
 1

An Organizational Coevolutionary Algorithm for Classification 

Licheng Jiao, Senior Member, IEEE   Jing Liu1   Weicai Zhong 

Institute of Intelligent Information Processing,  Xidian University,  Xi’an 710071,  China 

Abstract Taking inspiration from the interacting process among organizations in human societies, a new 

classification algorithm, organizational coevolutionary algorithm for classification (OCEC), is proposed 

with the intrinsic properties of classification in mind. The main difference between OCEC and the available 

classification approaches based on evolutionary algorithms (EAs) is its use of a bottom-up search 

mechanism. OCEC causes the evolution of sets of examples, and at the end of the evolutionary process, 

extracts rules from these sets. These sets of examples form organizations. Because organizations are 

different from the individuals in traditional EAs, three evolutionary operators and a selection mechanism 

are devised for realizing the evolutionary operations performed on organizations. This method can avoid 

generating meaningless rules during the evolutionary process. An evolutionary method is also devised for 

determining the significance of each attribute, on the basis of which, the fitness function for organizations 

is defined. In experiments, the effectiveness of OCEC is first evaluated by multiplexer problems. Then 

OCEC is compared with several well-known classification algorithms on 12 benchmarks from the UCI 

repository datasets and multiplexer problems. Moreover, OCEC is applied to a practical case, radar target 

recognition problems. All results show that OCEC achieves a higher predictive accuracy and a lower 

computational cost. Finally, the scalability of OCEC is studied on synthetic datasets. The number of 

training examples increases from 100 000 to 10 million, and the number of attributes increases from 9 to 

400. The results show that OCEC obtains a good scalability. 
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I. INTRODUCTION 

Evolutionary algorithms (EAs) [1], based on an analogy to natural evolution, have 

recently gained increasing interest. They are suitable for solving complex or ill-defined 

problems and have been successfully applied to the fields of numerical optimization, 

combinatorial optimization, machine learning, neural networks, and many other engineering 

problems [2]-[7]. Classification is one of the fundamental tasks of data mining [8]-[13] and 

can be described as follows [14]. The input data, also called the training set, consist of 

examples, each example having several attributes. Additionally, each example is tagged with a 

special class name. The objective of classification is to analyze the input data and to develop 

an accurate description for each class using the attributes present in the data. The class 

descriptions are used to classify future test data for which the class names are unknown. 

Applications of classification include credit approval, medical diagnosis, store location, etc. 

This paper introduces a new evolutionary algorithm for classification. 

A. Related work 

Classification has been studied extensively and the application of EAs to this field was 

initiated in the 1980s [15], [16]. Holland [15] and Smith [16] proposed two basic reference 

approaches, namely, the Michigan and Pittsburgh approaches, respectively. The Michigan 

approach maintains a population of individual rules which compete with each other for space 

and priority in the population. In contrast, the Pittsburgh approach maintains a population of 

variable-length rule sets which compete with each other with respect to performance on the 

domain task.  

Neither of the approaches is perfect. The Michigan approach, which converges more 
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rapidly, fails to learn good solutions for complex problems, whereas the Pittsburgh approach 

solves more difficult problems at a relatively high computational cost. Present, it seems that 

both approaches have their problems and advantages. This has prompted many researchers to 

develop new approaches along each one or hybrid ones, by selecting good features from both 

approaches and by avoiding the difficulties. 

Choenni et al. in [17]-[20] proposed some algorithms based on the Michigan approach. 

They have made many improvements. They modified the individual encoding method to use 

nonbinary representation, and did not encode the consequents of rules into the individuals. 

Moreover, they used extended version of crossover and mutation operators suitable to their 

representations, did not allowing rules to be invoked as a result of the invocation of other 

rules, and defined fitness functions in terms of some measures of the classification 

performance. 

De Jong et al. in [21] proposed an algorithm based on the Pittsburgh approach, GABIL. 

GABIL can continually learn and refine classification rules from its interaction with the 

environment. By incorporating a genetic algorithm (GA) as the underlying adaptive search 

mechanism, GABIL is able to construct a concept learning system that has a simple, unified 

architecture with several important features.  

In order to alleviate the disadvantages of the Michigan and Pittsburgh approaches, some 

hybrid Michigan/Pittsburgh methodologies have been proposed, for example, COGIN [22], 

JoinGA [23], REGAL [24], and G-Net [25].  

COGIN [22] is an inductive system based on GAs that exploits the conventions of 

induction from examples. Its novelty lies in the use of training set coverage to simultaneously 
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promote competition in various classification niches within the model and constrain overall 

model complexity.  

JoinGA [23] is a combination of the Michigan and Pittsburgh approaches together with a 

symbiotic niching component that can be used in multimodal classification. On the level of 

fixed-length individuals, JoinGA uses normal genetic operators. In order to be able to deal 

with multimodal concepts, JoinGA uses a new level of operators above the basic genetic level. 

The operators on this level put together and divide groups of individuals, building families out 

of single, cooperating individuals. In this way JoinGA keeps the Michigan type effective 

fixed-length individuals and corresponding simple crossover operations. JoinGA also avoids 

the problems of multiple solutions by using the Pittsburgh type families, so that the system 

may converge to a single highly fit family.  

REGAL [24], a distributed GA-based system, designed for learning first order logic 

concept descriptions from examples. The population constitutes a redundant set of partial 

concept descriptions, and each evolves separately. G-Net [25] is a descendant of REGAL, and 

consistently achieves a better performance. The main features of the system include 

robustness with respect to parameter settings, use of the minimum description length criterion 

coupled with a stochastic search bias, use of coevolution as a high-level control strategy, the 

ability to face problems requiring structured representation languages, and the suitability to 

parallel implementation on a network of workstations. 

