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Abstract. Supervised learning in attribute-based spaces is one of the most popular machine learning problems 
studied and, consequently, has attracted considerable attention of the genetic algorithm community. The full- 
memory approach developed here uses the same nigh-level descriptive language that is used in rule-based systems. 
This allows for an easy utilization of inference rules of the well-known inductive learning methodology, which 
replace the traditional domain-independent operators and make the search task-specific. Moreover, a closer rela- 
tionship between the underlying task and the processing mechanisms provides a setting for an application of more 
powerful task-specific heuristics. Initial results obtained with a prototype implementation for the simplest case 
of single concepts indicate that genetic algorithms can be effectively used to process nigh-level concepts and incor- 
porate task-specific knowledge. The method of abstracting the genetic algorithm to the problem level, described 
here for the supervised inductive learning, can be also extended to other domains and tasks, since it provides 
a framework for combining recently popular genetic algorithm methods with traditional problem-solving method- 
ologies. Moreover, in this particular case, it provides a very powerful tool enabling study of the widely accepted 
but not so well understood inductive learning methodology. 
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1. Introduction 

With the growing amount of available information, limited knowledge-extraction capabilities 
become a major bottleneck in understanding the world. Recognizing this, there has been 
an explosion of machine learning attempts to solve this problem. A big part of that research 
is devoted toward restricted attribute-based spaces. This can be attributed to the existence 
of many practical problems without a sufficiently understood body of knowledge, but with 
widely available data in the form of feature descriptions. Traditionally, all approaches have 
been classified as non-symbolic and symbolic, depending on the output language. Non- 
symbolic inductive learning systems, often called subsymbolic, usually do not acquire any 
explicit knowledge but rather gather other information necessary for the descriptive proc- 
ess. They include statistical models, where the only representation is by means of all stored 
examples or some statistics on them, and the connectionist models, where the knowledge 
is distributed among network connections and an activation method. Symbolic systems, 
on the other hand, produce explicit knowledge in a high-level descriptive language. However, 
an equally important distinction can be based on the level of inference. All non-symbolic 
approaches process low-level entities (usually numerical parameters). On the other hand, 
the level of inference of symbolic approaches widely varies, with those operating at higher 
level showing an advantage: mechanisms based on symbol manipulations, in addition to 
being closely related to their task objectives, allow for the use of the same input and output 
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language. This, in turn, creates the possibility of employing some more sophisticated learn- 
ing paradigms, such as incremental and closed-loop learning, and defining the processing 
on the same level, which is one of the most important features of our approach described 
in this article. 

With the development of the computer, there has been an increasing interest in simulating 
nature as a means for problem solving. One of the best-known frameworks was developed 
by Holland (1975) and is known as genetic algorithms (GAs). This approach models the 
natural processes of inheritance of coded knowledge and survival by fitness or degree of 
adaptation to the environment. The two most important characteristics of GAs are robustness 
and the domain independence of their search mechanism. Robustness, an ultimate goal 
of any system, is a natural by-product of the search strategy, which performs simultaneous 
exploration and exploitation. This strategy makes the mechanism quite independent of the 
characteristics that normally cause difficulty for most other approaches, such as non- 
smoothness or discontinuity of the evaluation function. Domain independence, on the other 
hand, is obtained by designing the search operators in the space of the lowest-level represen- 
tation. However, such an approach has both advantages and disadvantages. On the positive 
side is the fact that a new application requires only a coding of the problem to this artificial 
space. On the negative side lies the fact that the quality of such a coding is crucial to the 
genetic algorithm's performance. Moreover, operating in this space means using problem- 
blind operators that often overlook some important information that could be utilized to 
guide the search. 

Nevertheless, genetic algorithms have been quite successfully applied to a number of 
problems. The most outstanding results come from the field of parameter optimization 
(DeJong, 1988), where the coding is rather straightforward. Other successful applications 
include optimization problems like wire routing and scheduling, game-playing, cognitive 
modeling, transportation problems, the traveling salesman problem, and control problems 
(e.g., Davis, 1991; DeJong, 1985; Goldberg, 1989; Grefenstette, 1987). However, applica- 
tions to machine learning, although partially successful (Koza, 1989; Rendell, 1985; Schaffer, 
1985; Sedbrook, Wright, & Wright, 1991), generally are still too weak for more complex 
domains and face many related issues (DeJong, 1988, 1990). The genetic algorithm approach 
to supervised learning in an attribute-based space is normally referred to as symbolic. How- 
ever, the processing has traditionally been done in symbols of the artificial, not the prob- 
lem, language. This has begun to change (for example, Grefenstette, 1991; Koza, 1989), 
following recent changes in the representation utilized (Spears & DeJong, 1990; Goldberg, 
1985; Grefenstette, 1991; Smith, 1980). 

Following this trend, we propose a different approach: rather than trying to extend the 
set of operators, we start with a set of inference rules specific to the task, and incorporate 
them into the genetic algorithm framework. To achieve this, we propose to use a rule-based 
representation as the natural choice for a symbolic system operating in this space. Having 
that, we can directly use the inference rules defined in such a framework, namely, those 
of the inductive learning methodology (Michalski, 1983). By doing so, we utilize the task- 
specific problem-solving methodology and abstract the genetic algorithm's inference to the 
problem-specific symbol level. This can be viewed as a knowledge-intensive approach, 
one using a vast amount of task-specific information, which replaces the blind search of 
traditional domain-independent operators by a heuristic search. Implementing all the extra 
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knowledge in the operators leaves the remainder of the genetic algorithm intact and allows 
for a clear separation of specific knowledge from general mechanisms. Because of the rich- 
ness of such new operators and their problem-specific behavior, the new algorithm does 
not enjoy the same theoretical foundations as the traditional GAs do. Nevertheless, we try 
to justify it intuitively, and the results of our initial experiments indicate its applicability. 

Compared to the classical symbolic systems ID and AQ, this new approach, which com- 
bines the inductive inference rules with the quality of the GA search, leads to a potentially 
very robust design that does not assume any prior relationships among different attributes 
(as, e.g., ID does). The robustness is a result of the existence of the platform for both 
cooperation (by information exchange) and competition (by selection) among many different 
simultaneous solutions. This, in turn, can be seen as an extension of the AQ's ideas of 
processing competing directions (AQ does it by simultaneously retaining a number of par- 
tial covers). Here, we provide the cooperation, and we use more powerful heuristics: the 
inference rules and their adjusting applicabilities. 

Successful results may find manifold applications. First of all, the system would provide 
a quality alternative to existing machine learning techniques. Moreover, applications of 
all competition and cooperation, generalization and specialization, and more powerful 
problem-specific heuristics should increase the system's potentials, especially in complex 
problems. Second, the system would provide a valuable tool to study inductive learning 
methodology and its inference methods, since the system's principles of operations are based 
on cooperation and competition among simultaneous applications of different inference 
rules of the methodology. Third, the approach explored here, which abstracts the genetic 
algorithm to provide a setting for an ease of accommodation of deep problem understanding 
to build a hybrid system, can easily be applied to other domains and tasks. Finally, these 
ideas provide a framework for modular separation of knowledge and perfo17nance compo- 
nents in such hybrid genetic algorithms. Such a separation proved to be very successful 
and desired in other AI architectures. 

In this article we attempt to justify our approach, present the system's design, and con- 
clude with some initial experimental results. More experimentation, aimed both at more 
comprehensive comparison of this system to others and at measuring its exact characteristics, 
is left to be completed in the near future and will be presented separately. This article is 
organized as follows. In section 2 we start with a brief description of the genetic algorithm 
framework used, and follow in section 3 with a specific problem attacked along with a dis- 
cussion of related issues that reflect on the system's design. We follow with a brief overview 
of the previous approaches in section 4. Then, we describe our new ideas and their applica- 
tion to the design (section 5) in the simpler case of single concepts. We address some im- 
portant implementation issues in section 6. In section 7 we attempt both to illustrate the 
system's behavior by tracing its applications and to present results of some initial experiments. 
Finally, in section 8, we draw some conclusions and outline work to be done in the future. 

2. Genetic algorithms 

Genetic algorithms are adaptive methods of searching a solution space by applying operators 
modeled after the natural genetic inheritance and simulating the Darwinian struggle for 
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survival. They belong to the class of probabilistic algorithms, yet are distinguished by their 
different search method and relative insensitivity to local traps. In general, a GA performs 
a multi-directional search, and it encourages information formation and exchange among 
such directions. It does so by maintaining a population of proposed solutions (chromosomes) 
for a given problem. Each solution is represented in a fixed alphabet (often binary) with 
an established meaning. The population undergoes a simulated evolution: relatively "good" 
solutions produce offspring, which subsequently replace the "worse" ones. The estimate 
of the quality of a solution is based on an evaluation function, which plays the role of an 
environment. The existence of such a population provides for the superiority of genetic 
algorithms over pure hill-climbing methods, for at any time the GA provides for both exploi- 
tation of the most promising solutions and exploration of the search space. The simulation 
cycle is performed in three basic steps. During the selection step a new population is formed 
from stochastically best samples (with replacement). Then, some of the members of the 
newly selected populations recombine. Finally, all new individuals are reevaluated. 

The mating process (recombination) is based on the application of two operators: muta- 
tion and crossover. Mutation introduces random varability into the population, and cross- 
over exchanges random pieces of two chromosomes in the hope of propagating partial solu- 
tions. Because both of these operators are often defined on syntactic pieces of the underly- 
ing representation (when each chromosome is viewed as a sequence of the symbols of the 
low-level alphabet), the search has domain-independent properties. However, the applicabil- 
ity of a GA to a particular problem depends on the representation emphasizing meaningful 
semantic pieces of information (called building blocks) to be used by crossover operators. 
Consequently, this applicability may be reduced by operating on the low-level syntactic 
structures. 

Specifying a genetic algorithm for a particular problem involves describing a number 
of components. Among them, the most important are a genetic representation for potential 
solutions to the problem, which also defines the search space of the algorithm; a method 
of generating the initial population of potential solutions; an evaluation function that plays 
the role of the environment, rating solutions in terms of their "fitness" or "adaptation" 
to this environment; genetic operators that alter the composition of chromosomes during 
recombination; and values for various parameters that the GA uses. 

The theoretical foundations of genetic algorithms rely on the notion of a schema (e.g., 
Holland, 1975)--a similarity template allowing an exploration of similarities among chromo- 
somes. Using schemata, a growth equation may be derived that indicates the following 
hypotheses (e.g., Goldberg, 1989): a genetic algorithm seeks near optimal performance 
through juxtaposition of special kinds of schemata--the building blocks. Although some 
effort has been made to prove this hypotheses, for most nontrivial applications we rely 
on empirical results. Nevertheless, this hypothesis suggests that the coding problem for a 
genetic algorithm is critical for its performance, and that such a coding should emphasize 
meaningful building blocks. This, in turn, suggests the following intuitive approach to prob- 
lem solving by genetic algorithms: the problem representation in a GA should be such 
that conceptually related alleles are close together in the resulting genotype, where the 
closeness is defined relative to the crossover operators. 
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3. Inductive learning from examples 

Concept learning is a fundamental cognitive process that involves learning descriptions 
of some categories of objects. When the objects are described by features (attribute-value 
pairs) based on a number of multi-valued attributes, the learning is said to be in an attribute- 
based space. A priori knowledge consists of a set of events that are examples of the space. 
When each such event is preclassified as belonging to a category, the learning is said to 
be supervised. The task is to generalize the a priori knowledge in order to produce descrip- 
tions of the concepts, when a rule-based framework is used to express the descriptions, 
the acquired knowledge is often called decision rules. Such rules can subsequently be used 
both to infer properties of the corresponding classes and to classify other, previously un- 
classified, events from the space. 

