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Abstract

In this paper we empirically evaluate several local search (LS) mechanisms that heuris-
tically edit classification rules and rule sets to improve their performance. Two kinds
of operators are studied, (1) rule-wise operators, that edit individual rules, and (2) a
rule set-wise operator, which takes the rules from N parents (N > 2) to generate a
new offspring, selecting the minimum subset of candidate rules that obtains maxi-
mum training accuracy. Moreover, various ways of integrating these operators within
the evolutionary cycle of Learning Classifier Systems are studied. The combinations
of LS operators and policies are integrated in a Pittsburgh approach framework that
we call MPLCS for Memetic Pittsburgh Learning Classifier System. MPLCS is sys-
tematically evaluated using various metrics. Several datasets were employed with the
objective of identifying which combination of operators and policies scale well, are ro-
bust to noise, generate compact solutions and use the least amount of computational
resources to solve the problems.
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1 Introduction

Recent advances in Evolutionary Computation have been achieved through a variety of
innovations such as Estimation of Distribution Algorithms (EDA) (Larranaga and Lozano,
2002) or Memetic Algorithms (MA) (Krasnogor and Smith, 2005), among others. Some of
these techniques estimate a model of the structure of the problem and then generate off-
spring according to this model. Other techniques combine local search (LS) and global
search. This line of research has recently gained interest in the Learning Classifier Sys-
tems (LCS) community (Butz et al., 2006; Llora et al., 2006), where both Michigan and
Pittsburgh methods have been extended with exploration mechanisms based on EDAs.

In a recent paper (Bacardit and Krasnogor, 2006) we proposed a local search based
smart crossover operator for GAssist (Bacardit, 2004), a Pittsburgh LCS. This operator
takes the rules of N parents (N > 2) and heuristically selects the minimum subset of
rules that obtains maximum accuracy over the training set, also deciding the order in
which the rules are to be evaluated. This operator exploits the fact that Pittsburgh LCSs
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apply a supervised learning paradigm and therefore a large volume of performance in-
formation about the rules is available, which can be used by the local search mechanism
to improve the learning performance. That is, given that it is possible to determine the
fitness contribution of a given rule to the global solution, an intelligent recombination
of the rules available in the population at a given time can be enacted.

We have shown (Bacardit and Krasnogor, 2006) that using this kind of intelli-
gent recombination GAssist can produce rule sets with better accuracy, on 25 real
world problems from the UCI repository (Blake et al., 1998). Also, when using the
smart crossover operator it converges in less learning steps than when using the naive
crossover to equivalent quality solutions, in synthetic datasets such as the 11 bit multi-
plexer.

There were two important lines of research that were not addressed in our previ-
ous work: (1) The previous operator could not edit rules, only recombine them. Thus a
further step would be the development of rule-wise local search techniques, and their in-
tegration with the rule set-wise operator proposed in our previous work and (2) system-
atically evaluate the local search methods to improve their convergence and to identify
and remove unnecessary computational effort.

In this paper we address, systematically, both challenges. First, a set of rule-wise
representation-dependant local search operators are analyzed in isolation and also in
combination with the, rule representation neutral, smart crossover operator. These op-
erators exploit performance information obtained over the training data to improve
their capacity at finding good rules. We employ the GABIL (DeJong and Spears, 1991)
knowledge representation, which uses semantically rich predicates, thus providing us
with a large amount of performance information. Secondly, several strategies for inte-
grating the LS operators within the evolutionary cycle are studied.

The combinations of these operators and policies are integrated into a new Pitts-
burgh approach framework that we call Memetic Pittsburgh Learning Classifier System
(MPLCS). This framework hybridizes GAssist with LS operators. Although these oper-
ators are integrated and evaluated within the context of a Pittsburgh LCS, their design
is bound only to the representation, not to the employed learning paradigm, hence they
are of general applicability to any machine learning method that relies on rules with a
representation similar to GABIL, e.g., (Llora et al., 2005; Casillas et al., 2007).

Several variants of MPLCS are proposed and are empirically analyzed in a large-
scale evaluation process. The objective of this evaluation process is to determine the
performance of the different MPLCS variants in order to identify which of them can
learn more efficiently more accurate solutions. We evaluate the variants based on sev-
eral performance metrics including standard LCS metrics such as number of learning
steps and checking how similar the generated solution (rule set) is to the optimal solu-
tion for the domain.

A diverse set of problems is used in this evaluation process to analyze various
kinds of challenges such as scalability, robustness to noise or unbalanced problem struc-
tures. The performance of the best MPLCS settings is also compared against state-of-
the-art LCS methods, and the overall results of this study are analyzed from several
points of view, identifying which operators act synergistically with the standard evolu-
tionary computation exploration mechanisms. Also, we briefly mention the potential
applicability of these operators to other LCSs.

The rest of the paper is structured as follows: section 2 overviews related work.
Section 3 summarizes the main characteristics of GAssist, the Pittsburgh LCS used as
base for the work of this paper. Section 4 defines the rule-wise and rule set-wise local
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search operators and the hybridization policies used in MPLCS. Section 5 describes
the experimental design used in this paper while section 6 shows the results of the
empirical evaluation of our approach. Section 7 contains a global discussion about the
obtained results. Finally, section 8 presents conclusions and future work.

2 Related work

Intelligent recombination, local search and statistical learning techniques are some of
the strategies used to produce better and faster EC algorithms. Different families of
techniques using these strategies exist in the literature.

The work presented in this paper, hybridizing global and local search, is part of one
of such families, Memetic Algorithms (Krasnogor and Smith, 2005). These methods are
inspired by models of natural systems that combine the evolutionary adaptation of a
population with individual learning within the lifetimes of its members.

In this scope, there is a quite early LCS work, the SAMUEL system (Grefenstette,
1991), that has an operator which is similar to one of the LS operators presented here.
That system was applied to multi-step domains, and their operator generated an off-
spring containing high-payoff rules that fired in sequence. Unlike our approach, this
operator only used rules from two parents. Our previous work showed that using rules
from multiple parents contributed to the generation of better offspring. Also, it was ap-
plied to unordered rules, while our approach is specifically designed for ordered rules.
This is an important distinction as our rule-set wise LS operator is designed for ordered
rule sets. More recently, Wyatt and Bull (Wyatt and Bull, 2004) proposed a Memetic
Learning Classifier System, within the Michigan paradigm of LCS, for representation
with real-valued attributes. Also, Butz et al. (Butz et al., 2005a) proposed a gradient
descent method to improve XCS’s (Wilson, 1995) performance on multi-step domains.

A related family of techniques are the Estimation of distribution algorithms. Usually
these paradigms involve applying machine learning or statistics techniques to estimate
the structure of the problem being solved and allow the system to explore better the
search space by creating informed exploration operators.

For example, in (Butz et al., 2006), the author extended XCS with a crossover oper-
ator based on two types of EDAs: the Extended Compact Genetic Algorithm (ECGA)
(Harik, 1999) and the Bayesian Optimization Algorithm (Pelikan et al., 1999). These
two methods derive global structural information from the best rules in the population,
which later is used to inform the crossover operator when generating new offspring.

The Compact Classifier System (CCS) (Llora et al., 2005), is a recent integration of
EDAs within the framework of a Pittsburgh LCS, using the Compact Genetic Algorithm
(CGA) (Harik et al., 1999). CGA is run iteratively to generate different rules. Different
perturbations of the initial solution of CGA are needed to generate different rules, and
the individuals in CCS store a set of such perturbations. The objective of CCS is to
determine the minimum set of rules that creates a maximally general solution. Other
early attempts at using EDAs in a Pittsburgh LCS are also discussed in (Llora et al.,
2005).

Recently, Llora et al. proposed xeCCS (Llora et al., 2006), an extension of
CCS. xeCC'S evolves a population of rules using the model building and recombina-
tion mechanisms of ECGA. A niching method using Restricted Tournament Selection
(Harik, 1995) was employed to guarantee that the population learns all the rules needed
to solve the domain. Experiments showed that this method scales quadratically in re-
lation to the problem size for the Multiplexer family of problems.

Finally, the editing procedure of the rule-wise local search operators studied in this
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paper are related to those originally proposed in (Janikow, 1991). Janikow’s GIL sys-
tem introduced three operators (RuleSplit, ReferenceExtension, ReferenceRestriction)
that edit the rules in the same way that our operators do. However, these operators
are applied blindly (although having a probability of application biased by the rule’s
previous performance) to all the rules of the population, modifying both good rules
and bad rules. Our operators, on the other hand, use the information extracted from
their previous performance. They are only applied to the rules that actually need some
editing to improve their performance.

3 The GAssist Learning Classifier System

GAssist (Bacardit, 2004) is a Pittsburgh LCS, originally inspired by GABIL (DeJong and
Spears, 1991) and extended through the years with new features (Bacardit and Garrell,
2007; Bacardit et al., 2004; Bacardit, 2005). Currently it also has similarities to the GIL
(Janikow, 1991) system. GAssist applies a near-standard generational GA that evolves
individuals representing a complete solution to the classification problem at hand. An
individual consists of an ordered, variable-length rule set. A fitness function based on
the Minimum Description Length (MDL) principle (Rissanen, 1978) is used. The MDL
principle is a metric that can be applied to a theory (being a rule set here) which bal-
ances the complexity and accuracy of the rule set. As we deal with variable-length in-
dividuals, our system is sensitive to the bloat effect (Langdon, 1997), that is, the growth
without control of the size of the individuals. Hence, the need for a fitness function
that balances accuracy and complexity of the rule sets. The details and rationale of this
fitness formula are explained in (Bacardit, 2004).

Moreover, in order to help the control of the bloat effect, we also use a rule deletion
operator to remove rules that do not match any training example. The operator is
applied after the fithess computation and has two constraints: (a) the process is only
activated after a predefined number of iterations (to prevent an irreversible diversity
loss) and (b) the operator is not applied if its application would produce an individual
having a number of rules smaller that a certain predefined threshold.

