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Class-Dependent Discretization for Inductive
Learning from Continuous and Mixed-Mode Data

John Y. Ching, Andrew K. C. Wong, Member, IEEE, and Keith C. C. Chan

Abstract—Inductive learning systems can be effectively used to
acquire classification knowledge from examples. Many existing
symbolic learning algorithms can be applied in domains with
continuous attributes when integrated with a discretization algo-
rithm to transform the continuous attributes into ordered discrete
ones. In this paper, a new information theoretic discretization
method optimized for supervised learning is proposed and de-
scribed. This approach seeks to maximize the mutual dependence
as measured by the interdependence redundancy between the
discrete intervals and the class labels, and can automatically de-
termine the most preferred number of intervals for an inductive
learning application. The method has been tested in a number of
inductive learning examples to show that the class-dependent
discretizer can significantly improve the classification perform-
ance of many existing learning algorithms in domains containing
numeric attributes.

Index Terms—Inductive learning, classification, discretization,
continuous attributes, mixed-mode attributes, maximum entropy,
mutual information, uncertainty.

1. INTRODUCTION

N machine learning research, inductive learning (IL) has

gained prominence due to promising experimental results
and successful commercial applications to knowledge acquisi-
tion in expert systems (e.g., [1], [S], [6]. {21]). IL systems have
also been applied successfully to some of the traditional pat-
tern recognition problems [7], [14]. A central task of IL is the
construction of classification rules from examples. Given a set
of pre-classified examples described in terms of some attrib-
utes, the goal of an IL system is to derive a set of rules that can
be used to assign new events to the appropriate classes. This
type of learning is also referred to as supervised learning. The
most successful supervised learning systems include ID3 and
related decision tree based systems [19] and the AQ family of
inductive learning algorithms [15].

In a typical IL task, the training events are described by a
set of characteristics or attributes. Some of the attributes char-
acterizing an event instance may be symbolic or discrete.
Other attributes may be real or continuous. While many exist-
ing inductive learning systems have been designed specifically
for handling discrete and symbolic attribute values in an at-
tempt to address the shortcomings of traditional pattern rec-
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ognition methods that could only deal with continuous data
[11], there is yet no fully integrated approach that can deal
with mixed-mode continuous and discrete data [25]. In fact, the
topic of handling continuous data by IL algorithms has been
mostly ignored in the literature until recently. Since a continu-
ous variable can be discretized into a finite number of discrete
intervals, the current consensus for addressing the mixed-mode
classification problem is to partition the continuous attributes
into ordered discrete attributes prior to the learning process
(4], [5], [12], [23].

Unfortunately, the number of ways to discretize a continu-
ous attribute is infinite. To partition a continuous variable, two
important decisions must be made. First, the number of dis-
crete intervals must be selected. The selection of the optimal
number of intervals is seldom addressed by existing discreti-
zation methods, and in most cases the human user selects
(sometimes arbitrarily) the appropriate number of intervals [5],
[23], [25]. Secondly, the width of the intervals must be deter-
mined. In other words, the boundaries of the discretized inter-
vals need to be defined. Some of the traditional pattern rec-
ognition and data analysis methods have been tried with IL
applications with limited success. The simplest discretization
procedure is to divide the range of a continuous variable into
equal-width intervals [25]. Given a sample of observed values
of a continuous variable, the equal-width method involves the
determination of the range of values from the minimum and
maximum observed attribute values. The range is then divided
equally by a user-defined number of intervals. The obvious
weakness of this procedure is that in cases where the outcome
observations are not distributed evenly, a large amount of im-
portant information can be lost after the discretization process.
To reduce the amount of information loss due to discretization,
a method based on the concept of maximum marginal entropy
has been developed [25]. The method partitions a continuous
attribute using a criterion to maximize Shannon’s entropy and
thus minimizes the loss of information. The number of inter-
vals is determined using a rule of thumb based on the fact that
more intervals generally mean less information loss. However,
since the method relies on reliable probability estimation
which is affected by the sample size, the upper bound of the
number of intervals must be constrained by the second-order
statistics required for the probability estimation. Since the
problem of finding global maximum entropy is highly combi-
natorical, a heuristic approximation using marginal entropy has
been used to discretize continuous variables in object recogni-
tion and clustering applications [25] as well as in inductive
learning tasks [5].
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A variation on the entropy scheme determines the interval
boundaries by making the total gain of information from the
observed occurrences in each interval equal. Called the even
information intervals quantization method {23}, this procedure
also relies on the human user to provide the appropriate num-
ber of intervals. Once the number of interval is selected, this
method determines the optimal interval boundaries by equaliz-
ing the total information gain in each interval. This method has
been used with an IL system to decompose and classify con-
tinuous myoelectric signals {23].

The common advantage of the above methods is that they
can be easily incorporated into any existing IL algorithms.
However, they are not ideal for supervised learning applica-
tions because their criteria of discretization fail to take into
consideration the relationship between pre-assigned classes
and the interval boundaries. Secondly, the selection of the
number of intervals is not adequately addressed. As pointed
out in [23], the number of intervals has a profound effect on
learning performance and classification accuracy. Wong and
Chiu suggest the best number of intervals is the largest possi-
ble one given the particular sample size and the available re-
sources to minimize information loss [25]. For an inductive
learning application, however, large numbers of intervals are
not always preferred because the performance of many induc-
tive learners detériorates dramatically with large numbers of
discrete intervals, After all, the reason for discretization is to
significantly reduce the number of possible outcomes of an
attribute. Therefore, for the purpose of supervised learning, the
optimal number of intervals can be regarded as the minimum
possible that does not significantly weaken the interdepen-
dency between the attribute values and the classes.

Within the machine learning community, a number of al-
gorithm-specific discretization schemes for the decision-tree
family of algorittims have also been proposed. These methods
are generally based on the attribute partitioning algorithm in-
herent in ID3 [19]. The algorithm of Fayyad and Trani [12]
formalizes the attribute binarization scheme used by some ID3
descendants such as ACLS and ASSISTANT [1] to partition
all continuous atfributes into binary variables using class en-
tropy minimization heuristic. Catlett [4] proposed a similar
method called D-2 which can discretize a continuous variable
into multiple intervals using a training set pattitioning and
thresholding approach specific to decision tree generation. In
both cases, the motivation for discretization was to improve
the learning speed of the ID3 algorithm when contimuous at-
tributes are encountered. Unfortunately, as pointed out in [4],
it is unclear how algorithmis that do not partition the training
set, such as AQ and others, can benefit from these techniques.