Recently, many new approaches based on EAs for the classification task have been 

proposed. XCS [26], [27] acts as a reinforcement learning agent. It differs from traditional 

approaches in several respects [27]. First, XCS has a simplified structure since it does not 
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have an internal message list. In addition, XCS uses a modification of Q-learning instead of 

the “bucket brigade” [15]. Most importantly, in XCS, classifier fitness is based on the 

accuracy of the classifier’s payoff prediction instead of the prediction itself. XCS represents a 

major development in learning classifier systems research, and has proved effective in many 

domains [28].  

GEP [10] is a new approach for discovering classification rules by using genetic 

programming with linear representation. The antecedent of discovered rules may involve 

many different combinations of attributes. To guide the search process, [10] suggested a 

fitness function considering both the rule consistency gain and completeness. A multiclass 

classification problem was formulated as a combination of multiple two-class problems by 

using the one against all learning method. Compact rule sets were subsequently evolved using 

a two-phase pruning method based on the minimum description length principle. 

DMEL [11] handles classification problems of which the accuracy of each prediction 

needs to be estimated. DMEL searches through the possible rule space using an evolutionary 

approach that has the following characteristics: 1) the evolutionary process begins with the 

generation of an initial set of simple, one-condition rules; 2) interestingness measure is used 

for identifying interesting rules; 3) fitness of a chromosome is defined in terms of the 

probability that the attribute values of a record can be correctly determined using the rules it 

encodes; and 4) the likelihood of predictions made is estimated so that subscribers can be 

ranked according to their likelihood to churn. 

In economics, Coase in [29] explains the sizing and formation of organizations from the 

framework of transaction costs. This concept was introduced to the GA-based classifiers by 
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Wilcox in [30], which puts emphasis on inventing an autonomous mechanism using 

transaction costs for forming the appropriately sized organizations within a classifier. 

There are many other approaches that also obtain good performances, such as EVOPROL 

[31], SIA [32], ESIA [33], EENCL [34], EPNet [35], etc. EAs are promising approaches for 

data mining, and have been applied to many problems other than the classification task. For 

example, Abutridy et al. in [12] presented a novel evolutionary model for knowledge 

discovery from texts, and Cano et al. in [13] carried out an empirical study of the 

performances of four representative EA models for data reduction in knowledge discovery in 

databases. 

B. Proposed approach 

Inspired by the idea of organizations [30], we propose a new evolutionary algorithm for 

classification, organizational coevolutionary algorithm for classification (OCEC). But the 

emphasis of OCEC is different from that of [30]. Since in the real world situation, 

organizations usually compete or cooperate with others so that they can gain more resources, 

OCEC does not put emphasis on forming the appropriately sized organizations, but on 

simulating the interacting process among organizations.  

OCEC adopts the coevolutionary model of multiple populations, focusing on extracting 

rules from examples. It causes the evolution of sets of examples, and at the end of the 

evolutionary process, extracts rules from these sets. These sets of examples form 

organizations. Three evolutionary operators and a selection mechanism are devised to 

simulate the interaction among organizations. Additionally, because OCEC is inspired from 

the coevolutionary model, and considers the examples with identical class names as one 
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population, it can handle multi-class learning in a natural way so that multiple classes can be 

learned simultaneously. 

The main process of the existing EA-based and stochastic search classification algorithms 

[36], is first generating rules randomly, and then improving the quality of the rules by using 

the training examples. So these algorithms adopt an up-bottom search mechanism, and may 

generate meaningless rules during the evolutionary process. But OCEC adopts a completely 

different search mechanism. For classification, if the obtained description is represented as 

rules, then each rule covers some examples, and the examples covered by the same rule have 

some similarities in attribute values. Based on this, OCEC first clusters the examples with 

similar attribute values so as to form organizations, and then guides the evolutionary process 

by using the differing significance of attributes. At the end of the evolutionary process, rules 

are extracted from organizations. Such a process can avoid generating meaningless rules. 

Therefore, OCEC adopts a bottom-up search mechanism. 

C. Organization of paper 

In the remainder of this paper, OCEC is described in Section II. Section III evaluates the 

effectiveness of OCEC by multiplexer problems. Section IV compares OCEC with the 

available algorithms on benchmarks, and applies OCEC to a practical case, the radar target 

recognition problem. The scalability of OCEC is studied in Section V. Finally, conclusions 

and some ideas for the future work are presented in the last section. 
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II. AN ORGANIZATIONAL COEVOLUTIONARY ALGORITHM FOR 

CLASSIFICATION 

A. Knowledge representation and relevant definitions 

Present, since OCEC is devised to handle nominal data only, the continuous attributes are 

transformed into nominal ones by discretizing. For the sake of simplicity, each continuous 

attribute has been discretized by subdividing the range into 5 equal length intervals. In order 

to avoid confusion about terminology, some concepts are first introduced here.  

Definition 1:  Let iA  be a set of attribute values {ai1, ai2, …, aik}. An instance space I 

is the Cartesian product of sets of attribute values, 1 2 ... nA A A= × × ×I . An attribute 

:i iA A→I  is a projection function from the instance space to a set of attribute values. An 

instance i is an element of I, and an example e is an element of I×C, where C is a set of class 

names. The set of examples is labeled as E⊂ I×C. 

An attribute is a measurable feature of an instance. An instance is described by a vector of 

attribute values and an example is an instance together with a class name. The set of class 

names is fixed and is presented in advance. The examples are organized as a matrix, where 

each row represents an example and each column an attribute. Here is a simple example. 

Example 1:  Given a set of classified 

examples E={e1, e2, …, e9}. They are organized as 

a matrix shown in Table I. The instance space 

SIZE HAIR EYES= × ×I , where { },  SIZE short tall= , 

{ },  ,  HAIR golden red dark= , and { },  ,  EYES blue gray dark= . 

The set of class names C={A, B}.              

Table I The examples organized as a matrix 
Name Class SIZE HAIR EYES

e1 A short golden blue 
e2 A tall red blue 
e3 A tall golden blue 
e4 A short golden gray
e5 B tall golden dark
e6 B short dark blue 
e7 B tall dark blue 
e8 B tall dark gray
e9 B short golden dark
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Definition 2:  An Organization, org, is a set of examples with identical class names, 

and the intersection of different organizations is empty, that is, 

org⊆ Ec, c∈ C, where Ec denotes the set of examples whose class names are c; 

∀ org1, org2⊆ Ec, org1 ≠ org2 ⇒ org1 ∩  org2 = ∅ ; 

The examples in an organization are called Members. 