The system also uses a windowing scheme called ILAS (incremental learning with
alternating strata) (Bacardit et al., 2004) that reduces the run-time of the system and
also introduces generalization pressure (Bacardit, 2004). This mechanism divides the
training set into several non-overlapped subsets and chooses a different subset at each
GA iteration for the fitness computations of the individuals.

For this paper we have used GABIL's (DeJong and Spears, 1991) rule-based knowl-
edge representation for nominal attributes. As the representation is important for
the design of the rule-wise local search operators, a brief description follows: In
GABIL each rule consists of a condition part and a classification part: condition —
classification. Each condition is a Conjunctive Normal Form (CNF) predicate defined
as:

(A= ViV VYA N AL = (VEV . V1Y)

Where A; is the ith attribute of the problem and V/ is the jth value of the ith attribute.

This kind of predicate can be encoded into a binary string in the following way:
given a problem with two attributes, where each attribute can take three values {1,2,3},
a rule of the form “If the first attribute has value 1 or 2 and the second one has value 3
then we predict class 1” will be represented by the string 110/001||1. There is a bit as-
sociated to each value of each attribute. If a value appears in the disjunction associated
to its attribute in the predicate, the bit is set to one. Otherwise it is set to zero.
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To initialize each rule, the system chooses a training example and creates a rule that
classifies correctly this example, using the mechanism proposed in (Bacardit, 2005). The
covering process first activates the literals that match the chosen training example by
setting the bits associated to the instance values to one. Next, it randomly initializes
the rest of literals in the rule given a certain probability of having value one.

The individual representation is extended with an explicit default rule mechanism.
The evolved rules can predict all but one of the classes in the domain, an static default
rule at the end of the rule set will predict the other class. The apparition of a default rule
at the end of the rule set is an usual emergent phenomenon when using decision lists
as individual representation (as we do). We explicitly exploit this phenomenon with
an static default rule as it helps generating more compact and accurate solutions (Bac-
ardit, 2004). Finally, we use a parallel implementation of GAssist, applying a standard
master-slave paradigm (Cantu-Paz, 2000).

4 Rule-wise and rule set-wise local search mechanisms

This section introduces the Memetic Pittsburgh Learning Classifier System (MPLCS)
in its two variants, using either rule set-wise (MPLCS-RS) or rule-wise (MPLCS-R) LS
mechanisms. For each kind of mechanism we specify algorithmic descriptions of the
operators and how they are integrated inside GAssist. We have used two different poli-
cies of integration, either applying the operators to the whole population (controlled by
a certain probability) or applying them only to the best individual of the population (in
an elitist fashion). The former policy will be identified by appending a suffix (P) to the
name of the method. The latter will use a suffix (E). For instance, the MPLCS that uses
rule-wise operators applied to the whole population will be known as MPLCS-R(P). If
we use both kinds of operators at the same time, the method will use the name RS+R
so, as an example, the combination of rule-wise and rule set-wise operators applied to
the best individual of the population will be known as MPLCS-RS+R(E).

It is important to remark that the construction of Competent Memetic Algorithms
(including MPLCS) depends on addressing important design issues. In this paper we
have followed some of the recommendations and hybridization strategies described in
(Krasnogor and Smith, 2005) in what pertains to where hybridization should take place
and the appropriate balance of global and local search.

4.1 Rule set-wise Local Search mechanisms - MPLCS-RS

This subsection is divided into two parts. The first one briefly describes the rule set-
wise LS operator itself while the second one details how it has been integrated into
GAssist to produce the new algorithm MPLCS-RS. An extensive description, use ex-
amples and behaviour analysis for the operator when applied in the crossover stage
of GAssist can be found in (Bacardit and Krasnogor, 2006), where it was called Smart
Crossover (SX). In this work we extend the operator beyond the scope of the crossover
stage of the GA. Thus, we call the operator rule set-wise (RSW) local search in this work.
41.1 The RSW operator

RSW has three main stages (Figure 1):
1. Evaluation of the candidate rules
2. Selection of the rules that will form the offspring rule-set
3. Generation of the final individual
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Figure 1: Representation of RSW

In the first stage we evaluate all rules with all the examples of the training set. This
process has as a result a map of correct and incorrect classifications of each rule. The
next stage will use this map to evaluate how well each candidate rule can contribute to
improve the accuracy of the offspring rule set without re-evaluating the rule set.

The second stage works as follows: We start the process with an empty offspring
rule set. Next, for each candidate rule we evaluate which is the position inside the rule
set where this rule, in case it was inserted, would contribute more to increase the rule
set accuracy. A rule will only be inserted into the rule set if it manages to improve the
rule set accuracy, and in the position determined previously to be the best one. When all
candidate rules have been evaluated, the rule set is pruned of rules that do not classify
correctly any example anymore (because they have been subsumed) and also of rules
that cover too few additional positive examples.

As the order in which the rules are inserted into the rule set is important, the
process explained above of generating the offspring rule set is repeated several times,
reshuffling the candidate rules after each repetition. We pick the rule set that obtains
highest accuracy and, in case of a tie in accuracy, smallest number of rules. Finally, an
offspring is generated from the selected set of rules.

4.1.2 MPLCS-RS: integration of RSW into the GAssist framework

The operator described in the previous section only recombines already existing rules,
and it does not generate new ones. We have investigated several ways of integrating
RSW with the crossover and the population management strategies. The operator can
be used in two different stages of GAssist, the crossover stage and the elitist stage. In
this paper we study two different policies':

o Integration of RSW into the crossover stage of GAssist: MPLCS-RS(P)
e Integration of RSW into the elitism stage of GAssist: MPLCS-RS(E)

MPLCS-RS(P) The crossover stage of GAssist will use both RSW and traditional
crossover. The combination of both operators occurs through a control variable (Prsw)
that randomly selects which one to use. To prevent the operator from selecting the same
parent twice we sample without replacement.

The pseudo-code in Figure 2 describes this integration assuming, for simplicity,
that all individuals have the same default class, which is not always the case. When

In previous work (Bacardit and Krasnogor, 2006) we only tested the first of the enumerated policies
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the population contains individuals with different default classes, the crossover stage
is applied separately for each of the classes, as described in (Bacardit, 2004).

Procedure Crossover algorithm with local search
Input: Parents,PopSize
DefaultClass = Get default class from Parents
Offsprings =0
TempParent = null
Fori = 1to PopSize
If random number|[0, 1] < Peross
If random number|[0, 1] < Py prcs—Rrs
SelectedParents = ()
For j = 1tonumParentsMPLCS — RS(P)
Parent = Sample without replacement from Parents
Add Parent to SelectedParents
EndFor
NewO f fSpring = RSW(Selected Parents,De faultClass)
Add NewO f fSpringto Of fsprings
Else
If TempParent = null
TempParent = Sample without replacement from Parents
Else
Parent2 = Sample without replacement from Parents
NewO f fSpring = OnePointCrossover(T'empParent, Parent2)
Add NewO f fSpring to O f f springs
TempParent = null
EndIf
EndIf
Else
Parent = Sample without replacement from Parents
Clone = Copy of Parent
Add Cloneto Of fsprings
EndIf
EndFor
Output: Of fSprings

Figure 2: Integration of RSW in the crossover stage of GAssist

MPLCS-RS(E) In order to preserve the best individual found so far, an EA copies
the best individual of the parents population directly into the offspring population,
usually replacing the worst offspring. This procedure is known as elitism (Béck et al.,
1997). The second way of integrating RSW into GAssist is through the elitism phase.
The procedure works as follows:

4.2

Given the offspring population after crossover and mutation
Evaluate individuals

Select the N best individuals of the population

Apply RSW to these N elite individuals

Replace the worst individual of the offspring population with the newly created
individual

Rule-wise local search mechanisms - MPLCS-R

This subsection describes the three studied rule-wise local search operators and their
integration into GAssist to form MPLCS-R.
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4.2.1 Definition of the operators

The studied rule-wise operators are tailored to the GABIL knowledge representation
used by GAssist that provides very detailed information about the behavior of a rule.
Please note that any algorithm using a GABIL-like representation, independently of
the problem to which it is to be applied, could benefit from the proposed operators.
This information is used to direct the way in which the local search operators function.
Three operators are studied:

e Rule cleaning (RC)
e Rule splitting (RS)
e Rule generalizing (RG)

The two first operators edit the rules to make them more specific, while the third
operator edits the rules to make them more general. Thus, we seek to provide MPLCS
with complementary pressures, namely, specificity and generality.

The Rule Cleaning (RC) operator The rule cleaning operator is applied to a rule
based on the set of examples that are matched by this rule, and heuristically disables
the literal in the CNF predicate that makes the rule cover the most number of misclas-
sified examples and does not classify correctly any example at all. The motivation and
rationale of the operator is best illustrated with an example:

Position [0 1 2 3|0
1 1 011

¢ Given the following rule: Rule ‘ 1

o Given the following set of instances that are matched by this rule

0,01
1,01
2,00
0, 1|1
1,11
2,1/[0

A o

o The rule classifies correctly four examples and incorrectly two of them (3 and 6).

e If we disable the literal associated to the third value (2) of the first attribute, neither
of these two negative examples are covered by the rule.