The idea of a concept itself may be defined in many different ways, depending on the 
assumed concept representation and on methods of instance classification. In addition to 
psychological evidence, this choice is often dictated by the underlying knowledge acquisi- 
tion method, or rather its output language. For example, assuming a sufficient set of attri- 
butes for the events to be consistent and a crisp view, a decision tree can naturally produce 
complete and consistent partition of the search space. This is so because the decision tree 
mechanism starts with the whole space and recursively cuts it into disjoint subspaces. On 
the other hand, it is more difficult for a set of rules to cover the search space in the same 
manner. Therefore, an extra mechanism is needed to account for possible cases of no-match 
and multiple-match when recognizing new events. Such problems can be avoided while 
learning single concepts if the system learns only the concept description and assumes that 
the subspace not covered by this description represents the complement of the concept. 
This simplified case is used in this initial design. 

An important issue is that of defining both the input and the output language. The input 
language serves as an interface between the environment (the teacher) and the system. 
Therefore, it should combine requirements of both of these entities. Moreover, it should 
minimize inconsistencies among data. The output language serves as an interface between 
the system and the application environment. Therefore, it should combine the requirements 
of the learning system with those of the environment. For example, for a pure classifica- 
tion application, there is no need to express the acquired knowledge on a comprehensible 
level. The output interface is only to provide classifications of some new events. On the 
other hand, a learning agent used as a part of an intelligent system must be able to com- 
municate its knowledge to other parts of the whole system. If such a system contains elements 
operating in a high-level language (as an expert system, human expert, etc.), our learning 
agent should be able to express its knowledge at the same level. Another reason, pointed 
out by Michalski (1986), relates to the increasing dependence on any automatically gener- 
ated knowledge: 

An important implication . . .  is that any new knowledge generated by machines should 
be subjected to close human scrutiny before it is used. This suggests an important goal 
for research in machine learning: if people have to understand and validate machine- 
generated knowledge, then machine learning systems should be equipped with adequate 
explanation capabilities. Furthermore, knowledge created by machines should be 
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expressed in forms closely corresponding to human descriptions and mental models of 
this knowledge; that is, such knowledge should satisfy what the author calls the compre- 
hensibility principle. 

One widely used language, which is closely associated with rules, is VL~ (MJchalski, 
Mozetic, Hong, & Lavrac, 1986). Variables (attributes) are the basic units having multi- 
valued domains. According to the relationship among different domain values, such domains 
may be of different types: nominal, for example {Yes, No} in boolean attributes; linear 
with linearly ordered values; or structured with partially ordered values. 

Relations" =, 7 ,  < ,  < ,  > ,  ->" associate variables with their values by means of selec- 
tors having the form [variable relation value], with the natural semantics. For example, 
[Age > Young] is interepreted as the set of people of Middle or Old age, assuming that 
the three values (Young, Middle, Old) are in the domain of the linear attribute Age. The 
value in a selector is a single domain value. However, for the " = "  relation, it may be a 
disjunction of such values (the so-called internal disjunction). The internal disjunction, 
along with the natural semantics, makes the equality relation alone sufficient to represent 
any formula of the language. This important property is used in the design of our operators. 
Conjunctions of selectors form complexes. 

The significance of the language relies on the natural correspondence to a rule-based 
paradigm. Selectors can be used to express conditions on single attributes. Complexes can 
be used to express rules of the form complex :: > decision. Because of that, the semantics 
of the language's constructs is easily understood. For example, the following set of rules 
describes people with heart problems as those who are older and have high blood pressure, 
or those with high cholesterol levels: 

[BloodPressure = High][Age ;e Young] :: > HeartRiskGroup 
[CholesterolLevel = High] : :>  HeartRiskGroup 

However, when only single concepts are being learned, the decision is redundant and can 
be omitted. Again, this property is used in our design. 

There are two different approaches to learning from examples. The first assumes the 
existence of working memory able to remember all previously seen events for a future ref- 
erence. This approach is normally referred to as full memory learning, and the incremental 
processing is associated with both previously generated knowledge and previously seen 
examples, in addition to the newly presented events (one should also mention here the case 
of so-called batch-incremental systems, which process the incrementally available events 
in relation to only the previously seen events, disregarding the previously generated knowl- 
edge). The feasibility of such full-memory systems is restricted by the data set size. How- 
ever, the other advantages of these systems, especially their relative conceptual simplicity, 
cause many learning systems to follow this direction--as does our system. In addition, two 
other important factors favor this approach in the domain of attribute-based spaces: the 
available data sets for many interesting concepts are appropriately small, and such systems 
can normally accommodate the large data sets by means of some preprocessing mechanisms. 
The other approach assumes that the only available memory is for the generated body of 
knowledge. 
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Incremental learning capabilities are important characteristics of a learning system. This 
is so mainly for two reasons: human learning shows incremental characteristics, and a natural 
setting for a learning system often displays dynamic properties--new evidence becomes 
available from time to time, as might be the case in a medical database environment where 
some of the diagnoses may be confirmed after a while, or when new patients are diagnosed. 
Conceptually, the incremental character is obtained by abilities to generalize and specialize 
existing knowledge, as necessary, upon new experience. Since our design is based on the 
inductive learning methodology, which is incremental in nature, the system should possess 
such capabilities. 

Michalski (1983) provides a detailed description of various inductive operators that con- 
stitute the process of inductive inference. In the restricted language VL1 (for induction in 
an attribute-based space), the most important are as follows: condition dropping--that is, 
dropping a selector from the concept description; adding alternative rule and dropping 
a rule--adding~removing one rule from the description; extending a reference--extending 
an internal disjunction; closing an interval--for linear domains filling up missing values 
between two present values in a selector; climbing generalization--for structured domains 
climbing the generalization tree; turning a conjunction to a disjunction; inductive resolu- 
tion-analogous to the resolution principle. These operators are either generalizing or 
specializing existing knowledge. There is no provision for generating the initial set of rules. 
In section 5 we define our versions of these operators to be used in our genetic learning 
system. We also discuss the choice of the initial knowledge. 

4. Previous approaches 

Over the past few decades there have been many different approaches to the problem of 
supervised learning in attribute-based spaces. Some of these approaches came from the 
AI community, and others from fields such as statistics. One of the most recent ideas has 
been to use genetic algorithms, to which we pay special attention since our new approach 
tries to extend such ideas by those of the inductive methodology. 

4.1. Traditional approaches 

As mentioned earlier, non-symbolic systems rely mostly on quantitative information process- 
ing. Therefore, they are further away from mainstream AI devoted to symbol processing. 
On the other hand, the symbolic systems apply the qualitative approach to learning: the 
output is a high-level description, and the processing itself is often done at the symbol level. 

Statistical approaches account for the vast majority of non-symbolic, or numerical, ap- 
proaches. They usually operate in batch mode on the data set in order to obtain some statis- 
tical measures, which are later used as probabilistic approximations of appearances of dif- 
ferent features. To achieve a suitable classification, the correlation of this information to 
a new example is accumulated using some inference methods. Among such methods, the 
Bayesian probabilistic model is the best known. The disadvantage of these approaches is 
that they rely on low-level processing for high-level learning. Furthermore, such treatment 
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makes it hard to process any available problem-specific knowledge. In addition, the measures 
used treat all features independently, and high processing complexity does not allow explor- 
ation of inter-feature dependencies, even though they could be incorporated (Rendell, Cho, 
& Seshu, 1989). 

Another numerical approach comes from the neural network community. A neural network 
is a cognitive model of the brain and is composed of two kinds of elements: processing 
elements (nodes of the network) and connections. Viewed as a memory, such a network 
has its knowledge distributed among the connections--called weights. These weights deter- 
mine the propagation of excitatory and inhibitory signals that, in turn, determine the exci- 
tation of certain nodes. Such a memory model is capable of learning. The backward propa- 
gation of a failure is the best-known method of setting the weights. A neural network method 
has been applied to simple cases of concept learning with some successes. However, these 
applications are usually quantitative as well, which makes it difficult to establish a plat- 
form for any higher-level knowledge utilization or understanding. 

As described, the non-symbolic systems do not follow the methods of the inductive learn- 
ing methodology, but rather perform numerical computations. This, however, leads to an 
apparent advantage of better applicability to processing noisy information (Rendel et al., 
1989) and more gradual performance degradation. 

The two prominent symbolic approaches to supervised feature-based learning, recognized 
as benchmarks, are Michalski's AQ (Michalski, 1983) and Quinlan's ID (Quinlan, 1986). 
They are both considerd symbolic systems, even though they have some numerical elements: 
ID uses an information measure function, while the two-tiered representation of AQ per- 
forms a partially probabilistic inference. 

The AQ approach is based on inductive generalization and specialization of the VL 1 for- 
mulas using the idea of a cover of the positive against the negative events. The cover is 
constructed in an iterative manner, starting with only one positive and one negative event 
and continuing until the generated cover is complete and consistent. To prevent an apparent 
exponential growth in the number of generated descriptions, special heuristics, which accom- 
modate user-defined learning criteria, are employed to reduce the size of partial covers. 
Retaining a number of such current covers provides for a competition among different solu- 
tions. This approach conceptually follows the ideas of inductive methodology, since the 
generated knowledge is either generalized or specialized, as appropriate. However, the algo- 
rithm itself uses only the logic-based operators of negation, union, and intersection to proc- 
ess the current descriptions. 

In the ID approach, the training examples are represented by feature vectors similar to 
events in VL1. The algorithm constructs a decision tree, where each leaf is associated with 
a single decision class and each internal node corresponds to an attribute, while each node's 
branches correspond to a value of that attribute. One of the features of such a tree is that 
no path from the root to a leaf has two nodes corresponding to the same attribute. The 
algorithm itself is an iterative application of the information content formula: I = p * l o g ( p ) ,  

where p is a probability of given information (Quinlan, 1986). At each node of the tree 
the algorithm only treats events satisfied by the path to this node: the information content 
is calculated for all such remaining attributes and events, and the attribute giving the max- 
imal information gain is selected as the label for this node. This approach, despite its appar- 
ent assumption of attribute independence, proved to be successful in terms of recognition 
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quality. However, the numerical formula used causes serious problems when one tries to 
incorporate some task-specific knowledge. Moreover, the algorithm is conceptually very 
distant from the inductive learning methodology. It iteratively applies specialization, start- 
ing with the whole event space. Only then generalization can be applied, by means of tree 
pruning or rule construction techniques. 