More receritly, it has been shggested that standard clustering
algorithms can be incorporated in classification systems to
handle continuous or mixéd mode features. Caelli and Pen-
nington’s PCIT classifier [3] is an evidence-based classifica-
tion system integrating standard clustering techriques such as
Leader and K-means methods [13] and a multi layered percep-
tron. An entropy minimization heuristic is also used here to
obtain the least evenly distributed clusters according to class
labels. Although PCIT does not explicitly address the problem
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of continuous attributes, it may be possible to interpret the
cluster bounds as discretization intervals given a continuous
feature space. Despite the similarity between discretization and
some clustering problems, there has been no work done to
show whether the connection can be made stronger to further
contribute to the handling continuous attributes by existing
symbolic learning algorithms.

Our motivation for this work is to find a discretization
technique suitable for APACS [7]. We are also interested in
general discretization methods that can be universally applied
to all types of existing inductive learning algorithms so that we
can fairly evaluate the performance of these algorithms in dif-
ferent continuous and mixed-mode domains. In this paper, we
show that the proposed discretization method is in fact effec-
tive for any type of inductive learning systems. Two families
of very different and well-known inductive learners, namely
ID3 and AQ, in addition to APACS, have been tested with the
proposed discretization algorithm using continuous and mixed-
mode data from various domains.

II. CLASS-DEPENDENT DISCRETIZATION ALGORITHM

To better facilitate supervised learning in continuous do-
mains, a method that uses the class-attribute dependency in-
formation as the criterion for optimal discretization is used.
The discretization process is viewed as the partitioning of a
continuous-valued attribute (a continuous random variable
with some probability distribution function) into an ordered
discrete attribute with a number of discrete intervals. In prac-
tice, since only a sample of observed outcomes of a continuous
attribute is often available, discretization is equivalent to the
process of reducing the number of states of an ordered discrete
random variable by combining some of its states together.

A. Basic Data Representation and Definitions

Given a classification problem, suppose there is a set of M
training instances which may be events, objects, observations,
processes, etc. Each of these instances has been preclassified
into one of S classes, ¢, s = 1, - - -,S, and is described by »
distinct attributes, 4, - - -, 4, - -, 4,. For any attribute Aj,
there is a domain of plausible values defined as domain
(Aj) = {ij =1, - - -, K}, where Vjk can be numeric, symbolic,
or both.

DEFINITION 1: Let the interval [a, b] be the range space of the

continuous-valued attribute A;, where a<v, <b. A parti-
tionT; on A; as a set of L intervals is defined as:

T;: {lew &), [erea], - - -, [ey-1, ey ]}
where ey = a represents the lower boundary of the observed
value range, e;. = b represents the upper value boundary
of the attribute, and e; | <e;fori=1,2,-- -, Lj.

DEFINITION 2: Associated with the partition, there is a bound-
ary set B; which is defined to be the set of ordered end-
points eg, ey, - - -, ey which delimits the L; intervals. Sup-
pose C represents the random variable whose values c, are
the class labels among S possible classes. Let Q; denote a
set of 2D frequency quanta such that :
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Q- {ggls=12 - Sr=12 - L}
Cr
where ¢, = 20_‘,,(, and oy is the observed number of
Y ik Z€pmi
instances of the sample set having class label c; and ai-
tribute value vy

DEFINITION 3: Let a finite marginal probability scheme P be
defined as the set of probability values {p, p;, - -, pLJ.}
such that:

I 4yt 1=

where f and F are the probability density function and the
cumulative density function of Aj in the range [a, b], re-
spectively, and e; and e, mark the lower and upper
boundaries, respectively, of the sub-interval i.

DEFINITION 4: A joint class-attribute probability scheme P is
the set of joint probability values {p’ ;} so that:

pi=[" [ f1(C.4)dCda=F(c,.e)-F(c,e.)

where f and F are the joint probability density function and
the joint cumulative density function of class variable C and
attribute 4; in the range [q, b], respectively.

In general, discretization is a process that transforms the
range of the continuous attribute 4; into a discrete partition 7,
consisting of L intervals. Associated with each T, there is a
boundary set B; and a quanta set Q;. Given f and B, a finite
marginal proba{)ility scheme P can be determined. From f and

B, we can obtain the joint class-attribute probability scheme P .

B. The Discretization Criterion

In this section, a new discretization criterion based on the
concept of Class-Attribute dependence is introduced. The new
discretization method seeks to maximize the dependency rela-
tionship between the class variable and a continuous-valued
attribute. Since IL problems are usually given a sample of ob-
served outcomes of a continuous attribute, discretization can
be considered as the process of reducing the number of states
of an ordered discrete random variable by combining some of
its states together. For any number of intervals L, and an in-
termediate resultant boundary set Bj, one can form a 2D quanta
matrix. This quanta matrix representation is depicted in Table I,
where each element g, denotes the total number of observed
instances belonging to class c;, and whose value of A, falls within
the boundary set [e,,, ¢,]. The set of interval boundary pairs
represents the new and reduced set of possible attribute values,
where the original number of K possible continuous values has
been reduced to L; possible ordered discrete intervals. For con-
venience, we use A € e, to denote the fact that the actual value
vy of 4, is within the interval bounded by ¢, | and e,.

Since the partitioned attribute is treated as an ordered dis-
crete random variable, we can easily calculate the estimated
joint probability of the event that an object belongs to ¢, while
its attribute value of 4, falls in between the boundary pair
[er~ 1 er]:
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TABLE 1
A 2D DISCRETIZATION QUANTA MATRIX
Bowndary
[eae;] lepes) oo lo, p8] eee fer uez] Tota!
L] an L] v @, s 9y L/
Clasx ¢, LV PR L "I L LI #2 %
. . . . .
cg In g5 v gg see  9g gs.
Total Qs 4.2 LI N ees  duy M
—_ — — q.vr R
p(c—c.\"Aj eer)_'psr_ M’ (1)

Similarly, one can calculate the estimated marginal prob-
abilities of C =, and 4, € e, as follows:

p(C=c)=p, = %4— @
P4 ee)=p,, = %; ®)

The CA (Class-Attribute) mutual information between the
class variable and the attribute interval boundaries of 4; with
its associated quanta set (; is calculated as follows:

1C:4)=Y 3 p,log—Lr—
C 4 :

s+ +r

@

Here, p,, represents the joint probability that the object be-
longs to class c, while its attribute 4 has a value v, where
€.1Svyp<e, and p . denotes the marginal probability that
4;€ e, Therefore, our definition of I(C : Aj) represents the
mutual information calculated for some discretized state of a
continuous-valued attribute using probabilities based on the
interval quanta set O, resulting from the discretization process.
This CA mutual information thus refers to the mutual informa-
tion between the class labels and the discrete attribute inter-
vals.

