
532 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

A Novel Evolutionary Data Mining Algorithm
With Applications to Churn Prediction

Wai-Ho Au, Keith C. C. Chan, and Xin Yao, Fellow, IEEE

Abstract—Classification is an important topic in data mining
research. Given a set of data records, each of which belongs to
one of a number of predefined classes, the classification problem is
concerned with the discovery of classification rules that can allow
records with unknown class membership to be correctly classified.
Many algorithms have been developed to mine large data sets for
classification models and they have been shown to be very effective.
However, when it comes to determining the likelihood of each clas-
sification made, many of them are not designed with such purpose
in mind. For this, they are not readily applicable to such problem
as churn prediction. For such an application, the goal is not only
to predict whether or not a subscriber would switch from one car-
rier to another, it is also important that the likelihood of the sub-
scriber’s doing so be predicted. The reason for this is that a car-
rier can then choose to provide special personalized offer and ser-
vices to those subscribers who are predicted with higher likelihood
to churn. Given its importance, we propose a new data mining al-
gorithm, called data mining by evolutionary learning (DMEL), to
handle classification problems of which the accuracy of each pre-
dictions made has to be estimated. In performing its tasks, DMEL
searches through the possible rule space using an evolutionary ap-
proach that has the following characteristics: 1) the evolutionary
process begins with the generation of an initial set of first-order
rules (i.e., rules with one conjunct/condition) using a probabilistic
induction technique and based on these rules, rules of higher order
(two or more conjuncts) are obtained iteratively; 2) when iden-
tifying interesting rules, an objective interestingness measure is
used; 3) the fitness of a chromosome is defined in terms of the
probability that the attribute values of a record can be correctly
determined using the rules it encodes; and 4) the likelihood of pre-
dictions (or classifications) made are estimated so that subscribers
can be ranked according to their likelihood to churn. Experiments
with different data sets showed that DMEL is able to effectively
discover interesting classification rules. In particular, it is able to
predict churn accurately under different churn rates when applied
to real telecom subscriber data.

Index Terms—Churn prediction, customer retention, data min-
ing, evolutionary computation, genetic algorithms.

I. INTRODUCTION

CLASSIFICATION is an important topic in data mining
research. Given a set of data records, each of which be-

longs to one of a number of predefined classes, the classifica-
tion problem is concerned with the discovery of classification

Manuscript received September 1, 2002; revised July 23, 2003. This work
was supported in part by The Hong Kong Polytechnic University under Grant
A-P209 and Grant G-V958.

W.-H. Au and K. C. C. Chan are with the Department of Computing, The
Hong Kong Polytechnic University, Kowloon, Hong Kong (e-mail: cswhau@
comp.polyu.edu.hk; cskcchan@comp.polyu.edu.hk).

X. Yao is with the School of Computer Science, The University of Birm-
ingham, Birmingham B15 2TT, U.K. (e-mail: x.yao@cs.bham.ac.uk).

Digital Object Identifier 10.1109/TEVC.2003.819264

rules that can allow records with unknown class membership to
be correctly classified. Many algorithms have been developed
to mine large data sets for classification models and they have
been shown to be very effective [3], [16], [17], [30], [36]–[38].
However, when it comes to determining the likelihood of each
classification made, many of them are not designed with such
purpose in mind.

Existing data mining algorithms such as decision tree based
algorithms (e.g., BOAT [16], C4.5 [36], PUBLIC [37], Rain-
Forest [17], SLIQ [30], SPRINT [38]) can be used to uncover
classification rules for classifying records with unknown class
membership. Nevertheless, when decision tree based algorithms
are extended to determine the probabilities associated with such
classifications (see, e.g., [34]), it is possible that some leaves in
a decision tree have similar class probabilities.

Unlike decision tree based algorithms, other classification
techniques such as logit regression and neural networks [3]
can determine a probability for a prediction with its likelihood.
However, comparing with decision tree based algorithms, these
algorithms do not explicitly express the uncovered patterns in a
symbolic, easily understandable form (e.g., if-then rules).

Owing to the limitations of these existing techniques, we
propose a new algorithm, called data mining by evolutionary
learning (DMEL), to mine classification rules in databases.
The DMEL algorithm has the following characteristics. First,
instead of random generation, the initial population, which
consists of a set of first-order rules,1 is generated nonrandomly
using a probabilistic induction technique. Based on these
rules, rules of higher orders are then obtained iteratively with
the initial population at the start of each iteration obtained
based on the lower order rules discovered in the previous
iteration. Second, when identifying interesting rules, DMEL
uses an objective interestingness measure that does not require
subjective input from the users. Third, in evaluating the fitness
of a chromosome, DMEL uses a function, which is defined in
terms of the probability that the attribute values of a tuple can
be correctly determined using the rules it encodes. Fourth, the
likelihood of predictions (or classifications) made is estimated.
Fifth, DMEL is able to handle missing values in an effective
manner.

Using the discovered rules, DMEL can be used to classifying
records with unknown class membership. In particular, DMEL
is able to predict churn, which is concerned with the loss of sub-

1In this paper, the order of the rule is related to the number of conditions in
the antecedent of a rule. A one-condition rule is, therefore, a first-order rule. If a
rule’s antecedent contains two conditions, it is a second-order rule. If there are
three conditions in the antecedent of a rule, it is a third-order rule, and so on.

1089-778X/03$17.00 © 2003 IEEE

AU et al.: NOVEL EVOLUTIONARY DATA MINING ALGORITHM 533

scribers who switch from one carrier to another. Since competi-
tion in the telecommunications industry is very fierce, many car-
riers consider reducing churn as an important business venture
to maintain profitability. Churn costs carriers a large amount of
money annually in North America and Europe [28]. A small re-
duction in annual churn rate can result in a substantial increase
in the valuation and the shareholder value of a carrier [28]. Con-
sequently, analyzing and controlling churn is critical for carriers
to improve their revenues.

To reduce churn rate, a carrier gives us a database of 100 000
subscribers. Among these subscribers, some of them had al-
ready switched to another carrier. The task assigned to us is
to mine the database to uncover patterns that relate the demo-
graphics and behaviors of subscribers with churning so that fur-
ther loss of subscribers can be prevented as much as possible.
Efforts are then made to retain subscribers that are identified to
have a high probability of switching to other carriers.

Since the customer services centers of the carrier only have a
fixed number of staff available to contact a small fraction of all
subscribers, it is important for it to distinguish subscribers with
high probability of churning from those with low probability so
that, given the limited resources, the high probability churners
can be contacted first.

For such an application, the goal is not only to predict whether
or not a subscriber would switch from one carrier to another, it
is also important that the likelihood of the subscriber’s doing so
be predicted. Otherwise, it can be difficult for the carrier to take
advantage of the discovery because the carrier does not have
enough resources to contact all or a large fraction of the sub-
scribers. Although logit regression and neural networks can de-
termine a probability for a prediction with its likelihood, they
do not explicitly express the uncovered patterns in a symbolic,
easily understandable form. It is for this reason that the car-
rier did not consider these approaches as the best for their task
concerned as they could not verify and interpret the uncovered
churning patterns.

Unlike existing techniques, DMEL is able to mine rules
representing the churning patterns and to predict whether a
subscriber is likely to churn in the near future. Experimental
results show that it is able to discover the regularities hidden
in the database and to predict the probability that a subscriber
churns under different churn rates. In addition, since some at-
tributes in the subscriber database contains significant amount
of missing values, the ability of DMEL to handle missing
values effectively is important to the success of DMEL in churn
prediction.