Both of the above are full-memory systems, meaning that they assume the availability 
of all previously seen events at any time during incremental learning. However, they both 
allow for processing large quantities of data: the AQ uses a preprocessing mechanism select- 
ing only the most representative events, and the ID uses the idea of data 'windowing. 

4.2. Genetic algorithm approaches 

Since the early 1980s, there has been an increasing interest in applying GA methods to 
machine leaming--in particular to learning production rules, whose special case is the prob- 
lem of supervised learning from examples of an attribute-based space. The main problem 
in such applications is to find a suitable representation, able both to capture the desired 
problem characteristics and to represent a potential solution. Using a rule-based concept 
representation brings a different kind of problem: the number of such rules (disjuncts) is 
not known a priori. Therefore, the traditional fixed-length representation is unsuitable. Two 
different approaches have been proposed: 

• Michigan approach, where the population still consists of fixed-length elements, but 
the solution is represented by a set of chromosomes from the population. This methodol- 
ogy, known as CS for classifier systems, along with a special "bucket brigade" mechanism 
for credit assignment, was originally developed by Holland and colleagues (Holland, 
1986). Here, each chromosome, called a classifier, represents a structure composed of 
conditions and messages lists. The environment, together with the activated rules, pro- 
vides a set of active messages. These, in turn, activate other classifiers by satisfying their 
conditions. The chained actions of message-conditi0n pairs cluster the rules together. 
Because of this chaining mechanism, this approach seems more suitable for planning 
than concept learning. 

• Pittsburgh approach, which represents an extension of the traditional fixed-length chromo- 
some approaches. Here, variable-length chromosomes are used to represent proposed 

i 
solutions individually. This approach (LS for Learning System) was originally proposed 

• , • [ , 

by Srmth (1980). This representation seems more naturally suited for the supervised learn- 
ing, since each chromosome represents an independent solution. 

Both of these approaches suffer from some drawbacks• A chromosome of a classifier 
system does not individually represent a solution. The variable-length approach constitutes 

[ • • 

a wide divergence from the traditional GA, and, therefore, reqmres special treatment. Never- 
theless, some applications prove to be successful, although in quite limited applications. 
The two most noticeable genetic algorithm approache~ to supervised concept learning in 
attribute-based spaces, in the LS framework, come from Koza and Spears with DeJong. 

I 
Koza uses Lisp programs as a means of representing potential solutions, with some tree- 

l 
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based operators that are closed in the space of such representation. Spears and DeJong 
use a binary representation for multi-valued domains, and implement only the traditional 
operators of mutation and crossover in their GABIL system (Spears & DeJong, 1990). An- 
other important LS system is SAMUEL (Grefenstette, 1991), but it was designed and applied 
mostly to sequential decision problems. Classifier systems have also been used for concept 
learning (e.g., Wilson, 1987). However there are some additional problems associated with 
the indirect solution (DeJong, 1990). Moreover, as pointed out in Liepins and Wang (1991), 
the traditional CS architecture is not suitable for stationary concept learning. Nevertheless, 
some recent modifications relax these limitations (Booker, 1989). 

With very few exceptions (e.g., Spears & DeJong, 1990; Grefenstette, 1991; Koza, 1989), 
all systems for rule-based learning use a three-symbol alphabet {0, 1, #}, where # stands 
for a wild-card character (e.g., Goldberg, 1985; Greene & Smith, 1987; Schaffer, 1985), 
to code each individual feature. Such an alphabet is the choice of many CS- and LS-based 
systems. However, it is not so well suited for non-binary domains, since it often increases 
the representation length and extends the search space to infeasible regions. Then an addi- 
tional mechanism must be implemented to deal with these problems (Green & Smith, 1987). 
A more systematic approach would be to model closely the non-redundant and feasible- 
only representation of VL 1, as used in this work and independently in Spears and DeJong 
(1990). The approach of Grefenstette (1991) also follows a similar direction. 

5. The modified genetic algorithm 

In this section we first describe the major ideas used in the system's design, and then pre- 
sent the system itself by defming the necessary GA components. Some implementation issues, 
strongly associated with any such approach, are addressed in the next section. 

5.1. Ideas used 

One of the most praised characteristics of a genetic algorithm is its domain-independent 
search (DeJong, 1988). This is the source both of the many successes of GAs, especially 
in parameter optimization, and, at the same time, of many limitations in other applications. 
In general, such arguments here are similar to those calling for more task-specific AI methods 
two decades ago. Recall that, at first, general problem solvers were devised, which were 
to play the role of general tools for problem solving. It soon turned out that, due mostly 
to the unmanageable complexity of such methods, it was necessary for the designers of 
intelligent systems to incorporate domain- and problem-specific knowledge, either by making 
it explicit or by hiding it in the implementation. 

The need for problem-specific knowledge incorporation into GAs was recognized as a 
method for improvement in many different domains (e.g., Grefenstette, 1987). Davis (1991) 
calls for such approaches where he calls them "hybrid" genetic algorithms and argues 
for the exploration of combinations of GAs with existing methodologies in any possible 
domain. Similar ideas were called for in applications to machine learning. For example, 
Forrest (1985) proposed using high-level operators such as "concept specialization" and 
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Table 1. The spectrum of knowledge incorporation in a GA. 

Level of task-knowledge incorporated 

None Full 

Only classical mutation No domain-independent operators, 
and crossover operators only fully implemented problem- 

solving methodology 

"value restriction"; Antonisse and Keller (1987) also called for similar incorporations. The 
above were restricted to classifier system architectures. In the LS approach, Grefenstette's 
SAMUEL system (Grefenstette, 1991) used similar problem-specific operators, including 
specialization, generalization, rule merge, and delete. However, that approach was aimed 
at more general sequential decision problems and non-full-memory learning. 

Following the Pittsburgh approach, which allows direct representations of VL 1 solutions, 
we are faced with chromosomes of varying number of structures. Then there is a whole 
spectrum of possible GA designs along the dimension of task-specific knowledge utiliza- 
tion (see table 1). On one side of the spectrum lies a method that only uses the classicial 
operators of mutation and crossover. This approach is conceptually very easy. Moreover, 
it enjoys the same theoretical foundations as the fixed-length GAs: Smith (1980) showed it 
was true provided that such structures are positionally independent. The above determines 
the existing popularity of such approaches in any domain. The same is true in the particu- 
lar case of supervised inductive learning. For example, the previously mentioned GABIL 
system follows this path. 

On the other side of the spectrum lies a knowledge-intensive method that completely 
abandons the traditional domain-independent operators, and, instead, fully implements the 
specific problem-solving methodology. This approach is conceptually much more challeng- 
ing, since it requires, in addition to the GA implementation, a clear understanding of the 
problem being solved, along with a well-described, complete solving methodology defined 
at the problem level. This fact, in addition to the lack of well-established theoretical foun- 
dations and the resulting diversion from models of nature, determines the low popularity 
of such approaches. Nevertheless, some machine learning approaches drift in this direc- 
tion. For example, the new Lamarckian learning operators used in SAMUEL (Grefenstette, 
1991) implement learning-specific mutation and crossover. 

Even though this latter approach does not have the same theoretical support, it is backed 
by the task-specific knowledge used to guide and conduct the search. This property should 
provide for a faster convergence to a desired solution. Moreover, it may be easily shown 
that all the operators we subsequently define and use (section 5.5) are actually special cases 
of the traditional mutation and crossover. This provides an intuitive support for the same 
theoretical foundations. Also, because the operators are defined on the semantic pieces 
of the problem, one may easily argue that this design naturally satisfies the building-block 
hypothesis as well. 

These are some of the reasons for our decision to pursue this path. But an even more 
appealing and important justification arises in the context of the learning process understand- 
ing and validation. Applications of the task-specific knowledge as the means for inference 
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(a) ~ Evaluation 

Work done here 

(b) GA Mechanism 

Figure 1. A GA with (a) traditional and (b) task-specific operators. 

Work done here 

mechanisms provide for a better understanding of the underlying principles of the learning 
system. This becomes increasingly important while designing systems that are not only 
able to generate knowledge, but also able to explain and justify their behavior. For exam- 
ple, Michalski wrote (Michalski et al., 1986): 

• . .  one should strive to facilitate human understanding not only of the surface results 
but also of the underlying principles, assumptions, and theories that lead to these results. 

This approach is also justified as an abstraction of the genetic algorithm approach. Follow- 
ing the previous discussion on GAs, and those intuitive results stating that the best represen- 
tation should provide the chromosome structure reflecting syntactic and conceptual knowl- 
edge of the problem, we actually go to the extreme of using the problem space as the work- 
ing search space. In other words, while applications of the traditional domain-independent 
operators provide for a domain-independent search conducted in the artificial representa- 
tion space (figure la), we set the genetic algorithm to operate directly in the problem space 
by organizing the work there (figure lb). 

5.2. Representation and search space 

We adopt the multiple-valued logic language VL 1 as the choice for chromosome's represen- 
tation. Then the search space is the space of sets of rules, spanned by given features. This 
is the space of VL1 concept descriptions. Because we do not employ any extra axioms, 
it is quite feasible and possible to have redundant descriptions, such as 

[Age > Young] : :>  HeartRiskGroup, [Age = Old] : :>  HeartRiskGroup 

For simplicity of presentation (but not lack of generality), from now on we only consider 
VL 1 formulas built using the sufficient " = "  relation with internal disjunctions. Moreover, 
for the same reasons, we assume that we are dealing with single concepts, and that we 
are learning only a single description (as, e.g., in Spears & DeJong, 1990). This simplifica- 
tion allows us to assume a crisp rule-based conceptualization. We address possible generaliza- 
tions of this approach to multiple concepts and non-crisp views in the part on future research 
directions (section 8). 
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Because of the assumption of learning only a single concept description, all rules are 
associated with the same single decision, which subsequently does not have to be stated 
explicitly. Accordingly, when no confusion can arise, we may'refer to the same set of rules 
as just a logical disjunction of VL 1 complexes. 

5.3. Initial population 

The population contains individuals, each of which is a potentially feasible solution (a set 
of rules of the VLI language). Its size remains fixed (as a parameter of the system). Ini- 
tially the population must be filled with potential solutions. This process might be totally 
random (as is normally the case in genetic algorithms), or it might incorporate some task- 
specific knowledge. There is an obvious trade-off between the level of knowledge used 
in such an intelligent initialization. On one side of the spectrum is the random choice, 
very cheap and simple. On the other side, we have an initialization that produces actual 
solutions to the problem, differing possibly by some applied criteria. This later initializa- 
tion is actually as hard as the problem we wish to solve. Therefore, it is inapplicable. 

We follow the idea of an initialization that is as simple as possible, yet intelligent. Accord- 
ingly, we allow for three different types of chromosomes to fill the population initially: 

1. The first type is a random initialization. Each individual is a set of a random number 
of complexes, randomly generated on the search space. 