To maximize the classification utility of attribute 4; after
discretization, we wish to maximize the class-attribute depend-
ence relationship during the discretization process. The CA
mutual information initially appears to be a good candidate for
such a discretization criterion. It is bounded by zero, if C and
A. are completely independent, and the larger of
H o (4;)=log(L;) and H,,(C)=log(S), if there is perfect
correlation between C and A. Unfortunately, the CA mutual
information is very much affected by the number of intervals
chosen to partition the original real-valued attribute. In fact,
the expected CA mutual information is at maximum before any
discretization, and it decreases as the number of intervals is
reduced. As a result /(C : 4)) is not suitable for selecting the
optimal number of intervals.

Given that C and 4; are both considered as random vari-
ables, and the joint entropy between the class variable and the
attribute variable H(C, Aj), the CA mutual information
{(C: 4)) can be normalized as follows [26]:
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_KC:4))
4 T H(C, 4))

where RCA is called the Class-Attribute (CA) Interdependence
Redundancy Clearly R, | 2 0 since I(C : AJ) 2 0 and
H(C, 4) 2 0. In fact, 1tlsknownthat0<RCA 1, andRCA— 1
if C and AJ are totally dependent, and R, 4= 20 1f they aré to-
tally independent.

Since R 4 is normalized, it has the property that it is inde-
pendent of the composition of the attribute and class variables.
That is, unlike the absolute mutual information measure, the
value of R is not dependent on the number of class labels or
the number of unique attribute values in a particular classifica-
tion problem. That means, while the process of discretization
always reduces the absolute amount of mutual information
between the class and the attribute, the interdependence be-
tween the class and attribute, as measured by the interdepend-
ence redundancy, does not necessarily decrease. Discretization
for inductive learning can be viewed as a process of reducing
the number of unique attribute values by combining some of
them into optimal intervals. Intuitively, the concept of redun-
dancy meens that the unique number of attribute value repre-
sentations can be sometimes reduced without destroying the
interdependence relationship between the class and attribute
variables, because the original continuous scheme is redun-
dant.

The properties of the CA interdependence redundancy
measure clearly make it an ideal candidate as a class-
dependent discretization criterion. For the purpose of inductive
learning, it is desirable for the discretized training events to
minimize the loss of correlation between the class labels and
the attribute values. We therefore propose a new class-
dependent discretization method that uses the interdependence
redundancy as an optimality criterion. For any partially discre-
tized state of a continuous-valued attribute 4, and its associ-
ated quanta set Q,, the interdependence redundancy R.,; of the
class variable and the attribute variable can be calculated using
(5).

Formally, let ‘P represent the set of all possible finite prob-
ability schemes that can be derived by all of the discretization
processes and the resulting quanta matrices for a given class-
attribute variable pair. The problem of maximizing class-
attribute interdependence redundancy is to find a v, such
that:

)

RCAI(Wmax)ZRCAI(V’) VV’EW

C. Determine the Optimal Number of Intervals

Besides the discretization criterion, the selection of the
number of intervals to partition a continuous-valued attribute
into is the second most important decision in the discretization
process. Since the theory of maximum mutual information
dictates that the absolute mutual information is greatest when
the number of intervals is the largest possible, a rule of thumb
is to select the maximum allowable number of intervals with-
out violating the statistical assumptions for estimating the sec-
ond order probabilities needed for class-dependent discretiza-
tion. So if the number of classes is S, the rule states that the
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number of intervals L for attribute 4; should not be greater

than M’/(N xS), where M’ is again the total number of train-
ing samples. The parameter N is usually suggested to be 3 for
liberal estimation according to [25]. This rule of thumb, how-
ever, is not ideal, since the goal of discretization is to reduce
the number of unique values so inductive learning algorithms
can be applied on continuous-valued data, Smaller numbers of
intervals are always preferred in inductive learning applica-
tions because a large number of intervals means large number
of possible attribute values, and that contributes to slow and
inefficient learning process [4]. Therefore, in addition to the
maximization of interdependence between class labels and
attribute values, an ideal discretization method should have a
sécondary goal to minimize the number of intervals without
significant loss of class-attribute mutual dependence.

The CA mutual information measure can be used as a sta-
tistical test for interdependence between the class variable C
and the attribute variable 4,. For any intermediate discretiza-
tion state, we can measure the statistical significance of the
class-attribute interdependence as follows:

©

By normalizing this test on both sides with respect to H(C, 4),
we get:

IC:4))>— 2M' C(S—l)(L -1

2
C(s-1)L;-1)
2M’-H(C,4,)

If (7) is true, we say that C and the discretized attribute 4;
are statistically interdependent [25).

This statistical test allows us to eliminate any “redundant”
intervals so we can minimize the number of intervals. Given an
intermediate partition result with a boundary set B, and its as-
saciated quanta matrix as depicted in Table I, all neighboring
pairs of intervals are analyzed one pair at a time. We can then
cdlculate the partial CA mutual information and the partial
joint entropy according to the distributed frequencies and sub-
total instances of each pair of neighboring columns. The sta-
tistical test of (7) can then be used to determine if the fre-
quency distribution among the two neighboring intervals and
the class labels are significantly interdependent. If the test is
significant at some confidence interval, the analysis for the
neéxt pair of neighboring intervals is performed. If the test fails,
it concludes that the two intervals will not likely contribute to
IL classification and can therefore be combined.