To efficiently identify the literal to be disabled (cleaned), two counters are associ-
ated to each literal, one for the positive examples and one for the negative ones. After
each example is matched, we increase the corresponding counter for the literal of each
attribute that is activated by the example. After all examples are matched, we only
need to look for the literal that has its positive examples counter set to 0 and maximum
value for its negative examples counter. This literal is then set to 0. Figure 3 contains
the code of the operator.
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Procedure Rule Cleaning operator
Input: rule,Matched Examples
PosCount = Initialize Counters for all literals of Rule
NegCount = Initialize Counters for all literals of Rule
Foreach example in Matched Examples
If rule.class = example.class
Foreach att in NumAttributes
PosCountlatt][example.values[att]] + +
EndForEach
Else
Foreach att in NumAttributes
NegCountlatt][example.values|att]] + +
EndForEach
EndIf
EndForEach

MaxNeg =0
Foreach att in NumAttributes
Foreach literal lit of att
If PosCount[att][lit] = 0 and NegCountlatt][lit] > MaxNeg
MaxzNeg = NegCountlatt][lit]
Target Att = att
TargetLit = lit
EndIf
EndForEach
EndForEach
IfMaxNeg > 0
Disable literal T'arget Lit of attribute T'arget Att of rule
EndIf
Output : rule

Figure 3: Pseudo-code of the RC operator

The Rule Splitting (RS) operator The previous operator identifies literals that only
cover negative examples. However, this situation may not be very frequent, as usually
literals that cover both positive and negative examples are encountered. Thus the rule
cleaning operator is expected to be effective only rarely. This is compounded with the
fact that GAssist promotes generalized individuals, that is, individuals that have as
many enabled literals as possible due to the pressure introduced by the MDL-based
fitness. Hence, the new operator shall handle very general rules in a smoother way
than the rule cleaning one. The rule splitting operator achieves this aim by splitting
the target rule into two, selecting the point that allows the rule cleaning operator to be
applied to one of the generated sub-rules. The following example illustrates how the
rule splitting local search operates:

e Given the following rule: Position ‘ (1) 1 % 3 ‘ (1) 1 ‘ (1) i Class

Rule |1 1 1 0] | 1
¢ Given the following set of instances that are matched by this rule

0,0,0|1
1,0,1[|1
2,0,1/|1
2,1,1|1
0,1,0||1
1,1,1||1
2,0,0|(0
2,1,0/[0

® N Ak W N
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o The rule classifies correctly six examples and incorrectly two of them (7,8)

e We compute the positive and negative counters of each literal of the rule like in the
rule cleaning operator:

— Positive counters: 2,2, 2,0|3,3|2,4
- Negative counters: 0,0, 2,0|1,1|2,0

e The counters show that there is no literal that can be cleaned, as the four of them
with negative counts (3rd literal of att. 1, both literals of att. 2 and 1st literal of att.
3) also have positive counts.

o If we split the rule into two assigning to each of them one of the two (active) values
of the third attribute, thus creating 1110|11|10||1 and 1110|11|01]||1, the matched
examples are distributed as following:

— First rule
1. 0,0,0]||1
2.0,1,0/1
3. 2,0,0/0
4. 2,1,0/|0

— Second rule
1. 1,0,1||1

2,0,1||1

2,1,1||1
1,1,1(]1

e N

e Then we recompute the positive and negative counters for both of them:

Positive counters of first rule: 2,0,0,0|1, 12,0

Negative counters of first rule: 0,0, 2,0|1,1|2,0

Positive counters of second rule: 0,2,2,0|2,2|0,4

- Negative counters of second rule: 0,0, 0,010, 0|0, 0

o The third literal of the first attribute for the first splitted rule only covers negative
examples and therefore can be disabled

e We disable the identified bad literal and exchange the original rule for the two
splitted rules

The split procedure as applied to a rule, selects one attribute of the domain and
generates two sub-rules that are identical except for the selected attribute. One sub-
rule has only one active literal: one of the active literals of the original rule. The other
sub-rule has this literal disabled but all the other active literals of the original rule are
enabled. This means that in order to apply the split procedure to a certain attribute of
the domain, the original rule must have at least two literals that are enabled and cover
both positive and negative examples. The rule splitting operator tries to split all such
attributes of the original rule and then tries to apply the rule cleaning operator to the
sub-rules. Only one split and clean is actually applied: the one that manages to remove
most negative examples. Figure 4 contains the pseudocode of the operator.

10 Evolutionary Computation Volume x, Number x
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Procedure Rule Splitting operator
Input: rule,Matched Examples
(PosCount, NegCount) = Compute activation counter for rule on Matched Examples
MaxNeg =0
Foreach att in NumAttributes
Literals = Identify literals lit from att that have
PosCountlatt][lit] > 0 and NegCount[att][lit] > O
If | Literals| > 2
Foreach lit in Literals
ExamplesLit = Examples from Matched Examples covered by lit
Compute positive and negative counters for ExamplesLit
NumNeg = Check from ExamplesLit if some literal can be cleaned
If NumNeg > MaxNeg
MaxNeg = NumNeg
SplitAtt, SplitLit = att, lit
EndIf

ExamplesOther = Examples from Matched Examples covered by the order
literals of att
Compute positive and negative counters for ExamplesOther
NumNeg = Check from ExamplesOther if some literal can be cleaned
If NumNeg > MaxNeg
MaxNeg = NumNeg
SplitAtt, SplitLit = att, lit

EndIf
EndForEach
EndIf
EndForEach

If MaxNeg > 0
rulel, rule2 = Split rule by attribute Split Att and literal Split Lit
Disable the appropriate literal of either rulel or rule2

Output : rulel, rule2

Else

Output : rule

EndIf

Figure 4: Pseudo-code of the RS operator

The Rule Generalizing (RG) operator The two previous operators share a common
characteristic, they try to correct the mistakes done by the rules they manipulate by dis-
abling some literals. The new operator applies the opposite concept: trying to activate
literals to the rule in order to cover more positive examples. Our operator identifies
the single disabled literal in the rule that, if enabled, would cover as many new posi-
tive examples as possible but without covering any new negative example. In order to
achieve this objective the operator identifies all non-covered examples that only failed
to be matched by a single attribute. From this list of candidate positions, it selects and
enables the one that can add more positive examples without adding any new negative
example. Figure 5 contains the pseudo-code of the operator.

4.2.2 MPLCS-R: integration of the rule-wise local search operators into the
framework of GAssist

We evaluate three different ways in which we can use these three rule-wise local search
operators inside GAssist. The three policies are:

e Applying the operators to the whole population. A new stage is added to the
GA cycle after mutation, where the rule-wise LS operators are applied to each
individual of the population with certain probability, as represented in the pseudo-
code in Figure 6. This option is named MPLCS-R(P).

o Applying the LS operators only to the best individual of the population at the end
of each iteration. This option is named MPLCS-R(E).

Evolutionary Computation Volume x, Number x 11
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Procedure Rule Generalizing operator
Input: rule,NotMatchedExamples
(PosCount, NegCount) = Initialize counters to 0 for all literals of rule
Foreach instance in NotMatchedExamples
numAttMissed = 0
Foreach att in NumAttributes
If literal rule[att][instance.values|att]] is disabled
numAttMissed + +
EndIf
EndForEach

If numAttMissed = 1
lit = Literal missed from rule for ezample
If example.class = rule.class
PosCount[lit] + +
Else
NegCount[lit] + +
EndIf
EndIf
EndForEach

MaxPos =0
Foreach Litera lit in rule
If PosCount[lit] > MaxzPos and NegCount[lit] = 0
MaxPos = PosCount|lit]
TargetLit = lit
EndIf
EndForEach

If MaxPos > 0
Enable literal T'arget Lit of rule
EndIf

Output : rule

Figure 5: Pseudo-code of the RG operator

e Applying the LS operators inside RSW. The operators are applied after trying to
insert all candidate rules, and before pruning the selected rule subset. This option
is named MPLCS-RS+R (with its two (P) and (E) variants).

The selected rule-wise operators in each of these policies are specified by append-
ing a ":OP’ suffix to the policy name. For instance, the MPLCS variant using Elitist Rule
Generalizing is defined as MPLCS-R(E):RG, while the probabilistic policy using both
Rule Cleaning and Rule Splitting is defined as MPLCS-R(P):RC+RS.

When an individual is selected for the application of the LS operators (in any of
the above policies), the LS operators are applied to all of its rules, starting with the first
rule and continuing to the last. As the rule sets are ordered decision lists, the order
in which the operators are applied is crucial, as the modification of a certain rule will
probably affect the rules placed after it in the list. All the selected LS operators are
applied always to each rule before continuing to the next one.

The order of application of the operators to a rule is also important. First of all,
the rule splitting operator is designed to be applied to the rules that the rule cleaning
operator is unable to fix. Therefore it is applied after the cleaning operator. Moreover,
the rule generalizing operator will always be applied after the other two operators. The
rationale in this case is to compensate the specificity pressure introduced by the first
two operators with the generality pressure introduced by the later. (Krasnogor and
Smith, 2005) suggested a variety of ways in which one can “schedule” the application
of LS within an EA framework; we leave the exploration of other alternatives for future
work.
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Procedure GA Cycle

Population = Initialize population
Evaluate(Population)

Forit = 1to Numlterations
Selection(Population)

O f f spring=CrossOver(Population)
Mutation(O f f spring)
LocalSearch(O f f spring)
Population=Replacement(Population,O f f spring)
Evaluate(Population)

EndFor

Output : Best individual from Population

Procedure LocalSearch
Input: Population
ForEach individual in Population
If rand(0, 1) < probLocalSearch
Apply Rule-wise Local search operators to individual
EndIf
EndForEach

Output : Population

Figure 6: Integration of MPLCS-R(P) in the GA cycle

Finally, in some of our initial tests (not reported) we have observed an explosion
in the number of rules of the individuals, due to a recursive’ application of the rule
splitting operator. This issue is especially problematic in early iterations of the learning
process, when the operators deal with close-to-random rules. In order to avoid this
effect, the rule split operator is not applied to any newly created rule that is the result
of the previous split. Figure 7 contains the code of the application of the LS operators
to an individual, containing all the above considerations.

5 Experimental design

This section contains the description of the experimental protocol that has been fol-
lowed to evaluate the MPLCS methods presented in the paper. Two stages of experi-
ments have been carried out. The first of them contains a large scale evaluation of 75
configurations of MPLCS based on different combinations of LS operators and param-
eter values, using a single dataset (the 20 bit multiplexer). In this stage our objective
is to evaluate when the LS operators/policies are able to contribute towards a better
learning process or they just add fruitless computational effort.