2. The second type is initialization with data. Each individual is a random positive train- 
ing event. 

3. The third type is initialization with prior hypotheses, provided such are available. Each 
individual is just a single hypothesis given a priori. Having such capabilities, the system 
can be used as a knowledge refinement tool--possibly cooperating with an expert system 
of an intelligent hybrid framework. 

Actual experiments show that the best average behavior is obtained while using a com- 
bination of these three (or the first two if initial hypotheses are not specified), even though 
the importance of the initialization with positive events seems to diminish with the use 
of an operator that adds such positive events to current descriptions. 

5.4. Evaluation mechanism 

The evaluation fimction must reflect the learning criteria. In supervised learning from exam- 
ples, the criteria normally include completeness, consistency, and possibly complexity. In 
general, one may wish to accommodate some additional criteria, such as cost of attributes, 
length of descriptions, their generality, etc., but we did not consider them in the current 
implementation. 

The completeness and consistency of a rule, or a rule set, measures its quality with respect 
to the set of training events. We use the formulas presented in table 2, where e+/e - is 
the number of positive/negative training events currently covered by a rule, e+/e - is the 
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Table 2. Completeness and consistency measures. 

Structure Type Completeness Consistency 

A rule set e+/E + 1 - e - / E  

A rule e+/e + 1 - e-/e- 

number of such events covered by a rule set, and E + / E  - is the total number of such events. 
These two measures are meaningful only to rule sets and individual rules. For conditions, 
the measures of the parent rule are used. These definitions assume the full-memory model. 

Combining multiple criteria in a single evaluation measure is very dificult and critical 
for the convergence problem (Goldberg, 1989). In our case we need to combine three such 
values. We can ease this task by replacing the completeness and consistency measures with 
a single measure of correctness: 

c o r r e c t n e s s  = 
w 1 " c o m p l e t e n e s s  + w2  • c o n s i s t e n c y  

wl + w 2  

This is only one of possible combinations, and in the future we plan to explore the choice's 
dependence on some problem-specific meta-level knowledge. Finally, we combine correct- 
ness and cost by 

e v a l u a t i o n  = c o r r e c t n e s s  • (1 + w 3 • (1 - COS~) f 

where w3 determines the influence of c o s t  (which itself is normalized on [0, 1]), and f 
grows very slowly on [0, 1] as the population ages (a dynamic approach). The description's 
cost is measured by its complexity: c o m p l e x i t y  = 2 • # r u l e s  + # c o n d i t i o n s ,  as in Wnek, 
Sarma, Wahab, and Michalski (1990). The above evaluation function is an experimental 
rather than a theoretical choice, and provides for a controlled bias with respect to com- 
plexity of descriptions. Moreover, the Wl and w2 coefficients bias the search to more com- 
plete or consistent descriptions. 

For most practical tests we used a very low w 3 weight ( -  0.01). Too high a value may 
cause weak rules to be dropped from the descriptions; too low a value reduces the probabil- 
ity of simplifying the generated descriptions (e.g., dropping redundant rules). The primary 
reason for the cost accommodation is to force differentiation between the same or simi- 
larly covering rule sets that have different complexity. We use a dynamic approach to the 
use of cost (an approach that adjusts its effects as the population ages). We successfully 
applied similar dynamic ideas in other domains (e.g., Michalewicz & Janikow, 1991). The 
effect of the very slowly raising f is that initially the cost influence is very light in order 
to promote wider space exploration, and it only increases at later stages in order to minimize 
complexity. Moreover, initial experiments suggest that the system performs better when 
the fexponen t  somehow fluctuates, and that the final increase should start based upon an 
anticipated exhaustion of resources or when the currently learned description is already 
complete and consistent. 
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5.5. Operators 

The operators transform chromosomes to new (possibly better) states in the search space. 
Since the system operates in the problem space, the operators directly follow the inductive 
learning methodology. Accordingly to the three syntactic levels of the rule-based framework 
(conditions, rules, rule sets), we divide the operators into three corresponding groups. In 
addition, each operator is classified as having either generalizing, specializing, or unspeci- 
f i ed -o r  independent--behaviors. Note that the inductive methodology does not define inde- 
pendent operators. Their introduction is strongly associated with the use of a poulation. 

For a better illustration, we exemplify some of the operators using the following search 
space: 

Attribute Values Type 
A 0, 1, 2, 3 Linear 
B 0, 1 Nominal 
C 0, 1, 2 Nominal 
D 0, 1 Nominal 

and the idea of diagramatic visualization (Wnek et al., 1990), which is a multi-valued exten- 
- sion of the well known "Karnaugh map" or "Veitch diagram." Following the correspondence 

of VL 1 complexes and rules in the single-concept scenario, we represent a rule set as a 
disjunction of VL1 complexes. Each complex is a left-hand side of a rule corresponding 
to the same decision. Also, we try to define the operators as simply as possible, in order 
to reduce the computational overhead. For example, we do not use the inductive resolution 
rule, which requires an extensive pattern matching in order to find two complexes having 
selectors that are negations of each other. 

5.5.1. Rule set level 

This is the level of sets of VL 1 complexes. Here, the operators act on whole rule sets (one 
or two at a time): 

• Independent: 
Rules exchange. This operator requires two parent rule sets, and it exchanges random 

rules between these two. It requires two parameters: probability of application to a rule 
set, and probability of rules selection for the exchange. 

• Generalization: 
Rules copy. This operator requires two parent rule sets, and it copies a random rule 

from each of the sets to the other. It differs from the "rules exchange" operator, since 
it does not remove information being propagated from the rule set. It requires one param- 
eter: probability of application to a rule set. 

New event. This operator acts on a single rule set: if there is a positive event not covered 
yet by the current rule set, this event's description is added to the set as a new rule: 

chrom = U i (cpx i : : >  dec) and 3e+Vi(e + ~ cpxi) <1 chrom U (e + : :>  dec) 
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Figure 2. A visualization of the "new event" operator. 

It requires only one parameter :  probabi l i ty  of  appl icat ion to a rule  set. Cont rary  to expec-  
tations, there is no pat tern  matching involved in this operator ,  and its act ions have very  
l i t t le computa t ional  overhead due to data c o m p i l a t i o n - - s e e  sect ion 6.3. For  an i l lustra-  
t ion,  see f igure  2. 

Rules generalization. This  opera to r  acts on a s ingle  rule  set. It  selects two r andom 
rules  and replaces  them by their  mos t  specif ic  general iza t ion:  

cpx 1 : : >  dec, cpx 2 :: > dec <a (cpx' :: > dec) 

where  cpx' is the mos t  specif ic  genera l iza t ion (not necessar i ly  consistent  with respect  
to prev ious ly  excluded negative events) of  the two complexes .  It requires  one parameter :  
p robab i l i ty  of  appl ica t ion  to a rule  set. For  an i l lust ra t ion,  see f igure  3. 
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Figure 3. A visualization of the "rules 

Parent rule set: 

[A=3] v [A=I][C=I][D=0] 
v [A=0] [B=O] [C=l ] 
v [A=I][C=0][D=0] 

Consider generalizing the last 
two rules 

Offspring: 

[A=3] v [A=I][C=I] [D--0] v 

[A=0,1][C=0,1] 

generalization" operator. 
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• Specialization: 
Rules drop. This operator acts on a single rule set, and it drops a random rule from 

that set. It requires one parameter: probability of application to a rule. 
Rules specialization. This operator acts on a single rule set, and it replaces two ran- 

dom rules by their most general specialization: 

cpx 1 :: > dec, cpx 2 :: > dec t> (cpx' :: > dec) 

where cpx' is the most general specialization (not necessarily complete) of  the two com- 
plexes. It requires one parameter: probability of application to a rule set. 

5. 5. 2. Rule level 

This is the level of VL 1 complexes. Here, the operators act on one rule at a time. 

• Independent: 
Rule split. This operator acts on a single rule, and it splits it into a number of rules, 

according to a partition of the values of a condition (an absent condition can be selected 
as well, using all domain values). The set of  domain values present in the selected con- 
dition can be split according to each value individually or according to two disjoint subsets 
of values. For the linear data types, the latter split is more desired. In this case, the pres- 
ent domain values are split by cutting the ordered set of values in a single random place. 
For the nominal data type, the former split is more desired. A structured type requires 
a slightly more sophisticated approach, similar to that of the linear type, but with differ- 
ently defined values and orderings. This operator requires three parameters: probability 
of  application to a rule, and probabilities of a subset vs. all values split, separately for 
the linear and nominal data types. 

• Generalization: 
Condition drop. This operator acts on a single rule, and it removes a present condition 

from that rule: 

((cpx = Ai Sell) :: > dec) <~ (cpx' :: > dec) 

where cpx' has all but one selectors of cpx. In other words, one of the selectors of cpx 
is extended to cover the whole domain of the associated attribute. It requires a single 
parameter: probability of application to a rule. 

Turning conjunction into disjunction. This operator acts on a single rule, and it splits 
the complex into a disjunction: 

((Ai seli A Aj selj) :: > dec) ,~ (Ai seli :: > dec) V (Aj selj :: > ,tee) 

where the complex's separation into n and m selectors is random and position indepen- 
dent. It requires a single parameter: probability of  application to a rule. 
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Parent rule set: 

[A=0,1] 

A covered event: 

e=[A=01[B= 1][C=01[D=I] 

Offspring: 

[A=I] v [A=0,1][B=0] 

v [A=0,1I[C=I,2] v [A=0,1][D=0] 

Figure 4. A visualization of the "rule directed split" operator. 

• Specialization: 
Condition introduce. This operator acts on a single rule, and it introduces a random 

condition associated with an unconditioned attribute: 

((cpx = A i seli) :: > dec) t> (cpx' ": > dec) 

where cpx' has, in addition to all the selectors of cpx, a new selector associated with 
an attribute not present in cpx. The new selector is a random choice from among all 
of  its possible internal disjunctions. It requires a single parameter: probability of  appli- 
cation to a rule. 

Rule directed split. This operator acts on a single rule. If  this rule covers a negative 
event, it is split into a set of maximally general rules that are yet consistent with that 
event, in the following way: 

(cpx : : >  dec) and 3e-(e-  = cpx) t> Ui(cpx i : : >  dec) 

where the new set has cpx's such that (vi cpxi) = (cpx A -~ e-) .  This operator resembles 
the action in the heart of the covered procedure of AQ15. It requires a single parameter: 
probability of application to a rule. Again, there is very little computational overhead 
involved due to data compilation. For an illustration, see figure 4. 

5. 5. 3. Condition level 

This is the level of VL 1 selectors. The operators act on one condition at a time. 

• Independent 
Reference change. This operator acts on a single condition, and it randomly removes 

or adds a single domain value to this condition. It requires a single parameter: probabil- 
ity of application to a condition. 
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• Generalization: 
Reference extension. This operator acts on a single condition, and it extends the domain 

by allowing a number of additional values. For the nominal type, some random values 
are selected for extension. For the linear type, a single value may be selected or, with 
a higher chance, a range may be closed (between two present values, using the domain 
ordering). Moreover, such shorter open ranges have a higher chance of being selected 
over longer ones. This operator requires quite a few parameters, including a probability 
of application to a condition, and a number of selection probabilities determining the 
choice of an action. For the structured type, we replace some of the present values by 
their parent in the generalization tree, giving preference to those offsprings that prevail 
in number (generalization climbing). 