Rey 2 )

D, Heuristic Implementation
of Class-Dependent Discretization

The problem of class-dependent discretization to maximize
interdependence redundancy is highly combinatorical. Global
maximization of the interdependence redundancy measure
between the class variable and a discretized attribute is im-
practically expensive in terms of computational requirements.
In: this section, we describe a heuristic-based “local optimiza-
tion” implementation that is both effective and efficient. This
implementation consists of three main processes: interval ini-
tialization, interval improvement, and interval reduction.
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The first step of the discretization process requires the
sorting of the unique values of a real-valued attribute observed
from a training set in increasing order. An initial default num-
ber of intervals is selected, either as a user input, or as calcu-
lated based on the maximum allowed for reliable second order
probability estimation. The goal is to partition the initial inter-
vals so that the sample is distributed as evenly as possible to
minimize information loss (the maximum entropy criterion can
be used). Once the initial interval boundaries are set, a quanta
matrix similar to that in Table I is constructed from the bound-
ary set and the training samples. The initial interdependence
redundancy measure between the class labels and the initial
attribute intervals is then calculated and recorded.

The boundary improvement procedure attempts to improve
upon the initial interdependence redundancy measure by alter-
ing the initial quanta matrix through local perturbation of the
interval boundaries. Interval adjustments can be made to either
the lower boundary or the upper boundary of a given interval.
Boundary adjustments are made in increments of the next or-
dered observed unique attribute values. For any given interval,
and to adjust a lower boundary down to include the next lower
observed attribute value, the algorithm also adjusts downward
the upper boundary of the interval just before it to exclude the
same attribute value.

To ensure a good estimation of global optimal interdepend-
ence, the algorithm perturbs each boundary up and then down
a boundary value in tumn starting from the first ordered inter-
val. The procedure records the interdependence change as
measured by the interdependence redundancy criterion. After
all possible adjustments and their associated interdependency
measure have been tried and recorded in the current pass, it
determines which adjustment causes the maximum gain of
interdependence and modifies the boundary set and the asso-
ciated quanta matrix according to that adjustment. The entire
process is repeated until no improvement of the interdepend-
ence criterion is found.

The third major part of the proposed discretization algo-
rithm is the combination of statistically insignificant intervals.
Due to redundancy, frequency quanta of some of the adjacent
intervals may be very similarly distributed in respect to the
class labels. In these cases, the similar intervals may be com-
bined without significant loss of degree of interdependence.
The algorithm extracts pairs of adjacent intervals and performs
a statistical test of interdependence described by (7). If two
neighboring intervals do not contribute to class-attribute de-
pendency, they are combined into a single interval. The inter-
val reduction algorithm is performed for all pairs of adjacent
intervals until all of them pass the test of statistical interde-
pendence.

Even though the proposed algorithm is heuristic in nature, it
is believed to be a good compromise between providing good
results and requiring acceptable computational resources. The
heuristics used are simple, reasonable and effective. The al-
gorithm has been implemented in a computer-based system for
effective class-dependent discretization of continuous attrib-
utes in inductive learning applications.

E. An Example

To demonstrate how the proposed discretization algorithm
works in a real-world situation, we use a set of mixed-mode
data from the micro computer fault diagnosis domain [6]. A set
of 110 problem situations have been preclassified into one of
six common PC power-up faults. Each problem record is char-
acterized by 13 attributes—some of them continuous—to rep-
resent the symptoms. The objective is to identify which subsys-
tem (functional group of hardware components) is at fault,
causing the appearance of the problem symptoms.

One of the continuous-valued attributes is the measured
voltage between pin number 2 and pin number 4 from the
power supply to the major peripherals. This attribute provides
important information since certain ranges of voltage measures
can indicate power-related problems as opposed to other types
of problems. In [6], a knowledge-based approach was used to
discretize the voltage attribute since the engineers knew the
proper voltage range at pin 2 and pin 4 on a typical PC com-
patible computer is between 4.8 and 5.2 volts. A reasonable
“common sense” partition scheme would be to divide the at-
tribute into three ranges, too low (<4.8), normal (4.8 - 5.2),
and too high (> 5.2). In many application domains, knowledge
about the attributes is not always easily available, and our pro-
posed method is capable of utilizing the inherent class versus
attribute range information to define the set of partition
boundaries which emphasizes the relations between the class
assignment and the attribute ranges.

Suppose we wish to acquire diagnostic rules for classifying
PC hardware faults using an IL algorithm. In this simple ex-
ample, 109 samples are used for training, and a single sample
is selected for testing. The test cases are not generally avail-
able prior to classification training, and they will not be con-
sidered in the discretization analysis. Instead, test cases will be
discretized prior to the class prediction procedure according to
the discretization intervals derived from the training samples.
There are only 85 training sample values available for this
attribute due to missing values. Since there are six possible
classes, it is determined that the maximum default number of
intervals is 85 + (3 x 6) which is equal to 4. Therefore, the
proposed algorithm begins with the default number of intervals
4, and proceeds to partition the attribute into 4 as evenly dis-
tributed intervals as possible in order to maximize H(4)). This
frequency matrix associated with the initial partition is pre-
sented in Table II.

The initial mutual information between the class labels and
the attribute intervals is 0.161820, and the calculated interde-
pendence redundancy is 0.055825. After a few local boundary
perturbations, the class-attribute mutual information is in-
creased to 0.239157, while the related interdependence redun-
dancy measure is improved to 0.095790. The corresponding
boundary set and the frequency distribution matrix are shown
in Table I11. Note that the marginal frequency distribution for
the classes does not change.

Upon further examination of the frequency matrix in Ta-
ble I1L, it is evident that the frequencies of the observed at-
tribute values in intervals 2 and 3 (4.8-4.8 and 4.9 - 5.3) are
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TABLE II
INITIAL INTERVALS AND ASSOCIATED FREQUENCY MATRIX
Class ‘Atzibute Vatue Intervals Total
0.0-4.7 4849 5050 5.1.2.1
1 7 2 1 5 15
2 2 6 6 s 19
3 0 7 4 6 17
4 0 5 3 7 15
s 0 4 3 4 1
[3 ] 3 2 3 3
Total ) 27 19 30 85
TABLE III
IMPROVED INTERVALS AND ASSOCIATED FREQUENCY MATRIX
Class Attyibute Value Intorvala Total
0.0-4.7 4348 49-53 54-7.1
1 7 1 4 3 15
2 2 2 12 3 1%
3 0 3 14 0 1
4 [ 2 13 0 15
5 0 3 8 0 1
6 0 2 6 0 8
Tatal 9 1 57 3 85
TABLE IV
FINAL OPTIMAL INTERVALS AND ASSOCIATED FREQUENCY MATRIX.
Class Attribatd Value Intervals Total
0.04.7 4853 5.4-7.1
i 7 s 3 15
2 2 14 3 19
3 0 1”7 0 17
4 0 15 0 15
5 0 11 ] 1
6 0 8 0 8
Total 9 20 6 8s

fairly similarly distributed among the class labels. In fact, by
using the statistical test of interdependence (7) on these two
adjacent intervals, the algorithm discovers that they may be
combined without reducing the degree of class-attribute inter-
dependence significantly. Therefore, the driginal default num-
ber of intervals is now reduced to three and after an additional
local boundary perturbation pass, the algorithm produces the
final optimized boundary set and the corresponding frequency
distribution matrix in Table IV. Recall that human experts
knew that voltages between 4.8 volts and 5.2 volts are consid-
ered acceptable, and the proposed algorithm produced
“normal” range of 4.8 to 5.3 volts is indeed very similar.

