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Multiclass Imbalance Problems: Analysis and
Potential Solutions

Shuo Wang, Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract—Class imbalance problems have drawn growing in-
terest recently because of their classification difficulty caused by
the imbalanced class distributions. In particular, many ensemble
methods have been proposed to deal with such imbalance. How-
ever, most efforts so far are only focused on two-class imbalance
problems. There are unsolved issues in multiclass imbalance prob-
lems, which exist in real-world applications. This paper studies
the challenges posed by the multiclass imbalance problems and
investigates the generalization ability of some ensemble solutions,
including our recently proposed algorithm AdaBoost.NC, with the
aim of handling multiclass and imbalance effectively and directly.
We first study the impact of multiminority and multimajority
on the performance of two basic resampling techniques. They
both present strong negative effects. “Multimajority” tends to
be more harmful to the generalization performance. Motivated
by the results, we then apply AdaBoost.NC to several real-world
multiclass imbalance tasks and compare it to other popular en-
semble methods. AdaBoost.NC is shown to be better at recognizing
minority class examples and balancing the performance among
classes in terms of G-mean without using any class decomposition.

Index Terms—Boosting, diversity, ensemble learning, multiclass
imbalance problems, negative correlation learning.

I. INTRODUCTION

LASS imbalance learning refers to a type of classifica-
tion problems, where some classes are highly underrep-
resented compared to other classes. The skewed distribution
makes many conventional machine learning algorithms less
effective, especially in predicting minority class examples. The
learning objective can be generally described as “obtaining
a classifier that will provide high accuracy for the minority
class without severely jeopardizing the accuracy of the majority
class” [2]. A number of solutions have been proposed at the data
and algorithm levels to deal with class imbalance. In particu-
lar, ensemble techniques have become popular and important
means, such as BEV [3], SMOTEBoost [4], etc. However, the
efforts so far are focused on two-class imbalance problems in
the literature.
In practice, many problem domains have more than two
classes with uneven distributions, such as protein fold classi-
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fication [5]-[7] and weld flaw classification [8]. These multi-
class imbalance problems pose new challenges that are not
observed in two-class problems. Zhou et al. [9] showed that
dealing with multiclass tasks with different misclassification
costs of classes is harder than dealing with two-class ones.
Further investigations are necessary to explain what problem
multiclass can cause existing class imbalance learning tech-
niques and how it affects the classification performance. Such
information would help us to understand the multiclass issue
better and can be utilized to develop better solutions.

Most existing imbalance learning techniques are only de-
signed for and tested in two-class scenarios. They have been
shown to be less effective or even cause a negative effect
in dealing with multiclass tasks [9]. Some methods are not
applicable directly. Among limited solutions for multiclass im-
balance problems, most attention in the literature was devoted
to class decomposition—converting a multiclass problem into
a set of two-class subproblems [10]. Given a c-class problem
(¢ > 2), acommon decomposing scheme is to choose one class
labeled as positive and to merge the others labeled as negative
for forming a subproblem. Each class becomes the positive
class once, and thus, c binary classifiers are produced to give
a final decision (known as one-against-all (OAA), one-versus-
others) [11]. However, it aggravates imbalanced distributions
[7], and combining results from classifiers learned from differ-
ent subproblems can cause potential classification errors [12],
[13]. It is desirable to develop a more effective and efficient
method to handle multiclass imbalance problems.

This paper aims to provide a better understanding of why
multiclass makes an imbalanced problem harder and new ap-
proaches to tackling the difficulties. We first study the impact
of multiclass on the performance of random oversampling and
undersampling techniques by discussing “multiminority” and
“multimajority” cases in depth. We show that both “multimi-
nority” and “multimajority” negatively affect the overall and
minority-class performance. In particular, the “multimajority”
case tends to be more harmful. Random oversampling does
not help the classification and suffers from overfitting. The
effect of random undersampling is weakened as there are more
minority classes. When multiple majority classes exist, random
undersampling can cause great performance reduction to those
majority classes. Neither strategy is satisfactory. Based on the
results, we propose to use our recently developed ensemble
algorithm AdaBoost.NC [1] to handle multiclass imbalance
problems. Our earlier work showed that it has good generaliza-
tion ability under two-class imbalance scenarios by exploiting
ensemble diversity [14]. As a new study of multiclass imbal-
ance problems, the experiments in this paper reveal that Ad-
aBoost.NC combined with oversampling can better recognize
minority class examples and can better balance the performance
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across multiple classes with high G-mean without using any
class decomposition schemes.