Because each attribute has different significance in determining the class name of an 

instance, the attributes are classified into different types for an organization according to the 

information of the members, and thus is convenient for rule extraction at the end of the 

evolutionary process. 

Definition 3:  If all members of org have the same value for attribute A, then A is a 

Fixed-value Attribute. If A′ is a fixed-value attribute and satisfies the conditions required for 

rule extraction, then A′ is a Useful Attribute. The fixed-value attribute set of org is labeled as 

Forg, and the useful attribute set is labeled as Uorg. 

Because rules extracted from some organizations are meaningless, organizations are also 

classified into three types. 

Normal organization: It is the organizations with more than one members and non-empty 

useful attribute set.  

Trivial organization: It is the organizations with only one member. All attributes of such 

organizations are useful ones; 

Abnormal organization: It is the organizations with empty useful attribute set. 

The sets of the three types of organizations are labeled as ORGN, ORGT, and ORGA, 

respectively. To satisfy the requirement of evolutionary operations, each organization need 
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record some information. Therefore, an organization is represented as the following structure,  

Organization = Record

Member_List: Record the name of each member in this organization;

Attribute_Type: Record the type of each attribute in this

organization, that is, fixed-value attribute, useful attribute,

or others;

Organization_Type: Record the type of this organization, that

is, trivial organization, abnormal organization, or normal

organization;

Member_Class: Record the class name of all members;

Fitness: Record the fitness of this organization;

End.

B. Fitness function for organizations 

After analyzing the relation between attributes and examples, we think that there are two 

factors to be considered in devising the fitness function for organizations, 

(1) The number of members: The more members an organization has, the better the quality of 

the rule extracted from it. Therefore, the fitness of an organization should increase with 

the number of members. 

(2) The number of useful attributes: Useful attributes will be used to generate rules at the end 

of the evolutionary process. The more useful attributes are, the more conditions the rules 

have. In fact, the more conditions a rule has, the fewer examples the rule covers. But 

over-generalization will result if the conditions are too few. Therefore, the fitness of an 
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organization should not monotonically increase or decrease with the number of useful 

attributes. 

Because not all attributes, but only those with high significance are desired to appear in the 

final rules, a measure, Attribute Significance, is introduced.  

Definition 4:  Attribute Significance is the ability of an attribute in determining the 

class name for an instance. The attribute significance of A is labeled as SA, and the value of SA 

is determined during the evolutionary process. 

As can be seen, SA reflects the distribution of the values of A in each class. In the 

evolutionary process, the value of SA is identical for all populations so that all populations can 

coevolve. When populations evolve, SA evolves also. The value of SA is updated when 

computing the fitness of an organization. The details are shown in Algorithm 1.  

Algorithm 1 Attribute Significance

t denotes the generation of the evolutionary process. The number

of attributes is m. N is a predefined parameter. org is the

organization under consideration and org∉ ORGT. Aj denotes the jth

attribute in Forg.

begin

if (t=0) then for i:=1 to m do :=1.0
i

0
AS ;

Determining Forg; Uorg:=∅ ;

for j:=1 to |Forg| do

begin

Randomly selecting an organization org′ satisfying
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org′.Member_Class ≠ org.Member_Class;

if (Aj∈ Forg′) and (the value of Aj in Forg′ is different from that

of Aj in Forg) then := ∪org org jU U A

else Reducing
j

t

A
S according to (1) (Case1);

end;

if (Uorg ≠ ∅ ) then

begin

Randomly selecting N examples whose class names are different

from org.Member_Class;

if (the combination of the attribute values in Uorg does not

appear in the N examples) then

Increasing the attribute significance of all attributes

in Uorg according to (1) (Case2)

else Uorg := ∅ ;

end;

end.

1 0.9 0.05,       Case1,
0.9 0.2,         Case2.

t
At

A t
A

S
S

S
+  += 

+
                          (1) 

The parameter N not only ensures that the rules extracted from organizations are 

consistent to some extent, but also makes the algorithm robust against noise. If N is set to a 

larger value, the rule is more consistent, but the algorithm is more sensitive to noise. Since the 

value of SA is restricted to the range of [0.5, 2], it is set to 1.0 at the beginning, and updated 

during the evolutionary process. When the conditions of Case1 in (1) are satisfied, SA should 
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be punished: 

1 0.05 0.9 0.05
10

t
t t tA
A A A

SS S S+ −= − = + .                        (2) 

When the conditions of Case2 in (1) are satisfied, SA should be awarded:  

1 2 0.9 0.2
10

t
t t tA
A A A

SS S S+ −= + = + .                           (3) 

The conditions of Case1 and Case2 are the ones required for rule extraction. 

The idea of Algorithm 1 is encouraged by the following observations. If the values of A 

do not concentrate in the same class, A has low significance. But if a combination of several 

attribute values is unique in a certain class, these attributes together have high significance. 

An example is shown to evaluate whether Algorithm 1 can correctly determine attribute 

significance. 

Example 2:  Following Example 1, Fig.1 

shows the evolutionary process of the attribute 

significance for the three attributes, where the 

x-coordinate stands for generations. As can be 

seen, after running 10 generations, the attribute 

significance can be differentiated completely. 

The significance of HAIR is the highest 

whereas that of SIZE is the lowest. This result agrees with that of decision trees, and 

illustrates the usefulness of Algorithm 1.                                          

On the basis of the attribute significance, the fitness function for organizations is defined 

as follows, 

Fig.l.  Evolutionary process of the attribute 
significance 
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where Ai denotes the ith attribute in Uorg. The fitness of trivial and abnormal organizations is 

set to 0 and –1, respectively, whereas that of normal organizations is the product of the 

number of members and each 
iAS  in Uorg. If org∉ ORGT, the useful attributes must be 

determined by Algorithm 1 in advance. 