0.25
0.2 {

0.05 —— (C:A)
o L R 1
1 2 3 4 5 6
lterations
Fig. 1. Mutual information and interdependence redundancy by iterations.

It is interesting that the final partition resulted in an optimal
interdependence redundancy measure of 0.110098. As ex-
pected, the absolute mutval information actually decreased
slightly to 0.232157, as a result of reducing the number of in-
tervals from 4 to 3. This result illustrates the importance of
using normalized interdependence redundancy rather than the
absolute mutual information as a discretization criterion. The
values of the absolute mutual information and the interdepend-
ence redundancy measure for each of the partition iterations
are plotted in Fig. 1, where the legends I(C : 4) and R repre-
sents the absolute CA mutual information and the. CA interde-
pendence redundancy, respectively.

F. Evaluation of the Automatic Number
of Intervals Selection Method

The proposed discretization approach has the ability to ef-
ficiently maximize the CA interdependence redundancy while
at the same time minimize the number of discrete intervals
required. As the above discretization example indicates, the
proposed approach using statistical interdependence tests to
reduce the maximum default number: of intervals is both effi-
cient and effective. To further demonstrate this point, we pres-
ent the following example. A less efficient way to determine
the optimal number of intervals to use for the discretization of
a given continuous attribute is to actually try all of the possible
numbers greater than 2 but less than the maximum allowed
under the second order probability estimation rule described
earlier. In the example of the pin 2 - 4 voltage attribute, the
maximum allowed by the size of the sample set and the num-
ber of possible classes is 4. So one of 2, 3 or 4 must be the best
possible number of intervals according to the proposed discre-
tization criterion. Since the method automatically settled on 3
discrete intervals, it is reasonable to predict that 3 is the best
number of intervals.

0.12
0.11

0.1
0.09
0.08
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Fig. 2. The effect of the number of intervals on dependency.

To test this prediction, the three possible numbers of inter-
vals were used, one at a time, as fixed user-defined number of
intervals with the interval reduction function of the algorithm
disabled. The final maximum interdependence redundancy
measures for the three discretization runs are plotted in Fig. 2.
In this case, it is evident from the graph that discretization us-
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ing the interval number 3 produced the best results. In general,
however, the optimal number of interval selected by the algo-
rithm may not always provide the largest possible IR measure,
but the number selected will always be the smallest possible
without losing significant mutual dependency information in a
statistical sense. This strategy is important because it is also
desirable to minimize the number of discrete intervals to
maximize inductive learning systems efficiency.

III. EMPIRICAL ANALYSIS OF DISCRETIZATION
METHODS FOR INDUCTIVE LEARNING

The proposed class-dependent discretization method has
been implemented in a system called class-attribute dependent
discretizer (CADD). To evaluate the performance of CADD,
and to test the effects of different discretizers on inductive
learning accuracy and speed, we conducted several experi-
ments with different inductive learners in continuous domains.
The goal of this comparative study is to determine if CADD
can significantly improve the performance of common induc-
tive learning methods, particularly APACS, relative to other
general discretization methods: maximum entropy (ME), equal
information gain (EIG), and equal interval width (EIW).

Since the ME, EIG and EIW discretization methods require
user-provided number of intervals, the selection rule of thumb
discussed similar to the one recommended in [25] was used to
determine the default number of intervals used in our experi-
ments. For our experiments, a maximum number of intervals
ranging from 8 to 12 were imposed depending on the size of
the data and the amount of the computer memory required.
The current implementation of CADD uses a initial number of
intervals that maximizes the entropy and minimizes informa-
tion loss. Several versions of AQ and 1D3 algorithms, in addi-
tion to our own APACS system, are used as the classification
engine in our experiments. In each of the experiments, we
compare the classification results of five different versions of
existing inductive learning systems on a set of discretized real-
life data by CADD and three other discretization methods. The
IL systems used in the experiments are briefly described be-
low.

ID3—The ID3 algorithm [19] is the best known IL algo-
rithm in the machine learning community. [t constructs a deci-
sion tree using a top-down divide and conquer approach. The
goal of the ID3 algorithm is to derive an optimal decision tree
from a set of preclassified sample set. Each interior node of the
tree denotes a single attribute, and arcs leaving that node rep-
resents the possible attribute values. Each ieaf node is a con-
junction of attribute values. Associated with a leaf node, there
is a class label which represents the class assignment of all
training events belonging to that class and satisfying that con-
junctive attribute test. ID3 is designed to handle training data
with discrete and symbolic attribute values. In order to deal
with continuous-valued attributes, ID3 must treat them as dis-
crete attribute with many possible values. Since the size of a
tree is directly dependent on the number of attribute value tests
represented by the arcs, continuous-valued attributes can sig-
nificantly increase the size of the decision trees.
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ID3 with pre-pruning—Overfitting due to noise can cause
the decision tree to be unmanageably large. The strategy to
solve this problem is to find a way to reduce the size of the
tree without significantly affecting the classification accuracy
of the resulting tree. Almost all of the tree-pruning techniques
can be classified as pre-pruning or post-pruning depending on
where the pruning process occurs during the tree-construction
procedure. Quinlan’s pre-pruning method [20], which is used
in our experiments, halts the tree-growing process when it de-
termines that no attribute is going to significantly increase the
information gain in the classification task. It uses the chi-
square statistical test as a pruning criterion.

ID3 with post-pruning—The pruning of decision trees “on
the fly” sometimes misses important information that cannot
be detected locally [1]. A solution to this problem is to intro-
duce pruning of already completed trees. Such post-pruning
strategies are usually based on criteria that compare a tree’s
complexity to its observed classification accuracy [18]. A
number of post-pruning methods are describe in [20]. In our
test, the ID3 with post-pruning implementation constructs a set
of rules equivalent to a decision tree and then simplifies the
conditional side of the rule by comparing the predicted class
with the actual class and test for statistical dependence using
Fisher’s Exact Test [20].

