number of patterns and Classes is the number
of classes. Notice that we have removed the instances with
any missing value in the datasets (Cleveland and Crx) and 12
datasets have a number of variables greater than or equal to
15.

To develop the different experiments we consider a 10-fold
cross-validation model, i.e., we randomly split the data set into
10 folds, each containing 10% of the patterns of the data set,
and used nine folds for training and one for testing 1. For each
of the ten partitions, we executed three trials of the algorithms.

1The corresponding data partitions (10-fold) for these
data sets are available at the KEEL-dataset repository [60]:
http://sci2s.ugr.es/keel/datasets.php
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TABLE II
DATA SETS CONSIDERED FOR THE EXPERIMENTAL STUDY

Name Attributes (R/I/N) Patterns Classes Name Attributes (R/I/N) Patterns Classes
Iris 4 (4/0/0) 150 3 Vowel 13 (10/3/0) 990 11
Phoneme 5 (5/0/0) 5404 2 Crx 15 (3/3/9) 653(690) 2
Monks 6 (0/6/0) 432 2 Pen-based 16 (0/16/0) 10992 10
Appendicitis 7 (7/0/0) 106 2 German 20 (0/7/13) 1000 2
Ecoli 7 (7/0/0) 336 8 Twonorm 20 (20/0/0) 7400 2
Pima 8 (8/0/0) 768 2 Ringnorm 20 (20/0/0) 7400 2
Yeast 8 (8/0/0) 1484 10 Wdbc 30 (30/0/0) 569 2
Glass 9 (9/0/0) 214 7 SatImage 36 (0/36/0) 6435 6
Page-blocks 10 (4/6/0) 5472 5 Texture 40 (40/0/0) 5500 11
Magic 10 (10/0/0) 19020 2 Spectfheart 44 (0/44/0) 267 2
Wine 13 (13/0/0) 178 3 Spambase 57 (57/0/0) 4597 2
Heart 13 (1/12/0) 270 2 Sonar 60 (60/0/0) 208 2
Cleveland 13 (13/0/0) 297(303) 5 Movementlibras 90 (90/0/0) 360 15

Available at http://sci2s.ugr.es/keel/datasets.php

For each data set, we therefore consider the average results of
30 runs.

B. Methods considered for comparison

In these experiments, we compare the proposed approach
with another ten methods which are available in the KEEL
software tool [61]. What follows is a brief description of these
methods:

• C4.5 [39]: This is a well-known algorithm used to gen-
erate a decision tree from a set of training data in the
same way as the ID3 algorithm [62]. The extensions or
improvements with respect to ID3 are that it accounts
for unavailable or missing values in data, it handles con-
tinuous attribute value ranges, it chooses an appropriate
attribute selection measure (maximizing gain-ratio) and it
prunes the resulting decision trees.

• Classification Based on Associations (CBA) [12]: This
method consists of two parts. In the first part, an algo-
rithm based on Apriori algorithm [31] is used to mine the
interval association rules for classification. In the second
part, this sorts the generated rules according to their
precedence relation and chooses a set of high precedence
rules to cover the training data.

• CBA2 [13]: This method is the second version of the
CBA algorithm which improves the previous system by
using multiple class minimum support in rule generation.

• Classification based on Multiple Association Rules
(CMAR) [14]: This method extends an efficient frequent
(FP) pattern mining method, FP-Growth [63], constructs
a class distribution-associated FP-tree, and mines large
databases efficiently. Moreover, it applies a CR-tree
structure to store and retrieve mined interval association
rules efficiently, and it prunes rules effectively based
on confidence, correlation (by using a weighted Chi-
Square method) and database coverage. The classification
is performed based on a weighted Chi-Square analysis
using multiple strong association rules.

• Structural Learning Algorithm on Vague Environment
(2SLAVE) [64]: This method is a modification of the
GA of the SLAVE algorithm [65] in order to include a
feature selection process. This is an inductive learning
algorithm based on the Iterative Rule Learning approach,
in which each chromosome represents a rule, to obtain
a set of Disjunctive Normal Form (DNF) fuzzy rules.
Chromosomes compete in every GA run, choosing the
best rule per run. The global solution is formed by the
best rules obtained when the algorithm is run multiple
times.

• Learning Algorithm to discover Fuzzy Association Rules
for classification (LAFAR) [24]: This method uses a GA
to automatically determine the minimum fuzzy support
and the minimum fuzzy confidence. To evaluate a de-
termined chromosome this method finds frequent fuzzy
grids and generates fuzzy classification rules from them.
Once the whole classifier is obtained, the fitness value can
be calculated, which maximizes the classification accu-
racy rate and minimizes the number of fuzzy rules. When
reaching the termination condition, the chromosome with
the maximum fitness value is used to test the performance
of the proposed method.

• Classification based on Predictive Association Rules
(CPAR) [15]: This method adopts a greedy algorithm to
generate interval association rules directly from training
data. In this process, this algorithm selects multiple
literals with similar gains to build multiple rules simul-
taneously in order to avoid missing important rules. To
perform the classification, this uses expected accuracy to
evaluate each rule and uses the best k rules in prediction.