C. Evolutionary operations for organizations 

All evolutionary operations act on the members of organizations, and the traditional 

operators, such as crossover, mutation, and selection, cannot be used. Therefore, three new 

evolutionary operators and a selection mechanism are devised for organizations: 

Migrating operator: First, two parent organizations, orgp1 and orgp2, are randomly 

selected from a population. Next, n members, randomly selected from orgp1, are moved to 

orgp2, with two child organizations, orgc1 and orgc2, obtained. Here n≥1. 

Exchanging operator: First, two parent organizations, orgp1 and orgp2, are randomly 

selected from a population. Next, n members, randomly selected from each parent 

organization, are exchanged, with two child organizations, orgc1 and orgc2, obtained. Here 

1≤n<min{|orgp1|, |orgp2|}, where |org| denotes the number of members in org. The 

precondition for this operator is |orgp1|>1 or |orgp2|>1. 

Merging operator: First, two parent organizations, orgp1 and orgp2, are randomly selected 

from a population. Next, the members of the two organizations are merged, with one child 

organization, orgc1, obtained. 

Organizational selection mechanism: The main idea of this mechanism is to encourage 
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child organizations to compete with parent organizations. After an operator creates a pair of 

child organizations, a tournament is held between the child pair and the parent pair. The pair 

containing the organization with the highest fitness survives to the next generation, whereas 

the other pair is deleted. Since the three operators may generate abnormal organizations, and 

rules extracted from such organizations are meaningless, the mechanism must prevent such 

organizations from getting into the next generation. Therefore, when an abnormal 

organization survives to the next generation, it is dismissed and the members are added to the 

next generation as trivial organizations. Because the child organizations contain the same 

number of examples as the parent ones, the number of examples within a population remains 

constant. If only one organization remains in a population, it will be passed to the next 

generation directly. 

D. Rule extraction from organizations and prediction method 

For classification, one popular way of expressing the class descriptions is IF-THEN rules. 

Each rule has the form, IF <conditions> THEN <class name>. The <conditions> part 

(antecedent) of a rule contains a logical combination of attributes using the logical connective 

∧ (AND) only, in the form, term1∧ term2∧ …∧ termn. Each term is a triple <attribute, operator, 

value>, such as <HAIR = golden>. The <class name> part (consequent) of a rule contains the 

class name predicted for an instance whose attributes satisfy the <conditions> part.  

When the evolutionary process is over, rules are extracted from organizations. In order to 

reduce the number of rules, all organizations are first merged by merging any two 

organizations in the same population into a new organization if the two organization satisfy: 

One useful attribute set is a subset of the other one and the values of the attributes in the 
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intersection are identical. The members of the new organization are those of the two 

organizations, and the useful attribute set is the intersection of the two original sets, that is, 

1 2 2 1 1 21 2( ) or ( ) ( ) and ( )org org org org org org orgU U U U org org org U U U⊆ ⊆ ⇒ = =∪ ∩ .   (5) 

Next, a rule is extracted from each organization on the basis of the useful attribute set, i.e., 

each useful attribute forms a term in the <conditions> part, and the <class name> is equal to 

the Member_Class. For example, 

Example 3:  Following Example 1, if members of an organization are e5 and e9, and the 

useful attributes are HAIR and EYES, then the rule extracted from it is  

IF (HAIR = golden) ∧  (EYES = dark) THEN (class name = B).           �  

In order to reduce the number of rules further, measures are taken as follows. Above all, a 

measure, Relative Support, labeled as RS, is calculated for each rule, which is derived from 

the ratio of positive examples a rule covers to all examples in the class the rule belongs to. On 

the basis of relative support, all rules are ranked. In order to prevent the rules of the classes 

with fewer examples from being positioned in tail, the rules are ranked based on the ratio, not 

on the number of positive examples. After all rules are ranked, some rules are deleted as 

follows. If the set of examples covered by a rule is a subset of the union of examples covered 

by the rules before this one, this rule is deleted. Algorithm 2 sums up the method for rule 

extraction. 

Algorithm 2 Rules Extraction from Organizations

There are m populations, labeled as P1, P2, …, and Pm. Er denotes

the set of positive examples covered by rule r.

begin
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RULES:=∅ ;

for i:=1 to m do

while (there are two organizations in Pi, org1 and org2,

satisfying the condition of (5)) do

begin

Merging org1 and org2 to form org according to (5);

{ }( )1 2:= , ∪i iP P org org org ;

end;

Extracting a rule r from each organization; Computing RSr;

:= ∪RULES RULES r;

Ranking the rules on the basis of the relative support;

i:=1;

while (i≤|RULES|) do

begin

if (there exist k rules, rj (j<i, j=1, 2, …, k), satisfying

⊆
1 2
∪ ∪…∪

i kr r r rE E E E ) then Deleting ri from RULES;

i:=i+1;

end;

end.

Because rules extracted from different classes are put together and in most cases the rules 

for different classes may overlap, it is very important to adopt a suitable method to deal with 

conflicting rules and predict the class names of the instances.  
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Definition 5:  Given that i∈ I and r∈ RULES. |termsr| denotes the number of terms in the 

<conditions> part of r, and | |i
rterms  denotes the number of terms satisfied by instance i. The 

Match Value, i
rMV  between r and i is defined as | | | |i i

r r rMV terms terms= . 

According to the definition, the range of the match value is [0, 1], while 0 is the worst 

case and 1 the best case. The rule with the maximum match value is used to predict the class 

name for an instance. When more than one rules have the same maximum match value, the 

one ranked first is used. 

E. Implementation of OCEC 

Since a population is composed of the organizations with identical Member_Class, the 

number of populations is equal to the number of class names. The details of OCEC is 

presented in Algorithm 3. 