The rest of this paper is organized as follows. Section II
briefly introduces the research progress in learning from multi-
class imbalance problems in the literature and describes the
AdaBoost.NC algorithm. Section III investigates the impact of
class number in the presence of imbalanced data under some
artificial settings. Section IV discusses the effectiveness of
AdaBoost.NC in comparison with the state-of-the-art class im-
balance learning methods on real-world multiclass imbalance
tasks. Finally, Section V concludes this paper.

II. RELATED WORK

In this section, we first review the related studies concerning
multiclass imbalance learning. There is a lack of systematic
research on this topic, and existing solutions are very limited.
Then, we introduce the AdaBoost.NC algorithm and describe
the main conclusions obtained in our earlier studies, including
its performance in two-class imbalance problems. This work
will be extended to multiclass scenarios in this paper.

A. Multiclass Imbalance Problems

Most existing solutions for multiclass imbalance problems
use class decomposition schemes to handle multiclass and work
with two-class imbalance techniques to handle each imbalanced
binary subtask. For example, protein fold classification is a
typical multiclass imbalance problem. Tan et al. [7] used both
OAA [11] and one-against-one (OAO) [15] schemes to break
down this problem and then built rule-based learners to im-
prove the coverage of minority class examples. OAA and OAO
are two most popular schemes of class decomposition in the
literature. Zhao et al. [5] used OAA to handle multiclass and
undersampling and SMOTE [16] techniques to overcome the
imbalance issue. Liao [8] investigated a variety of oversampling
and undersampling techniques used with OAA for a weld flaw
classification problem. Chen et al. [6] proposed an algorithm
using OAA to deal with multiclass and then applied some ad-
vanced sampling methods that decompose each binary problem
further so as to rebalance the data. Fernandez [17] integrated
OAO and SMOTE in their algorithm. Instead of applying data-
level methods, Alejo et al.’s algorithm [18] made the error
function of neural networks cost sensitive by incorporating the
imbalance rates between classes to emphasize minority classes,
after decomposing the problem through OAA. Generally speak-
ing, class decomposition simplifies the problem. However, each
individual classifier is trained without full data knowledge. It
can cause classification ambiguity or uncovered data regions
with respect to each type of decomposition [7], [12], [13].

Different from the previous discussion, a cost-sensitive en-
semble algorithm was proposed [19], which addresses multi-
class imbalance directly without using class decomposition.
Its key focuses are how to find an appropriate cost matrix
with multiple classes and how to introduce the costs into the
algorithm. A genetic algorithm (GA) was applied to search for
the optimum cost setup of each class. Two kinds of fitness were
tested, G-mean [20] and F-measure [21], the most frequently
used measures for performance evaluation in class imbalance
learning. The choice depends on the training objective. The
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obtained cost vector was then integrated into a cost-sensitive
version of AdaBoost.M1 [22], namely, AdaC2 [23], [24], which
is able to process multiclass data sets. However, searching the
best cost vector is very time consuming due to the nature of
GA. No existing methods can deal with multiclass imbalance
problems efficiently and effectively yet to our best knowledge.

We now turn our attention to the assessment metrics in
class imbalance learning. Single-class performance measures
evaluate how well a classifier performs in one class, particularly
the minority class. Recall, precision, and F-measure [21] are
widely discussed single-class measures for two-class problems,
which are still applicable to multiclass problems. Recall is a
measure of completeness; precision is a measure of exactness.
F-measure incorporates both to express their tradeoff [2]. For
the overall performance, G-mean [20] and AUC [25] are often
used in the literature, but they are originally designed for two-
class problems. Therefore, they have to be adapted to multiclass
scenarios: an extended G-mean [19] is defined as the geometric
mean of recall values of all classes; a commonly accepted
extension of AUC is called M measure or MAUC [26], the
average AUC of all pairs of classes.