In the second stage, the most promising MPLCS combinations arising from the
previous stage are tested on several other datasets to evaluate whether the performance
and behavior observations extracted in the first stage still hold. This second stage tests
the best MPLCS combinations in terms or robustness to noise, scalability, and capacity
of adaptation to other kind of datasets. The rest of the section explains these two stages
of experiments and the performance measures used to evaluate them.

5.1 First stage of experiments

5.1.1 MPLCS experimental suits

In the previous section we have defined various kinds of operators and policies of ap-
plication. For simplicity we will only evaluate a subset of them, organized in six exper-
imental suits. In total 75 MPLCS algorithms have been tested. Due to space limitations,
we report here the most salient observations of these experiments. For full details and
to aid independent reproduction of our results, please refer to the supplementary ma-
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Procedure ApplyRuleWiseLocalSearch

Inputs : individual

lastSplitted = 0

index = 1

Instances = TrainingSet

While index < individual.numRules
Matched Examples = Examples from Instances matched by individual.rules[index)
If RuleCleaning(individual.rules[index],M atched Examples) disables any literal

MatchedExamples = Examples from Instances matched by individual.rules[index]

EndIf

If lastSplitted = 1
lastSplitted = 0
Else
rulel, rule2=RuleSplitting(individual.rules[index],Matched Examples)
If RuleSplitting generated rulel, rule2
Remove individual.rules[index]
Insert rulel, rule2 in individual.rules at position index
MatchedExamples = Examples from Instances matched by individual.rules[index]
lastSplitted = 1
EndIf
EndIf

Remove Matched Examples from Instances
NewMatched = RuleGeneralizing(individual .rules[index],Instances)
If [INewMatched| > 0
Remove NewMatched from Instances
EndIf
indexr + +
EndWhile
Output : individual

Figure 7: Application of the rule-wise local search operators to an individual

terial at http://www.infobiotic.net/papers/MPLCS—-first-stage.pdf.

In all suits where we use the three rule-wise local search operators, we have tested
seven combinations of them. First, each LS operator is tested separately, then com-
binations of two operators are tested together and them finally the three operators in
unison. What we expect to see in the results is that the best results are obtained when
all the operators are used together, as it introduces a balance between two kinds of
pressures, specificity pressure (from the rule cleaning and rule splitting) and generality
pressure (from the rule generalizing). This balance of pressures has been studied in
depth for Michigan LCSs (Butz et al., 2004).

In our previous work (Bacardit and Krasnogor, 2006) we conducted an exten-
sive sensitivity analysis of the RSW operator when applied probabilistically (affecting
MPLCS-RS(P) and MPLCS-RS+R(P)). In this paper we are going to use only the best
set of parameters identified in those experiments: Probability of RSW: 0.1; number of
parents: 10 ; repetitions of rule subset selection: 5. The last parameter is also used for
MPLCS-RS(E) and MPLCS-RS+R(E).

The six experimental suits are:

1. Basic suite. As a baseline for comparison, GAssist will be run without any of the
local search operators

2. MPLCS-R(P) suite. We tested the rule-wise local search operators applied with
probabilities ranging from 5% to 25% with increments of 5%. Total: 35 experiments

3. MPLCS-R(E) suite. We tested the rule-wise local search operators applied to the
best individual of the population. Total: 7 experiments

4. MPLCS-RS suite. We tested the rule set-wise operator within the crossover stage -
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MPLCS-RS(P) - and in elistist way - MPLCS-RS(E) - with 5, 10 or 15 parents. Total:
4 experiments

5. MPLCS-RS+R(E) suite. We tested the integration of the three rule-wise local
search operators with RSW used in the elitist stage, again using 5, 10 or 15 par-
ents. Total: 21 experiments

6. MPLCS-RS+R(P) suite. We tested the integration of the three rule-wise local
search operators with RSW used in the crossover stage. Total: 7 experiments

5.1.2 Dataset

For this first stage of experiments we used a single dataset, namely the 20 bit multi-
plexer problem as it provides us with enough data to illustrate and evaluate the strong
and weak points of each algorithm. We selected the 20 bit multiplexer instead of the
11-bit one, which was used in previous experiments with RSW (Bacardit and Krasno-
gor, 2006), because our aim is also to evaluate the scalability of these methods and this
dataset, with over a million examples, is already a fairly large dataset. Also, until re-
cently (Llora et al., 2006), there were no results reported in the literature about any
Pittsburgh style LCS solving this dataset.

5.1.3 GAssist configuration

The configuration used for GAssist/ MPLCS is detailed in table 1. For the explanation
of all the parameters and operators, please see (Bacardit, 2004). This is the default con-
figuration of the system, with only one exception: the number of strata of the ILAS
windowing scheme. ILAS was designed to alleviate the computational time of GAssist
for large datasets by using only a subset of training examples for its fitness computa-
tions. Therefore, it would be appropriate to use a large number of strata for all the
datasets used in this paper. However, the local search operators studied in this paper
explicitly tailor the rules/rule sets to improve their performance for the current train-
ing examples. If these examples change after each iteration, the changes introduced by
the LS operators for a given iteration may be inadequate for the instances used in the
next one. Therefore, in this stage we prefer to avoid external interactions that could
affect the LS operators. Hence we use only two strata, thus expecting small impact
from ILAS on the LS while the run-time is halved. We note that most of the local search
operators studied in this paper have a computational cost that is related to the number
of examples used for their operation. However, although the above ILAS settings con-
tribute to a slowing down of MPLCS, we think that it is worth to evaluate MPLCS in
isolation, without (most of) the external interaction of ILAS, and this stage it is a good
opportunity of doing so because the dataset we use is still relatively small. Also, as the
obtained results will show, the relative performance differences between GAssist and
the evaluated MPLCS variants remain similar with/without ILAS. Thus, the findings
from the first stage can be extrapolated to the experiments in the second stage. In the
next stage, where we evaluate datasets of larger size and difficulty, we will evaluate
MPLCS exclusively in combination with ILAS as this is the only tractable choice.

5.2 Second stage of experiments

In the second stage of experiments we evaluate the most promising MPLCS configura-
tions identified in the previous experiments and we test them in new conditions. First
of all, these configurations are evaluated in combination with a high number of strata
of the ILAS windowing scheme to determine whether the combination of windowing
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Table 1: General parameters of GAssist/ MPLCS

Parameter Value
General parameters
Crossover prob. 0.6
Selection algorithm tournament selection
Tournament size 3
Population size 300
Individual-wise mutation prob. 0.6
Initial number of rules per individual 20
Default class policy major
Iterations until convergence

Number of slaves for master-slave parallel model 10
Rule deletion operator

Tteration of activation 5
Minimum number of rules 6
MDL-based fitness function
Tteration of activation 25
Initial theory length ratio 0.075
Weight relax factor 0.90

MDL-based fitness function

and local search is beneficial for the system or not. Two hundred strata for the ILAS
windowing stage are used on these new experiments. All other parameters of GAs-
sist remain unaltered using the values in table 1. Moreover, we test MPLCS on other
datasets to check if the observations from the previous experiments still hold. We have
selected the following datasets:

Noisy 20 bit multiplexer The aim of this dataset is to evaluate how robust is MPLCS
to noise. Thus we use tunable noisy version of the dataset used previously. The
noise is introduced in the class label, flipping it with a certain probability. Five
different levels of noise have been evaluated: 5%, 10%, 15%, 20% and 25%. For
each level of noise, ten versions of the noisy dataset have been generated, and the
results of learning them are averaged. Again, 200 strata are used for this dataset.

k-DNF datasets The next dataset we use for these experiments is a dataset extensively
used in the field of Computational Learning Theory (Kearns and Vazirani, 1994),
especially for PAC-learning (Valiant, 1984). It consists in learning a boolean func-
tion defined as a disjunctive normal form predicate with n disjunctive terms (that
is, the rules we have to learn), where each term has at most k expressed attributes.
Specifically, we have used the same version of the kDNF dataset used by Butz
et al. (Butz and Pelikan, 2006) to evaluate XCSBOA, where k = 5, n = 22 and
the total number of attributes in the dataset is 20. Therefore, the dataset has the
same number of instances, and slightly higher number of rules (23 vs. 17) as the
20 bit multiplexer ( we will use the same number of strata for the ILAS window-
ing scheme). The reason for using this dataset is to show that the contribution of
MPLCS is general, and it performs well in many domains, not only in the multi-
plexer datasets.

37 and 70 bit multiplexer Finally, the last two datasets used for these experiments are
the next two versions of the multiplexer problem of larger size after the 20 bit
one. Learning these two datasets means some changes in GAssist: Until now, each
dataset was fully loaded from hard disk and stored in RAM memory. However,
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it is impossible to do the same for the full set of instances of these datasets. We
will generate the dataset on-the-fly in a similar way as it was done for XCS (Butz,
2003), where at each learning step a new instance is randomly created with uni-
form probability for each of its input bits, and then its class label is computed by
evaluating the boolean function that defines the multiplexer problem. Our aim in
using these two datasets is to evaluate the scalability of MPLCS beyond domains
of a million examples, like the ones used before.

In the case of GAssist, before each iteration N/numStrata instances are sampled
(with replacement) using a similar approach. These instances are used for all the
fitness computations and local search procedures performed during the iteration,
and discarded at its end. This means that the windowing scheme used will not be
ILAS (where the whole training set is stratified in non-overlapped strata before the
learning process) anymore, but just a random subset sampling of the training set.
However, the numStrata parameter will maintain the same meaning, determining
the number of instances that will be used at each G A iteration. We have tuned this
parameter for both datasets to obtain the lowest possible number of examples per
iteration that still lets GAssist learn the problem. This means 1373 instances per
iteration in the 37 bits multiplexer and 1574 instances per iteration in the 70 bit
multiplexer.