AQ—Michalski’s AQ is another well-known IL algorithm
[15]. Training examples are given in the form of events, which
are described in terms of a feature set. Training events from a
given class are considered positive examples of that class,
while all other events are considered as negative examples. A
cover, which is a disjunction of features, is generated for each
class. An ideal cover of a class describes all the positive ex-
amples while excluding all the negative ones. The goal of AQ
is to induce a set of decision rules, one for each class, in the
form of if <cover> then predict <class>, where class is the
most common class described by cover. AQ uses the MAX-
STAR parameter to specify how many disjunctive feature sets
are retained at each search step in order to limit the search. To
determine which complexes are kept, a user defined criterion
function is used. Although there are many possible alternative
measures, the most common one is to “maximize the positive
events covered”, and “minimize the negative events covered”
[14), [15]. To handle continuous values, AQ must treat each
possible value as a unique discrete value. Because AQ at-
tempts to find a cover that satisfies a single attribute value
while excluding all others, a large number of possible attribute
values in the form of a real-valued attribute can create many
specific and long disjuncts rather than a few simple and gen-
eral ones. In addition, continuous attribute values add signifi-
cant overhead to AQ’s search process. The basic AQ algorithm
is implemented as one of the IL tools for our comparative
study.

AQ15—The original AQ algorithm does not handle uncer-
tainty very well. The best known AQ-based system for learn-
ing from noisy data is AQ15. AQIS5 utilizes a built-in rule
truncation and flexible matching procedure called TRUNC
during the rule interpretation process {16]. In the presence of
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uncertainty, some training events may be misclassified, and
some of the rules generated using such noisy data may be in-
correct. AQ1S, as implemented here, uses a rule truncation
technique to remove (truncate) portions of the rules that may
be due to noise. With the rules truncated, a flexible match rou-
tine, as oppesed to a strict match, is used.

M-APACS—The original APACS used the maximum en-
tropy discretization method with some success [5]. We soon
discovered that for many continuous and mixed-mode applica-
tion domains, the performance of the maximum entropy
method was inadequate for supervised learning tasks. The M-
APACS implementation is an infegrated APACS/CADD sys-
tem (M stands for mixed-mode). This system can automatically
discretize any real-valued attributes in a continuous or mixed-
mode enviromment prior to performing inductive learning us-
ing its APACS engine.

The standard APACS algorithm consists of three steps and
has been described in detail elsewhere [5], [6], [7]. The first
step is to detect the underlying regularities in:the training data
set. The major goal of this step is to determine which attribute
values contribute to the given class membership. The signifi-
cant attribute values of a class are called the refevant features
of the class. The irrelevant attribute values or features of the
training data, according to a standard statistical test based on
adjusted residual [7), are discarded from further analysis to
minimize the negative effects due to overfitting,

Once the relevant features of a class are known, the weight
of evidence of an object belonging to a particular class given a
relevant feature can be calculated. Decision rules, in the form
of IF <condition> THEN <conclusion> WITH
WEIGHT OF EVIDENCE W are generated so they may be
used later to classify unknown objects. The condition side
specifies the attribute and attribute values an object must pos-
sess in order to be classified into the object class indicated on
the conclusion side, The weight of evidence W is a measure of
uncertainty in a noisy environment based on mutual informa-
tion [7]:

W(Class =c, / Class # c,| Attr; = v ;)
Pr(Aur, = l|Class =c,,)

Pr(Antr; = vy |Class #£c,)

®

where ¢, is any particular class and v, is the kth possible at-
tribute value for the jth attribute in the attribute set.

The final step of the APACS method is the determination of
class membership of an unknown object using the rules gener-
ated from the training set. The rule base is searched for all
rules whose condition side matches any of the relevant features
of the given object. If a match is found, it is said that there is
positive or negative evidence supporting the classification of
the new event into the class specified by the conclusion side of
the rule, depending on the sign of the rule’s weight of evidence
[7]. In most cases, there are multiple rules that match the
event’s attributes. Let valy, .., valj, ..., val, be the n attribute
values associated with the event e to be classified, then the
total weight of evidence by all » attributes of e in favour of it
being assigned to ¢, as opposed to being assigned to any other

[EEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 17, NO. 7, JULY 1995

class is simply the sum of the weight of evidence provided by
each relevant attribute vatue of e [7]:

W(C, =¢,/ C, #cplvaly,...,valy,)
m
9
=Y W(C,=c,/C, #c,lval) ®
=

where m attributes were found to match one or more classifi-
cation rules, and m < n.

Using the sum of the weight of evidence as a measure, the
APACS algorithm considers the class ¢, with the greatest total
weight of evidence is the class to be assigned. That is:

W(C, =c,/C, # cplvalyy,...,val ;) (10)
>W(C, =¢, ! C, #cylvaly,...,val,,;)

where h=1,2,...,P’,and h#p. P’<SP is the number of classes

matched by the attribute values according to the rules [7].

All user-selected parameters such as MAXSTAR for AQ
algorithms were selected to maximize classification accuracy
while providing reasonable learning efficiency. Statistical test
needed in APACS/CADD and ID3 with pruning implementa-
tions used a mid-range confidence level of 95%. For each ex-
periment, a set of preclassified data was randomly divided into
two sets, one for training and the other for testing. The training
and test data were discretized according to discretization inter-
vals determined from the training data, before they were used
as input to the five inductive learning systems in separate test
runs. To compare the effects of the four discretization methods
on classifier performance, the discretization portion of each
experiment was performed using each of CADD, ME, EIG and
EIW methods, one at a time. For M-APACS, the discretization
process using CADD was done automatically before learning
in an integrated step. For M-APACS using other discretizers
and for all ID3 and AQ runs, discretization of real-valued at-
tributes was conducted as a separate data preprocessing step.
Each learning experiment was repeated 10 times using 10 dif-
Jerent sets of randomly selected training and test data. The
average results in terms of classification accuracy and learning
time of the 10 experiments for the five classifiers and four dis-
cretizers are reported in this paper.

The experiments were conducted on continuous data sets
from four different domains. These domains are described
below. Data sets 2-4 were obtained from [17].