B. AdaBoost.NC for Two-Class Imbalance Problems

We proposed an ensemble learning algorithm AdaBoost.NC
[1] that combines the strength of negative correlation learning
[27], [28] and boosting [29]. It emphasizes ensemble diversity
explicitly during training and shows very encouraging empir-
ical results in both effectiveness and efficiency in comparison
with the conventional AdaBoost and other NCL methods in
general cases. We then exploited its good generalization per-
formance to facilitate class imbalance learning [14], based on
the finding that ensemble diversity has a positive role in solving
this type of problem [30]. Comprehensive experiments were
carried out on a set of two-class imbalance problems. The
results suggest that AdaBoost.NC combined with random over-
sampling can improve the prediction accuracy on the minority
class without losing the overall performance compared to other
existing class imbalance learning methods. It is achieved by
providing less overfitting and broader classification boundaries
for the minority class. Applying oversampling is simply to
maintain a sufficient number of minority class examples and
to guarantee that two classes receive equal attention from the
algorithm. The algorithm is described in Table 1.

AdaBoost.NC penalizes classification errors and encourages
ensemble diversity sequentially with the AdaBoost [29] training
framework. In step 3 of the algorithm, a penalty term p; is cal-
culated for each training example, in which amb; assesses the
disagreement degree of the classification within the ensemble
at current iteration ¢. It is defined as

t

1
amby = 5 Y (H: =yl = lIhi = yl)

i=1

where H, is the class label given by the ensemble composed
of the existing ¢ classifiers. The magnitude of amb, indicates a
“pure” disagreement. p, is introduced into the weight-updating
step (step 5). By doing so, training examples with small |amb, |
will gain more attention. The expression of «; in step 4 is
derived by using the inferring method in [24] and [31] to bound
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TABLE 1
AdaBoost. NC ALGORITHM [1]

Given training data set {(z1,y1),..., (@i, %), (@m,ym)}
with labels y; € Y = {1,...,k} and penalty strength X,
initialize data weights D1 (x;) = 1/m; penalty term p1 (z;) = 1.

For training epoch t = 1,2,...,T"

Step 1. Train weak classifier h; using distribution Dy.

Step 2. Get weak classifier hy: X — Y.

Step 3. Calculate the penalty value for every example x;:
pe (zi) = 1 — |amby (x;)].

Step 4. Calculate hy’s weight o by error and penalty using

. > De(a:) (pe(@:)™
ap = 5 log Z

i,yi#ht(a:i)Dt(zi)(pt(wi))A
for the discrete label outcome.

Step 5. Update data weights D; and obtain new weights D¢
by error and penalty:

)= (pt(xi))/\Dt(wi)ewp(_D‘t”ht(wi):yi”),

Pyi=he(z;)

Diyy (zi 7
where Z; is a normalization factor.

Output the final ensemble:
T
H (z) = argmax Zt:l at ||k () =y

y
(Define ||| to be 1 if  holds and 0 otherwise.)

the overall training error. The predefined parameter A controls
the strength of applying p;. The optimal A\ depends on problem
domains and base learners [32]. In general, (0, 4] is deemed
to be a conservative range of setting A\. As A\ becomes larger,
there could be either a further performance improvement or a
performance degradation.

III. CHALLENGES OF MULTICLASS IMBALANCE LEARNING

Two types of multiclass could occur to an imbalanced data
set: one majority and multiple minority classes (multiminority
cases), and one minority and multiple majority classes (multi-
majority cases). A problem with multiple minority and multiple
majority classes can be treated as the case when both types
happen. Several interesting research questions are raised here:
Are there any differences between multiple minority and mul-
tiple majority classes? Would these two types of problem pose
the same or different challenges to a learning algorithm? Which
one would be more difficult to tackle? For such multiclass
imbalance problems, which aspects of a problem would be
affected the most by the multiclass? Would it be a minority
class, a majority class or both?