In the following section, we review related work in data
mining and evolutionary computation literature for building
predictive models. In particular, we explain how they can be
used in churn prediction. In Section III, we provide the details
of DMEL and explain how it can be used to discover interesting
rules hidden in databases. To evaluate the performance of
DMEL, we applied it to several real-world databases. The
experimental results are given in Section IV. The details of
the subscriber database provided by a carrier in Malaysia and
the experimental results using this database to test if DMEL
is effective for churn prediction are then given in Section V.
Finally, in Section VI, we give a summary of the paper.

II. RELATED WORK

Among the different approaches for building predictive
models in data mining, decision-tree based algorithms are
the most popular (e.g., [16], [17], [30], [36]–[38]). These
algorithms usually consist of two phases: a tree-building and
a tree-pruning phase (e.g., BOAT [16], C4.5 [36], RainForest
[17], SLIQ [30], SPRINT [38]).

Assume that the records in a database are characterized by
attributes, , and that is the attribute

whose values are to be predicted. In the tree-building phase,
a decision tree is constructed by recursively partitioning the
training set according to the values of .
This partitioning process continues until all, or the majority,
of the records in each partition have the same attribute values,

, where and
. Since the resulting decision tree may contain branches that

are created due to noises in the data, some of the branches may
need to be removed. The tree-pruning phase, therefore, consists
of selecting and removing the subtrees that have the largest es-
timated error rate. Tree pruning has been shown to increase the
prediction accuracy of a decision tree on one hand and reduce
the complexity of the tree on the other. Of the many decision
tree based algorithms that have been used in data mining, C4.5
is by far the most popular [36].

Other than the use of decision tree based algorithms,
techniques based on genetic algorithms (GAs) have also
been proposed for predictive modeling. There are currently
two different GA-based approaches for rule discovery: the
Michigan approach and the Pittsburgh approach. The Michigan
approach, exemplified by Holland’s classifier system [21],
represents a rule set by the entire population whereas the
Pittsburgh approach, exemplified by Smith’s LS-1 system [39],
represents a rule set by an individual chromosome. Although
the Michigan approach is able to deal with multiclass problems,
one of the major difficulties in using it is the problem in credit
assignment, which gives the activated classifiers a reward if
the classification they produced is correct and gives them a
punishment, otherwise. Specifically, it is extremely hard to
come up with a good credit assignment scheme that works.

The algorithms based on the Pittsburgh approach (e.g., [10],
[23], [39]) represent an entire rule set as a chromosome, main-
tain a population of candidate rule sets, and use selection and
genetic operators to produce new generation of chromosomes
and, hence, new rule sets. Each chromosome competes with one
another in terms of classification accuracy on the application
domain. Individuals are selected for reproduction usingroulette
wheel selectionand a whole new population is generated based
oncrossoverandmutation. The selected chromosomes produce
offspring using an extended version of the standardtwo-point
crossoveroperator such that the crossover points can occur ei-
ther both on rule boundaries or within rules [10], [39]. That is, if
one parent is being cut on a rule boundary, then the other parent
must be cut on a rule boundary as well; similarly, if one parent
is being cut at a point, say, 5 bits to the right of a rule boundary,
then the other parent must be cut in a similar spot [10], [39]. The
mutation operator is identical to the classical one, which per-
forms bit-level mutations. The fitness of each individual rule set

534 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

is computed by testing the rule set on the current set of training
examples [10], [39].

The Pittsburgh approach was originally designed for single-
class learning problems and, hence, only the antecedent of a
rule was encoded into an allele of a chromosome [10], [23],
[39]. An instance that matches one or more rules is classified
as a positive example of the concept (class) and an instance
that fails to match any rule is classified as a negative example
[10], [23], [39]. To tackle multiclass problems, they could be
extended by introducing multiple populations so that a specific
population is dedicated to learn each concept. It is possible
that an instance is matched by more than one rule of different
concepts on one hand and it is also possible that an instance
is matched by none of any rule of any concept on the other.
Unfortunately, this problem has not been addressed in many of
the systems based on the Pittsburgh approach (e.g., [10], [23],
[39]).

Recently, the use of GAs for rule discovery in the application
of data mining has been studied in [9], [12], [15], [26]. These
algorithms are based on the Michigan approach in a way that
each rule is encoded in a chromosome and the rule set is repre-
sented by the entire population. Unlike classifier systems (e.g.,
[19], [21], [29]), they 1) have modified the individual encoding
method to use nonbinary representation; 2) do not encode the
consequents of rules into the individuals; 3) use extended ver-
sion of crossover and mutation operators suitable to their repre-
sentations; 4) do not allow rules to be invoked as a result of the
invocation of other rules; and 5) define fitness functions in terms
of some measures of classification performance (e.g.,cover[9],
sensitivityandspecificity[12], etc.).

It is important to note that these algorithms [9], [12], [15]
were developed to discover rules for a single class only. When
they are used to deal with multiclass problems, the GAs are run
once for each class. Specifically, they would search rules pre-
dicting the first class in the first run; they would search rules
predicting the second class in the second run and so on. Sim-
ilar to the Pittsburgh approach, it is possible that an instance is
matched by more than one rule predicting different classes on
one hand and it is also possible that an instance is matched by
none of any rule predicting any class on the other. This problem
has not been addressed by these algorithms.

Although GA-based rule discovery approaches can produce
accurate predictive models, they cannot determine the likeli-
hood associated with their predictions. This prevents these tech-
niques from being applicable to the task of predicting churn,
which requires the ranking of subscribers according to their like-
lihood to churn.

A related work on churn prediction in a database of 46 744
subscribers has been presented in [32]. The performances of
logit regression, C5.0 (a commercial software product based
on C4.5), and nonlinear neural networks with a single hidden
layer and weight decay [3] are evaluated empirically. The ex-
perimental results in [32] showed that neural networks outper-
formed logit regression and C5.0 for churn prediction.

An empirical comparison of DMEL with neural networks
and C4.5 on the subscriber database provided by the carrier in
Malaysia will be given in Section V.

Fig. 1. DMEL algorithm.

III. DMEL FOR DATA MINING

To perform searches more effectively in a huge rule set
space, we propose to use an evolutionary algorithm called
DMEL. Using an evolutionary learning approach, DMEL is
capable of mining rules in large databases without any need for
user-defined thresholds or mapping of quantitative into binary
attributes. However, DMEL requires quantitative attributes to
be transformed to categorical attributes through the use of a
discretization algorithm, as will be seen later.

In this paper, the order of the rule is related to the number of
conditions in the antecedent of a rule. A one-condition rule is,
therefore, a first-order rule. If a rule’s antecedent contains two
conditions, it is a second-order rule. If there are three conditions
in the antecedent of a rule, it is a third-order rule, and so on.
DMEL discovers rules by an iterative process. It begins with
the generation of a set of first-order rules using a probabilistic
induction technique. Based on these rules, it then discovers a
set of second-order rules in the next iteration and based on the
second-order rules, it discovers third-order rules, etc. In other
words, if we refer to the initial set of first-order rules as, the
rules in are then used to generate a set of second-order rules,

. is then used to generate a set of third-order rules,
and so on for 4th and higher order rules. In general, at the (
)th iteration, DMEL begins an evolutionary learning process by

generating an initial population of individuals (each represents
a set of th order rules) by randomly combining the rules in

to form a set of rules of order. Once started, the iterative
learning process goes on uninterrupted until no more interesting
rules in the current population can be identified. The DMEL
algorithm is given in Fig. 1.