• Fuzzy Hybrid Genetic Based Machine Learning algo-
rithm (FH-GBML) [66]: This method follows a Genetic
Cooperative-Competitive Learning (GCCL) approach and
consists of two processes. The first process is used for
generating good fuzzy rules while the second one is used
for finding good combinations of generated fuzzy rules.
This method simultaneously uses multiple fuzzy parti-
tions with different granularities for fuzzy rule extraction,
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TABLE III
PARAMETERS CONSIDERED FOR COMPARISON

Method Parameters
C4.5 Pruned = yes, Confidence = 0.25, InstancesPerLeaf = 2

CBA Minsup = 0.01, Minconf = 0.5, Pruned = yes, RuleLimit = 80, 000

CBA2 Minsup = 0.01, Minconf = 0.5, Pruned = yes, RuleLimit = 80, 000

CMAR Minsup = 0.01, Minconf = 0.5, δ = 4, DifferenceThreshold = 20%

2SLAVE Pop = 100, Iterchange = 500, Pc = 0.6, Pm = 0.01, κ1 = 0, κ2 = 1, Opor = 0.1,
Opand = 0.1, Pgen = 0.1, Prot = 0.1, α = 0.15

LAFAR tmax = 50, Npop = 30, | s |=| c |= 10, WCAR = 10, WV = 1, Pc = 1.0, Pm = 0.01,
Jmax = 100, η1 = 0.001, η2 = 0.1

CPAR δ = 0.05, min gain = 0.7, α = 0.66, k = 5

FH-GBML Nrules = 20, Fsets = 200, Gen = 1000, Pc = 0.9, Pdcare = {0.5, 0.8, 0.95},
Pmichigan = 0.5

SGERD Q = heuristics

CFAR Minpsup = {0.05, 0.1}, Minpconf = 0.85, MS = 0.15

FARC-HD Minsup = 0.05, Maxconf = 0.8, Depthmax = 3, kt = 2,
Pop = 50, Evaluations = 15, 000, BITSGENE = 30, δ = 0.15

using four homogeneous fuzzy partitions with triangular
fuzzy sets and a don’t care condition.

• Steady-State Genetic Algorithm for Extracting Fuzzy
Classification Rules From Data (SGERD) [67]: It is
a steady-state GA to generate a prespecified number
of Q rules per class following a GCCL approach. In
each iteration, parents and their corresponding offspring
compete to select the best Q rules for each class. This
method also simultaneously uses multiple fuzzy partitions
with different granularities and a don’t care condition for
fuzzy rule extraction.

• Classification with Fuzzy Association Rules
(CFAR) [27]: This method uses the Apriori algorithm to
mine all the fuzzy association rules for classification and
remove the conflicting and redundant rules to generate
a compact set of rules denoted as CompSet. Then, this
method selects the best rules to build the classifier by
means of two processes. In the first process; for each
pattern, CompSet is sorted by matching and confidence
degree, rewarding the best rule that classify this pattern
and punishing the rules that don’t classify it. In the
second process, the worst rules from CompSet are
removed. These processes are iterated until the error rate
in the training set increases.

C. Parameters of the methods

The parameters of the analyzed methods are shown in Table
III 2. Notice that only the rules with a number of antecedent
conditions less than or equal to 3 are examined for our
proposal. This restriction is intended to facilitate the discovery
of a small number of short (i.e., simple) fuzzy rules. The pa-
rameters of the remaining methods were selected according to
the recommendation of the corresponding authors within each
proposal, which are the default parameter settings included

2With these values for our proposal we have tried to facilitate comparisons,
selecting standard common parameters that work well in most cases instead
of searching for very specific values.

in the KEEL software tool [61]. Notice that in the FH-GBML
algorithm the authors used three different probabilities of don’t
care (0.5, 0.8 and 0.95 depending on the size of the dataset)
to obtain fuzzy rules with a few antecedent fuzzy sets. In
these experiments, we have used these three probabilities of
don’t care in each dataset and have shown in the tables the
best average result obtained for each one. Furthermore, in the
CFAR algorithm the authors used 0.1 as the minimim support
and this could be very high for some datasets (we are using
0.05 as the minimim support in our proposal). Likewise, we
have used these two minimum supports in each dataset (0.1
and 0.05) and we have shown in the tables the best average
result obtained in each one.

The initial linguistic partitions for our proposal and the
fuzzy methods analyzed are comprised of five linguistic terms
with uniformly distributed triangular MFs giving meaning
to them, except in the FH-GBML and SGERD algorithms
where the partitions are comprised of two, three, four and five
linguistic terms for each attribute. The discretization of the
continuous attributes for the CBA, CBA2, CMAR and CPAR
algorithms is done using the Entropy method [68]. Notice that
we use a crisp label for each value of the nominal variables.

D. Statistical analysis

In order to assess whether significant differences exist
among the results, we adopt statistical analysis [41]–[43] and
in particular non-parametric tests, according to the recommen-
dations made in [40], where a set of simple, safe and robust
non-parametric tests for statistical comparisons of classifiers
has been introduced.