Algorithm 3 Organizational Coevolutionary Algorithm for

Classification

There are m class names, c1, c2, …, and cm. The number of training

examples is |example|, and the ith example is labeled as ei.

begin

for i:=1 to |example| do

if (the class name of ei is cj) then

Add ei to population 0
jP as a trivial organization;

t:=0;

while (the termination criteria are not reached) do

begin
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j:=1;

while (j≤m) do

begin

while (the number of organizations in t
jP > 1) do

begin

Randomly selecting two parent organizations, orgp1 and

orgp2, from t
jP ;

Randomly selecting an operator from the three

evolutionary operators;

Performing the selected operator on orgp1 and orgp2;

Updating the attribute significance according to

Algorithm 1 on the basis of orgc1 and orgc2;

Computing the fitness of orgc1 and orgc2;

Performing the selection mechanism on orgp1, orgp2 and

orgc1, orgc2;

Deleting orgp1, orgp2 from t
jP ;

end;

Moving the organization left in t
jP to +1t

jP ; j:=j+1;

end;

t:=t+1;

end;

Extracting rules from all populations according to Algorithm 2.
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end.

In order to have a full understanding of OCEC, an example is presented to show how 

multiple populations evolve and how rules are extracted from organizations. 

Example 4:  Following Example 1, n is set to 1. Because there are only 9 examples, 

parameter N is not fixed, but all examples of the other class are used. Fig.2 shows the 

organizations of each population at the 0th, 3rd, 6th, and 9th generation, respectively, with both 

the members and the useful attributes presented. At the beginning of the evolutionary process, 

populations A and B have 4 and 5 trivial organizations, respectively. During the evolutionary 

process, similar examples are clustered and new organizations are generated. Finally, 

populations A and B have 3 and 2 organizations, respectively. The rules extracted from 

organizations at the 9th generation are shown in Table II. 

 

Table II  The rules extracted from organizations at the 9th generation 
 Organizations IF-THEN rules 

org1 IF (HAIR = golden) ∧  (EYES = blue) THEN (class name = A) 

org2 IF (HAIR = red) ∧  (EYES = blue) ∧  (SIZE = tall) THEN (class name = A) population 
A 

org4 
IF (HAIR = golden) ∧  (EYES = gray) ∧  (SIZE = short)  
THEN (class name = A) 

org1 IF (HAIR = golden) ∧  (EYES = dark) THEN (class name = B) population 
B org2 IF (HAIR = dark) THEN (class name = B) 

 

III. EVALUATION OF OCEC’S EFFECTIVENESS 

The most important property of OCEC is evolving examples directly. Since the 

evolutionary operators and the fitness function for organizations just exhibit this property, this 

section conducts experiments to evaluate the effectiveness of the evolutionary operators and 

the fitness function by multiplexer problems. 
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Fig.2.  The evolutionary process of organizations 

A. Multiplexer problems 

Multiplexer problems were introduced to the machine learning community by Wilson in 

1987 [37], and have often been used to evaluate the performance of learning classifier systems 

[26], [38]. Multiplexer problems are defined for strings of l bits, where l=k+2k. The first k bits 

represent an address which indexes the remaining 2k bits, and the function returns the value of 

the indexed bit. For instance, in the 6-multiplexer problem mp6, we have that mp6(100010)=1, 

while mp6(000111)=0.  
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For an l-multiplexer problem, where l=k+2k, the accurate and maximally general 

classifiers have (k+1) specific bits [26]. That is to say, there are (k+1) bits whose values are 

fixed, and the values of the other bits can be assigned arbitrarily. In the following experiments, 

each bit is represented as an attribute, and the value of the indexed bit is considered as the 

class name. Thus, the best IF-THEN rules have (k+1) terms.  

B. Experimental results 

The 20- and 37-multiplexer problems are used. The training set of the 20-multiplexer 

problem has 3000 examples, and that of the 37-multiplexer problem has 15 000 examples. 

The test set of each problem has 100 000 examples. Since the rule extraction is independent 

of the evolutionary process, to evaluate the effectiveness of the evolutionary operators and the 

fitness function, rules are extracted from the population at every 10 generations for the 

20-multiplexer problem and every 100 generations for the 37-multiplexer problem, and used 

to predict the class names of the test examples. The parameter N is set to 10 percent of the 

number of the training set, and n is set to 1-5. For each multiplexer problem, 10 training and 

test sets are generated randomly. The evolutionary processes of the predictive accuracy, the 

number of rules, and the number of terms in each rule for the 10 independent runs are shown 

in Figs.3 and 4. 

Figs.3 and 4 show that the predictive accuracies of all the 10 independent runs get higher 

along with the evolutionary process, and achieve 100% for both problems. In the meantime, 

the number of rules and terms in each rule decrease with the evolutionary process. For the 

20-multiplexer problem, the number of terms in each rule reduces to 5 whereas for the 

37-multiplexer problem it reduces to 6. These results accord with the characteristics of 
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multiplexer problems introduced above, that is, for a (k+2k)-multiplexer problem, the best 

IF-THEN rule has (k+1) terms. 

 
Fig.3.  The evolutionary process of OCEC for the 20-multiplexer problem 

 
Fig.4.  The evolutionary process of OCEC for the 37-multiplexer problem 

The above experimental results illustrate that along with the effect of the evolutionary 

operators and the fitness function, OCEC not only evolves out the rules with high predictive 

accuracy, but also evolves out the accurate and maximally general rules.  

IV. COMPARISON OF OCEC WITH AVAILABLE ALGORITHMS 

A. Comparison on UCI repository datasets 

In this section, 12 benchmarks from the UCI repository datasets [39] are used to test the 

performance of OCEC, and Table III shows the datasets and the test methods. For the Splice 

dataset, in order to be consistent with the compared algorithm, (2000+1190) is used in Section 

IV.A.1, and (2190+1000) is used in Section IV.A.2. In order to present a more stable estimate, 

10-fold cross validation is used as the test method for small scale datasets. For large scale 

datasets, a training set is drawn randomly and the remainder is used as the test set. This 

process is repeated until ten training and test sets are generated.  
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The parameters of OCEC that need tuning are actually very few, and the following setting 

has been chosen. The number of generations is 500 for the datasets whose number of 

examples is less than 1000, and 1000 for the other datasets. N is set to 10 percent of the 

number of examples for each dataset, and n is fixed to 1 for all datasets. The results of OCEC 

on each dataset report the average predictive accuracy, the standard deviation, the average 

number of rules, and the average training time. All experiments are performed on a personal 

computer with Intel Pentium III 667 GHz processor as CPU, 128 MB of main memory. 

