
On the Internal Representations of Product Units

JUNG-HUAWANG,YI-WEI YU and JIA-HORNG TSAI
Department of Electrical Engineering, National Taiwan Ocean University, 2 Peining Rd.,
Keelung, Taiwan. e-mail: b0141@ind.ntou.edu.tw

Abstract. This paper explores internal representation power of product units [1] that act as the
functional nodes in the hidden layer of a multi-layer feedforward network. Interesting properties
from using binary input provide an insight into the superior computational power of the product
unit. Using binary computation problems of symmetry and parity as illustrative examples, we
show that learning arbitrary complex internal representations is more achievable with product
units than with traditional summing units.

Key words: product unit, internal representations, recurrent neural networks, perceptrons,
backpropagation training.

1. Introduction

Internal representation normally refers to the pattern of activation on the hidden
nodes that correspond to the encoding of the input pattern; or some literature
[6] may simply refer to it as the set of connection weights between input and hidden
units required to perform a speci¢c input pattern encoding. Analyzing internal
representation of hidden nodes can be an effective approach in characterizing
the computational properties of the underlying network. For example, it has been
shown that the second order recurrent network [2], which is based on Sigma-pi units
to learn ¢nite state automata, attempts to form clusters in activation space as its
internal representation of states, causing the state machine to deteriorate for long
input strings. For this problem, Zeng et al. [3] proposed a pseudo-gradient learning
rule that uses isolated point in activation space instead of vague clusters as its
internal representation of states to force a second order recurrent network to learn
stable states. These works showed that the second order networks learn ¢nite state
machine more easily than the ¢rst order simple recurrent network structure [4],
because the former has greater internal representational power than the latter.

The present paper focuses on analyzing the internal representational power of
product unit when it is used as a hidden-layer node in a multi-layer feedforward
network, and demonstrating its use in solving hard binary computation problems,
e.g., the XOR problem and the symmetry problems. The intention behind these
demonstrations is threefold. Firstly, it provides insight into the computation nature
of the product unit. Secondly, in the ¢eld of digital logic design the basic function
such as XOR is taken as a universal gate from which any arbitrary logic circuits

Neural Processing Letters 12: 247^254, 2000. 247
2000 Kluwer Academic Publishers. Printed in the Netherlands.

can be built. Finally, problems of XOR, symmetry, and parity are well known and
widely used as benchmarks in literature [5] to demonstrate various neural networks
learning capability. Unlike [2] and [3], the goal here is not to construct a higher-order
recurrent network (although theoretically it can be done with product units) to learn
complex tasks such as ¢nite state automata or language grammars. Instead, we focus
strictly on the component level, i.e., product unit employed as a hidden node in a
multi-layer feedforward network. Thus the main aim of this paper is to obtain better
understanding of the product unit by analyzing its computation nature in the context
of internal representation, to verify our analytical results by demonstrating how
some dif¢cult binary problems can be easily solved by using product units, which
in turn may give us more insight into their capability for ful¢lling other more com-
plicated tasks.

2. Mathematical Analysis

In contrast to the linear combinatorial terms in the summing units (e.g. perceptrons
[7]) and polynomial terms in sigma-pi units (e.g. second order networks take the
form yi � F �Pwijkxjsk�), product units allow fractional and even negative terms.
Therefore, it is expected that more powerful internal representation capability might
be obtained by using product units. The output of a product unit is given by

y � F �gÿ yh�; g �
YN
i

xwi
i �1�

where F � � is called the activation function which normally takes the form of a
sigmoidal or threshold function, g is the total input stimulus, yh � threshold,
and wi is the connection weight between input xi and the product unit. As wi is
on the exponential term, learning arbitrary complex internal representation can
be achieved by adjusting wi. We start by rewriting Equation (1) as

g � e

PN
i

w logjxij
cos p

X
xi<0

wi � i sinp
X
xi<0

wi

 !

If xi is real,

g � e

PN
i

wi log jxij
cos p

XN
i

wiIi

 !
;

where Ii � 1 if xi < 0, and Ii � 0 otherwise.
Now, Equation (1) can be simply written as

g � eu cos pV ; where u �
XN
i

wi log jxij; �2�

248 JUNG-HUAWANG ET AL.

V �
XN
i

wiIi �3�

For binary inputs �xi � 1 or xi � ÿ1�, as eu � 1 Equation (2) can be further simpli¢ed
to

g � cos pV : �4�

In the following discussions, the above results will be applied to solving hard binary
problems such as the symmetry, parity, and XOR. Note that these binary problems
have been often used as illustrative examples and benchmarks in literature [1,5,7]
where they were solved using various neural networks such as multi-layer
perceptrons or recurrent networks trained with lengthy backpropagation training
algorithm [6] or its variants.