Thedecodefunction in Fig. 1 is to extract all the interesting
rules encoded in a chromosome and store them in. If an allele
in the chromosome is found interesting based on the objective
measure defined in Section III-B, thedecodefunction will ex-
tract the rules it encodes. The rule set returned by thedecode
function, therefore, contains interesting rules only. When none
of the rules encoded in the individual is found interesting, the
decodefunction will return a null set and, hence, will be-
come a null set.

AU et al.: NOVEL EVOLUTIONARY DATA MINING ALGORITHM 535

Fig. 2. An allele representing anlth order rule.

A. Encoding Rules in the Chromosomes

For the evolutionary process, DMEL encodes a complete set
of rules in a single chromosome in such a way that each gene
encodes a single rule. Specifically, given the followingth order
rule, for example:

where , given by (14) later, is an uncertainty measure associ-
ated with it, this rule is encoded in DMEL by the allele given in
Fig. 2.

It should be noted that the consequent and the uncertainty
measure are not encoded. This is because the consequent is not,
and in fact, should not be determined by chance. In DMEL,
both the consequent and the uncertainty measure are determined
when the fitness of a chromosome is computed. Given this rep-
resentation scheme, the number of genes in the chromosome is,
therefore, the same as the number of rules in the rule set.

B. Generating First-Order Rules

DMEL begins the evolutionary process by the generation of
a set of first-order rules. When compared with randomly gener-
ated initial population, it has been shown that heuristically-gen-
erated initial populations can improve convergence speed and
find better solutions [20], [22], [24], [41]. Based on these find-
ings, DMEL first discovers a set of first-order rules and places it
in the initial population. Furthermore, the initial first-order rules
are generated very rapidly. The time it takes to generate the ini-
tial population that contains the first-order rules is negligible,
when compared with the time it takes for the best set of rules to
be evolved.

The generation of first-order rules can be accomplished by
using the interestingness measure given by (5) and the weight
of evidence measure given by (14) later. To do so, a probabilistic
induction technique called APACS [6], [7] is used. Among all
possible attribute value pairs, APACS is able to identify those
that have some kind of association relationship even if a data-
base is noisy and contains many missing values. The details of
APACS are given as follows.

Let be a set of attributes that
characterize the tuples in a database and let

denote the domain of an attribute . In
the case the domain is continuous, its values is mapped into
different categories by a discretization technique proposed in
[8]. This technique is used since it has been shown to be able to
minimize information lost as a result of the transformation.

Let be the number of tuples having both attribute
values and , where ,

, and . If we assume that a tuple has is

independent of whether it has , the number of tuples that are
expected to have both and is given by

(1)

where . The independency of
and can be evaluated objectively by the chi-square test as

follows. If the statistic

(2)

is greater than the critical chi-square , where
is the degree of freedom and(usually taken to

be 0.05 or 0.01) is the significance level, then we can con-
clude, with a confidence level of , that is dependent
on . It is important to note that the chi-square test only tells
us whether an attribute is helpful in determining another at-
tribute . However, it does not provide us with much informa-
tion about whether a tuple having would have

at the same time.
Instead of using the chi-square test, we propose to use the

residual analysis[6], [7] to determine whether is dependent
on . We consider the association betweenand inter-
esting if the probability of finding in a tuple given that is
in the same tuple is significantly different from the probability
of finding in the tuple alone. In other words, therefore, there
exists an interesting association betweenand if

no. of tuples with
no. of tuples with

(3)

is significantly differentfrom

no. of tuples with
(4)

To decide if the difference is significant, theadjusted residual
[6], [7] is used

(5)

where is thestandardized residualand is defined as [6],
[7]

(6)

and is themaximum-likelihood estimate[6], [7] of the
variance of and is given by

(7)
The measure defined by (5) can be considered an objective

interestingness measure as it does not depend on a user’s subjec-
tive input. Since has a standard normal distribution [1],

536 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

if (i.e., the 95th percentiles of the normal distri-
bution), we can conclude that the difference between

and is significant and that the as-
sociation between and is interesting.

In addition, if , then implies . In other
words, whenever is found in a tuple, the probability that
is also found in the same tuple is expected to be significantly
higher than when is not found. In such a case, we say that

is positivelyassociated with . Conversely, if
, whenever is found, the probability that is also

found in the same tuple is expected to be significantly lower
than when is not found. In such a case, we say that is
negativelyassociated with .

Given that and are positively or negatively associated,
a measure of the strength of the association can be defined. In
[6], [7], such a measure is proposed and it is called theweight
of evidencemeasure. This measure is defined in terms of an in-
formation theoretic concept known as mutual information. Mu-
tual information measures the change of uncertainty about the
presence of in a tuple given that it has . It is defined as
follows:

(8)

Based on the mutual information measure, the weight of evi-
dence measure is defined as [6], [7]

(9)

can be interpreted intuitively as a measure of the differ-
ence in the gain in information when a tuple that is characterized
by the presence of is also characterized by as opposed
to being characterized by other values. is positive if
is positively associated with , whereas it is negative if is
negatively associated with .

When the number of tuples characterized by both and
is sufficiently large, we can simply use the sample posterior

probability of given , , as the
population posterior probability. However, under skewed class
distributions, the number of tuples having and can be
very small and this can prohibit the use of the sample posterior
probability as the population posterior probability. To obtain the
population posterior probability, we propose to use an empirical
Bayes method, which takes both the sample posterior and the
sample prior probabilities into consideration [4]. The empirical
Bayes estimation of the posterior probability of given is
defined as

(10)

where is theshrinkage factor, which weighs the importance
of the posterior and the prior probabilities. Assuming the prob-
ability distribution of the records having and and the

probability distribution of the estimated posterior probability
are both Gaussian, the shrinkage factor is defined as

(11)

where and are the variance of the entire database and
that of attribute , respectively.

In order to calculate and in (11), Gini’s definition
of variance for categorical data [27] is used. The variance of
attribute , , is given by

(12)

and the variance of the entire databaseis calculated by

(13)

The weight of evidence defined in (9) can then be modified
as

(14)

Given and given that is associated with , we
can form the first-order rule, .

By the use of the interestingness measure given by (5) and
the weight of evidence measure given by (14), a set of inter-
esting first-order rules can be discovered. Once these rules are
discovered, DMEL will begin an iterative process of initializa-
tion of population, evaluation of fitness of individuals, selec-
tion, reproduction, and termination, etc., so as to discover higher
order rules.

C. Initialization of Populations

Since a good initial population may improve the speed of the
evolutionary process and make it easier for an optimal solu-
tion to be found, DMEL does not generate its initial popula-
tions completely randomly. Instead, it makes use of a heuristic
in which the association between and is more likely
to be interesting if the association between and and the
association between and are interesting. Based on this
heuristic, DMEL generates different sets ofth order rules by
randomly combining the ()th order rules discovered in the
previous iteration. The details of the initialization process are
given in theinitialize function in Fig. 3.

The initialize function takes as argument, . The
in Fig. 3 denotes the th allele of the th

chromosome. The function returns anth order allele
constructed by randomly combiningelements in . For our
experiments,popsizewas set to 30 and the number of alleles in
each chromosome was set to , where
denotes the number of rules in . We set
because each allele represents the antecedent of a rule and the
chromosome is used to encode .

AU et al.: NOVEL EVOLUTIONARY DATA MINING ALGORITHM 537

Fig. 3. Theinitialize function.