Table III  The UCI repository datasets used in experiments (“10-CV” represents the 
10-fold cross validation, and “number + number” represents “the number of 
training examples + the number of test examples”) 
Datasets #Examples #Attributes #Classes Test Methods 
Monk1 432 6 2 10-CV 
Monk2 432 6 2 10-CV 
Monk3 432 6 2 10-CV 

Tictactoe 958 9 2 10-CV 
Credit 690 15 2 10-CV 

Breast cancer (W) 699 9 2 10-CV 
Vote 435 16 2 10-CV 

Australian 690 14 2 10-CV 
Lymphography 148 18 4 10-CV 

Mushrooms 8124 22 2 4000+4124 
Chess (KR-vs-KP) 3196 36 2 2130+1066 

Splice 3190 60 3 
2000+1190 
2190+1000 

A.1 Comparison between OCEC and G-Net 

G-Net was a new classification algorithm proposed in [25] and obtained a good 

performance. Here a comparison is made between OCEC and G-Net [25] on 9 different 

datasets of various sizes and difficulties. G-Net [25] used many other datasets, but only the 9 

datasets were available at the UCI repository datasets. Due to the broad application of C4.5, 

its results are also given as a baseline. Table IV shows the comparison results and the best 

ones are shown in boldface. The performances of G-Net and C4.5 are those reported in [25]. 
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As can be seen, the predictive accuracies of OCEC on 7 of the 9 datasets are equivalent to 

or higher than those of G-Net. Especially for the Tictactoe dataset, OCEC finds all the 8 

possible ways to create a “three-in-a-row for x” and achieves 100% in predictive accuracy. 

The comparison on the Splice dataset is somewhat difficult since G-Net reports a classwise 

accuracy only. Therefore, a comparison in classwise accuracy between G-Net and OCEC is 

made, and the results of OCEC for all classes are also reported. The classwise accuracies of 

OCEC on the Splice dataset are slightly lower than those of G-Net. The number of rules 

obtained by OCEC is greater than that obtained by G-Net. This is probably due to the fact that 

only the logical connective AND is used in the IF-THEN rules. This makes each rule simple, 

but increases the size of the rule set. Because of the simplicity of each rule, this has little 

effect on the predicted efficiency. 

A.2 Comparison between OCEC and JoinGA 

JoinGA [23] is one of the best methods in GA-based classifiers. Here a comparison is 

made between OCEC and JoinGA on 5 different datasets. JoinGA [23] used many datasets, 

but only the 5 ones were available at the UCI repository datasets. The results of C4.5 are also 

used as a baseline. Table V shows the comparison results and the best ones are shown in 

boldface. The performances of JoinGA and C4.5 are those reported in [23].  

As can be seen, the predictive accuracies of OCEC on 4 of the 5 datasets are equivalent to 

or higher than those of JoinGA. Only the predictive accuracy on the Splice dataset is little 

lower than those of JoinGA and C4.5. The training time for smaller datasets, such as the 

Australian and the Lymphography, are only 1.75s and 0.23s, respectively, and for larger 

datasets, such as the Chess and the Mushrooms, are 15.13s and 13.18s, respectively. The time 
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for the Splice dataset is 179.56s since this dataset is more complex. The low computational 

cost of OCEC benefits mainly from the simple computations for the fitness function. 

Moreover, OCEC deals with multiple classes simultaneously by using the coevolutionary 

model, which also contributes to the low computational cost. 

Table IV  The comparison between OCEC and G-Net (“ ” denotes that the item is not 
mentioned in the literature, and the results of OCEC are averaged over 10 runs.) 

Datasets Algorithms Predictive 
accuracy (%)

Standard 
deviation (%)

Number of 
rules Time (s) 

C4.5 100.00 0.00     
G-Net 100.00 0.00 3.0   Monk1 
OCEC 100.00 0.00 11.0 0.22 
C4.5 67.17 10.66     

G-Net 97.20 3.80 26.0   Monk2 
OCEC 73.18 7.31 28.1 1.18 
C4.5 100.00 0.00     

G-Net 100.00 0.00 3.0   Monk3 
OCEC 100.00 0.00 6.0 0.15 
C4.5 92.93 1.82     

G-Net 99.03 0.62 10.5   Tictactoe 
OCEC 100.00 0.00 10.4 0.67 
C4.5 85.97 3.28     

G-Net 84.20 4.40 14.0   Credit 
OCEC 87.97 4.38 15.9 1.86 
C4.5 94.15 3.32     

G-Net 94.71 2.89 2.6   
Breast cancer 

(W) 
OCEC 96.13 2.03 17.2 1.41 
C4.5 95.37 3.05     

G-Net 94.90 3.20 2.0   Vote 
OCEC 95.87 2.61 5.0 0.33 
C4.5 100.00 0.00     

G-Net 100.00 0.00 3.0   Mushrooms 
OCEC 100.00 0.00 13.0 13.18 

G-Net (EI) 
(IE) 
(NE) 

96.60 
97.10 
96.70 

  
7.0 

10.0 
11.0 

  

95.98 
94.98 
95.67 

      

Splice OCEC (EI) 
     (IE) 

(NE) 
(All) 93.32 0.55 42.9 111.92 
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In the above, OCEC is compared with two GA-based classifiers on the UCI datasets. 