5.3 Performance measure and evaluation process

When Michigan LCS are evaluated in the kind of datasets that we employ in this paper
their performance is assessed mainly by counting the number of learning steps that are
required to achieve the optimal accuracy for the used dataset (e.g. (Wilson, 1995; Butz
et al., 2006)). Other performance metrics are the number of classifiers in the population
and examining the population to check if the optimal rules for the problem at hand
were generated and identified as high payoff classifiers. That is, Michigan LCS are
evaluated checking how many “atomic steps” of its learning cycle are necessary to
reach the optimal solution. For a Pittsburgh LCS, the atomic step is a GA iteration. If no
windowing scheme is used, each iteration uses as many learning steps as the number of
training instances. Otherwise, each iteration uses as many learning steps as the size of
the window. Thus this seems an objective way of comparing the performance of these
systems.

However, is this metric truly fair to compare between the LS operators studied
in this paper? The answer is no, as the amount of search effort in an iteration varies
among operators. Counting the number of match operations that each configuration
performs is more fair but not entirely satisfactory either, as some of these operators
perform only partial matching. Our selected performance measure to compare between
the MPLCS variants is, simply, the average run-time of GAssist until perfect accuracy
is achieved. Although this measure has some drawbacks, especially for replicability
purposes across different computing platforms, it is the most objective measure to asses
the performance of the LS operators and policies of application, as these have all run in
a uniform hardware.

As all the different MPLCS share the same code base, the run-time differences be-
tween them can only be a consequence of a more efficient exploration of the search
space and not due to implementation/compilation issues. We would like to remark
that with these experiments our aim is not to optimize the run-time of the various
MPLCS variants, but to check how quick do the different Memetic LCSs converge to-
wards an optimal solution. Also, to allow an easier replicability of the results reported
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in the paper, we have decided to place online a copy of GAssist and MPLCS source
code at http://www.infobiotic.net/software/GAssist+MPLCS.tar.gz.

Moreover, the results of the experiments are analyzed using one-way ANOVA tests
combined with the post-hoc Tukey HSD test for multiple comparisons using a 99%
confidence level?, as suggested by (Lanzi et al., 2006). The aim of the tests is to identify,
among the compared algorithms, the groups of methods that obtain statistically similar
performance and a hierarchy of performance groups, which groups are significantly
better than other groups, etc. For example, when we write (G1, G3) — G3 — G4, it
means that the group made up of G1 and G3 methods has better performance than G3,
which in turn has better performance than G4.

Although our evaluation is based on run-time, we also report other measures such
as GA iterations until convergence and size of the obtained rule sets, as they help to
illustrate the behavior of these methods. The rule-set sizes we report are “worst case”
scenarios, as the reported measure is the rule-set size of the first rule set that managed
to achieve 100% accuracy. If MPLCS was left running for more iterations, in most if
not all of the configurations it would manage to obtain the optimal rule set, which for
the 20 bit multiplexer consists of 17 rules (16 rules covering one class plus the default
rule for the other class). For the 37 bit multiplexer the optimal rule set consists of 32+1
rules, and 64+1 for the 70 bit multiplexer. The optimal kDNF rule set consists of at most
22 + 1 rules. In some cases these rules overlap and we can obtain rule sets of less than
23 rules. However, reporting this measure as it is will help us illustrate the behavior of
the studied operators as we will show which methods build a well generalized solution
while they are learning, or if they only concentrate on achieving perfect accuracy and
leave the search for a well generalized solution for later.

6 Results

We report next the results obtained in the two stages of experiments and compare
MPLCS against state-of-the-art LCS.

6.1 First stage of experiments

In this subsection we show a summary of the results of testing 75 combinations of
MPLCS operators and parameters. The full detail of these results is reported in the
supplementary material. Each result is the average of 10 runs using different random
seeds. All experiments were performed on the Jupiter supercomputer of the Univer-
sity of Nottingham, using Opteron 248 processors running at 2.2GHz and the Linux
operating system. We used a master-slave parallel version of GAssist with 10 slaves.

6.1.1 Category MPLCS-R(P)

Table 2 contains the results of this category of experiments, where we test the three
rule-wise local search operators (alone and combined) applied to the whole population
given a probability. It is important to remark that GAssist without any of the evaluated
operators is already able to solve the 20 bit multiplexer problem. To the best of our
knowledge, this is the first time that this problem was solved with a standard Pitts-
burgh LCS, without any Local Search/Structural Learning add-on. Moreover, these re-
sults illustrate the need to use the run-time as evaluation criterion for the experiments:
table 2 shows how configurations using the Rule Cleaning and Rule Splitting operators
take less iterations to converge compared to the standard GAssist but can be more than
two times slower. We can see a general trend about the probability of application of the

2Using the implementation of both tests from the R project http://www.r-project.org.
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operator. Higher probability does not help improving the performance of the system,
it just slows it down. With the exception of the RC+RS configuration, for the other 6
combinations of rule-wise operators the best configuration was the one with smallest
probability, 0.05. For RC+RS the best configuration used a probability of 0.10.

Table 2: Results of the MPLCS-R(P) category of the experiments. Top configuration is
marked in bold

[ Conf. [ LS Prob. | Iter. | #Rules | Run-time(s) |

Basic 1073.70£99.11 | 23.1£2.9 7950.3£792.1
0.05 609.20£70.38 | 21.4+2.1 5912.94+752.9
0.10 553.30+67.89 | 21.4+2.1 6278.01+842.7
MPLCS-R(P):RC 0.15 473.10+£72.45 | 20.0£1.2 | 5971.7+£1099.3
0.20 467.90+£67.30 | 19.5+£1.3 | 6729.7£1000.1
0.25 475.60+61.27 | 21.4£1.7 | 7921.6+1328.9
0.05 742.90£83.52 | 20.8£1.5 | 12064.7£1427.6
0.10 566.80+77.61 | 21.0£1.5 | 12399.14+2229.6
MPLCS-R(P):RS 0.15 484.50+£72.64 | 19.4+1.5 | 15203.842910.5
0.20 434.90+106.38 | 21.2+1.8 | 16864.9+4511.4
0.25 429.10+66.75 | 20.4£1.5 | 19949.24+3361.2
0.05 837.50+137.21 | 19.2+£1.6 | 10545.7+1932.6
0.10 718.50£72.69 | 18.1+£0.9 | 11352.1£1414.2
MPLCS-R(P):RG 0.15 680.60+81.77 | 17.9+1.0 | 13313.0£1909.9
0.20 724.70£85.22 | 17.8+£1.2 | 16622.9£2209.3
0.25 690.40+60.45 | 17.9+0.9 | 18177.3+1607.3
0.05 211.90+70.81 | 18.6+0.8 | 3298.4+1073.2
0.10 106.40+£45.43 | 21.7+£2.7 | 2597.1+828.6

MPLCS-R(P):RC+RS 0.15 116.80+41.33 | 21.3£2.7 | 3554.9+794.8
0.20 106.60+44.66 | 22.5+1.9 | 4447.3£1283.7
0.25 88.50+38.08 | 22.6+3.7 | 4773.3£1537.4
0.05 375.90+£45.88 | 17.5+0.7 | 4362.4+594.1
0.10 309.10+35.30 | 17.5+0.7 | 4559.3+642.5

MPLCS-R(P):RC+RG 0.15 279.00+79.07 | 17.3£0.6 | 4789.0+1448.6
0.20 264.30+49.00 | 17.4+0.5 | 5645.3+£1129.5
0.25 232.50+52.88 | 17.1£0.3 | 5672.8+1471.8

0.05 131.90+46.06 | 17.84+1.0 2861.5+759.6
0.10 113.80+£24.56 | 18.4+1.0 | 4405.5+1012.9

MPLCS-R(P):RS+RG 0.15 93.60+8.30 19.1+1.4 | 5398.2+662.3
0.20 88.56+11.88 18.6£1.8 | 6374.2£1039.6

0.25 96.10+£17.38 19.24+1.5 | 9048.3£1683.8

0.05 53.20+11.14 19.3+1.4 | 1243.0+204.5

0.10 32.40+6.89 21.7£2.7 1255.74239.0

MPLCS-R(P):RC+RS+RG 0.15 30.30+7.36 24.7+7.3 1581.24+355.8
0.20 26.20+9.10 23.8£3.6 1704.1+491.7

0.25 21.80+6.57 23.1+4.8 1658.7+375.8

For simplicity, we only run statistical tests comparing the configurations with
best probability across the 7 combinations of rule-wise LS operators and the ba-
sic GAssist. The statistical tests identified the following performance groups:
MPLCS-R(P):RC+RS+RG — (MPLCS-R(P):RC+RS,MPLCS-R(P):RS+RG) — (MPLCS-
R(P):RC+RG,MPLCS-R(P):RC) — Basic — (MPLCS-R(P):RS,MPLCS-R(P):RG). The best
configuration (RC+RS+RG), however, does not manage to generate compact rule sets
at the same time it learns. The configuration RC+RG in general managed to obtain rule
sets with a number of rules very close to the optimal 17 rules. Moreover, figure 8 plots
training accuracy of the best individual of the population against run-time, showing
the different learning speeds across methods, as well as visualizing clearly some of the
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groups of configurations identified by the statistical tests.
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Figure 8: Time vs Accuracy for MPLCS-R(P) experiments

As a general observation of this category of experiments we can say that none of
the individual local search operators on its own is able to achieve much better perfor-
mance than the Basic GAssist. Only the RC operator is slightly better. A proper com-
bination of operators, balancing specificity and generality pressure, manage to achieve
the best performance. An extreme case of the lack of balance between these two pres-
sures is the RS configuration. The reason it is much slower than the Basic configuration
is illustrated in figure 9 where the evolution of the average rule-set size for the first
50 GA iterations is shown. The operator injects many new rules into the population,
making the learning process much slower until the MDL fitness function is activated
at iteration 25. RS needs to be combined with some of the other operators to perform
well. On the other hand, the three best configurations included Rule Splitting, thus,
showing that the operator is necessary too.
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Figure 9: Iterations vs Average rule-set size for MPLCS-R(P) experiments
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6.1.2 Category MPLCS-RS

Table 3 contains the results of this category of experiments. In this category we com-
pare MPLCS-RS(P) as was used in our previous work (Bacardit and Krasnogor, 2006)
against using MPLCS-RS(E) applied to the 5, 10 or 15 best individuals of the population.
These results show very poor performance of all the variations of the RSW operator on
its own. The statistical tests indicate the following performance hierarchy: Basic —
MPLCS-RS(E)_5p — MPLCS-RS(E)_10p — (MPLCS-RS(E)_15p, MPLCS-RS(P)).