• Specialization: 
Reference restriction. This operator acts on a single condition, and it removes some 

domain values from this condition. Its actions and parameters are analogous to those 
of the "reference extension," but have opposite effects. 

5. 5.4. Operator selection probability 

As seen in the definitions, each operator is given some initial probabilities from two separate 
groups: selection and application probabilities. 

The selection probabilities serve as means of selecting one of a number of possible actions 
or substructures to participate in the operations--these probabilities are static. The applica- 
tion probabilities serve as a means of firing operators for structures of their type (based 
on the definition level). These probabilities have a dynamic character with respect to the 
current context, that is, to both the current coverage and the current, problem-dependent, 
size of the average chromosome. First, probabilities of generalizing operators are increased 
for applications to structures (rule sets, rules, conditions) that are incomplete, and are de- 
creased for those that are inconsistent. On the other hand, the probabilities of specializing 
operators are increased for applications to structures that are inconsistent, and decreased 
for those that are incomplete. Moreover, the levels of probability increase/decrease are based 
on the levels of inconsistency/incompleteness. In other words, these two measures serve 
as additional heuristics (in addition to fitness), which guide the selection of appropriate 
operators. Second, all application probabilities are adjusted to achieve a constant chromo- 
some update rate. For example, more complex problems, which cause the intermediate 
chrmosomes to be longer (both in terms of the number of complexes and their sizes), de- 
crease all such probabilities by the same fraction. 

While selecting the appropriate bias for completeness and consistency, we must be careful 
not to decrease the probabilities so far as to prevent certain operations from performing. 
Since we want the changes to be proportional to those measures, the following choices 
seem natural (but still experimental): 

Oeneralizin operators  com Zeteness3 I  consistency 3 

51 



208 c.z. JANIKOW 

Specializing operators: p '  =p.~l+ completenes@.I3 - consistenc@ 

The new valuep' is the adjusted probability, andp is the actual probability. It is important 
to mention that sincep' is computed differently for each rule and rule set, it does not replace 
the a priori p. The simplicity of this formulas guarantees a low computational overhead. 

To accommodate the changes in problem-specific characteristics, namely, the average 
size of a complex and the average length of chromosomes in the current population, we 
use the following approximation. We observe the number of chromosomes undergoing re- 
combination in a given population. If this number represents too large a portion of the 
population, we decrease all the a priori application probabilities by a fraction for the next 
reproductive iteration. If this number is too small, we do the opposite. Since the adjustments 
are computed for the whole population, they actually always replace the previous values. 
Experiments show that with an appropriately small such adjustment fraction, the changes 
converge and then the probabilities remain relatively steady. This method provides for a 
partial independence of such probabilities from some characteristics of the problems. 

5.6. Algorithm 
The algorithm uses the above components and the control of genetic algorithms. At each 
iteration, all rule sets of the population are evaluated and a new population is formed by 
drawing members from the original one in such a way that more fit individuals have a 
higher chance of being selected (sections 2 and 5.4). Following that, the operators are applied 
to population members in order to move these partial solutions, hopefully, closer to the 
desired state. Each structure stochastically invokes some operators defined for its level: 
the selection depends on the operators' initial strength, the consistency/completeness of 
the structure, and the average size of the current chromosomes. Then the cycle repeats 
until a desired description is found or computational resources are exhausted. For a better 
illustration, refer to the experimental tracing of section 7.2. 

6. Some implementation issues 

We implemented a simple C prototype of the proposed approach in order to be able to 
test our ideas. The choice of the language, aside from efficiency, was based on availability 
of bitwise logical operators used to speed up the evaluation mechanism (section 6.3). We 
call this implementation GIL (for Genetic-Based Inductive Learning). In this section we 
present the most important issues facing any such implementation, along with approaches 
used in GIL. 

6.1. Sampling mechanism 

The selection algorithm is to choose some chromosomes from the current population to 
form a new population, with possible omissions or repetitions. There are many standard 
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ways of performing this step. Baker (1987) provides an excellent discussion. We use the 
stochastic universal sampling mechanism. This method builds a roulette 'wheel for the 
chromosomes, with each chromosome having allocated a portion of the wheel proportional 
to its evaluation fitness. A second wheel is constructed with equally spaced marks. The 
number of such marks is the same as the number of samples to be drawn (the size of the 
population). The wheels are placed on a single axis and the one with marks is randomly 
spun against the other. The positions of the marks, in relation to the space allocated for 
each chromosome on the other wheel, are then observed. A chromosome is selected once 
for each mark landing in its allocated space. 

6.2. Internal representation 

In section 5.2 we described the architecture of the chromosome, in terms of the language 
used. Now we discuss some important issues associated with the internal representation. 

In section 4.2 we mentioned that the widely used three-symbol alphabet its not suitable 
for the multi-valued domains of feature-based spaces. A more appropriate solution was 
suggested originally by Greene and Smith (1987) and was recently used by Spears and DeJong 
in their GABIL system (Spears & DeJong, 1990). This approach uses binary digits to repre- 
sent domain values. For example, assuming that an attribute has five domain values, the 
binary vector 11001 represents the condition saying that the attribute must have the first, 
second, or the last value (assuming some positional enumeration of values from the left, 
and a use of the internal disjunction). We use exactly these ideas to implement conditions 
(selectors of VL1). A chromosome's length is actually unrestricted--a rule set may contain 
any number of rules, organized as linked lists. An important issue associated with the rule 
set is that of treating rules that are invalid, that is, conditions that are totally restricted 
(exclude all domain values). Spears and DeJong (1990) suggested keeping such rules as 
possible sources of valid conditions. We performed some experiments to study the trade- 
off between anticipated increases in the computational cost of retaining these rules vs. im- 
provements in predictive accuracy of the system. Our conclusions are far from final. Never- 
theless, they suggest there is a clear conflict between these two factors. A similar issue 
arises in the context of empty rules--those not covering any positive events. Such rules, 
again, may be removed or retained. Also, there seems to be a similar kind of complexity 
vs. quality trade-off. Currently, GIL removes both invalid and empty rules. 

Each complex is a conjunction of a number of conditions. The number of such possible 
conditions, in a given complex, is bounded by the total number of attributes. We use that 
bound as a way of simplifying the internal representation: a complex is represented by a 
vector of conditions. Furthermore, for simplicity and efficiency, we associate a fixed posi- 
tional correspondence between the attributes of the vector. This does not introduce any 
problems, since no operators acting at the condition level are positionally dependent. 

Such an implementation introduces a new dilemma: how to treat unrestricted conditions, 
that is, those that include all domain values in the selector. It is a question of elegance, 
or possible efficiency, rather than power: an unrestricted selector can be dropped from 
its complex without any semantic change to the rule associated with this complex. We tried 
both approaches: one with all selectors present in each complex, and the other with 
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Figure 5. An internal representation of a sample chromosome. 

unrestricted selectors invisible to all operators by means of a special flag. We found no 
significant difference in the system's performance under both conditions; we used the latter 
approach in GIL. 

The above ideas are illustrated in figure 5, assuming the set of features used in section 
5.5 while defining the operators on an eight-bit machine. This figure shows an internal 
representation of a chromosome, which can be viewed as a disjunction of complexes or 
a set of rules using an implicit decision. Moreover, depending on the treatment of unrestricted 
domains, the same chromosome can be described in different ways as well. The resulting 
four possible semantically equivalent views are as follows: 

1. [A = 0, 1, 3][B = 0, l][C = 2][D = 0, 11 : : >  dec, [A = 0][B = 0][C = 01 
[D = O, 1] : :>  dec 

2. [A = 0, 1, 3][C = 2] : : >  dec, [A = 0][B = 0][C = 0, 1] : : >  dec 
3. [A = 0, 1, 3I[B = 0, 1][C = 21[D = 0, 11 V IA = 0][B = 0][C = 0, I][D = 0, 1] 
4. [A = 0, 1, 31[C = 21 V [A = 0][B = 0][C = 0, 11 

6.3. Data compilation 

A very commonly cited disadvantage of genetic approaches to problem solving is their 
t ime complexity (e.g., Quinlan, 1988). This problem becomes especially visible when the 
evaluation requires an extensive computation. This is the case in supervised learning when 
evaluating rule sets in a full-memory system, since this process involves extensive pattern 
matching. Concerned with such problems, we designed a special method of data compila- 
tion aimed at improving the time complexity of  the system. 

The idea is as follows: rather than storing data in terms of features, store features in 
terms of data coverage. In other words, for each possible feature, retain information about 
the events covered by this feature. This must be done separately for each concept. Moreover, 
it must be done even for concepts not being explicitly learned. For example, this means 
that GIL has to remember  such coverage separately for both the concept and its negation. 
We achieve this by enumerating all learning events and constructing binary coverage vec- 
tors. This approach is feasible only for problems with small to medium size of  data set. 
For those rare cases of larger sets (e.g., those larger than 104), special data-reduction 
mechanisms would have to be employed. 
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Table 3. Examples of binary coverage vectors of a feature. 

Positive coverage vector: 10000001000000001010000000 

Negative coverage vector: 000000000001010 

The idea behind these vectors is analogous to that of representing conditions. A coverage 
vector is constructed for both E + and E -  separately. In this vector, a binary one at posi- 
tion n indicates that the structure that owns this coverage vector covers event #n. For exam- 
ple, the vectors in table 3 indicate that the given feature covers positive events #1, 8, 17, 19 
(out of 25), and negative events #12 and 14 (out of 15). 

Prior to learning, as mentioned, all data are precompiled into such vectors, for all possi- 
ble features. During the actual run of the system, similar vectors are constructed for all 
structures of the database: from the features upwards. For example, having the feature 
coverages, we can easily construct both positive and negative coverage of the condition 
[A = 0, 2], by means of a simple bitwise OR on appropriate coverage vectors of features 
(A = 0) and (A = 2). Subsequently, condition coverages are propagated to rules by means 
of a simple bitwise AND. Finally, rule coverages are propagated to rule sets again by means 
of the bitwise OR. 

Perhaps the most important effect of such an approach is that we can incrementally upgrade 
such coverages using a minimal amount of work after the initial database is fully covered. 
For example, consider a copy of the "rules copy" operator applied to the following two 
rule sets: 

R 1 = r~, r21 

R 2 = r 1, r 2, r2 3 

and suppose the operator copies r 2 to R 1. The coverage of the second rule set does not 
change. To compute the coverage of the first rule set, it is sufficient to perform bitwise 
OR between the coverage of the rule r 2 (which did not change during this operation) with 
the coverage of the original R1. In other words, we compute this coverage using two bit- 
wise OR operations (one for the positive and one for the negative coverage). In general, 
the number of such required operations increases (very slowly linearly) with the number 
of training events. 