Since the UCI datasets have been widely used in testing the performances of various 

classifiers, high predictive accuracies have been obtained by many classifiers, such as EPNet 

[35], which is based on neural networks. Reference [35] reported that EPNet obtained high 

predictive accuracies on many UCI datasets, but we think EPNet is different from OCEC in 

intrinsic. EPNet does not explicitly express the uncovered patterns in a symbolic, easily 

understandable form, whereas OCEC uses a more understandable way, IF-THEN rules, to 

represent the results.  

Table V  The comparison between OCEC and JoinGA (The results of OCEC are averaged over 
10 runs.) 

Datasets Algorithms Predictive 
accuracy (%)

Standard 
deviation (%)

Number of 
rules Time (s) 

C4.5 87.0 3.1     
JoinGA 84.9 3.7     Australian 
OCEC 87.97 4.04 15.9 1.75 
C4.5 79.8 8.4     

JoinGA 82.4 6.3     Lymphography 
OCEC 86.38 8.92 4.9 0.23 
C4.5 99.5       

JoinGA 99.4       
Chess 

(KR-vs-KP) 
OCEC 99.51 0.09 16.7 15.13 
C4.5 100.0       

JoinGA 100.0       Mushrooms 
OCEC 100.00 0.00 13.0 13.18 
C4.5 93.8       

JoinGA 94.9       Splice 
OCEC 93.34 0.52 45.5 179.56 

B. Comparison of OCEC with XCS on multiplexer problems 

XCS [26], [27] is one of the current state-of-the-art classifier systems, and [27] has made 

an in-depth research on the performance of XCS by multiplexer problems. This section 

presents a comparison between XCS and OCEC. Since XCS adopts an incremental mode, the 

experiments are designed as follows. 20- and 37- multiplexer problems are also used. The 10 
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training and test sets used in Section III.B are used for both OCEC and XCS. For OCEC, the 

number of generations is 1000 for the 20-multiplexer problem and 10 000 for the 

37-multiplexer problem. For XCS, the training set is repeatedly used to train XCS, and finally 

the test set is used to check the predictive accuracy. The experiments for XCS are carried out 

with Butz’s implementation [40] on the same computers as OCEC, and the parameters of 

XCS are set according to [27]. The comparison results averaged over 10 independent runs are 

shown in Table VI. 

Table VI  The comparison between OCEC and XCS (All results are averaged over 10 runs.) 
20-multiplexer problem 37-multiplexer problem 

Algorithms Predictive 
accuracy (%)

Training 
time (s)

Predictive 
accuracy (%)

Training 
time (s) 

OCEC 100 12.18 100 3610.99 
XCS(a) 97.07 67.73 65.19 5394.40 
XCS(b) 99.74 71.71 95.27 6707.96 
XCS(c) 100 74.27 100 6914.69 

In Table VI, for the 20-multiplexer problem, XCS(a), XCS(b), and XSC(c) stand for the 

training set has been repeatedly learned until 40 000, 50 000, and 60 000 examples are learned, 

and for the 37-multiplexer problem, they stand for 300 000, 400 000, and 500 000 examples 

are learned. As can be seen, although both the predictive accuracies of OCEC and XCS 

achieve to 100%, OCEC is much faster than XCS. In addition, XCS has a parameter, P#. P# is 

used to control the number of terms in the rules, and has an important effect on the 

performance of XCS [27]. But the experimental results in Section III.B indicate, without any 

prior knowledge about multiplexer problems, OCEC can evolve out the accurate and 

maximally general rules automatically.  

C. Radar target recognition problems 

In this section, OCEC is applied to a practical case, radar target recognition problems. It 
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refers to detecting and recognizing target signatures using high-resolution range profiles, for 

our case, in the inverse synthetic aperture radar (ISAR). A radar image represents a spatial 

distribution of microwave reflectivity sufficient to characterize the target illuminated. An 

important signature of the range profile is range resolution. It is related to the system 

bandwidth and represents the generally accepted measure of resolution of a range profile. 

Range resolution allows sorting the reflected signals on the basis of range. When range-gating 

or time-delay sorting is used to interrogate the entire range of the target space, a 

one-dimensional image, called a range profile, will result. Fig.5. is an example of such a 

signature for three different planes (B-52, Q-6, and Q-7) at 25°. 

 

Fig.5.  Range profiles of three different planes at 25°, (a) B-52, (b) Q-6, (c) Q-7 

With the development of radar techniques, many methods based on imaging for the radar 

target recognition problem have been proposed, of which neural networks (NNs) [41] and 

support vector machines (SVMs) [42] are widely used. NNs have two drawbacks. One is that 

their architectures have to be determined a priori and the other is that NNs must map 

high-dimensional input spaces to low-dimensional input spaces. Although SVMs are 

independent of the dimension of the input space, it has to select the best kernel function. In 

this experiment, OCEC is used to classify the three planes, with higher predictive accuracies 

obtained.  
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The dataset used in this experiment is about three plane models, B-52, Q-6, and Q-7. It 

was acquired in a microwave anechoic chamber, and was composed of data in the angle range 

of 0°-150°. An example was obtained at every 0.5 degree, and total 301 × 3 = 903 examples 

were obtained. The dimension of each example is 64, and such a high input dimension will 

lead to poor results for many recognition techniques. To compare OCEC with the other 

methods, NNs and SVMs, we adopt the same sampling method, that is, the sampling of every 

other data is implemented for 150 training examples for every class, and the remaining 

examples are the test ones. The average predictive accuracies over 10 independent runs are 

shown in Table VII. The performances of NNs and SVMs are those reported in [41] and [42], 

respectively. As can be seen, OCEC outperforms the two other algorithms. 

Table VII  The experimental results for radar target recognition problems (Because [42] 
deals with two classes problem, there is no result in the cell of SVMs, B-52. 
All results are averaged over 10 runs.) 