Fig. 4. Thereproducefunction.

D. Genetic Operators

The genetic operators used by DMEL are imple-
mented in thereproduce function shown in Fig. 4. The

function uses theroulette wheel
selectionscheme [13], [18], [31] to select two different chromo-
somes, and , with respect to their fitness values
from the current population, i.e., . These two
chromosomes are then passed as arguments to thecrossover
function. The function uses the
two-point crossoveroperator because it allows the combination
of schemata, which is not possible with the classical, one-point
crossover [31]. DMEL uses two different strategies in choosing
the crossover points, namely,crossover-1 and crossover-2.
The crossover-1 operator allows the crossover points to occur
between two rules only, whereas thecrossover-2 operator
allows the crossover points to occur within one rule only. An
example of thecrossover-1 operator and that of thecrossover-2
operator are graphically depicted in Figs. 5 and 6, respectively.

In DMEL, the crossover probability for thecrossover-1 oper-
ator and that for thecrossover-2 operator are denoted asand

, respectively. For our experimentation, four different setups
are used and they are summarized in Table I.

The first three setups, DMEL-1, DMEL-2, and DMEL-3 use
constant values of and , whereas the last setup, DMEL-4,
uses adaptive values of and . In DMEL-4, is increased
by 0.05 and is decreased by 0.05 whenever the termina-
tion criteria specified in Section III-F are satisfied. The evolu-
tionary process ends when and reach 0.75 and 0.25, re-
spectively, and the termination criteria are satisfied. The perfor-

(a)

(b)

Fig. 5. An example of thecrossover-1 operator (the thick borders indicate the
rule boundaries). (a) Before crossover. (b) After crossover.

(a)

(b)

Fig. 6. An example of thecrossover-2 operator (the thick borders indicate the
rule boundaries). (a) Before crossover. (b) After crossover.

TABLE I
DIFFERENTSETUPS OFCROSSOVERPROBABILITIES p AND p

mance of DMEL under different setups will further be discussed
in Section V.

The function, which is different from
the traditional mutation operator [13], [18], [31], takes a chro-
mosome as argument. Its details are given in Fig. 7. Therandom
function returns a real number between 0 and 1 andpmutation
contains the mutation rate and is a constant. The
function returns an integer between 1 and. The

denotes the th rule in the th allele of chromo-
somenchrom. The function replaces theth
rule with each element in and evaluates the chromosome’s
fitness value. It returns the one producing the greatest fitness.
Instead of replacing a rule with an element inrandomly, the
use of thehill-climb function allows DMEL to search for im-
provements even when premature convergence occurs [13].

538 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

Fig. 7. Themutationfunction.

The
function in reproduce produces a new population,

, by removing the two least-fit chromosomes
in and replacing them with and

, while keeping the rest of the other chromosomes
intact.

E. Selection and the Fitness Function

To determine the fitness of a chromosome that encodes a
set of th order rules, DMEL uses a performance measure de-
fined in terms of the probability that the value of an attribute
of a tuple can be correctly predicted based on the rules in

(rules encoded in the chromosome being evalu-
ated). The use of this fitness measure is to allow DMEL to max-
imize the number of records that DMEL can correctly predict.
How exactly such fitness value can be determined is given in the
following.

An attribute, say, of a tuple characterized by
is randomly selected and the

value deleted from . The rules contained in are then
used to see if the value of can be correctly predicted
based on . Assume that a rule which
predicts is matched, this rule can be
considered as providing some evidence for or againstto
have the value and the strength of the evidence is given
by the weight of evidence associated with it. By matching

against the rules in , the value that
should take on can be determined based on a total weight of

evidence measure [6], [7], which we describe as follows.
Suppose that, of the attribute values that characterize,

some combinations of them, , where
,

, , match a number of rules that predict to have
(or not to have) a value , then the total weight of evidence
measure for or against to take on the value is given by
[6], [7]

(15)

It is important to note that there may be no rule infor
predicting the value and, hence, . In this
case, we do not have any evidence on hand to determine whether

or not.

Based on (15), can be assigned the value if

(16)

where () denotes the number of different values of
that are implied by the matched rules.

If , the prediction is correct and we can update an
accuracy count associated with the chromosome whose fitness
is being evaluated. This accuracy count can be incremented by
one whenever a prediction is accurately made. By putting each
of the tuples in the database to the same test above, we define
the fitness measure of each chromosome to be: (value of the
accuracy count) .

F. Criteria for Termination

The function in Fig. 1 imple-
ments the following termination criteria: 1) terminate when
the best and worst performing chromosome in
differs by less than 0.1% because in this case, the whole
population becomes very similar and it is not likely to achieve
any improvement in the future generations; 2) terminate when
the total number of generations specified by the user is reached;
and 3) terminate when no more interesting rules in the current
population can be identified because it is unlikely to find any
interesting th order rules if no ()th order rule is found
interesting.

IV. EXPERIMENTAL RESULTS ONDIFFERENTDATASETS

To evaluate the performance of DMEL in different data
mining tasks, we applied it to several real-world databases.
For each trial in each experiment, each of these databases
was divided into two datasets with records in each of them
randomly selected. The mining of rules was performed on one
of the datasets (i.e., the training dataset). The other dataset
was reserved for testing (i.e., the testing dataset). For each of
these testing datasets, the values of one of the attributes were
deleted. We refer to this attribute as the class attribute in the
rest of this section. The rules discovered by mining the training
dataset were used to predict the class attribute values in the
testing dataset. The predicted values are then compared against
the original values to see if they are the same. If it is the case,
the accuracy count is incremented correspondingly. Based
on this accuracy count, the percentage accuracy for each of
DMEL, C4.5 [36], a well-known decision-tree classifier, SCS
[18], a Michigan-style classifier system, and GABL [10], a
Pittsburgh-style concept learner was computed. The accuracy,
averaged over a total of ten trials for each experiment, were
recorded and compared and they are given in Table II.

Since GABL was originally developed to solve “single-class
(or concept)” problems, multiple populations had to be used in
our experiments so that each of them could be dedicated to the
learning of relationship between a single value in a multiple-
valued attribute and other attribute values in a database. In our
experiments, when a test record is matched by none of any rule
of any class, we assigned the record to the most common or the
majority class in the training dataset; on the other hand, when a
test record is matched by more than one rule of different classes,

AU et al.: NOVEL EVOLUTIONARY DATA MINING ALGORITHM 539

TABLE II
PERCENTAGEACCURACY OF THEFOUR DIFFERENTAPPROACHES

we assigned the record to the majority class that matched the
record.

In our experiments, the crossover rate in DMEL was set to
0.6, the mutation rate was set to 0.0001, and the population
size was set to 30. Since the performances of DMEL under dif-
ferent setups (Table I) were more or less the same, we only re-
port the experimental results of DMEL under the setup where
both the crossover probability for thecrossover-1 and that for
thecrossover-2 operator were set to 0.5 (i.e., DMEL-1) in this
section. The performance of DMEL for churn prediction under
different setups will be discussed in the next section.

For GABL, the mutation probability was set to 0.001, the
crossover probability was set to 0.6, and the population size was
set to 100 [10]. For SCS, the population size was set to 1,000,
the bid coefficient was set to 0.1, the bid spread was set to 0.075,
the bidding tax was set to 0.01, the existence tax was set to 0,
the generality probability was set to 0.5, the bid specificity base
was set to 1, the bid specificity multiplier was set to 0, the bid
specificity base was set to 1, the bid specificity multiplier was
set to 0, the reinforcement award was set to 1, the proportion to
select per generation was set to 0.2, the number to select was
set to 1, the mutation probability was set to 0.02, the crossover
probability was set to 1, the crowding factor was set to 3, and
the crowding subpopulation was set to 3 [18].