As another example, consider the case of the "reference change" operation, with a single 
change from 0 to 1, on position #, in a condition's binary vector. All that needs to be done 
to update the coverage of this condition is to perform bitwise OR on the coverages (positive 
and negative) of the corresponding feature number # associated with the given attribute 
with those of the original condition. Then this change must be propagated to the appropriate 
rule and rule set's coverages, using similar simple computations. 

7. Experimental studies 

In this section we attempt both to illustrate the system's behavior by tracing its applications 
and to experimentally compare its behavior to that of other learning methods. A more com- 
prehensive testing to determine the system's characteristics is left for the future. 
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7.1. Experimental methodology 

In the literature, learning systems are often evaluated and compared using a standard set 
of well-recognized arfficial and real data. Examples widely used are random DNFs, multi- 
plexers, soybean disease, breast cancer, etc. To evaluate GIL, we use some of these standard 
data sets. This also allows us to use published results of experiments with other systems, 
under the assumption of repeating exactly the same experimental sessions. 

In inductive learning, the acquired knowledge should meet two criteria: high predictive 
accuracy of unseen events and comprehensibility at some high cognitive/conceptual level. 
The quality of the former measure estimates the generalization power of the system; we 
call it a quantitative property. On the other hand, we call the latter a qualitative property. 

The most common experimental methodology is to split the available events into training 
and testing groups (usually 70% and 30%). Subsequently, the experiment calls for a learn- 
ing session using the training group, followed by testing using the other group (containing 
events unseen during the training). Different measures are then used to determine the quali- 
ties of a system. For example, for the quantitative properties, Michalski and Chilausky 
(1980) define a set of conflicting measures under the assumption that in some cases it makes 
no sense to distinguish between two close diagnoses. However, most researchers use a single 
measure of accuracy, defined as the ratio of correctly classified events to all testing events: 
this is the measure we use unless otherwise stated. To measure the qualitative properties, 
we either list separately the number of rules and conditions used or combine them accord- 
ing to the well-accepted formula shown in section 5.4. 

Another important issue is the estimate of statistical measures. We followed those used 
in the reference publications for each experiment. However, the default approach was to 
take an average of five independent resampled runs. 

7.2. Emerald's robot world 

Recently, a report of the AI laboratory at George Mason University (Wnek et al., 1990) 
evaluated a number of different learning systems using the world of robots from the Emerald 
system (Kaufman, Michalski, & Schultz, 1989). Since this report provides a detailed descrip- 
tion of the experiment, it was relatively easy to repeat exactly the same tests with our system 
and compare the results directly. In this experiment, we attempted to achieve two goals: 
to illustrate the system's algorithms and exemplify its comprehensive processing mechanism 
by tracing one of the experiments; and to gather both qualitative and quantitative results 
in order to compare them with those published. 

This robot world is very suitable for this kind of experiment, since it is moderately com- 
plex to allow comparative study, yet simple enough to be illustrated by the diagramatic 
visualization method. It is described by the following six attributes (we boldface the abbre- 
viations subsequently used in the trace): 
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Attribute Values 
HeadShape Round, Square, Octagon 
Body Round, Square, Octagon 
Smiling Yes, No 
Holding Sword, Balloon, Flag 
JacketColor Red, Yellow, Green, Blue 
Tie Yes, No 

The robots were classified into the following five categories created by a human: 

Concept 
C1 

c2 
c3 
c4 
c5 

Description 
Head is Round and JacketColor is Red or Head is Square and 
Holding a Balloon 
Smiling and Holding a Balloon or Head is Round 
Smiling and not Holding a Sword 
Jacket is Red and no Tie or Head is Round and is Smiling 
Smiling and Holding either a Balloon or a Sword 

The task was to learn a description of each concept while seeing only a varying percentage 
of the positive and negative examples. There were a total of  432 different robots present 
in this world. The error rate reported is the average error in recognizing all the 432 (both 
seen and unseen) events. This measure explicitly estimates the predictive accuracy, while 
at the same time implicitly judges the generalization and specialization power. 

7.2.1. The trace 

For the behavior trace we used concept C1, which can be represented by the following 
set of  rules: 

[H = R][J = R] : : >  C1, [H = S][Ho = B] : : >  C1 

or, assuming an implicit decision as used in GIL, by the following formula: 

[H = R][J = R] v [H = S][Ho = B] 

Of the 432 events, 84 satisfy the concept. The training was done using a random 20 % 
of both positive and negative examples: 17 and 70, respectively (see figure 6 for a visualization 
of the target concept and the training events). The population size was set to 40, initialized 
equally by both random descriptions and positive training events. The system was set to 
run 100 iterations. Other implementation parameters were set as follows: Wl = w2 = 0.5; 
w 3 = 0.02; and the cost was normalized with respect to the highest cost in the current 
population. The initial application probabilities, along with actual adjusted values (adjust- 
ment for the currently average size of  the chromosomes; see section 5.4) at the end of this 
experiment, are presented in table 4. This scaling was computed assuming a desired rate 
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Figure 6. The goal concept and the training events. 

Table 4. Application probabilities. 

Target concept 

+ Positive event 

Negative event 

Level Operator Initial Values Final Values 

Rule set Rules exchange 0.20 0.115 
Rules copy 0.10 0.058 
New event 0.40 0.230 
Rules generalization 0.50 0.288 
Rules drop 0.50 0.288 
Rules specialization 0.50 0.288 

Rule 

Condition 

Rule split 0,02 0.011 
Condition drop 0.10 0.058 
Turning conj. into disjunc. 0.02 0.011 
Condition introduction 0.10 0.058 
Rule directed split 0.12 0.069 

Reference change 0.02 0.012 
Reference extension 0.03 0.017 
Reference restriction 0.03 0.017 

of 80% chromosomes to be updated by the recombination step. The selection probabilities 
were as follows: 0.2 for a rule selection in "rules exchange"; 0.1 for "splitting a rule" 
according to two subsets, as opposed to all domain values, for the nominal type, and 0.7 
for the linear type; and 0.5 for all probabilities on the condition level. 

Before the algorithm could start iterating, it had to perform three initial steps: data com- 
pilation, initialization, and initial evaluation. Data compilation involved building the binary 
coverage vectors for all possible features of the space. Initialization involved setting up 
the population. Finally, evaluation involved finding the completeness, consistency, and com- 
plexity of the rules and accumulating them according to our formula of section 5.4. The 
best such initial chromosome is illustrated in figure 7, which happened to be a randomly 
generated description. 
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Iteration 0: (from initialization) 

Cost = 7 : i rule, 5 conditions 
Positive coverage = 1 
Negative coverage = 0 

Rule set: 
[B=R] [S=N] [Ho=B] [J=R,Y,B] [T=N] 

Figure 7. The best initial chromosome. 

Each iteration of the genetic algorithm consists of three basic steps: selection, reproduc- 
tion, and evaluation. However, the special data-compilation method, along with the use of 
the binary coverage vectors, allows for combining the last two steps as follows. Each operator 
is followed by a proper update to all the affected vectors and a recalculation of the com- 
pleteness and consistency measures. Then, the only task of the evaluation step is to calculate 
the total fitness: there is no pattern matching involved. In the case of an incremental learn- 
ing (this particular experiment was conducted in the batch mode), every time a new exam- 
ple is presented to the system, all appropriate features (those present in that example) are 
incrementally updated and propagated to other structures present in the population. 

The most important stepto explain is reproduction. Normally, reproductive operators 
are selected based on some static probabilities. However, in our case there are two dynamic 
factors that affect such probabilities: the rate of chromosome update and the completeness 
and consistency measures of proper structures. First, the rate of chromosome update (from 
the previous generation) is compared to that desired (80 % in this case, or 32 chromosomes); 
if it differs by more than some allowable margin, all the application probabilities are accord- 
ingly adjusted by a small fraction and the new values replace the old ones. Then each struc- 
ture of the population is allowed to nondeterministically select operators to be applied to 
it. Competing operators are those defined for the level of the structure. Moreover, both 
the generalizing and the specializing operators have their application probabilities adjusted 
by each structure, before a uniform probability generator decides their actual application. 
For example, consider a rule set with the following measures: completeness = 0.2, con- 
sistency = 0.9. All operators defined for this level are tried in a random order. Each one 
actually found applicable updates this complex. The independent operators have probabilities 
of application exactly as the initial values (possibly adjusted with respect to the desired 
update rate). The generalizing operators have probabilities of application additionally 
adjusted by 

~3_ completenessl.Ii+ consistencyl = l.82 

and the specializing operators have the probabilities adjusted by 
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I 1 +completeness~'~ 3 -  consistency~ = 0 . 4 2  

In other words, this particular rule set would face an increasing pressure for generalization. 
Each operator actually selected for application updates the structure, and then it immedi- 

ately incrementally updates binary coverage vectors from the structure up to the chromosome 
level. Also, the appropriate completeness and consistency measures are immediately reeval- 
uated. Such an incremental approach not only reduces the time complexity of evaluations 
by taking into account some specific information about properties of the operators, but 
also leaves all the coverages and the measures consistent for the other competing operators. 
This is very important, since some of them rely on such information for further efficiency 
improvements. For example, the "directed rule split" operator needs to find a negative 
event inconsistent with the current complex. If the operator can rely on the coverage vec- 
tors, finding such an event is reduced to selecting a random binary one from the negative 
coverage vector of this complex. Otherwise, the complex would have to be sequentially 
matched against all possible negative training examples. 

Following the initialization and the initial evaluation, the system was run for the specified 
number of iterations. Not every iteration produced a better chrmosome. There were 11 
improvements in 27 iterations, after which the best description exactly matched that of the 
concept. The first four improvements are illustrated in figure 8. 

This problem proved to be extremely simple for our algorithm. After only 27 iterations, 
or about 3.1 CPU seconds on a DEC3100 station, a complete and consistent description 
was found. Moreover, this description exactly matched the desired solution--there were 
no redundancies. This experiment illustrates both the quanitative and qualitative proper- 
ties of the system. 

7.2.2. Comparative experiments 
The other systems used in the experiment (reported in Wnek et al., 1990) were rule-based 
AQ15, neural network BpNet, decision tree with rules generator C4.5, and genetic classifier 
system CFS. Table 5 reports the average error rate for the five experimental concepts for 
all five systems while learning one concept at a time (the results of the other four obtained 
from those published experiments). Surprisingly, GIL produced the highest recognition 
rate, especially when seeing only a small percentage of the events. This result can be attrib- 
uted to the simplicity-biased evaluation formula that was used. 