For pair-wise comparison we use Wilcoxon’s Signed-Ranks
test [69], [70], and for multiple comparison we employ Fried-
man’s test [71], Iman and Davenport’s test [72] and Holm’s
method [73]. In order to perform multiple comparisons, it is
necessary to check whether all the results obtained by the
algorithms present any significant difference (Friedman’s test
and Iman-Davenport’s test) and, in the case of finding one,



IEEE TRANSACTIONS ON FUZZY SYSTEMS 10

TABLE IV
RESULTS OBTAINED BY THE ANALYZED METHODS

2SLAVE FH-GBML SGERD FARC-HD
Dataset #R #C Tra Tst #R #C Tra Tst #R #C Tra Tst #R #C Tra Tst
Iris 4.0 3.2 94.32 94.44 14.9 3.3 98.89 94.00 3.4 2.0 95.14 94.89 4.0 1.1 98.59 96.00
Phoneme 11.5 24.2 77.52 76.41 17.4 4.5 79.57 79.66 3.6 1.9 75.74 75.55 17.8 2.2 83.52 82.14
Monks 3.0 1.3 97.22 97.26 14.7 2.1 98.36 98.18 2.2 1.4 80.56 80.65 14.2 2.0 99.92 99.77
Appendicitis 4.4 7.5 91.20 82.91 13.8 7.0 93.19 86.00 2.5 2.0 87.88 84.48 6.8 1.8 93.82 84.18
Ecoli 12.6 9.6 89.51 84.53 10.3 4.2 75.83 69.38 9.4 1.6 76.53 74.05 33.8 2.4 92.33 82.19
Pima 7.8 8.8 76.35 73.71 10.6 6.0 77.18 75.26 3.1 2.0 74.01 73.37 22.7 2.4 82.90 75.66
Yeast 23.6 9.8 55.54 51.27 7.5 5.9 52.31 51.42 11.3 1.5 39.83 38.77 35.2 2.6 63.81 58.50
Glass 15.1 9.3 74.25 58.05 9.4 5.0 64.85 57.99 6.9 2.0 61.31 58.49 22.7 2.5 81.10 70.24
Page-blocks 7.5 10.3 91.39 91.39 7.4 8.1 94.37 94.21 6.5 2.0 90.83 90.72 19.1 2.3 95.62 95.01
Magic 4.1 10.5 73.97 73.96 9.9 8.2 81.23 81.30 3.1 2.0 72.17 72.06 43.3 2.5 85.36 84.51
Wine 5.5 10.3 92.52 89.47 9.2 4.7 95.51 92.61 4.2 2.0 93.67 91.88 8.7 1.6 99.94 94.35
Heart 4.3 10.7 75.35 71.36 12.7 3.2 84.65 75.93 2.7 1.9 74.83 73.21 27.0 2.6 93.91 84.44
Cleveland 11.9 12.8 54.24 48.82 6.9 4.5 58.29 53.51 6.4 2.0 56.55 51.59 61.3 2.9 88.18 55.24
Vowel 63.1 15.6 82.06 71.11 9.2 13.0 67.41 67.07 18.0 1.9 72.99 65.83 72.3 2.9 80.48 71.82
Crx 2.4 6.7 74.36 74.06 11.6 6.2 86.32 86.60 2.1 1.9 85.04 85.03 25.4 2.6 91.17 86.03
Pen-based 40.0 18.9 81.32 81.16 18.4 8.0 50.69 50.45 15.9 2.0 68.17 67.93 152.8 2.8 97.04 96.04
German 6.5 8.4 72.44 70.53 5.1 4.0 87.11 87.01 3.4 2.0 68.54 67.97 85.7 2.8 86.81 72.80
Twonorm 26.5 15.5 87.45 86.99 12.0 7.6 86.26 85.97 3.1 2.0 74.49 73.98 60.9 2.6 96.64 95.28
Ringnorm 4.6 23.7 80.12 79.63 6.9 11.3 87.34 86.92 6.8 2.0 73.21 72.63 24.0 1.9 95.13 94.08
Wdbc 5.2 8.1 92.43 92.33 7.2 4.9 95.12 92.26 3.7 2.0 91.79 90.68 10.4 1.7 98.57 95.25
SatImage 57.9 25.1 84.03 81.69 16.5 36.0 74.90 74.72 12.2 2.0 77.15 77.10 76.1 2.7 88.68 87.32
Texture 34.9 23.9 82.87 81.57 14.6 40.0 69.91 70.15 18.6 2.0 72.12 71.66 54.5 2.7 93.71 92.89
Spectfheart 6.1 21.7 80.71 79.17 10.8 44.0 79.28 72.36 2.1 1.9 79.05 78.16 12.9 1.8 91.43 79.83
Spambase 7.9 11.4 69.87 70.14 3.9 18.5 77.86 77.22 3.7 2.0 72.90 72.98 29.8 2.4 92.37 91.93
Sonar 9.6 17.5 77.92 71.42 10.3 4.7 80.56 68.24 3.2 2.0 74.22 71.90 18.0 2.3 98.77 80.19
Movementlibras 47.4 26.5 90.13 67.04 12.1 90.0 77.87 68.89 22.9 2.0 72.37 68.09 83.1 2.9 95.52 76.67
Mean 16.4 13.5 80.73 76.94 10.9 13.6 79.80 76.82 6.9 1.9 75.43 73.99 39.3 2.3 90.97 83.94