Planes NNs (%) SVMs (%) OCEC (%)
B-52 90.00   98.17±±±±1.34
Q-6 94.50 94.91 96.79±±±±1.82
Q-7 86.00 94.41 97.33±±±±1.29

V. SCALABILITY OF OCEC 

The experimental results in the previous section show that OCEC achieves a good 

performance on small datasets. This section examines the scalability of OCEC along two 

dimensions, the number of training examples and the number of attributes. In the absence of a 

benchmark with large classification datasets, the evaluation methodology and synthetic 

datasets proposed in [8] are used. The parameters of OCEC are set as follows. The number of 

generations is 5000 for all datasets, and n is selected from 1-5 randomly. N is the same to that 

of the previous section.  

A. Synthetic datasets 
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In [8], 10 classification functions were used to produce data distributions of varying 

complexities, where the functions F5 and F10 were the hardest to characterize and led to the 

highest classification errors. Moreover, the two functions have been used to examine the 

scalability of many algorithms [14]. Therefore, the following experiments are executed on the 

two functions.  

Table VIII lists the attributes used in F5 and F10. There are two class names, A and B. We 

only specify the predicate function for A. All examples are not selected by the predicate 

function belong to B. F5 and F10 are defined as follows, 

F5: A: ((age < 40) ∧   
(((50K ≤ salary ≤ 100K) ? (100K ≤ loan ≤ 300K) : (200K ≤ loan ≤ 400K)))) ∨   
((40 ≤ age < 60) ∧   
(((75K ≤ salary ≤ 125K) ? (200K ≤ loan ≤ 400K) : (300K ≤ loan ≤ 500K)))) ∨   
((age ≥ 60) ∧   
(((25K ≤ salary ≤ 75K) ? (300K ≤ loan ≤ 500K) : (100K ≤ loan ≤ 300K)))) 

F10: hyears < 20 ⇒ equity = 0 
hyears ≥ 20 ⇒ equity = 0.1 × hvalue × (hyears – 20) 
disposable = (0.67 × (salary + commission) – 5000 × elevel + 0.2 × equity – 10K) 
A: disposable > 0 

Where P ? Q : R is equivalent to the sequential conditional function, i.e., the expression is 

equivalent to (P ∧  Q) ∨  (¬P ∧  R). 

Table VIII  Description of the attributes used in F5 and F10 
Attribute Description Value 

salary salary uniformly distributed from 20 000 to 150 000 
commission commission if salary ≥ 75 000 ⇒ commission = 0 

else uniformly distributed from 10 000 to 75 000 
age age uniformly distributed from 20 to 80 
elevel education level uniformly chosen from 0 to 4 
car make of the car uniformly chosen from 1 to 20 
zipcode zip code of the town uniformly chosen from 9 available zipcodes 
hvalue value of the house uniformly distributed form 0.5k100 000 to 1.5k100 000 

where k∈ {1, 2, …, 9} depends on zipcode 
hyears years house owned uniformly distributed from 1 to 30 
loan total loan amount uniformly distributed form 0 to 500 000 

Since the attributes, salary, commission, age, hvalue, hyears, and loan, are continuous, 
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they must be discretized previously. After descretizing, there are some examples whose 

attribute values are identical. Therefore, such examples are merged before they are used to 

train the algorithm, and the times used to merge such examples are also considered in the 

following experiments. In order to test the predictive accuracy of the obtained rules, another 

10 000 instances are generated for each function as the test set. 

B. Scalability on the number of training examples 

Fig.6(a) shows the performance of OCEC as the number of training examples increases 

from 100 000 to 10 million in steps of 1 100 000. This corresponds to an increase in total 

database size from 4MB to 400MB. 

The results show that OCEC has a linear classification time. Even when the number of 

training examples increases to 10 million, the classification time is still shorter than 3500 

seconds. In addition, all the predictive accuracies of F5 range from 95.5% to 97%, and those 

of F10 range from 97.5% to 99.5%. The predictive accuracies of [8] on the two functions are 

only about 90%. 

C. Scalability on the number of attributes 

Since the original synthetic datasets have only 9 attributes, extra attributes are created by 

adding randomly generated values to each example. Note that the extra attributes do not 

substantially change the final rules because their attribute significance is very low. They 

simply increase the classification time. The number of training examples is fixed at 100 000. 

The number of attributes increases from 9 to 400 in steps of 39. This corresponds to an 

increase in the database size from 4MB to 160MB. Fig.6(b) shows the performance of OCEC. 

The results show that OCEC still has a linear classification time. Even when the number 
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of attributes increases to 400, the classification time is still shorter than 1400 seconds. In 

addition, because the values of extra attributes distribute uniformly in each class, their 

attribute significance is very low. Therefore, all predictive accuracies of F5 are still about 

96%, and those of F10 are still about 98%.  

 
Fig.6  (a) The scalability of OCEC on the number of training examples, (b) the 

scalability of OCEC on the number of attributes 

VI. CONCLUSION AND FUTURE WORK 

Based on the interacting process among organizations in human societies, a new 

classification algorithm, OCEC, has been proposed in this paper. The results in Tables IV-VII 

show OCEC can learn the IF-THEN rules whose accuracy compares favorable to that 

achieved by some well-defined learners. In fact, the performance of OCEC is the best on most 

of the datasets we used. Additionally, OCEC has a low computational cost. All results of 

OCEC are obtained without performing any specific tuning, and it is proved that OCEC is 

quite robust and easy to use. 

The good performance of OCEC benefits mainly from the bottom-up search mechanism, 

which enables OCEC to make full use of the information in examples. Furthermore, since the 

computations for the fitness function are simple, the computational cost of OCEC is very low. 
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Finally, the scalability of OCEC is studied, and the results show that OCEC achieves good 

scalability. Therefore, OCEC is an attractive tool for data mining. 

The experimental results of Section IV.A.1 show that the number of rules obtained by 

OCEC is greater than that obtained by G-Net. This is probably due to the fact that only the 

logical connective AND is used in IF-THEN rules. Therefore, one of the future works is to 

use more logical connectives to reduce the number of rules. There are also other aspects of 

OCEC that need to be improved, such as updating the attribute significance in a better way, 

defining better fitness function, etc. The field of attribute selection has gained increasing 

interest in recent years [43]. OCEC could be also applied to this field in the future. 
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