Table 6 reports the average acquired knowledge complexity by listing both the average 
number of rules and the average number of conditions, as learned by all five systems for 
different learning scenarios in the same experiment. The NR entry indicates that the com- 
plexity was large and was not reported in the reference paper. The reason for the higher 
complexity of the connectionist approach is that this is a non-symbolic system operating 
on numerical weights rather than on the problem symbols. On the other hand, the high 
complexity of the CFS approach can be attributed to the fact that the symbolic processing 
was being done in the representation rather than in the problem space and to the lack of 
a similar bias for simplicity. This result is rather common for classifier system approaches. 
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Iteration 2 

Cost = 6 : 1 rule, 4 conditions 
Positive coverage = 6 
Negative coverage = 0 

Rule set: 
[H=S] [B=S,O] [S=Y] [Ho=B] [J=Y,G,B] 

Iteration 3 (an overgeneralization) 

Cost = 4 : 1 rule, 2 conditions] 
Positive coverage = 12 
Negative coverage = 4 

Rule set: 
[H=R,S][Ho=B] 
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Iteration 7 (one redundant rule) 

Cost = 12 " 2 rules, 8 conditions 
Positive coverage = 10 
Negative coverage = 0 

Rule set: 
[H=SI[Ho=B][J=Y,G,BI 
v [H=S] [B=R] IS=Y] [Ho=B] [J=G] 

Figure 8. The first four improvements. 

Therefore, it was a pleasant surprise to find that GIL's knowledge was at the same com- 
plexity level as that of AQ15. This demonstrates one of the system's characteristics: the 
ability to generate easily comprehensible knowledge (measured here by complexity of its 

V L  1 output). The 1.4/2.6 result in the first column is clearly an oversimplification of the 
knowledge due to insufficient number of training events (here only about ten negative events 
were available). 
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Table 5. Error rate summary in the robot world. 

Learning Scenario (positive%/negative%) 

System 6%/3% 10%/10% 1 5 % / 1 0 %  25%/10% 100%/10% 

AQ15 22.8% 5.0% 4.8% 1.2% 0.0% 
BpNet 9.7% 6.3% 4.7% 7.8% 4.8% 
C4.5 9.7% 8.3% 11.3% 2.5% 1.6% 
CFS 21.3% 20.3% 21.5% 19.7% 23.0% 
GIL 4.3 % 1.1% 0.0% 0.0% 0.0% 

Table 6. Complexity's summary in the robot world (#rules/#conditions). 

Learning Scenario (positive%/negative%) 

System 6%/3% 25%/10% 50%/10% 75%/10% 100%/10% 

AQ15 2.6/4 1.6/3 1.6/3 1.6/3 1.6/3 
BpNet NR 18/29 NR NR 32/54 
C4.5 6.8/12.2 4.4/9.2 4.8/9.2 4.8/9.2 3.8/7.3 
CFS NR NR NR NR NR 
GIL 1.4/2.6 1.6/3 1.6/3 1.6/3 1.6/3 

7.3. DNF concepts 

Learning DNF descriptions has become a standard way of evaluating different systems. 
An interesting experiment was reported by Spears and DeJong (1990), in which the authors 
compared a decision-tree-based ID5R with their own genetic algorithm for supervised con- 
cept learning, GABIL (a newer version is described in DeJong and Spears (1991)). The 
test data for that experiment were a set of random DNF descriptions of a varying complex- 
ity. The results represent batch-incremental learning curves: a system's quality measure 
after seeing n examples is defined as an average recognition of a single unknown random 
event over the last ten experiments (from n - 9 to n). Accordingly, the learning curves 
are undefined for n < 10. 

There was a total of six attributes, each having three possible values. Six sets of experiments 
were conducted, for six randomly constructed DNF concepts xDyC, where x = 1, 2 is 
the number of rules, and y = 1, 2, 3 is the number of conditions per rule. 

For each experiment, a total of 100 events was chosen randomly. Then, using an increas- 
ing number of learning events and just one testing event, the learning curves were con- 
structed using average results over ten independent runs with resampling. For the incremental 
ID5R, the knowledge was updated incrementally upon a new inconsistent event, while it 
was generated from scratch in the GABIL system (which does not possess such incremen- 
tal properties). 

We repeated the same experiments in exactly the same environment, using the same batch- 
incremental mode as GABIL. Because the DNFs actually used were not reported in that 
paper, we repeated the experiments not only with resampling, but also with randomly 
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Figure 9. Batch-incremental results on CNF data. 

regenerated target descriptions (each run of 100 iterations). Our results, along with the 
original ones, are presented in figure 9. The original claim of the GABIL system was that 
it could not learn as well as ID5R on simple concepts, but achieved about the same levels 
of performance (in some cases, slightly better) as the concepts' complexity increased. Our 
results show that GIL can do both at the same time: it achieves very high performance 
for all kinds of problems. It also clearly outperforms GABIL in terms of learning variabil- 
ity. Its smooth learning curve indicates low variability in performance, while the broken 
curve of GABIL indicates bigger differences from run to run. Moreover, GIL produced 
descriptions of much lower complexity (not reported for GABIL--private correspondence). 

Z4. Multiplexers 

The family of multiplexers is another widely used set of data. Each multiplexer is actually 
a specific case of the more general DNF. For each integer k = 1, 2, . . .  there is a multiplexer 
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Boolean function defined in the following way: the inputs are the k bits (called addresses), 
and there are exactly 2 k outputs (called data bits). Accordingly, we have multiplexer j~ for 
k = 1, f6 for k = 2, fl l  for k = 3, etc. The function of a multiplexer is to activate the 
data bit whose address (in binary, assuming some ordering of the data bits starting at 0) 
is specified by the address bits. For example, 

[A 0 =][.,41 = 0 ] [ A  2 = 1] V [Ao = 0][A1 = 1 ] [ A 3  = 1] 

V[Ao = 1][A1 = 0 ] [ A  4 = 1] V [A o = 1 ] [ A  1 - -  1][A 5 = 1] 

defines the f6 multiplexer in the VL 1 language, assuming that attributes A 0 and A 1 a r e  the 
two address bits and A 2 to A 5 are the four data bits. 

Many experiments have been documented, mostly using f6 andfll  functions. For exam- 
ple, Koza (1989) describes learning the first of these two, with his LISP-influenced hierar- 
chical genetic approach. He reports a case of learning the actual function after processing 
4500 potential solutions, while seeing all 64 (26 ) possible instances. Our own experiments 
indicate an average learning after seeing only about 2000 individual (40 iterations, database 
size 50). However, these two results should not be compared directly--Koza apparently 
used a much larger population size of 300, and the solution was found after 15 iterations. 
Moreover, there is no indication whether this was the only experiment or the best of a 
number of experiments. Many classifier systems reported experimentations with a different 
multiplexer (e.g., Wilson, 1987). However, since CS are in general not full-memory systems, 
it is again difficult to compare the results directly. Instead, we again decided to illustrate 
GIL's behavior by tracing its run onfll-- this time by observing not the intermediate rule 
sets but rather the complexity, consistency, and complexity of the best rule set in each 
generation. 

Figure 10 traces a sample run while training with 20 % of the available f11 events. Dur- 
ing this learning session, the exact concept was learned after 1700 iterations. A consistent 
and complete description of the training events was found shortly after 1000 iterations, 
and the remaining 700 cycles were required to simplify the generated description. The first 
of these two graphs traces completeness and consistency of the currently best database indi- 
vidual. The other graph traces the complexity of the best individuals. It is interesting to 
note that the complexity rises during the learning, as a result of not finding simple enough 
complete and consistent descriptions, and then decreases--forced down by an increasing 
cost influence and formation of such better descriptions. 

Some quantitative results with f l l  are reported in table 7. These results are similar to 
those from other systems (e.g., Quinlan, 1988), but a different experimental methodology 
does not allow for a direct comparison. They are also similar to reported results of AQ 
(Wnek & Michalski, 1991), where the authors report 74 % accuracy after training with 6 % 
of the events. Some more recent experiments (Janikow, in press) seem to suggest that GIL's 
results may be greatly improved by adjusting the learning bias. For example, while learn- 
ing with an increased pressure on consistency, a 100% average accuracy can be achieved 
for the 20% learning case. 

A few interesting differences were observed between f6 andfll runs. The time necessary 
for the learning rose from about 10 CPU seconds to about 20 minutes, or from about 100 
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Figure 10. A sample behavior on multiplexer fn. 

Table 7. GIUs accuracy on 
multiplexer fti. 

% Training Events Accuracy 

5% 77% 
10% 88% 
20% 97% 

to about 2000 iterations. This increase can be attributed to the increased event space (64 
vs. 2048) and the increased search space (-10200 vs. 106°'°°°). More directly, this caused 
an increased number of iterations and a noticeable increase in the average complexity of 
chromosomes. A further investigation is needed to determine the scaling characteristics 
of the system. 

Yet another interesting difference between the two multiplexers can be observed by com- 
paring the accuracy while learning with a small percentage of  the available events: f l l  
achieves high rates much more quickly. The reason for such a behavior seems to be the 
ratio of  the concept complexity to the size of  event space, which is about 0o313 forj~ and 
0.023 forf l  1. This raises an interesting hypothesis about estimating the difficulty of gener- 
ating descriptions: the difficulty is proportional, or at least highly correlated, to the ratio 
of  the concept's complexity and the size of the event space. We hope to further investigate 
this assertion in the figure. 
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Table 8. Summary of the breast cancer experiment. 

System/Method Complexity Accuracy 

Human experts Not reported 64 % 
AQ15/full rule set 41 rules/160 conditions 66% 
AQ15/best rule only 2 rules/7 conditions 68 % 
Assistant/without tree pruning 63 leaves/120 nodes 67% 
Assistant/with tree pruning 9 leaves/16 nodes 72% 
GIL 36 rules/128 conditions 65% 
GIL/with emphasized cost 10 rules/27 conditions 67% 

7.5. Breast c a n c e r  

One of the most popular natural domains used in experiments with inductive learning systems 
is the breast cancer data. It contains 286 descriptions of female patients, classified as either 
developing or not developing a recurrence of breast cancer after a five-year period follow- 
ing the first surgery. The descriptions are generated using nine attributes, with an average 
of 5.8 values per domain. This descriptive language was found to be inconsistent, meaning 
that some patients having exactly the same description were classified differently. Such 
a situation puts an extra burden on the learning system. 

An excellent paper by Michalski and colleagues (1986) lists both quantitative and quali- 
tative results on this data set, while using the AQ15 system with a rule truncation mechanism 
and a decision tree system ASSISTANT (this version generates low-complexity binary trees 
and employs a tree truncation technique). In addition, this paper also reports the accuracy 
of human experts. We repeated these experiments (for 1000 iterations) and report all such 
results in table 8. Our second run was performed with an increased cost influence on the 
evaluation (increased w 3 parameter). Both results indicate the applicability of our approach 
in the case of natural domains as well. For comparability with the complexity results reported 
for the other systems, we ran GIL twice, each time learning one of the two possible con- 
cepts and summarizing the #conditions and #rules. 