Figure 10 plots training accuracy of the best individual of the population against
run-time. Some interesting features are discernible: in the early stages of the learn-
ing process, MPLCS-RS(P) is superior to all the other configurations (although only
marginally better than Basic). However, after 250 seconds it does not contribute to
a better learning and only slows down the system. It may be interesting to evaluate
some policy of application for the operator that decreases its use through time, which
is left for further work. In a similar manner, adding more parents to MPLCS-RS(E) does
not contribute to improve the system performance, and only increases its cost.

Table 3: Results of the MPLCS-RS category of the experiments. Best configuration is
marked in bold
[ Conf. | Tter. | #Rules | Run-time(s) |
Basic 1073.70499.11 | 23.1£2.9 | 7950.3£792.1

MPLCS-RS(P) 695.801+92.17 17.0£0.0 | 44758.7+£6775.6
MPLCS-RS(E)_5p || 1032.40+188.87 | 21.8+7.4 | 19127.44+4842.1
MPLCS-RS(E)_10p || 1035.30+176.22 | 19.2+4.4 | 31459.5+6912.6
MPLCS-RS(E)_15p || 1132.404+121.38 | 17.0£0.0 | 49356.1+£7659.9

Accuracy
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Figure 10: Time vs Accuracy for MPLCS-RS experiments

6.1.3 Category MPLCS-RS+R(P)

Table 4 contains the results of this category of experiments. In this category we are com-
bining RSW, as was used in our previous work, with the rule-wise local search opera-
tors. The results of this category of experiments concentrate the best and the worst re-
sults of all the experiments observed so far. It contains the configuration with worst per-
formance overall (MPLCS-RS+R(P):RS) and the configuration with best performance
overall (MPLCS-RS+R(P):RC+RS+RG). Again we observe similar trends as in previous
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experiments. All combinations of rule-wise operators perform better than the sepa-
rate operators, and its combination with RSW helps obtaining optimal rule sets. The
statistical tests indicate the following performance groups: (MPLCS-RS+R(P):RS+RG,
MPLCS-RS+R(P):RC+RS+RG) — MPLCS-RS+R(P):RC+RS — MPLCS-RS+R(P):RC+RG
— Basic = MPLCS-RS+R(P):RC — MPLCS-RS+R(P):RG — MPLCS-RS+R(P):RS. We re-
moved RC, RG and RS from the data fed to the statistical tests because they were dis-
torting the results, as they perform up to an order of magnitude worse than the other
configurations.

Table 4: Results of the MPLCS-RS+R(P) category of the experiments. Best configuration
is marked in bold

[ Conf. [ Iter. [ #Rules [ Run-time(s) |
Basic 1073.70£99.11 23.1+£2.9 7950.3+792.1
MPLCS-RS+R(P):RC 323.30+£81.83 17.0+0.0 20791.44+5080.3
MPLCS-RS+R(P):RS 648.40+413.90 | 23.34+12.4 | 65040.04+41849.0
MPLCS-RS+R(P):RG 385.70+70.00 17.0+0.0 32441.24+6324.4
MPLCS-RS+R(P):RC+RS 13.00+£3.38 17.04+0.0 1861.24295.2
MPLCS-RS+R(P):RC+RG 34.304+13.35 17.04+0.0 2873.1+£1092.7
MPLCS-RS+R(P):RS+RG 6.704+1.10 17.0+0.0 1399.44128.2
MPLCS-RS+R(P):RC+RS+RG 4.40+0.49 17.0+0.0 1028.5+94.0

6.1.4 Comparison across experiment categories

The best configuration for each of the five categories of MPLCS methods in which we
splitted the experiments of this stage are now compared. We have not reported the re-
sults for two of these categories. For the MPLCS-R(E) stage, the best configuration was
MPLCS-R(E):RC, while for the MPLCS-RS+R(E), the best configuration was MPLCS-
RS+R(P):RC+RS+RG using 15 parents.

Table 5 shows the results of this comparison. The statistical tests indicate
the following performance groups: (MPLCS-RS+R(P), MPLCS-R(P)) — (Basic, MPLCS-
RS+R(E),MPLCS-R(E)) — MPLCS-RS. Except for MPLCS-RS(P), all other categories
manage to obtain better performance than the Basic configuration. Also, only the al-
gorithms of MPLCS-RS+R class managed to obtain the optimal rule-set for the 20 bit
multiplexer. As we expected, the best algorithm is the one that has the right balance
between specificity and generality (related to the rule-wise operators) and the proper
balance between rule-wise and rule-set wise operators. Elitist algorithms in general
performed worse than the probabilistic ones. Figure 11 plots training accuracy of the
best individual of the population against run-time. Two configurations manage to ob-
tain similar performance, MPLCS-RS+R(P) and MPLCS-R(P). However, only MPLCS-
RS+R(P) managed to generate the optimal rule set, thus showing superior general-
ization capacity that may be necessary when applying these operators to real-world
datasets. The next stage of experiments will focus on these two configurations to see
whether the observations identified in this stage still hold or not.

6.2 Second stage of experiments
6.2.1 Combining the LS operators with the ILAS windowing scheme

We reran the two best MPLCS configurations identified (MPLCS-R(P) and MPLCS-
RS+R(P)) plus the original GAssist using 200 strata for the windowing code instead
of the two strata used before. Table 6 contains the results of these experiments. All
configurations (even Basic) benefit greatly from the use of ILAS. The basic configura-
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Table 5: Results of comparing the best configurations of each category of experiments.
Best configuration is marked in bold

[ Category | Iter. | #Rules | Run-time(s) |
Basic 1073.704+99.11 | 23.1+2.9 7950.3+792.1
MPLCS-R(P) 53.20+11.14 19.3+1.4 1243.0+£204.5

MPLCS-R(E) 862.50+102.45 | 23.5+3.9 7264.51+909.8
MPLCS-RS 1032.40£188.87 | 21.8+7.4 | 19127.44+4842.1
MPLCS-RS+R(E) 93.70+£34.35 17.0+0.0 | 5201.54+1900.1

MPLCS-RS+R(P) 4.40+0.49 17.0+0.0 1028.5+94.0

* * L "
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e MPLCS-RS+R|
MPLCS-RS+R
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Figure 11: Time vs Accuracy for the global comparison of experimental categories

tion converges 17.6 times faster compared to the previous settings of ILAS. Moreover,
MPLCS-RS+R(P) is still the best method and the one that converges to the optimal so-
lution, but now it is 25.8 times faster than the Basic configuration. Thus, interactions
between the local search mechanisms and ILAS seems to be beneficial, as illustrated by
these experiments. The statistical tests performed over the results from table 6 indicate
the following performance groups: (MPLCS-RS+R(P),MPLCS-R(P) — Basic.

Table 6: Results of comparing the best configurations of each category of experiments
using 200 strata for the ILAS windowing scheme. Best configuration is marked in bold

[ Category | Tter. | #Rules | Run-time(s) |
Basic 1198.70£150.75 | 30.0+£2.9 | 452.3+67.5
MPLCS-R(P) 23.701+4.65 24.845.2 30.4+4.4
MPLCS-RS+R(P)||  4.80£0.75 | 17.0£0.0 | 17.5£1.2

6.2.2 KkDNEF dataset

Table 7 contains the results of the experiments on this dataset. We can see how both
MPLCS configurations manage to obtain better performance than GAssist and they
manage to generate very compact rule sets too, exploiting the fact that some of the
terms in the DNF may be overlapped and the kind of rules that GABIL evolves have
enough expressive power to adapt to this situation. Moreover, we can observe that
the deviation of the run-time of MPLCS-RS+R(P) is actually higher than the average.
This configuration obtained very poor results on some of the runs, because it was able
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to learn very quickly most of the rules in the optimal solution but struggled to learn
the final ones. This dataset provides very few fitness guidance if a new rule has to be
learned from scratch. Moreover, the heuristic behind the RSW operator always tries
to generate the most compact rule set with the available rules. Thus, it cannot cope
very well in this situation because it generates excessive exploitation power. Figure 12
illustrates this situation plotting the training accuracy of the best individual of the pop-
ulation against run-time. The statistical tests indicate that both MPLCS configurations
have similar performance and outperform GAssist.