All the experiments reported in this section and Section V
were performed using a personal computer with Intel Pentium
III 1 GHz processor as CPU, 256 MB of main memory, and
running Red Hat Linux 7.1. In the following, we describe the
databases used in our experiments and present the results ana-
lyzing the performance of the different approaches.

A. Zoo Database

Each record in thezoodatabase [14] is characterized by 18
attributes. Since the unique name of each animal is irrelevant,
it was ignored. All the 17 remaining attributes are categorical.
The class attribute is concerned with the type of the animals
are classified into. The value of the class attribute can be
one of mammal, bird, reptile, fish, amphibian, insect, and
coelenterate.

B. DNA Database

Each record in theDNAdatabase [33] consists of a sequence
of DNA, an instance name, and the class attribute. Since the
unique name of each instance is irrelevant, it was ignored. A se-
quence of DNA contains 60 fields, each of which can be filled
by one of: A, G, T, C, D (i.e., A or G or T), N (i.e., A or G or
C or T), S (i.e., C or G), and R (i.e., A or G). The class attribute
is concerned with the splice junctions that are points on a DNA
sequence at which “superfluous” DNA is removed during the
process of protein creation. It indicates the boundaries between
extrons (the parts of the DNA sequence retained after splicing)
and introns (the parts of the DNA sequence that are spliced out)
and can be one of EI (extron-intron boundary), IE (intron-ex-
tron boundary), and N (neither extron-intron nor intron-extron
boundary).

C. Credit Card Database

Thecredit carddatabase [35] contains data about credit card
applications. It consists of 15 attributes of which the class at-
tribute is concerned with whether or not an application is suc-
cessful. The meaning of these attributes are not known as the
names of the attributes and their values were changed by the
donor of the database to meaningless symbols to protect con-
fidentiality of the data. Out of the 15 attributes, 6 are quantita-
tive and 9 are categorical. The six quantitative attributes were
discretized into four intervals using the discretization technique
described in [8].

D. Diabetes Database

Each record in thediabetesdatabase [40] is characterized by
nine attributes. The value of the class attribute can be either
“1” (tested positive for diabetes) or “2” (tested negative for di-
abetes). The other attributes are quantitative and they were dis-
cretized into four intervals using the discretization technique de-
scribed in [8].

E. Satellite Image Database

Each record in thesatellite imagedatabase corresponds to
a 3 3 square neighborhood of pixels completely contained

540 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

within an area. Each record contains the pixel values in the
four spectral bands of each of the 9 pixels in the 33 neigh-
borhood and the class attribute is the class of the central pixel
that was one of: red soil, cotton crop, grey soil, damp grey soil,
soil with vegetation stubble, and very damp grey soil. All the 36
() attributes
other than the class attribute is quantitative and in the range
between 0 and 255. For our experiments, these quantitative at-
tributes were discretized into four intervals using the discretiza-
tion technique described in [8].

F. Social Database

Thesocialdatabase [25] contains data collected by the U.S.
Census Bureau. The records in the database are characterized
by 15 attributes. Of these attributes, six of them are quantita-
tive. These quantitative attributes were discretized into four in-
tervals using the discretization technique described in [8]. The
remaining nine attributes are all categorical. The class attribute
is concerned with whether the annual salary of a person exceeds
$50 K or not.

G. PBX Database

A private branch exchange (PBX) system is a multiple-line
business telephone system that resides on a company’s premises.
One of the significant features of a PBX system is its ability to
recordcall activity suchas keeping records ofall calls and callers.
In one of our experiments, we used the data from the database
of a PBX system used in a telecommunication company in In-
donesia. ThePBXdatabase contains data about the usage of the
PBX system in the company. Each record in thePBXdatabase
is characterized by 13 attributes. Except for two attributes that
are categorical, all the remaining attributes are quantitative. The
quantitative attributes were discretized into four intervals using
the technique described in [8]. There are many missing values
in this database. In particular, 98.4% of records have missing
values in one or more attributes. The class attribute is concerned
with the identification of the calling party.

H. Summary

In summary, DMEL performed better than the other three ap-
proaches in all the seven databases. It achieved an average accu-
racy of 91.7% and correctly classified 5.2%, 52.6%, and 35.3%
more test records than C4.5, SCS, and GABL, respectively.

V. EXPERIMENTAL RESULTS ON THESUBSCRIBERDATABASE

A carrier in Malaysia has provided us a database of 100 000
subscribers. The subscriber database was extracted randomly
from the time interval of August through October 1999. The
task was to discover interesting relationships concerning with
the demographics and the behaviors of the subscribers who had
churned in the period between August and September 1999. By
representing these relationships in the form of rules, they would
then be used to predict whether a subscriber would churn in
October 1999. According to the definition of the carrier, a sub-
scriber churns when all services held by him/her are closed.

The subscriber database provided by the carrier is stored in
an Oracle database. It contains three relations which are listed

TABLE III
RELATIONS IN THE SUBSCRIBERDATABASE

TABLE IV
SOME OF THEIDENTIFIED VARIABLES IN THE TRANSFORMEDDATA

in Table III. It is important to note that some attributes in some
relations contain significant amount of missing values, for ex-
ample, 62.4% of values in attribute LOCATION in relation DE-
MOGRAPHICS are missing. The handling of missing values is
an important problem to be tackled for mining interesting rules
in this database.

We, together with a domain expert from the carrier, have iden-
tified 251 variables associated with each subscriber that might
affect his/her churn. Some of these variables can be extracted
directly from the database whereas some of them requiredata
transformation, which is one of the key steps in theknowledge
discovery process[11], on the original data. One of the ways to
perform data transformation is the use oftransformation func-
tions [2], [5]. Instead of discovering rules in the original data,
we applied DMEL to thetransformed data. Table IV lists some
of these variables in the transformed data.

To manage the data mining process effectively, the trans-
formed data are stored in a relation in the Oracle database. We
refer to this relation astransformed relationin the rest of this
paper. Each attribute in the transformed relation corresponds to
an identified variable. The interested readers are referred to [2]
and [5] for the details of the use of transformation functions.

Instead of mining the subscriber database, we used DMEL
to mine the transformed relation. The transformed relation was
divided into two partitions: the data concerning with whether
subscribers have churned or have not churned in the time in-
terval from August to September 1999 and the data concerning
with whether subscribers would churn or would not churn in
October 1999. The former was used as the training dataset for
DMEL to discover rules and the latter was used as the testing
dataset for DMEL to make the “churn” and “no churn” predic-
tions based on the discovered rules.

We applied DMEL to the training dataset to discover rules
and predict the “churn” or “no churn” of the subscribers in the
testing dataset. In the telecommunications industry, the “churn”

AU et al.: NOVEL EVOLUTIONARY DATA MINING ALGORITHM 541

(a)

(b)

Fig. 8. Reference lift curves. (a) Lift curve representing perfect discrimination
of churners from nonchurners. (b) Lift curve representing no discrimination of
churners from nonchurners.

and “no churn” prediction is usually expressed as alift curve.
The lift curve plots the fraction of all churners having churn
probability above the threshold against the fraction of all sub-
scribers having churn probability above the threshold. The lift
curve indicates the fraction of all churners can be caught if a
certain fraction of all subscribers were contacted. Since the cus-
tomer services centers of a carrier only have a fixed number of
staff that is able to contact a fixed fraction of all subscribers, the
lift curve, which can estimate the fraction of churners can be
caught given the limited resources, is very useful in the telecom-
munications industry.