7.6. Incremental learning 

Incremental learning capabilities are important attributes of a learning system. We expected 
our approach to possess such properties naturally, since it is based on generalization and 
specialization of the current hypotheses and does not explicitly favor either of these two 
classes of actions at any time. To evaluate this assertion, we performed both batch and 
incremental experiments to produce the learning curves of f6. Both learnings were per- 
formed at 5% increments of the available training events: in the batch mode, each new 
experiment started with newly generated population; and in the incremental mode, each 
new experiment started with the population generated at the end of the previous learning 
session with fewer training events. All experiments were repeated five times with resam- 
pling, with population size set to 40 and run for 100 interations. Figure 11 presents these 
curves. It is interesting to note that there was no significant difference in the quantitative 
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Figure 11. Comparison of the batch and incremental learning. 

performance, suggesting GIL can be used in incremental environments. Moreover, observed 
faster convergence in the incremental mode suggests that the reused knowledge in forms 
of the initial population was processed very usefully, indicating the system's ability to proc- 
ess initial hypotheses and maintain knowledge in a dynamic environment. Again, more 
experimentation is needed to further investigate these properties. 

8. Conclusions and further research 

We have described a novel approach to full-memory, supervised inductive learning in 
attribute-based spaces that uses a knowledge-intensive genetic algorithm. Such an algorithm 
follows the ideas of traditional GAs, but replaces the domain-independent search by a search 
specific to the inductive learning methodology. This approach represents an abstraction 
of the traditional genetic algorithm to the symbolic level. Initial results show that GAs can 
be successfully applied to more complex, non-numerical tasks by defining the algorithm 
at the conceptual level of the problem. This allows for processing high-level structures using 
the problem-specific methodology and rich heuristics. Moreover, such an abstract view 
provides for the same clear separation of different systems' components as found in AI 
production systems. This modularity, in turn, allows for transparent applications of similar 
designs to other domains. Some of the most interesting properties of this approach are 
the clearly understood processing mechanisms, defined on the same language as that of 
input/output, and the low complexity of the generated knowledge. This complexity, meas- 
ured here by number of rules and conditions, contributes to the higher comprehensibility 
of the output. 

When pursuing this challenge, we did not attempt to produce a system that could compete 
with the existing symbolic systems (AQ and ID based), especially in terms of learning time 
complexity. Our goal was rather to investigate the potential of such a method of abstracting 
genetic algorithms, which may be carried to other domains. Nevetheless, by designing effi- 
cient data-compilation methods aimed at reducing the system's complexity, and by using 
more "intelligent" operators than those in the traditional GAs, we were able to tackle a 
number of interesting problems in a reasonable time. Moreover, since genetic algorithms 
are naturally suited for parallel architectures, we may hope that such reimplementations, 
along with new technological advances, may be faster without any additional efforts. 
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The system also shows significant potential from the machine learning point of view. 
First, it does not assume attribute independence, as the ID-based systems do. Second, it 
provides for a better match between problem-specific heuristics and actions taken than the 
AQ-based systems do. Finally, it extends the AQ's ideas of exploring a number of simulta- 
neous directions to a more powerful platform, allowing for both competition and coopera- 
tion (by information exchange). 

The current complexity, as well as the overall quality, seems to be unstable and to vary 
among different problems, different parameters used, and even different runs of the same 
experiment. Making the algorithm more stable requires an extensive study of its character- 
istics. Other important issues to be addressed include learning multiple concepts and deal- 
ing with noisy information. These issues are further discussed below along with some pro- 
posed solutions. Yet other, more challenging, future research involves using more powerful 
languages than VL 1 and adapting the system in a non-full-memory environment. 

One should point out that most of the testing data were not suited to explore the full 
potential of this system: most experiments were conducted with two- or three-valued domains. 
Such domains are much more suitable to the other learning systems, while this approach 
can fully explore spaces with larger, typed domains. Actually, among the other known learn- 
ing systems, only AQ and SAMUEL try to accommodate knowledge of domain types, which 
can be quite valuable when the domains grow. However, AQ does so only after learning 
the initial complete and consistent descriptions (a recent development in AQ systems attempts 
to use this information in a second stage of its two-tiered learning). 

8.1. Multiple domains 

The current system assumes single concepts only, and proceeds by learning only rules asso- 
ciated with the single decision. This lets us treat the decisions implicitly and then simplify 
the definitions and the implementation by processing VL 1 complexes in place of rules. For 
the sake of simplicity and continuity, we will try to preserve this property while generaliz- 
ing the approach to learning multiple decisions. If we assume independence of different 
class descriptions, we may apply subsequent learning sessions of the same algorithm, one 
session per class. Then, during a learning sesson for class n, the examples of category 
n are considered as positive events, while the examples of all other categories are con- 
sidered as the current negative events. The same idea may be used differently: we may 
conduct the learning sessions simultaneously in different populations, with one population 
assigned to one class being learned. 

When discussing such generalizations, we must consider a related issue: treating descrip- 
tions that are incomplete and inconsistent with respect to the problem space. As we men- 
tioned before, a rule-based framework is not well suited for learning descriptions with those 
properties, which are often relaxed. However, in such a case, a previously unknown event 
may be recognized by none or multiple descriptions. Then, a special arbitration protocol 
must be employed. The simplest such protocol simply returns such events as unrecogniz- 
able. This improves correct recognition rate, but also increases overall indecision. More- 
over, this approach can treat descriptions of different classes independently. A more sophis- 
ticated protocol employs some flexible (e.g., probabilistic) measures, and thus changes 
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the conceptualization view to non-crisp. However, this also suggests that the descriptions 
should not be generated independently, but in a common context. Then each rule set must 
be evaluated in the context of the descriptions for the other classes. This suggests learning 
all descriptions in a single population, with a chromosome being a set of descriptions now. 
We can still preserve the implicitness of decisions if we introduce an additional syntactic 
level: the decision set set level. Then, while learning descriptions of n categories, each 
chromosome becomes a set of descriptions, with each description associated with exactly 
one of the categories. In other words, a chromosome becomes a set of the previously defined 
chromosomes. Then, all operators that were defined as acting on two chromosomes will 
act on two rules sets associated with the same decision. All other operators stay exactly 
as defined previously. However, we need new operators to act on the new level. The only 
proposed operator has an independent character, and it exchanges one or more whole- 
category descriptions between two chromosomes. In other words, this operator works at 
the level of granularity of a whole rule set associated with one implicit decision. 

As to the non-crisp arbitration protocol, a very nice solution is used in the AQ family-- 
the two-tiered conceptualization view. We suggest using the same approach in such an 
extended architecture, which could provide an additional advantage. The two-tiered view 
could be used during the learning process, while it is used only in a follow-up step in the 
AQ system. Because a given problem specifies a priori the number of categories to be con- 
ceptualized, we can easily extend the chromosome implementation of section 6.2 to a vec- 
tor of such, where a vector position is associated with the decision number. 

&2. Other issues 

One of the major disadvantages of the current implementation is its high parameterization: 
there are about 40 input parameters that must be specified, with most of them being con- 
tinuous probability values. Under such conditions, it seems highly unlikely that the proper 
combination for a given run will be selected. This is the reason for the poorer performance 
noticed on more complex problems (e.g., multiplexer fll).  Moreover, on some occasions 
we observed an improved performance after slightly changing the initial probabilities. 
However, a much more extensive and systematic experimentation is necessary to deter- 
mine the actual source of such variations: randomness of the runs or some problem-specific 
characteristics. 

To deal with the problem of the size of the parameter space, it is necessary to explore 
inter- and intra-dependencies between such parameters. For example, all rule-set level appli- 
cation probabilities should be specified with respect to each other and, as a group, with 
respect to those of other groups. The dependence of the selection probabilities on the prob- 
lem size should be explored. However, establishing such relations requires an extensive 
testing over a wide variety of different problems. To deal with the second problem (depen- 
dency on characteristics of the problem), the choice of such abstracted parameters should 
be further associated (in addition to the dynamic method of section 5.5) with the problem 
complexity (determined dynamically in the process of learning) and some learning criteria 
(specified by the user or some other requirements). Then all these parameters could be 
replaced by few conceptual ones, for example, desired type of descriptions (such as specific 
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vs. general, or low attribute cost vs. low descriptive cost). Such an abstraction would pro- 
vide for both easier use and more efficient performance. To deal with other non-probabilistic 
parameters, most of which control the learning bias, it is necessary to study such bias exten- 
sively. Some recent results show that adjusting the bias appropriately can improve both 
the speed and the quality of learning (Janikow, in pres~j. 

While it might be conceptually advantageous to assume the existence of noise-free data, 
it is often unrealistic under natural conditions. Therefore, an artificial system aimed at work- 
ing in a natural domain should deal with these issues. Some researchers addressed the prob- 
lem of noisy features. For example, Clark and Niblett (1987) discuss the effect of noise 
on induction and present their probabilistic way of dealing with the problem. Quinlan (1990), 
showed how to deal with the effect of noisy data in decision trees. The two-tiered represen- 
tation of AQ family of systems applies to noise effect reduction as well. Looking at these 
attempts, it is fair to say that noise accommodation generally employs some kind of numerical 
approach. Our simplified approach assumes a crisp concept representation with rule-based 
conceptualization and is not well suited for dealing with noise: the most appealing approach 
would be to combine rule-coverage information with rule complexity in such a way that 
rules with very low positive coverage become more costly and more likely to be removed. 
The same strategy applies also to all of the proposed generalizations to deal with multiple 
concepts. However, in the case of the extended chromosome architecture, the two-tiered 
description may itself be more valuable as a noise-accommodation agent, since this approach 
was shown to improve noisy recognition in the AQ15 system. 

We mentioned in section 5.5 that pursuing atomicity and efficiency over complexity made 
us neglect the inductive resolution rule. It would be an interesting study to compare the 
behavior of the current system with another one implementing this operator, along with 
other possible new operators. Such a study should concentrate on both the quantitative 
and qualitative properties, as well as possible quality vs. time trade-off. 

In addition, some of the rule set level operators described in section 5.5 could be dif- 
ferently defined, depending on the selection of applicable rules. For example, the "rules 
exchange" operator could overlook the selection probability and always select a single rule. 
On the other hand, the "rules copy" "rules generalization," "rules drop," and "rules 
specialization" could be enhanced by such probabilities, instead of always choosing a 
fixed number of rules (one or two, depending on the nature of the operator). Again, an 
extensive study is required to establish values of such new operators in relation to those 
presently used. 

The ideas used here can be seen as a very specific case of more general ideas presented 
by Davis (1991), where he calls for exploring combinations of the traditional domain- 
independent genetic algorithms with some known problem-specific methods (the hybrid 
approach). The only difference between this system and those ideas lies in the initializa- 
tion. Davis argues that the first population should be filled by chromosomes representing 
properly represented results of some known fast systems. The argument for such an enhance- 
ment is that then the genetic algorithm can only improve such ad hoc solutions. Therefore, 
it is guaranteed to perform at least as well as such other systems. In our domain, there 
are such programs. For example, most decision tree systems are very efficient and produce 
assertions easily convertible to a rule-based format. Since our initial experiments indicate 
the system's ability to process some initial hypotheses, there is a potential for a significant 
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performance and time improvement. Moreover, another interesting idea is to use decision- 
tree-based operators, which partition the current event subspace, instead of the less sophis- 
ticated "rule split" operator. 

The author wishes to thank all of the reviewers for their valuable comments. This work 
was partially supported by a computational grant from the Microelectronic Center of North 
Carolina. 
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