1) Chemical and Overt Diabetes: This set of clinical data
was previously used for the study of the relationship be-
tween chemical subclinical and overt nonketotic diabetes
in adult non-obese subjects (Table V) [22]. The data for a
total of 145 subjects was available. Each subject is de-
scribed by five continuous-valued variables. The subjects
have been classified into three classes, normal (76 cases),
chemical ‘diabetic (36 cases), and overt diabetic (33
cases), according to standard medical criteria. A set of 30
subjects for testing was randomly selected, and the re-
maining 80% of the available data was used for training.

2) Glasses: This is a set of 214 instances of data describing
six types of different types of glasses for the purpose of
forensic science (Table VI). Each instance is characterized
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TABLE V TABLE VIII
STATISTICAL PROPERTIES OF DIABETES DATA STATISTICAL PROPERTIES OF IRIS DATA
Attribute Min _Max ___Mean D Class Correlation Min Max Mean SD Class Correlation
Relative weight 071 12 098 0.3 02146 " =
Fasting plasmaglucoss | 70 353 12199  63.93 0.7306 Sepal Length | 43 79 584 083 0.7826
Glucose resistance 269 1568 54361 316958 08367 Sepal Width 20 4.4 3.05 0.43 0.4194
Insulin resistance 10 748 18612 12094 0.1138 Petal Length 1.0 6.9 3.76 1.76 0.9490
Steady state plasmaglucose | 29 480 18421  106.03 £0.7835 PetalWidth | 01 25 120 076 0.9565
by 9 attributes, all of them continuous. The attributes rep-
resent the unit measurement in percentage of the different TABLEIX
. s . . . COMPARATIVE TEST RESULTS OF DIABETES DATA
type of oxides. Class distribution is as follows: 70 build- i i
ing windows, 17 float processed vehicle windows, 76 EIER | e Tmers | com Tty | comst . T | comst - Teante
3 1 1 M-APACS 89.3% 0.11 9.7% ol 90.3% ol 923% 0.10
non-float processed vehicle windows, 13 containers, 9 @ Tk am | e 23 | mme  2es | o os
tableware, and 29 headlamps. For the 10 randomly se- AQts 3% 200 | 82T 208 | B07% 24 | 0% 064
.. 103 77.0% 0.07 72.0% 007 74.0% 0.06 90.0% 0.05
lected training and test sets, 65 cases were reserved for Dipepeuig | 7004 013 | 723% 013 | 6% oo | %1% 006
|_ID3 post-pruning | 78.7% 3.65 TA0% 183 79.3% 364 913% 047

testing and the remaining 70% were used for training.

TABLE VI
STATISTICAL PROPERTIES OF GLASSES DATA
Attribute Min Max Mean SD Class Correlation
Refractive Index | 15112 1.5339  1.5184  0.0030 -0.1642
Na 1073 1738 134079  0.8166 0.5030
Mg 0 449 26845 14424 0.7447
Al 0.29 35 14449  0.4993 0.5988
si 69.81 7541 726509  0.7745 0.1515
K 0 621 04971  0.6522 0.0100
Ca 543 1619 89570  1.4232 0.0007
Ba 0 3.15 0.1750  0.4972 0.5751
Fe 0 051  0.0570 00974 -0.1879

3) Liver disorders: This set of medical data consists of 345
adult male patients with two different types of liver dis-
order (145 type A and 200 type B). Each patient has been
pre-classified into one of two possible liver disease types,
and was described in terms of six continuous-valued at-
tributes (Table VII). The first five variables are all blood
tests which are thought to be sensitive to liver disorders
that might arise from excessive alcohol consumption, and
the sixth attribute indicates the number of half-pint
equivalents of alcoholic beverages consumed per day.
For each of the 10 runs, the test set consisted of 70 ran-
domly selected patient records, while the remaining data
was used for training.

TABLE VII
STATISTICAL PROPERTIES OF LIVER DISORDERS DATA
Attribute Min __Max _Mean SD Class Correlation

Mean copuscular volume 65 103 90.16 445 -0.0911
Alkaline phosphotase 23 138 69.87 1835 0.0981
Alamine aminotransferase 4 155 3041 1951 0.0350
aminotransferase 5 82 24.64 10.06 0.1574
Gamma-glutamyl transpeptidase s 297 3828 39.25 0.1464
Number of drinks [ 20 3.46 3.34 0.0221

4) Iris: This is a well-known set of data in the pattern rec-
ognition field (e.g., [10]) containing three classes of iris
plants with 50 instances belonging to each class
(Table VIII). One of the iris types was linearly separable
from the other two, although the two were not linearly
separable from each other. Each record is described by
four numeric attributes. Qut of the 150 instances avail-
able, a set of 70 instances (50%) was selected randomly
for testing and the remaining half were used for training.
The results for experiments using the first data set are
summarized in Table IX. In terms of classification accu-

racy, ID3 and AQ based systems using data discretized by
CADD had a consistent overall improvement of about 10%.
The improvement in M-APACS over the other discretizers was
less pronounced. By automatically reducing the number of
intervals without sacrificing useful classification information,
the proposed discretizer also managed to shave the average
learning time of the IL systems significantly. Careful review of
the test results for each inductive learning system confirmed
the initial observation. All six inductive learning methods pro-
duced the best classification results as well as the shortest
processing time using CADD as the discretizer as opposed to
using the other three methods. The most significant computa-
tional efficiency improvement as a result of the proposed dis-
cretization method occurred in AQ systems with their rela-
tively expensive search-based problem solving strategy. By
retaining only the useful intervals, CADD allowed AQ to run
faster while producing better accuracy. ID3 with post-pruning
is also known for being slow normally [18]. Its learning time
was also effectively reduced by using CADD to discretize the
original continuous data. For already fast methods like M-
APACS and ID3 without pruning, the performance improve-
ment was less visible. Nevertheless, using CADD resulted in
the shortest processing time in every case.

Among the different inductive learning implementations, M-
APACS produced the best classification results in every case.
Algorithms with better uncertainty tolerance such as M-
APACS, AQ15, and D3 with pruning produced better classi-
fication accuracy in general. Overall, ID3 algorithms also per-
formed better than the AQ versions for this medical domain.