The lift curve representing perfect discrimination of churners
from nonchurners and that representing no discrimination of
churners from nonchurners under a churn rate of 5% are shown
in Fig. 8(a) and (b), respectively. We refer to the former and
the latter asperfect churn predictorand random churn pre-
dictor, respectively.

In order to evaluate the performance of DMEL using lift
curve, we rank the tuples in the testing dataset according to
the total weight of evidence. Given the prediction and the total
weight of evidence produced by DMEL over the testing dataset,
the tuples predicted to churn are sorted in the descending order
of the total weight of evidence, whereas those tuples predicted
to not churn are sorted in the ascending order of the total
weight of evidence. The tuples predicted to churn come before
the tuples predicted to not churn. Using the above method, we

have an ordering of the tuples in the testing dataset such that
the ones with higher probability to churn come before the ones
with lower probability.

Since the churn rates of different carriers are different and the
churn rate of a specific carrier varies from time to time, we have
created several datasets with different monthly churn rates by
randomly deleting tuples in the training and the testing datasets
until appropriate fractions of churners and nonchurners are ob-
tained. We can then plot the performance of DMEL in the form
of lift curves under different monthly churn rates (Fig. 9). The
performance of DMEL under different setups (Table I) is also
shown in Fig. 9.

In order to facilitate comparisons, we also applied C4.5 and
nonlinear neural networks to these datasets. The neural net-
works used in our experiments are multilayer perceptrons with
a single hidden layer which contains 20 nodes and they were
trained by the back propagation algorithm with the learning rate
was set to 0.3 and the momentum term was set to 0.7. The lift
curves for C4.5 and neural networks are also shown in Fig. 9.

As shown in Fig. 9, the performances of DMEL were more or
less the same under different setups of the crossover probability
for thecrossover-1 and thecrossover-2 operator. This is a nice
feature because it is usually difficult for human users to deter-
mine the appropriate values of an algorithm’s parameters for it
may perform well under a specific setup in a certain environ-
ment and may perform poorly under the same setup in another
environment.

Regardless of the values of and , the performance
of DMEL was always better than that of the random churn
predictor when different fraction of subscribers were contacted
under different monthly churn rates. When compared with
C4.5, DMEL identified more churners than C4.5 under different
monthly churn rates. It is important to note that neural networks
also identified more churners than C4.5, which is consistent
with the study in [32]. When compared with neural networks,
DMEL identified more churners than neural networks did when
a small fraction (10%) of subscribers were contacted under
different monthly churn rates. When the fraction of subscribers
contacted were relatively large (10%), the performance of
DMEL was better than that of neural networks under a monthly
churn rate of 4%, whereas its performance was comparable to
neural networks’ under a monthly churn rate of 6% and 8%. It
is interesting to note that DMEL outperformed neural networks
when 80% of subscribers were contacted under a monthly
churn rate of 10%.

To better compare the performance of DMEL, C4.5, and
neural networks, let us consider thelift factor, which is defined
as the ratio of the fraction of churners identified and the fraction
of subscribers contacted. For example, if of churners were
identified when of subscribers were contacted, the lift
factor were . It is important to note that the lift factor for
the random churn predictor is 1. Owing to the limited number
of staff in the carrier’s customer services center, it can only
contact 5% of all subscribers. The lift factors for DMEL, C4.5,
and neural networks when 5% of subscribers were contacted
under different monthly churn rates are shown in Fig. 10.

Again, regardless of the values ofand , DMEL obtained
higher lift factors than neural networks, which in turn obtained

542 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Lift curves for DMEL, C4.5, and neural network under different monthly churn rates averaged over ten runs. (a) Monthly churn rate= 1%. (b) Monthly
churn rate= 2%. (c) Monthly churn rate= 4%. (d) Monthly churn rate= 6%. (e) Monthly churn rate= 8%. (f) Monthly churn rate= 10%.

higher lift factors than C4.5, when 5% of subscribers were con-
tacted under different monthly churn rates. The experimental
results showed that DMEL is able to make accurate churn pre-
diction under different churn rates. Furthermore, the relation-
ships discovered by neural networks are encoded in the weights
of the connections. It is difficult, if not impossible, to decode
the discovered relationships and present them to the domain ex-
pert in an interpretable form. Unlike neural networks, DMEL is
able to present the discovered relationships in the form of rules,

which are easy for the domain expert to comprehend. Although
the relationships discovered by C4.5 can also be represented in
the form of rules, the experimental results showed that DMEL
outperformed C4.5.

To evaluate their computation efficiencies, Table V shows the
execution times for DMEL, C4.5, and neural networks under
different monthly churn rates. At a specific monthly churn
rate, the execution times for DMEL-1, DMEL-2, DMEL-3,
and DMEL-4 are more or less the same because they differ

AU et al.: NOVEL EVOLUTIONARY DATA MINING ALGORITHM 543

TABLE V
EXECUTION TIMES FOR DMEL, C4.5, AND NEURAL NETWORK UNDER

DIFFERENTMONTHLY CHURN RATES AVERAGED OVER TEN RUNS

Fig. 10. Lift factors for DMEL, C4.5, and neural network under different
monthly churn rates averaged over ten runs.

from each other by using different values of and only.
Since in different setups, their time complexities
should be more or less the same. When the monthly churn
rate increases, the execution time for DMEL increases because
more and more relationships are found interesting and, hence,
the number of alleles in a chromosome increases.

The experimental results showed that DMEL accomplished
the data mining task faster than neural networks. Of the three
approaches, C4.5 required the least execution time to complete
since C4.5 used less number of iterations than neural networks
and DMEL. However, C4.5 is unable to produce churn predic-
tion as accurate as neural networks and DMEL (Figs. 9 and 10).

In the rest of this section, we present the rules discovered by
DMEL and found to be interesting and useful by the domain ex-
pert from the carrier in Malaysia. The domain expert has found
the following rule very useful:

This rule states that a subscriber churns if he/she subscribes
the service plan personally and he/she is not admitted to any
bonus scheme with weight of evidence of 1.75. According to
this rule, the domain expert suggested that the carrier could
admit those subscribers who subscribe the service plan person-
ally and have not already admitted to any bonus scheme to a
bonus scheme so as to retain them.

Another rule the domain expert found to be interesting is
listed in the following:

The above rule states that a male subscriber who has used the
service plan for a period between 378 and 419 days churns with
weight of evidence of 0.78. Although the domain expert cannot
explain why this rule is applicable to male subscribers only, he
found this rule meaningful because a new subscriber is usually
entitled a rebate after using the service plan for a period of one
year and one can still keep the money even though he churns
after receiving the rebate. In order to retain these subscribers,
the domain expert suggested that the carrier could offer them
incentives or rebates after using the service plan for another year
when they have used the service plan for a period of one year.

In addition to the above rules, DMEL has discovered the fol-
lowing rule:

This rule states that a subscriber churns if he/she lives in
Kuala Lumpur, is of age between 36 and 44, and paid bills using
cash with weight of evidence of 1.20. Although the domain ex-
pert can hardly explain why this rule applies to those subscribers
in this age group living in Kuala Lumpur only, he found it mean-
ingful because it is easier for a subscriber to churn if he/she pays
bills using cash when compared with one who pays bills using
autopay. The domain expert found this rule useful because it
identifies a niche for the carrier to retain its subscribers.