3. Solving the Symmetry Problem

The ¢rst interesting problem we study is that of classifying a binary input string as to
determine whether or not it is symmetric about its center. For example,
�ÿ1; 1; ÿ1j ÿ 1; 1; ÿ1� is a 6-dimension symmetric string, whereas
�ÿ1; 1; 1j1; ÿ1; 1� is not. Such an input string has been shown [6] solvable by
backpropagation training a 3-layer perceptron network with two summing units
in the hidden layer. However, due to the explosive number of possible input
combinations, training such a network for classifying high-dimensional strings
requires unrealistically lengthy computation time. In contrast, the symmetry prob-
lem can be easily solved by using a simpler product network (PN) shown in Figure
1, where the hidden layer has a single product unit (denoted by P) and output layer
has a summing unit (denoted by S). To explain, we ¢rst note that from Equations
(2) and (3), connection weights associated with positive inputs are trivial. Thus,
V � w1 � w3 � w4 � w6 for the input string �ÿ1; 1; ÿ1j ÿ 1; 1; ÿ1�. Using this
property and letting the activation of the hidden node yh be determined by the
following threshold function

yh � Fh�cos pV ÿ yh�; Fh�g� �
1; if g > 0
0; if gW 0 ;

�
�5�

the internal representation of the network shown in Figure 1 can be readily obtained
by using the following steps:

(1) Place a single product unit in the hidden layer and set yh � 0. Then, assign a
positive number, e.g. 3, to the connection weight between the output and the
hidden node. The activation function F for the summing unit is also set to
be a threshold function.

ON THE INTERNAL REPRESENTATIONS OF PRODUCT UNIT 249

(2) Assign the connection weights between the hidden and input units with numbers
that are equal in magnitude and opposite in sign (i.e., symmetric about the center,
as indicated by the dashed line in Figure 1).

Then, the input string is symmetric if the thresholded output (of the summing unit)
yf � 1, otherwise the string is non-symmetric. The key point to see about this
algorithm is that V always equals 0 for a symmetric input string. Unlike the solution
found in [6] where two hidden summing units and roughly 1208 input presentations
are needed to train for correctly classifying 6-element input strings, whereas the
PN requires only a hidden product unit, regardless of the input dimension.
Moreover, as stated in [6], in applying summing units to solve the symmetry pro-
blem, one has to make sure that the connection weights on each side of the midpoint
of the string being in the ratio of 1:2:4. In the PN, one does not have this awkward
limitation. Finally, as no lengthy training is required in this example of using
the product unit to solve the symmetry problem, we in a sense veri¢ed that the
PN is more computationally ef¢cient than the all-summing-unit network.

Figure 1. PN for identifying symmetric input strings.

250 JUNG-HUAWANG ET AL.

4. Solving the Parity Problem

Classifying input parity is a very dif¢cult problem because the most similar strings
require different answers. One should note that the famous XOR problem is just
a special case of parity problem with input dimension� 2. In this work, the parity
problem is solved by using a PN in which the network output yf � 1 if the input
string contains even number of 1's, and yf � 0 otherwise. To proceed, we ¢rst
set all input connection weights in Figure 2 to 1. The purpose of doing so is to make
the response of output unit solely depends on the total number of negative inputs.
For example, given the input string �1; ÿ1; ÿ1; ÿ1; ÿ1; 1�, the output of the prod-
uct unit y is calculated by

y �
YN
i

xWi
i � �1�1�ÿ1�1�ÿ1�1�ÿ1�1�ÿ1�1�1�1 � �ÿ1�1�1�1�1 � �ÿ1�

PN
i

WiIi

Figure 2. PN for solving the parity problem. Test input string is �1; ÿ1; ÿ1; ÿ1; ÿ1; 1�.

ON THE INTERNAL REPRESENTATIONS OF PRODUCT UNIT 251

That is, the thresholded output yf � 1 if number of negative inputs is even, and
yf � 0 otherwise. In essence, it is the number of positive inputs (i.e., 1) that accounts
for the ¢nal output. This observation naturally leads to the use of an inverter in
Figure 2. We ¢rst invert the input string x to x, then the output of Equation (1)
is expressed as

y �
YN
i

x wi
i � �ÿ1�1�1�1�1�1�1�1�1�1�ÿ1�1 � �ÿ1�total number of ÿ1s � �ÿ1�2 � 1

Thus, the internal representations of the PN for solving the parity problem are
determined by using the following steps

(1) Complement the input binary string.
(2) Place a single product unit in hidden layer and assign zero to thresholds of both

the hidden unit and output unit.
(3) Assign constant 1 to all connection weights of the network.