Table 7: Results for the k-DNF dataset. Best configuration is marked in bold

[ Category | Tter. | #Rules | Run-time(s) |
Basic 2908.4+£796.8 | 31.1£6.3 | 1164.2+330.5
MPLCS-R(P) 492.9492.6 19.6+1.9 147.14+23.3
MPLCS-RS+R(P) 229.24+292.8 | 20.1£2.8 | 207.14+281.3

Basic —+—
MPLCS-R(P) ---x---
MPLCS-RS+R(P) --%---

Accuracy
o
©

0.6 L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800
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Figure 12: Time vs Accuracy for the kDNF dataset

6.2.3 Noisy 20-bit multiplexer

Table 8 contains the results of testing GAssist and MPLCS on the noisy version of the
20 bit multiplexer. The objective of these tests is to determine what degree of noise
can MPLCS cope with. All of the tested configurations managed to learn this dataset
and converge to the maximum possible accuracy for these datasets (95% acc. for 5%
noise, 90% acc. for 10% noise, etc.). First of all, it is interesting to remark that GAssist
is not affected by this kind of noise almost at all. It uses similar amount of iterations
and run-time for all tested levels of noise. MPLCS is affected by noise, especially the
MPLCS-RS+R(P) configuration: while it is the best configuration for 5% and 10% noise,
it becomes the worst configuration for higher levels of noise. MPLCS-R(P) reacts much
better to noise. Even if it has slightly slower learning rate with increasing level of
noise, it always performs better than GAssist, and better than MPLCS-RS+R(P) when
the noise is higher than 10%. Thus, this setting is showing to be relatively robust to
noise. In the five tested levels of noise, all performance differences were significant,
according to the statistical tests. Figure 13 plots training accuracy of the best individual
of the population against run-time.
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Table 8: Results of the experiments on the noisy 20 bit multiplexer. Best configuration

is marked in bold

Memetic Pittsburgh Learning Classifier Systems

[ Noise degree | Category | Tter. [ #Rules | Run-time(s) |

Basic 1115.2+176.1 | 27.4+5.0 419.7+72.5

5% MPLCS-R(P) 349.2+120.7 | 19.6E£1.6 120.5+33.1
MPLCS-RS+R(P) 21.8+8.3 17.04+0.0 27.2+7.1

Basic 1104.7+140.2 | 27.0+4.6 416.54+59.9

10% MPLCS-R(P) 630.9+73.0 21.9+25 198.3+23.2
MPLCS-RS+R(P) 82.81+33.0 17.0+0.2 75.91+26.3

Basic 1170.0+£175.9 | 28.0+5.6 437.4+71.9

15% MPLCS-R(P) 764.3+80.3 23.24+3.2 241.2+27.1
MPLCS-RS+R(P) 724.6+321.4 | 22.9+6.2 | 665.84+327.0

Basic 1191.4+183.2 | 28.3+6.3 4441+78.2

20% MPLCS-R(P) 856.2+79.8 24.6+3.6 269.41+32.4

MPLCS-RS+R(P) || 1208.3+134.8 | 29.5+5.8 | 1198.1+176.8

Basic 1178.0+150.9 | 28.1+5.2 442.1+62.8

25% MPLCS-R(P) 922.04+93.9 24.8+3.7 295.94+38.9

MPLCS-RS+R(P) || 1440.3+187.0 | 30.615.1 | 1442.6+242.2
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Figure 13: Time vs Accuracy for the noisy 20 bit multiplexer dataset
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6.2.4 37 and 70 bit multiplexer

Table 9 contains the results of testing GAssist and MPLCS on these two larger versions
of the multiplexer datasets. MPLCS-RS+R(P) was unable to learn the 37 bit multiplexer
in a reasonable number of iterations, and neither MPLCS-RS+R(P) nor GAssist could
for the 70 bit one. Figure 14 plots accuracy versus run-time of the best individual of
the population for both datasets. MPLCS-RS+R(P) may have converged to the perfect
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solution with more iterations for the 37 bits multiplexer, but definitely not for the 70
bits one. In this dataset we observe the same problem that this MPLCS configuration
had for the kDNF dataset, but much more amplified. If the rule set-wise operator does
not have a good supply of rules, its exploitation power is more damaging than bene-
ficial, and this situation becomes critical in datasets with very large search space, such
as these two versions of the multiplexer. On the other hand, MPLCS-R(P) can properly
explore the larger search space of these datasets, and it was able to solve these problems
in a few iterations and short time, converging to solutions almost identical to the opti-
mal solution (33 rules for the 37 bit multiplexer, 65 for the 70 bit one). Actually, if we
let MPLCS train for longer (after it has reached perfect accuracy) it always converged
to the optimal rule on the 37 bit multiplexer and in six out of ten runs for the 70 bit one.

Table 9: Results of the experiments on the 37 and 70 bits multiplexer datasets. Best
configuration is marked in bold

[ Dataset | Category I Iter. | #Rules [ Run-time(s) |
Basic 6049.8+1499.3 | 419454 | 176.3£124.1
37 bits MPLCS-R(P) 185.0+44.4 34.4+1.1 5.9+£0.9
MPLCS-RS+R(P) — — —
Basic — — —
70 bits MPLCS-R(P) 741.9+128.1 71.6+2.6 41.7£10.9
MPLCS-RS+R(P) — — —

6.3 Comparison of MPLCS against other LCS systems

Michigan LCSs employ the number of learning steps as performance metric. When
using the ILAS windowing scheme, each GA iteration of MPLCS evaluates |T|/s ex-
amples, being |T| the training set size and s the number of strata. Thus, one MPLCS
iteration is roughly equivalent to |T'|/s learning steps. Table 10 contains the conver-
sion of MPLCS-R(P)’s performance to learning steps, allowing us to compare MPLCS
to Michigan LCS systems. This comparison is especially interesting for the 37 and 70
bit multiplexer datasets, where we have optimized the number of strata to be as high as
possible, thus reducing to the minimum the number of learning steps per GA iteration.
This makes the learning process of MPLCS more incremental, and thus more similar to
Michigan LCS learning.

Table 10: Performance of MPLCS-R(P) converted to learning steps

[ Dataset [| #instances per iteration | #learning steps |
20 bit multiplexer 5243 124259
37 bit multiplexer 1373 254190
70 bit multiplexer 1574 1167751
noisy 20 bits multiplexer - 5% noise 5243 1830856
noisy 20 bits multiplexer - 10% noise 5243 3307809
noisy 20 bits multiplexer - 15% noise 5243 4007225
noisy 20 bits multiplexer - 20% noise 5243 4489057
noisy 20 bits multiplexer - 25% noise 5243 4834046
kDNF 5243 2584275

We compared against XCSBOA (Butz et al., 2006), an XCS extended with structural
learning based on the Bayesian Optimization Algorithm. As no exact numbers are re-
ported in the literature (just the plots of the online performance are displayed), our
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Figure 14: Time vs Accuracy for the 30 and 70 bits multiplexer datasets

comparison is only approximate. For the 20 bit multiplexer, XCSBOA performs sim-
ilarly to the standard XCS (Butz, 2007), and XCS+TS can learn this dataset in 35000
learning steps using its default parameters. For the 37 and 70 bits multiplexer, re-
sults for XCSBOA are reported in (Butz and Pelikan, 2006). XCSBOA can learn the
37 bits multiplexer in approximately 200000 learning steps, and the 70 bits multiplexer
in around 900000 learning steps. Results for the noisy 20 bits multiplexer are reported
in (Butz et al., 2005b) for XCS+TS for levels of noise of 5%, 10% and 15%. This system
could converge to an optimal solution in 50000 learning steps for 5% of noise, 100000
learning steps for 10% of noise. For 15% of noise, XCS was not able to converge to an
optimal solution after 300000 learning steps. No further results are reported for higher
levels of noise. Finally, results for the k-DNF dataset for XCSBOA are reported in (Butz
and Pelikan, 2006). This system can learn up to 98% accuracy in 120000 learning steps,
which roughly means learning all but one of the 22 terms (i.e. rules) that define the
k-DNF formula. No performance levels were reported on how many learning steps it
took to reach 100% accuracy.

XCSBOA usually obtains better results than MPLCS according to this metric. How-
ever, the two datasets where we have tuned the number of strata of the ILAS window-
ing system to reduce the number of instances per iteration as much as possible (the 37
and 70 bits multiplexer) are precisely the two datasets with smallest performance dif-
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ference. In these two datasets the performance of both systems (200000 learning steps
vs 254190 in the 37 bits multiplexer and 900000 learning steps vs 1167751 in the 70 bits
multiplexer) is quite comparable.

Nevertheless, using learning steps as a performance metric is not entirely fair for
MPLCS. As we have shown in our experiments, MPLCS-RS and MPLCS-RS+R use a
much lower number of iterations (and therefore also of learning steps) than MPLCS-R,
even it they are much slower in terms of run time. To further elaborate the comparison
with XCS in this direction we performed the following run-time comparison experi-
ment:

1. We downloaded Martin Butz’s XCS code (Butz, 2003) from http://www.
illigal.uiuc.edu/pub/src/XCS/XCS1.2.tar.Z and ran it on the same
machine we have employed to perform our experiments.

2. We ran XCS on the 20 bits multiplexer using XCS default parameters for 35000
learning steps (the number of learning steps it needs to converge to an optimal
solution). The experiment was repeated 10 times with different initial random
seeds. On average, it took XCS 19.7 seconds to complete a run.

3. To have a fair comparison we took the serial implementation (not the master-slave
parallel one) of MPLCS and also used the MPLCS code where the instances of the
multiplexer function are generated on the fly (not loaded from disk as we did for
the mx20 experiments reported in the paper) for the same reason.

4. We took MPLCS-R(P) and ran it on the 20 bits multiplexer using 2500 strata of
the ILAS windowing scheme. It converged in approximately 100 iterations. Each
iteration uses 22°/2500 = 419.4 examples. Thus, 100 iterations are equivalent to
approximately 42000 learning steps. Again, we repeated this experiment ten times.
On average it took MPLCS 3 seconds to complete a run.

Table 11 summarizes this small experiment. MPLCS-R(P) uses relatively similar
number of learning steps to converge to the optimal solutions, while requiring much
less computational effort. Overall, the comparison of MPLCS with XCS(BOA) is quite
inconclusive, as it gives opposite results depending on the metric, which raises a ques-
tion: what is the most fair performance metric that we can employ (if any)?

Table 11: Run-time comparison between XCS and MPLCS on the 20 bits multiplexer

| System [ Learning steps | Run-time per run(s) |
XCS 35000 19.7
MPLCS-R(DP) 42000 3

Finally, we can also compare MPLCS against xeCCS (Llora et al., 2006), a Pitts-
burgh LCS that uses ECGA to perform structural learning. It takes xeCCS approxi-
mately 11 iterations to learn the 20 bits multiplexer and 24 iterations to learn the 37 bits
multiplexer. Considering that this method does not uses any windowing scheme, each
of its iterations using the whole training set, its performance level in learning steps is
much worse than MPLCS or XCS. Nevertheless, we do not think that this compari-
son (using the learning steps as a performance metric) is fair without a properly tuned
windowing scheme, because the benefits are usually enormous as shown above and
elsewhere (Bacardit et al., 2004).
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7 Discussion

In this section we take a step back and discuss the general implications of the results
presented in the previous section. Our analysis covers the impact that the studied LS
operators have when integrated with the underlying GA, detailing potentially positive
and negative aspects of this impact. We also discuss the applicability of our methods
to other LCS paradigms.