then we can find out by using a post-hoc test for comparing
the control algorithm with the remaining algorithms (Holm’s
test). We use α = 0.05 as the level of confidence in all cases.
A wider description of these tests, together with software for
their use, can be also found on the web site available at:
http://sci2s.ugr.es/sicidm/.

V. EXPERIMENTAL RESULTS

In this section we analyze the results obtained in the
different experiments. This section is organized as follows:
• In subsection V-A, we show a statistical study obtained

from the comparison with another three GFSs including:
FH-GBML [66], 2SLAVE [64] and SGERD [67].

• In subsection V-B, we compare the performance of our
approach with two other approaches to obtain a fuzzy
associative classifier: LAFAR algorithm [24] and CFAR
algorithm [27].

• In subsection V-C, we compare the performance of our
approach with the C4.5 decision tree [39] and four clas-
sical approaches for associative classification: CBA algo-
rithm [12], CBA2 algorithm [13], CMAR algorithm [14]
and CPAR algorithm [15].

• In subsection V-D, we show an analysis of the perfor-
mance of our approach depending on the depth of the
trees and the number of evaluations in the genetic process.

• In subsection V-E, we analyze the scalability of our
proposal.

A. Comparison with other GFSs

This section analyzes the performance of our model against
three recognized GFSs. The results obtained by the analyzed
methods are shown in Table IV, where
• #R stands for the average number of rules,
• #C stands for the average number of conditions in the

antecedent of the rules,
• Tra for the average classification percentage obtained

over the training data,
• and Tst for the average classification percentage obtained

over the test data.
The best global result for each one is stressed in boldface in
each case.

In order to compare the results, we have used non-
parametric tests for multiple comparison to find the best ap-
proach (see subsection IV-D), considering the average results
obtained in test (Tst). First of all, we have used the Friedman
and ImanDavenport tests in order to find out whether signif-
icant differences exist among all the mean values. Table V
shows the Friedman and ImanDavenport statistics and it relates
them to the corresponding critical values for each distribution
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TABLE V
RESULTS OF THE FRIEDMAN AND IMANDAVENPORT TESTS (α = 0.05)

Friedman Test
Statistic (X 2

F ) Critical Value p value
40.823 7.814 <0.0001

ImanDavenport Test
Statistic (FF ) Critical Value p value

27.452 2.7386 <0.0001

TABLE VI
AVERAGE RANKINGS OF THE METHODS

Method Ranking
SGERD 3.2884
2SLAVE 2.9808
FH-GBML 2.5577
FARC-HD 1.1731

by using a level of significance α = 0.05. The p value obtained
is also reported for each test. Given that the statistics of
Friedman and ImanDavenport are clearly greater than their as-
sociated critical values, there are significant differences among
the observed results with a level of significance α ≤ 0.05.
Table VI shows the rankings (computed using a Friedman test)
of the different methods considered in this study.

We now apply Holm’s test to compare the best ranking
method (FARC-HD) with the remaining methods. Table VII
presents these results. In this table, the methods are ordered
with respect to the z-value obtained. Holm’s test rejects the
hypothesis of equality with the rest of the methods (p < α/i).
Therefore, analyzing the statistical study shown in Tables VI
and VII we conclude that our model is a solid approach to deal
with high dimensional datasets, as it has shown itself to be
the best accuracy method when compared with the remaining
fuzzy GFSs applied in this study.

Finally, the results presented in Table IV show that our
proposal obtains a higher average number of rules (39.2 rules
on average) than all the GFSs (good approaches for obtaining
very compact models), showing a good trade-off closer to the
accuracy with rules involving no more than three attributes in
their antecedent, giving the advantage of easier understanding
with respect to 2SLAVE and FH-GBML.

B. Comparison with other fuzzy associative classifiers

This section compares the performance of our model with
two other approaches to obtain a fuzzy associative classifier,
LAFAR algorithm [24] and CFAR algorithm [27]. The results
obtained by these methods are shown in Table VIII (this kind
of table was described in the previous subsection). Notice that
we show less datasets; this is due to scalability problems in
the LAFAR and CFAR algorithms which cannot run in all
datasets.