Here, the most signi¢cant point to note is the assignment of constant 1 to all
connection weights, which require no training. On the other hand, if summing units
are used in the hidden layer, then N summing units are required to solve an N
dimensional input string [6]. Take a 4-D input string as an example, the number
of needed input presentations can be as many as 2825 during the backpropagation
training course. Clearly, training summing units to classify high dimensional input
strings is not practical, if not impossible. In contrast, a single product unit is suf-
¢cient for solving the parity problem that has input strings with arbitrary
dimensions. This example, as well as the one presented in the last section, clearly
demonstrates that the product unit has greater internal representation capability
than the summing unit. Finally, for comparison, we also used the backpropagation
algorithm to train a PN to classify parities for lower-dimensional input strings. Fig-
ure 3 illustrates the resulting network for classifying ¢ve-element input strings.

5. Discussion and Conclusions

Using binary problems of the symmetry, parity, and XOR as illustrative examples,
we have successfully shown the superior internal representation power of the product
unit. Although the product unit has been shown [1, 8] more general than traditional
summing unit or higher order unit [6, 11], it has received less attention than it
deserves. With recently fast developing soft computing techniques [13] such as fuzzy
theory and genetic algorithms, we believe that product unit is very promising for
optical and electronic VLSI implementations [9, 10] in dealing with computation
problems that involve more general continuous inputs. For future works, the product
unit will be used to replace the sigma-pi unit in the recurrent network [2, 3] for

252 JUNG-HUAWANG ET AL.

learning ¢nite state automata; the required modi¢cations to the pseudo-gradient
learning rule [3] due to using product units can make use of the derivations in [12].

Acknowledgements

This research was supported by National Science Council of Taiwan under Grant
number NSC86-2611-E019-024.

References

1. Durbin and Rumelhart, D. E.: Product units: a computationally powerful and
biologically plausible extension to backpropagation networks, Neural Computation 1
(1989), 133^142.

2. Giles, C. L., Miller, C. B., Chen, D., Chen, H. H., Sun, G. Z. and Lee, Y. C.: Learning
and extracting ¢nite state automata with second order recurrent neural networks,Neural
Computation 4 (3), (1992), pp. 393^405.

3. Zeng, Z., Goodman, R. M. and Smyth, P.: Learning ¢nite state machines with
self-clustering recurrent networks, Neural Computation 5 (1993), 976^990.

Figure 3. Resulting network after backpropagation training a 5-element odd parity input string.

ON THE INTERNAL REPRESENTATIONS OF PRODUCT UNIT 253

4. Elman, J. L.: Distributed representations, simple recurrent networks, and grammatical
structure, Machine Learning 7 (1991), 195^225.

5. Lin, C. T. and Lee, C. S.:Neural Fuzzy Systems, A Neuro-Fuzzy Synergism to Intelligent
Systems, Prentice-Hall, 1996.

6. Rumelhart, D. E. andMcClelland, J. L.:Parallel Distributed Processing, Explorations in
the Microstructure of Cognition, Vol.1, MIT Press, Cambridge, 1986.

7. Minsky, M. and Papert, S.: Perceptrons, MIT Press, Cambridge, 1969.
8. Chen and Bastani, F.: ANN with two-dendrite neurons and its weight initialization,

Proc. of Internat. Joint Conf. on Neural Networks, 1992, Vol. 3, pp.139^146.
9. Chung, P. C. and Krile, T.F.: Reliability characteristics of quadratic Hebbian-type

associative memories in optical and electronic network implementations, IEEE Trans.
Neural Networks 6(2) (1995), 357^367.

10. Wolpert, S. and Micheli-Tzanakou, E.: A Neuromime in VLSI, IEEE Trans. Neural
Networks 7(2) (1996), 300^306.

11. Baldi, P. and Venkatesh, S.: Random interactions in higher order neural networks, IEEE
Trans. Inf. Theory 39 (1993), 274^283.

12. Wang, J. H. and Jeng, M. D.: Performance characterization of product unit neural
network associative memories, Proc. of 9th Internat. Conf. CAD/CAM, Robotics
and Factories of the Future, Newark, NJ, August 1993.

13. Jang, J. S. R., Sun, C. T. and Mizutani, E.: Neuro-Fuzzy and Soft Computing,
Prentice-Hall, 1997.

254 JUNG-HUAWANG ET AL.