7.1 Integration of the LS operators within the evolutionary cycle

Learning Classifier Systems are sophisticated methods composed of multiple compo-
nents. Their success depends on a proper integration of these subsystems. Therefore,
it is important to analyze and understand the behavior of each component as to iden-
tify how can it contribute to the overall success of the system. This kind of analysis
has been extensively performed in the past for Michigan LCS (Butz et al., 2004), where
the different components of the system were analyzed separately to model the amount
of pressure that they introduce into the LCS. This pressure was expressed into a one
dimensional specificity-generality scale. Some components introduce generality pres-
sure, other components introduce specificity pressure.

Such kind of analysis would also bring great insight into MPLCS and the potential
integration of these LS mechanisms into other kinds of LCS. Moreover, the evolutionary
pressure analysis of MPLCS has to be more complex than in Michigan LCS, as there are
pressures that influence at the rule level, while others influence at the rule-set level.
This analysis deserves a paper of its own, and in this subsection we provide only a
preliminary discussion derived from the results reported in this paper.

The rule-wise operators can introduce pressure at the rule level, changing the in-
dividual generality or specificity of the rules, but they can also introduce substantial
effects at the rule set level. Figure 9 shows a clear example of this for various settings of
MPLCS-R(P), that plotted the evolution of the average rule set sizes of the individuals
through the GA iterations. All configurations including the Rule Splitting (RS) operator
have much higher rule set size than the other configurations. Thus, it is clear that this
operator introduces specificity pressure at the rule set level that complements the ex-
isting specificity pressure introduced by the bloat effect (Langdon, 1997), which exists
in most variable-length representations in evolutionary computation. This pressure, at
the LS level, is balanced by the application of Rule Cleaning (RC) and, especially, the
Rule Generalizing (RG) operator. At the evolutionary level it is balanced by the rule
deletion operator and the MDL fitness function. The rule set-wise operator introduces
generality pressure. For instance, the MPLCS variants where the RSW operator was
present were the ones that most often generated the optimal rule sets for the tested
datasets. This pressure is, in many cases, excessive and can generate over-general rule
sets that slow down or even stall the learning process. Examples of this are the KDNF
dataset, where the RSW operator could learn all but one of the optimal rules but then
needed much longer to learn the last one, or its inability to learn the MP37 or MP70
datasets. This extreme generality pressure shows that the operator is not able to pro-
duce the proper balance between exploration and exploitation.

In relation to pressure at the rule level, we note that by design the RC and RS op-
erator introduce specificity pressure while the RG operator introduces generality pres-
sure. The best results in relation to the combination of the operators were produced
consistently when the three operators were used simultaneously. Their contribution,
however is not equal. The RS operator appears in the top three settings of MPLCS-R(P)
(table 2) and MPLCS-RS+R(P) (table 4), but also in the worst configuration for both
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experiments. Thus our results suggest that while being a crucial operator, it must be
compensated to avoid over-specific (bloated) individuals. Both RC and RG are able
to compensate this effect, however using alternative ways. RG compensates it by ex-
plicitly inducing generalization pressure. RC follows an indirect path: It sometimes
disables all the literals associated to an attribute, thus creating rules that cannot match
any example. Afterwards, these rules are removed by the rule deletion operator, thus
inducing the generality pressure. The MDL-based fitness function also introduces gen-
erality pressure at the rule level.

The combination of the standard recombination operators with the RW operators,
when applied as a group, is beneficial in most of the experiments reported in the paper.
On the other hand, the RSW operator seems, in most cases, to only introduce unnec-
essary computational effort and it struggles to learn in the most challenging datasets
such as the MP37, MP70 or kDNF datasets. Thus we can say that the integration of the
RSW operator with the rest of the system, as studied here, is not successful, as neither
the standard genetic operators nor the RW operators could synergistically compensate
the generality pressure it introduces. This is a clear difference with RS. Both of them
perform bad on their own, but the action of RS, when properly compensated, appears
in all the best performing settings.

7.2 Applicability of the LS operators across LCS paradigms

Our work should be of interest to, not only Pittsburgh LCS researchers, but also other
flavours of LCS and Genetics-Based Machine Learning (GBML) in general. The RSW
operator could be easily applied to other kinds of Pittsburgh systems, such as Fuzzy
LCS systems, as it is rule representation neutral, and could be relatively easily adapted
to handle unordered rules. It the rules are not overlapping, the same operator would
work straight away. In case of overlap, a more complex conflict resolution criterion
should be enacted, but the rest of the heuristic could be maintained. Also, most of
the results presented in this paper show that the RSW operator performs well if it is
supplied with good rules. Thus, there is great potential for using the operator as a
post-processing stage for any kind of LCS to compact rule sets. For instance, both CCS
and xeCC'S have shown to evolve optimal rules for the multiplexer problems, but do
not have any clear mechanism to aggregate the best rules into a final solution. The
RSW operator could achieve this aim. The three rule-wise operators could perfectly be
used in any Pittsburgh or Michigan LCS and also, for instance, in methods using the
Iterative Rule Learning (Venturini, 1993) approach of GBML.

8 Conclusions and further work

In this paper we have extended our previous work (Bacardit and Krasnogor, 2006) on
the design of heuristic local search mechanism applied to the GAssist Pittsburgh LCS.
We exploited information extracted from the supervised learning process thus edit-
ing the rule sets to improve performance accuracy. We call this extended framework
Memetic Pittsburgh Learning Classifier System (MPLCS). We studied two kinds of op-
erators. (1) A rule set combination operator (MPLCS-RS) recombined rules from many
different parents to generate a single rule set with maximum possible accuracy and
compactness. (2) Three rule-wise operators (collectively named MPLCS-R) were pro-
posed in this paper. Two of these operators (rule cleaning and splitting) edit the rules
to eliminate some of their misclassifications, therefore, applying specificity pressure.
The third operator (rule generalizing) adds literals to the rules in order to classify more
examples correctly, therefore applying generalization pressure. These operators have
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been tailored to the GABIL (DeJong and Spears, 1991) knowledge representation that
GAssist uses. Both classes of operators can be used together and different operator
application policies within the GA cycle were tested.

We performed a large scale evaluation process testing many different algorithms
arising from the combinations of operators and policies. Our aim was to identify the
MPLCS variants that generate optimal solutions and converge to them after seeing the
least amount of training examples, scale well, are able to cope with noise and use the
least amount of computational effort. Our experiments allow us to conclude the fol-
lowing: (1) the best results are always obtained by the proper combination of rule-wise
operators applying generality and specificity pressure (RC+RS+RG). Thus, the proper
equilibrium of specificity and generality pressures is the key for a successful learning
process. (2) The best MPLCS variant overall was MPLCS-R(P), where the three studied
rule-wise LS operators are used simultaneously and are applied probabilistically across
the whole population. Another MPLCS algorithm, MPLCS-RS+R(P), which extends
the previously mentioned configuration with the RSW operator, also generated good
results in our first stage of experiments (using the 20 bit multiplexer). However, when
tested later in other datasets (with higher difficulty, larger size or noise) this configu-
ration showed inferior performance, due to a lack of balance between exploration and
exploitation of the rule set-wise operator. (3) We also tested the combination of these
operators with the ILAS windowing scheme, which was designed to decrease the run-
time of GBML methods in large datasets. The experiments showed that our proposed
LS methods and ILAS can be combined successfully, that is, they act synergistically.
When combined with ILAS using proper settings, MPLCS is able to obtain a perfor-
mance comparable to state-of-the-art LCS systems such as XCS(BOA) and xeCCS.

We also analyzed how the different LS mechanisms interact with the standard evo-
lutionary procedures and with each other. The analysis suggests the general applicabil-
ity of the mechanisms within GAssist, other LCSs with GABIL-based representations,
as well as, with small modifications, to other LCS systems and representations. Finally,
our studies also show that the design issues associated to traditional MAs (Krasnogor
and Smith, 2005), such as the effective combination of different LS operators with the
appropriate regime of application of each of them, elitist or population-wise applica-
tion of the operators, etc., also apply to Memetic LCS.

Future work includes: (1) Testing MPLCS on other datasets, eg. hierarchical de-
composable problems such as the Parity-Multiplexer domain (Butz et al., 2006) to de-
termine the limits of the rule-wise search operators. (2) The rule set-wise operator has
shown to have some limitations on very large datasets. However, in the datasets where
this operator worked properly, it always managed to obtain the most compact and well
generalized solutions. Therefore, it would be interesting to study other policies of ap-
plication of this operator, for instance, as a refining stage after finding good candidate
rules. This kind of refining stage, if designed properly, could potentially be applied to
rules evolved with any kind of LCS. (3) In a more general sense, we would like to rigor-
ously model what conditions are required for the proper integration of the LS operators
with the evolutionary exploration mechanisms of LCS systems, and how to adjust the
LS operators to achieve these conditions. (4) Studying the integration of the rule-wise
local search mechanisms studied in this paper into other kinds of LCS methods. (5) The
studied operators could be extended in two directions: (a) to adapt the rule-wise op-
erators to deal with real-world datasets with noise and inconsistency and (b) to adapt
them to deal with real-valued attributes. (6) From a MA point of view, in this paper we
have only applied very simple strategies for integrating LS into GAssist. In future work

Evolutionary Computation Volume x, Number x 31



J. Bacardit and N. Krasnogor

we will investigate other important design issues of MAs as suggested in (Krasnogor
and Smith, 2005).
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