In order to compare the two algorithms, we use a
Wilcoxon’s test, which is shown in Table IX. We can observe
that the null hypothesis for the Wilcoxon’s test has been
rejected (p-value <= α) and our proposal has achieved a

TABLE VII
HOLM TABLE FOR THE SELECTION METHODS WITH α = 0.05

i Method z p α/i Hypothesis
3 SGERD 5.01 3.46E-9 0.0166 Rejected
2 2SLAVE 5.05 4.45E-7 0.0125 Rejected
1 FH-GBML 3.87 1.10E-4 0.05 Rejected

TABLE IX
WILCOXON’S TEST (α = 0.05)

Comparison R+ R− Hypothesis p-value
FARC-HD vs. CFAR 161 10 Rejected 0.001

FARC-HD vs. LAFAR 34 2 Rejected 0.025
LAFAR vs. CFAR 32 4 Rejected 0.05

TABLE XI
RESULTS OF THE FRIEDMAN AND IMANDAVENPORT TESTS (α = 0.05)

Friedman Test
Statistic (X 2

F ) Critical Value p value
15.84 11.0705 <0.01

ImanDavenport Test
Statistic (FF ) Critical Value p value

3.4703 2.2885 <0.01

TABLE XII
AVERAGE RANKINGS OF THE METHODS

Method Ranking
CBA 3.807
CMAR 3.775
CBA2 3.730
C45 3.576
CPAR 3.346
FARC-HD 2.307

higher ranking. We may conclude that our proposal also
presents the best performance in this case.

On the other hand, the results presented in Table VIII show
that our approach obtains an average number of rules lower
than the LAFAR and CFAR algorithms. However, the CFAR
algorithm obtains less rules than our approach in 11 of the 18
datasets.

C. Comparison with classical approaches

This section analyzes the performance of our model against
five classical approaches. The results obtained by the analyzed
methods are shown in Table X.

In order to compare the results, we have applied the non-
parametric tests described in subsection V-A. Table XI shows
that the statistics of Friedman and ImanDavenport are clearly
greater than their associated critical values and there are
significant differences among the observed results with a level
of significance α ≤ 0.05. Table XII shows the rankings
(computed using a Friedman test) of the different methods
considered in this study.

Table XIII shows that Holm’s test rejects the hypothesis of
equality with the rest of the methods (p < α/i). Therefore, an-
alyzing the statistical study shown in Tables XII and XIII, we
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TABLE VIII
RESULTS OBTAINED BY THE ANALYZED METHODS

LAFAR CFAR FARC-HD
Dataset #R #C Tra Tst #R #C Tra Tst #R #C Tra Tst
Iris 17.4 1.0 98.74 92.67 9.1 1.5 91.33 90.67 4.0 1.1 98.59 96.00
Phoneme 16.9 1.1 78.49 77.87 2.0 1.0 70.65 70.65 17.8 2.2 83.52 82.14
Monks 126.4 3.9 94.64 93.36 12.1 1.8 100.00 99.55 14.2 2.0 99.92 99.77
Appendicitis 39.1 1.1 95.91 86.00 14.8 1.4 88.47 87.82 6.8 1.8 93.82 84.18
Ecoli 68.4 2.1 81.58 72.36 4.0 3.1 48.45 47.61 33.8 2.4 92.33 82.19
Pima 32.3 1.1 77.36 75.40 2.0 1.9 65.10 65.11 22.7 2.4 82.90 75.66
Yeast 40.2 2.0 54.53 50.90 3.0 1.0 36.44 36.44 35.2 2.6 63.81 58.50
Glass 36.0 2.5 68.59 52.17 3.4 2.1 44.19 44.66 22.7 2.5 81.10 70.24
Page-blocks 2.0 1.0 89.78 89.78 19.1 2.3 95.62 95.01
Magic 2.0 1.5 64.84 64.84 43.3 2.5 85.36 84.51
Wine 115.7 3.0 99.63 93.24 8.7 1.6 99.94 94.35
Heart 45.3 3.3 86.01 82.22 27.0 2.6 93.91 84.44
Cleveland 2.0 2.1 53.87 53.88 61.3 2.9 88.18 55.24
Crx 89.9 5.1 89.45 86.79 25.4 2.6 91.17 86.03
Pen-based 6.9 2.9 36.54 36.43 152.8 2.8 97.04 96.04
German 2.0 2.7 70.00 70.00 85.7 2.8 86.81 72.80
Twonorm 498.7 3.7 91.96 91.66 60.9 2.6 96.64 95.28
Sonar 37.3 3.0 83.01 72.48 18.0 2.3 98.77 80.19
Mean 47.1 1.8 81.23 75.09 47.3 2.3 72.76 71.32 36.6 2.3 90.52 82.92