Furthermore, the domain expert also found the following rule
interesting:

This rule states that a male subscriber who lives in Penang and
subscribed the service through a dealer, which is under Dealer

544 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 7, NO. 6, DECEMBER 2003

Group A,2 churns with weight of evidence of 1.84. The domain
expert suggested that the churn of the subscribers might be due
to the poor customer services provided by the dealers, which
are under Dealer Group A, in Penang. He recommended the
carrier to investigate into the service level of these dealers so
as to introduce corrective actions.

VI. CONCLUSION

In this paper, we proposed a new data mining algorithm, called
DMEL, to mine rules in databases. DMEL searches through
huge rule spaces effectively using an evolutionary approach.
Specifically, DMEL encodes a complete set of rules in one single
chromosome. It performs its tasks by generating a set of initial
first-order rules using a probabilistic induction technique so
that, based on these rules, rules of higher orders are obtained
iteratively. DMEL evaluates the fitness of a chromosome using
a function defined in terms of the probability that the attribute
values of a record can be correctly determined using the rules it
encodes. With these characteristics, DMEL is capable of finding
both positive and negative relationships among attributes for
predictive modeling without any subjective input required of
the users. To evaluate the performance of DMEL, it is applied
to several real-world databases and the experimental results
showed that DMEL is able to provide accurate classification.

In particular, we have applied DMEL to a database of 100 000
subscribers provided by a carrier in Malaysia. Using the discov-
ered rules, DMEL is able to predict whether a subscriber will
churn in the near future. The carrier can then offer incentives to
the potential churners in order to retain them. The “churn” or “no
churn” prediction is expressed as a lift curve, which indicates the
fraction of all churners can be caught if a certain fraction of all
subscribers were contacted. In our experiments, we also applied
C4.5 and neural networks for churn prediction. The experimental
resultsshowed thatDMELoutperformedneuralnetworks,which
in turn outperformed C4.5. Specifically, DMEL identified more
churners than neural networks when a small fraction (10%) of
subscribers were contacted whereas the performance of DMEL
is comparable to that of neural networks when the fraction of
subscribers contacted was relatively large (10%). The ability to
identify more churners when only a small fraction of subscribers
were contacted is important because the customer services center
of a carrier has fixed number of staff and they can contact a
small fraction of subscribers only. The experimental results on
the subscriber database also showed that DMEL is robust in a
way that it is able to discover rules hidden in the database and
to predict the churns of subscribers under different churn rates.
Since the churn rates of different subscribers are different and
the churn rate of a specific carrier varies from time to time,
robustness is necessary to an effective churn predictor.

REFERENCES

[1] A. Agresti, Categorical Data Analysis. New York: Wiley, 1990.
[2] W.-H. Au and K. C. C. Chan, “Mining fuzzy association rules in a bank-

account database,”IEEE Trans. Fuzzy Syst., vol. 11, pp. 238–248, Apr.
2003.

[3] C. Bishop,Neural Networks for Pattern Recognition. New York: Ox-
ford Univ. Press, 1995.

2In order to maintain the anonymity of the carrier, we cannot disclose the
name of the dealer group and we simply call it Dealer Group A in this paper.

[4] B. P. Carlin and T. A. Louis,Bayes and Empirical Bayes Methods for
Data Analysis, 2nd ed. London , U.K.: Chapman & Hall, 2000.

[5] K. C. C. Chan and W.-H. Au, “Mining fuzzy association rules in a
database containing relational and transactional data,” inData Mining
and Computational Intelligence, A. Kandel, M. Last, and H. Bunke,
Eds. New York: Physica-Verlag, 2001, pp. 95–114.

[6] K. C. C. Chan and A. K. C. Wong, “APACS: A system for the automatic
analysis and classification of conceptual patterns,”Comput. Intell., vol.
6, pp. 119–131, 1990.

[7] , “A statistical technique for extracting classificatory knowledge
from databases,” inKnowledge Discovery in Databases, G. Piatetsky-
Shapiro and W. J. Frawley, Eds. Menlo Park, CA:/Cambridge, MA:
AAAI/MIT Press, 1991, pp. 107–123.

[8] J. Y. Ching, A. K. C. Wong, and K. C. C. Chan, “Class-Dependent
discretization for inductive learning from continuous and mixed-mode
data,”IEEE Trans. Pattern Anal. Machine Intell., vol. 17, pp. 1–11, July
1995.

[9] A. Choenni, “Design and implementation of a genetic-based algorithm
for data mining,” inProc. 26th Int. Conf. Very Large Data Bases, Cairo,
Egypt, 2000, pp. 33–42.

[10] K. A. DeJong, W. M. Spears, and D. F. Gordon, “Using genetic
algorithms for concept learning,”Mach. Learn., vol. 13, pp. 161–188,
1993.

[11] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining
to knowledge discovery: An overview,” inAdvances in Knowledge
Discovery and Data Mining, U.M. Fayyad, G. Piatetsky-Shapiro, P.
Smyth, and R. Uthurusamy, Eds. Menlo Park, CA:/Cambridge: MA:
AAAI/MIT Press, 1996, pp. 1–34.

[12] M. V. Fidelis, H. S. Lopes, and A. A. Freitas, “Discovering com-
prehensible classification rules with a genetic algorithm,” inProc.
2000 Congress Evolutionary Computation, San Diego, CA, 2000,
pp. 805–810.

[13] D. B. Fogel,Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. Piscataway, NJ: IEEE Press, 1995.

[14] R. Forsyth,PC/BEAGLE User’s Guide. Nottingham, U.K.: Pathway
Research Ltd., 1990.

[15] A. A. Freitas, “Understanding the critical role of attribute interaction in
data mining,”Artif. Intell. Rev., vol. 16, pp. 177–199, 2002.

[16] J. Gehrke, V. Ganti, R. Ramakrishnan, and W.-Y. Loh, “BOAT – Op-
timistic decision tree construction,” inProc. ACM SIGMOD Int. Conf.
Management of Data, Philadelphia, PA, 1999, pp. 169–180.

[17] J. Gehrke, R. Ramakrishnan, and V. Ganti, “RainForest – A framework
for fast decision tree construction of large datasets,” inProc. 24th Int.
Conf. Very Large Data Bases, New York, 1998, pp. 416–427.

[18] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[19] D. P. Greene and S. F. Smith, “Using coverage as a model building con-
straint in learning classifier systems,”Evol. Comput., vol. 2, no. 1, pp.
67–91, 1994.

[20] R. R. Hill, “A Monte Carlo study of genetic algorithm initial population
generation methods,” inProc. 31st Conf. Winter Simulation–A Bridge to
the Future, Phoenix, AZ, 1999, pp. 543–547.

[21] J. Holland, “Escaping brittleness: The possibilities of general-purpose
learning algorithms applied to parallel rule-based systems,” inMachine
Learning: An Artificial Intelligence Approach, R. Michalski, J. Car-
bonell, and T. Mitchell, Eds. San Mateo, CA: Morgan Kaufmann,
1986.

[22] H. Ishibuchi and T. Nakashima, “Improving the performance of fuzzy
classifier systems for pattern classification problems with continuous
attributes,”IEEE Trans. Ind. Electron., vol. 46, pp. 1057–1068, Dec.
1999.