Table X presents the results from the second experiment.
Again, the test results confirmed that the proposed discretiza-
tion method implemented in CADD consistently contributed to
better classification performance of all of the five IL systems.
In general, the degree of classification accuracy improvement
by using CADD as opposed to the other methods was fairly
consistent among the different inductive learners. ID3 based
methods appeared to take the most advantage of class-
dependent discretization because CADD’s information theo-
retic approach actually helped the decision-tree based systems
to deal with this noisy data.

The slower IL techniques again benefited more in terms of
reduced learning time. Due to the complexity and the size of
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TABLE X
COMPARATIVE TEST RESULTS OF THE GLASSES DATA
TL Byveme Banal Width Equlinbrmedon | Mosiowems Ectrapy CADD
MAPACS [y 0.16 158% 017 4% 017 “om 16
~Q oW 1907 | @s% 06 | sox  1ess | @M A0 |
AQls $a% 1708 | @ ase | sa% 15 | exew a0
ms ST3% 044 | S9a% 033 | 6laM 046 | sa9M 038
103 proproning N0% At B% oAt 3% an &5 o1l
| ms puparnien | stow »,

the data, the overall learning time was relatively slower com-
pared to the other sets of data tested. In any case, the im-
provement due to CADD’s ability to minimize the number of
intervals needed for effective classification was still quite evi-
dent in AQ and ID3 with post-pruning. CADD actually helped
to reduce overfitting and eliminated some of the pruning oth-
erwise needed. 1D3 with pre-pruning was the fastest method
overall in this experiment most likely because its chi-square
test for terminating the branching process was quite effective
due to the large size of this data set.

In this experiment, AQ15 produced the best classification
accuracy followed closely by M-APACS and ID3 with pre-
pruning. Given the significant CPU time penalty of AQ15, ID3
and M-APACS may still be considered as more suit-
able methods in this application. This set of data also showed
that CADD can greatly improve the performance of our
APACS system in continuous domains.

The results in Table XI for the third test domain show a
similar trend. In every case, the classifiers’ accuracy increased
as a result of using CADD to discretize the data set. For this
set of data, the degree of classification accuracy improvement
of all of the tested inductive learners appeared quite consistent
at around 5%. The results for training time also confirmed the
earlier findings. There was a clear trend indicating that IL
systems using CADD generally have a shorter learning time.
Again, M-APACS performed well in this experiment both in
terms of classification accuracy and efficiency.

TABLE X1
COMPARATIVE TEST RESULTS OF THE LIVER DISEASE DATA
L Systerns Equal Width Equial Information
Thave (a)
N-APACS M 017 mgu 016
AQ M 1829 WI% 19.88
AQIS 4% 02 601% 154
3 AT o $5.1% o
D3 prepruning | I9.0% 036 S3A% 0
9, kL) 317

TABLE XII. COMPARATIVE TEST RESULTS OF THE IRIS PLANTS DATA

1 Bysterss Reoal Width Eqwil Inftemtion Maxinum Bntropy CADDT
3) O M m!l
MAPACS % 17 A% L33 WI% 021 9%6.3% 006
AQ ©@3%  alo | esa% 24 625% 235 04% 110
AQ3 % 196 | man 246 pi% 330 | 9N 112
] oLsm 018 sta%  ba1 % o1l 9s1% 008
O pew-pruning. 2% 0.08 -1 0.06 "% 0.06 95.2% 0.03
|10 poatpruaning | 9208 [}.:] ;3% BN 048 94T% 028

The fourth set of results in Table XII showed that the im-
provements in classification accuracy by using CADD as the
discretizer can be very dramatic for some inductive learning
systems in certain domains. The classification accuracy of AQ
improved to over 90% from consistently under 70% as a result
of using the proposed class-dependent discretization method.
Impressive improvements were also recorded for AQ15, and
ID3 with pre-pruning. Although CADD clearly had a positive
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effect on the classification results of ID3 without pruning, this
IL system performed well even with the class-ignorant discre-
tizers. Due to the small size of the training data in this domain,
the learning speed improvement from the use of our discretizer
was less apparent. In any case, inductive learning using CADD
discretized Iris data still resulted in at least a 35% reduction
overall in learning time. By simply using a superior discretiza-
tion method in an inductive learning application involving
continuous attributes, significantly better classification accu-
racy as well as shorter training time can be achieved no matter
which inductive learner is used. The proposed class-dependent
discretization approach is clearly highly suitable for any su-
pervised learning tasks in continuous or mixed mode domains.
Both M-APACS and ID3 performed well overall in this ex-
periment with the aid of the proposed class-dependent discreti-
zation algorithm.

In summary, our integrated inductive learning method for
mixed-mode data, M-APACS, performed well in all of the
experiments using its new class-dependent discretization
module. In terms of classification efficiency, M-APACS and
ID3-based systems generally were several times faster than
AQ-based systems.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we are concerned with the handling of con-
tinuous and mix-mode attributes in inductive learning applica-
tions. Partjcularly, we are interested in general discretization
algorithms that can be used to enhance the performance of
existing symbolic learning algorithms. We found that current
discretization methods are either limited to a particular learn-
ing algorithm or they tend to ignore the important associative
information between the continuous attributes and class as-
signment. We proposed a general class-dependent discretiza-
tion method based on the concept of maximum class-attribute
interdependence redundancy. The proposed discretization al-
gorithm (CADD) takes into consideration the ¢lass assignment
information in the training data of an inductive learning appli-
cation, and seeks to maximize the mutual dependenoe of the
class labels and the attribute intervals. As part of an integrated
inductive learning system called M-APACS, or as a stand-
alone general discretization system, CADD has been tested
with the major inductive learning systems in¢luding ID3 and
AQ. The test results showed our method is universally appli-
cable and effective for inductive learning applications involv-
ing continuous attributes. Because of its ability to automati-
cally select the minimum number of intervals without signifi-
cantly reducing useful mutual information, CADD can speed
up the leaming time of most inductive learners with little clas-
sification accuracy loss. The information theoretic discretiza-
tion criterion and statistical interdependence tests in CADD
contribute to its ability to handle noise and uncertainties in the
training data.

A possible improvement is the use of a more formal
method, perhaps a clustering algorithm like K-means, to select
the initial number of intervals and interval boundaries. Once
the initial partitions are selected, the class-attribute interde-
pendence redundancy heuristic can be used to refine the inter-
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val boundaries and to minimize the number of intervals. In any
case, it is clear that a superior discretizer such as CADD is the
easiest and quite effective way to improve classifier perform-
ance in continuous and mixed-mode domains, using existing
inductive learning algorithms.
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