TABLE X
RESULTS OBTAINED BY THE ANALYZED METHODS

CBA CBA2 CMAR CPAR C45 FARC-HD
Data #R Tra Tst #R Tra Tst #R Tra Tst #R Tra Tst #R Tra Tst #R Tra Tst
Iris 4 96.7 93.3 4 96.7 93.3 41 96.4 94.0 34 96.4 96.0 5 98.0 96.0 4 98.6 96.0
Phoneme 81 81.4 80.5 116 82.2 81.2 358 79.3 78.6 1109 84.0 81.9 129 91.9 86.8 18 83.5 82.1
Monks 11 100.0 100.0 11 100.0 100.0 126 100.0 100.0 79 100.0 100.0 5 100.0 100.0 14 99.9 99.8
Appendicitis 6 91.5 89.6 6 91.5 89.6 42 90.8 89.7 25 89.5 87.8 3 91.0 83.3 7 93.8 84.2
Ecoli 29 87.3 78.0 35 89.2 77.1 178 82.5 77.7 158 82.6 76.2 20 91.7 79.5 34 92.3 82.2
Pima 42 79.6 72.7 44 79.9 72.5 237 79.4 75.1 166 79.1 74.5 18 83.2 74.0 23 82.9 75.7
Yeast 48 59.4 54.7 67 61.8 55.9 262 57.2 53.6 427 59.4 56.3 169 81.5 55.6 35 63.8 58.5
Glass 25 82.3 70.8 28 83.1 71.3 174 78.9 70.3 121 77.2 68.9 26 93.7 67.4 23 81.1 70.2
Page-blocks 172 94.6 94.0 256 98.2 95.9 1348 94.7 94.4 464 97.4 96.1 43 98.5 97.1 19 95.6 95.0
Magic 728 82.7 81.5 1015 84.8 83.7 4200 79.3 78.8 5422 87.9 84.9 321 90.9 85.1 43 85.4 84.5
Wine 9 99.9 93.8 9 99.9 93.8 73 99.9 96.7 44 99.7 95.6 5 98.9 93.3 9 99.9 94.3
Heart 40 93.8 83.0 40 94.2 81.5 306 91.5 82.2 93 90.1 80.7 17 91.7 78.5 27 93.9 84.4
Cleveland 30 64.3 56.9 47 70.0 54.9 230 54.1 53.9 107 61.8 54.9 40 83.1 54.5 61 88.2 55.2
Vowel 130 77.8 63.6 215 92.6 74.9 945 71.2 60.4 888 76.1 63.0 95 97.1 81.5 72 80.5 71.8
Crx 97 95.2 83.6 97 94.9 85.0 728 92.0 85.0 204 91.1 87.3 21 90.8 85.3 25 91.2 86.0
Pen-based 653 85.3 83.1 592 90.3 88.1 4328 72.0 71.7 2536 97.9 93.1 191 99.3 96.5 153 97.0 96.0
German 177 94.5 75.3 227 92.9 73.7 1984 84.4 71.9 666 88.1 73.3 83 84.9 72.5 86 86.8 72.8
Twonorm 708 97.7 91.6 724 97.0 91.7 2163 97.7 95.5 1646 99.0 89.4 286 98.7 84.5 61 96.6 95.3
Ringnorm 295 96.3 94.1 184 97.2 93.7 2788 87.2 83.7 1209 99.1 92.2 203 98.7 90.2 24 95.1 94.1
Wdbc 50 100.0 94.7 51 99.9 95.1 309 99.9 94.9 66 99.0 95.1 12 99.1 95.2 10 98.6 95.3
SatImage 722 88.5 85.2 587 87.6 83.6 7083 86.6 84.9 2032 97.3 85.8 287 97.7 85.8 76 88.7 87.3
Texture 377 88.3 84.5 50 53.5 52.5 5616 76.3 73.8 1492 98.5 90.7 152 99.0 92.6 55 93.7 92.9
Spectfheart 31 92.0 79.8 33 91.8 79.8 305 85.5 79.4 87 87.3 78.3 19 98.3 76.5 13 91.4 79.8
Spambase 278 95.0 93.2 302 95.2 93.0 2317 92.9 92.0 686 97.9 93.5 109 97.4 92.7 30 92.4 91.9
Sonar 27 92.3 75.4 39 97.7 77.9 234 98.3 78.8 92 95.8 75.0 14 97.7 70.5 18 98.8 80.2
Movementlibras 41 54.8 36.1 4 11.6 7.2 510 51.7 39.2 636 85.3 63.6 47 94.4 69.4 83 95.5 76.7
Mean 185 87.4 80.3 184 85.9 78.7 1419 83.8 79.1 788 89.1 82.1 89 94.1 82.5 39 91.0 83.9
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TABLE XIII
HOLM TABLE FOR THE SELECTION METHODS WITH α = 0.05

i Method z p α/i Hypothesis
5 CMAR 3.71 2.1035E-4 0.01 Rejected
4 CBA 2.89 0.0038 0.0125 Rejected
3 CBA2 2.74 0.0060 0.0166 Rejected
2 C45 2.45 0.0144 0.025 Rejected
1 CPAR 2.01 0.0453 0.05 Rejected

conclude that our model is the best performing method when
compared with the remaining classical approaches applied in
this study. Finally, the results presented in Table X show that
our proposal obtains an smaller average number of rules than
the remaining approaches.