[23] C. Z. Janikow, “A knowledge-intensive genetic algorithm for supervised
learning,”Mach. Learn., vol. 13, pp. 189–228, 1993.

[24] B. A. Julstrom, “Seeding the population: Improved performance in a ge-
netic algorithm for the rectilinear steiner problem,” inProc. ACM Symp.
Applied Computing, Phoenix, AZ, 1994, pp. 222–226.

[25] R. Kohavi, “Scaling up the accuracy of naive-bayes classifiers: A deci-
sion tree hybrid,” inProc. 2nd Int. Conf. Knowledge Discovery and Data
Mining, Portland, OR, 1996.

[26] W. Kwedlo and M. Kretowski, “Discovery of decision rules from
databases: An evolutionary approach,” inProc. 2nd European Symp.
Principles of Data Mining and Knowledge Discovery, Nantes, France,
1998, pp. 370–378.

[27] R. J. Light and B. H. Margolin, “An analysis of variance for categorical
data,”J. Amer. Statist. Assoc., vol. 66, pp. 534–544, 1971.

[28] J. Lockwood, “Study predicts ‘Epidemic’ churn,” inWireless Week, Aug.
25, 1997.

AU et al.: NOVEL EVOLUTIONARY DATA MINING ALGORITHM 545

[29] A. D. McAulay and J. C. Oh, “Improving learning of genetic rule-based
classifier systems,”IEEE Trans. Syst. Man, Cybern., vol. 24, pp.
152–159, Jan. 1994.

[30] M. Mehta, R. Agrawal, and J. Rissanen, “SLIQ: A fast scalable classifier
for data mining,” inProc. 5th Int. Conf. Extending Database Technology,
Avignon, France, 1996, pp. 18–32.

[31] Z. Michalewicz,Genetic Algorithms + Data Structures = Evolution
Programs, 3rd Revised and Extended ed. New York: Springer-Verlag,
1996.

[32] M. C. Mozer, R. Wolniewicz, D. B. Grimes, E. Johnson, and H.
Kaushansky, “Predicting subscriber dissatisfaction and improving
retention in the wireless telecommunications industry,”IEEE Trans.
Neural Networks, vol. 11, pp. 690–696, May 2000.

[33] M. O. Noordewier, G. G. Towell, and J. W. Shavlik, “Training knowl-
edge-based neural networks to recognize genes in DNA sequences,” in
Advances in Neural Information Processing Systems, R.P. Lippmann,
J.E. Moody, and D.S. Touretzky, Eds. San Mateo, CA: Morgan Kauf-
mann, 1991, vol. 3.

[34] J. R. Quinlan, “Decision trees as probabilistic classifiers,” inProc. 4th
Int. Workshop Machine Learning, Irvine, CA, 1987, pp. 31–37.

[35] , “Simplifying decision trees,”Int. J. Man-Mach. Stud., vol. 27, pp.
221–234, 1987.

[36] , C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann, 1993.

[37] R. Rastogi and K. Shim, “PUBLIC: A decision tree classifier that inte-
grates building and pruning,” inProc. 24th Int. Conf. Very Large Data
Bases, New York, 1998, pp. 404–415.

[38] J. Shafer, R. Agrawal, and M. Mehta, “SPRINT: A scalable parallel clas-
sifier for data mining,” inProc. 22nd Int. Conf. Very Large Data Bases,
Mumbai (Bombay), India, 1996, pp. 544–555.

[39] S. Smith, “Flexible learning of problem solving heuristics through adap-
tive search,” inProc. 8th Int. Joint Conf. Artificial Intelligence, Karl-
sruhe, Germany, 1983, pp. 422–425.

[40] J. W. Smith, J. E. Everhart, W. C. Dickson, W. C. Knowler, and R. S.
Johannes, “Using the ADAP learning algorithm to forecast the onset
of diabetes mellitus,”Proc. Symp. Computer Applications and Medical
Cares, pp. 261–265, 1988.

[41] C. H. Yang and K. E. Nygard, “The effects of initial population in genetic
search for time constrained traveling salesman problems,” inProc. ACM
Conf. Computer Science, Indianapolis, IN, 1993, pp. 378–383.

Wai-Ho Au received the B.A. degree (first class
honors) in computing studies and the M.Phil. degree
in computing from The Hong Kong Polytechnic
University (HKPU), Kowloon, in 1995 and 1998,
respectively. He is currently working toward the
Ph.D. degree in computing at HKPU.

He has been in charge of several large-scale soft-
ware development projects, including a system in-
tegration project for an international airport, a data
warehouse project for a utility company, and an in-
telligent home system for a high-tech startup. He is

now a Manager of software development in the Department of Computing, The
Hong Kong Polytechnic University. His research interests include data mining,
data warehousing, fuzzy computing, and evolutionary computation.

Keith C. C. Chan received the B.Math. (honors)
degree in computer science and statistics, and the
M.A.Sc. and Ph.D. degrees in systems design engi-
neering from the University of Waterloo, Waterloo,
ON, Canada, in 1983, 1985, and 1989, respectively.

He has a number of years of academic and
industrial experience in software development and
management. In 1989, he joined the IBM Canada
Laboratory, Toronto, ON, where he was involved in
the development of image and multimedia software,
as well as software development tools. In 1993, he

joined the Department of Electrical and Computer Engineering, Ryerson Poly-
technic University, Toronto, as an Associate Professor. He joined The Hong
Kong Polytechnic University, Kowloon, in 1994, and is currently the Head of
the Department of Computing. He is an Adjunct Professor with the Institute
of Software, The Chinese Academy of Sciences, Beijing, China. He is active
in consultancy and has served as consultant to government agencies, as well as
large and small-to-medium sized enterprises in Hong Kong, China, Singapore,
Malaysia, Italy, and Canada. His research interests are in data mining and
machine learning, computational intelligence, and software engineering.

Xin Yao (M’91–SM’96–F’03) received the B.Sc. de-
gree from the University of Science and Technology
of China (USTC), Hefei, the M.Sc. degree from the
North China Institute of Computing Technologies
(NCI), Beijing, and the Ph.D. degree in computer
science from the USTC, in 1982, 1985, and 1990,
respectively, all in computer science.

He is currently a Professor of Computer Science
and the Director of the Centre of Excellence for
Research in Computational Intelligence and Appli-
cations (CERCIA), University of Birmingham, U.K.,

and a Visiting Professor at four other universities in China and Australia. He
was a Lecturer, Senior Lecturer, and an Associate Professor at University Col-
lege, University of New South Wales, the Australian Defence Force Academy
(ADFA), Canberra, Australia, between 1992–1999. He held Postdoctoral
Fellowships from the Australian National University (ANU), Canberra, and
the Commonwealth Scientific and Industrial Research Organization (CSIRO),
Melbourne, between 1990 and 1992. His major research interests include
evolutionary computation, neural network ensembles, global optimization,
computational time complexity, and data mining.

Dr. Yao is the Editor-in-Chief of the IEEE TRANSACTIONS ONEVOLUTIONARY

COMPUTATION, an Associate Editor and an Editorial Board Member of five other
international journals, and the Chair of the IEEE Neural Networks Society Tech-
nical Committee on Evolutionary Computation. He is the recipient of the 2001
IEEE Donald G. Fink Prize Paper Award and has given more than 20 invited
keynote and plenary speeches at various conferences. He has chaired/co-chaired
more than 25 international conferences in evolutionary computation and com-
putational intelligence, including CEC 1999, PPSN VI 2000, CEC 2002, and
PPSN 2004.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