D. Analysis of the influence of Depthmax and the number of
evaluations

In this subsection several experiments have been carried
out to analyse the performance of our approach depending
on Depthmax and the number of evaluations in the genetic
selection and tuning process (using the experimental setting
described in subsection IV). In order to make this analysis
easier to interpret, we have used four representative datasets
in this experiments: Yeast, Vowel, Ringnorm and Spectfheart
(8, 13, 20 and 44 variables respectively). Table XIV shows the
results obtained with three different values for Depthmax (2,
3 and 4), where #R1 stands for the average number of rules
obtained at the end of Stage 1, #R2 stands for the average
number of rules obtained at the end of Stage 2, #R3 stands for
the average number of rules obtained at the end of Stage 3, and
time stands for the average runtime (in format hh : mm : ss).

Analysing the results presented in Table XIV, we can
highlight the following facts:

• Candidate rule prescreening allows the selection of a
reduced number of interesting rules with the three values
for Depthmax, decreasing the computational cost in the
genetic selection and tuning process. Notice that the
number of rules obtained in the stage 1 for the dataset
Spectfheart is higher than 300,000 rules.

• When we use Depthmax = 4 we can see how the pro-
posed approach does not obtain important improvements
in training for 3 of the 4 datasets and only improves the
results obtained in test for 2 of the 4 datasets. Moreover,
the increase of the computational cost is high in all
datasets, being Depthmax = 3 a value with a good
compromise between both properties.

On the other hand, Fig. 6 depicts the accuracy obtained over
the training data along with different numbers of evaluations
in the genetic process with Depthmax = 4. In this figure we
can highlight how this process obtains the best solution in less
than 14,000 evaluations in all datasets because the initial RBs
consist of a reduced number of rules.

Taking into account both studies, a good neutral choice
ensuring the convergence may be to use 3 for Depthmax and
15,000 for the number of evaluations in the genetic process,
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Fig. 6. The accuracy obtained over the training data with different numbers
of evaluations in the genetic process with Depthmax = 4

obtaining a good trade-off between accuracy and computa-
tional cost (good accuracy and not too great a computational
cost).

E. Analysis of Scalability

Table XV shows the average runtime of the analyzed meth-
ods in the previous subsections on the 26 real-world problems
(with a number of variables ranging from 4 to 90 and a number
of patterns ranging from 150 to 19020) and using the 10-
fold cross-validation model. The methods were implemented
using Java and all of the experiments were performed using
a Pentium Corel 2 Quad, 2.5GHz CPU with 4Gb of memory
and running Linux.

Analyzing the results presented in Table XV we can draw
the following conclusions:

• The SGERD algorithm presents a very low average run-
time in all datasets, obtaining a good scalability when we
increase the size of the problem. This method, however,
should be the worst in Friedman’s test when we compare
the results obtained in the test data (see table VI).

• The 2SLAVE, FH-GBML, LAFAR and CFAR algorithms
expend a large amount of time when the number of
attributes and patterns in the dataset is high. Notice that
CFAR and LAFAR can not run in 7 and 18 of the 26
datasets, respectively.

• The remainder of the methods obtain low computational
costs in all datasets and present good results in accuracy.
However, our proposal obtains the best ranking in Fried-
man’s test when we compare the results obtained in the
test partitions.

• Notice that the CBA and CBA2 algorithms present similar
runtimes to CMAR and CPAR algorithms because they
limit the total number of candidates rules generated in
datasets with more than 15 variables since they cannot
be completed within this limit.

• The FARC-HD approach presents a good computational
cost in all datasets, obtaining a good scalability and the
best performance in accuracy.
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TABLE XIV
ANALYSIS OF THE PERFORMANCE DEPENDING ON Depthmax

Depthmax = 2 Depthmax = 3 Depthmax = 4

Data #R1 #R2 #R3 Tra Tst Time #R1 #R2 #R3 Tra Tst Time #R1 #R2 #R3 Tra Tst Time
Yeast 96.9 38.9 27.9 62.2 57.7 0:00:51 373.2 56.3 35.2 63.8 58.5 0:01:00 845.5 68.1 43.7 64.6 57.6 0:02:03
Vowel 211.9 48.3 35.2 60.4 52.3 0:00:58 1482.3 97.5 72.3 80.4 71.8 0:02:16 6423 111.1 90.5 89.8 78.4 0:07:10
Ringnorm 1460.4 36.7 25.9 94.8 93.8 0:05:44 9927.7 41.4 24.0 95.1 94.1 0:07:28 35201.1 45.4 28.0 95.9 94.6 0:19:42
Spectfheart 2870.0 37.6 13.8 91.3 79.1 0:00:19 45508.1 34.7 12.9 91.4 79.8 0:01:59 389983 32.8 15.4 92.6 77.5 1:10:21

TABLE XV
AVERAGE RUNTIME OF THE ANALYZED METHODS (HH:MM:SS)

Dataset Var Patt 2SLAVE FH-GBML SGERD CFAR LAFAR CBA CBA2 CMAR CPAR C4.5 FARC-HD
Iris 4 150 00:00:05 00:12:57 00:00:00 00:00:00 00:09:39 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:01
Phoneme 5 5404 00:03:01 01:39:48 00:00:01 00:00:05 01:08:27 00:00:01 00:00:01 00:00:01 00:00:05 00:00:00 00:01:44
Monks 6 432 00:00:07 00:10:57 00:00:00 00:00:01 07:39:18 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:09
Appendicitis 7 106 00:00:03 00:02:05 00:00:00 00:00:05 01:00:44 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:02
Ecoli 7 336 00:00:50 00:11:05 00:00:00 00:00:01 01:20:10 00:00:00 00:00:00 00:00:00 00:00:01 00:00:00 00:00:15
Pima 8 768 00:00:41 00:23:31 00:00:00 00:00:06 04:18:18 00:00:00 00:00:00 00:00:00 00:00:01 00:00:00 00:00:22
Yeast 8 1484 00:07:04 00:48:51 00:00:00 00:00:01 15:27:38 00:00:00 00:00:00 00:00:00 00:00:01 00:00:01 00:01:00
Glass 9 214 00:00:38 00:08:05 00:00:00 00:00:04 07:58:01 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:18
Page-blocks 10 5472 00:09:59 03:09:10 00:00:02 00:01:08 - 00:00:06 00:01:09 00:00:10 00:00:04 00:00:07 00:02:15
Magic 10 19020 01:03:25 13:04:02 00:00:21 00:16:30 - 00:00:28 00:00:50 00:01:18 00:01:20 00:00:52 00:17:52
Wine 13 178 00:00:12 00:10:16 00:00:00 00:00:45 - 00:04:45 00:43:04 00:15:58 00:00:00 00:00:00 00:00:09
Heart 13 270 00:00:15 00:12:51 00:00:00 00:00:12 - 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:14
Cleveland 13 303 00:01:29 00:14:36 00:00:00 00:00:09 - 00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:37
Vowel 13 990 00:13:20 00:13:40 00:00:00 00:00:10 - 00:01:12 00:02:13 00:00:05 00:00:03 00:00:00 00:02:16
Crx 15 690 00:00:35 00:35:37 00:00:00 00:02:02 - 00:02:06 00:00:18 00:06:19 00:00:01 00:00:00 00:00:27
Pen-based 16 10992 02:32:58 10:29:28 00:00:13 00:00:07 - 00:00:29 00:00:52 00:01:24 00:00:36 00:00:27 00:45:08
German 20 1000 00:02:26 01:03:06 00:00:00 00:02:17 - 00:01:16 00:00:15 00:04:46 00:00:03 00:00:00 00:02:20
Twonorm 20 7400 00:39:37 09:29:46 00:00:07 05:03:33 - 00:00:49 00:00:39 00:00:13 00:00:14 00:00:10 00:15:46
Ringnorm 20 7400 00:08:04 10:05:13 00:00:07 - - 00:02:12 00:01:14 00:13:33 00:00:16 00:00:31 00:07:28
Wdbc 30 569 00:00:30 00:50:01 00:00:00 - - 00:00:09 00:00:05 01:01:00 00:00:01 00:00:01 00:00:51
SatImage 36 6435 01:57:23 04:07:42 00:00:13 - - 00:00:43 00:00:24 00:04:50 00:00:54 00:00:18 00:35:08
Texture 40 5500 01:29:43 03:40:14 00:00:12 - - 00:00:28 00:00:15 00:03:50 00:00:40 00:00:15 00:36:42
Spectfheart 44 267 00:00:31 00:14:30 00:00:00 - - 00:00:09 00:00:05 00:02:39 00:00:00 00:00:10 00:01:59
Spambase 57 4597 00:42:58 13:01:47 00:00:10 - - 00:00:15 00:00:12 00:24:55 00:00:13 00:00:27 00:14:36
Sonar 60 208 00:01:04 00:21:02 00:00:01 00:00:20 - 00:00:03 00:00:08 00:10:26 00:00:01 00:00:00 00:17:27
Movementlibras 90 360 00:10:45 05:17:58 00:00:01 - - 00:00:01 00:00:01 00:00:01 00:00:06 00:00:27 01:20:10

VI. CONCLUDING REMARKS

In this paper we have proposed a new fuzzy associative
classification method for high-dimensional datasets, named
FARC-HD. Our aim is to obtain accurate and compact fuzzy
associative classifiers with a low computational cost. To do
this, we mine fuzzy association rules limiting the order of the
associations in order to obtain a reduced set of candidate rules
with less attributes in the antecedent. We have made use of
a pattern weighting scheme in order to reduce the number of
candidate rules, preselecting the rules with the best quality. A
genetic rule selection and lateral tuning is applied to select a
small set of fuzzy association rules with a high classification
accuracy.

Taking into account the results obtained, we can conclude
that our model is a solid approach to deal with high di-
mensional datasets, as it obtains the best accuracy in the
experimental study. Moreover, FARC-HD obtains models with

a reduced number of rules (39,2 rules on average) and par-
ticularly with few attributes in the antecedent. Finally, the
limit in the depth of the trees, along with candidate rule
prescreening using the fuzzy measure wWRACC”, allow us to
reduce the search space considerably. Thus, the genetic process
for selection and tuning does not introduce an excessive
computational cost in to the whole process.
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