With these questions in mind, we will give separate dis-
cussions for each type under a set of artificial scenarios. For
a clear understanding, two kinds of empirical analyses are
conducted: 1) Spearman’s rank correlation analysis, which
shows the relationship between the number of classes and every
evaluated performance measure, provides the evidence of the
classification difficulty brought by “multiminority” and “multi-
majority.” It will answer the question of if the difficulties exist.
2) Performance pattern analysis, which presents the perfor-
mance changing tendencies of all existing classes as more
classes are added into training, reveals the different per-
formance behaviors of each class among different training
strategies. It will tell us what difficulties are caused by the
recognition of each class and what the differences between the
two types of multiclass are.
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A. Artificial Data Sets and Experimental Settings

To have a sufficient number of classes for our study, we
generate some artificial imbalanced data sets by using the
method in [33]. In multiminority cases, the number of minority
classes is varied from 1 to 20, and only one majority class exists.
Similarly, the number of majority classes is varied from 1 to
20 in multimajority cases, and only one class is generated as the
minority. Data points in each class are generated randomly from
Gaussian distributions, where the mean and standard deviation
of each attribute are random real values in [0, 10].

We consider two different imbalanced contexts here. The first
context includes a group of data sets having a relatively small
size. Every generated example has two attributes. In training
data, each minority class has ten examples, and each majority
class has 100 examples. In the second context, we consider
larger data sets. We enlarge the feature space to 20 attributes. In
the training data of this group, each minority class contains 100
examples, and each majority class contains 1000 examples. The
two groups of data are denoted by “10-100" and “100-1000,”
respectively. Discussing both “10-100” and “100-1000" is to
find out whether data size is a factor of affecting our results in
the experiments.

We also generate a set of balanced multiclass data sets with
the number of classes increasing from 2 to 21. They are used as
the baseline to clearly show the “multiclass” difficulty in both
balanced and imbalanced scenarios. The balanced training data
have 2 attributes and 100 examples in each class, denoted by
“100-100.”

The data generation procedure is randomly repeated 20 times
for each setting with the same numbers of minority and majority
classes. Every training data set has a corresponding testing set,
where each class contains 50 examples.

In the experiments, three ensemble training methods are
compared: the conventional AdaBoost that is trained from
the original imbalanced data and used as the default baseline
method (abbr. OrAda); random oversampling + AdaBoost
(abbr. OvAda), where all of the minority classes get their
examples replicated randomly until each of them has the same
size as the majority class before training starts; and random
undersampling + AdaBoost (abbr. UnAda), where all of the
majority classes get rid of some examples randomly until each
of them has the same size as the minority class before training
starts. Every method is run ten times independently on the
current training data. Therefore, the result in the following
comparisons is based on the average of 200 output values
(20 training files * 10 runs). As the most popular techniques in
class imbalance learning, oversampling and undersampling are
discussed to understand the impact of “multiclass” on the basic
strategies of dealing with imbalanced data sets and to examine
their robustness to “multiclass.”

C4.5 decision tree [34] is chosen as the base learner and is
implemented in Weka [35]—an open source data mining tool.
The default Weka parameters are used, resulting in a pruned
tree without the binary split. Each ensemble contains 51 such
trees.

For the performance evaluation, single-class metrics recall,
precision, and F-measure are calculated for each class. To as-
sess the overall performance across all classes, the generalized
versions of AUC and G-mean, i.e., MAUC [26] and extended
G-mean [19], are adopted in the following discussions.
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TABLE 1II
RANK CORRELATION COEFFICIENTS (IN PERCENT) BETWEEN THE
NUMBER OF CLASSES AND FIVE PERFORMANCE MEASURES FOR OrAda
ON BALANCEDDATA “100-100.” RECALL, PRECISION, AND F-MEASURE
ARE CALCULATED FOR THE FIRST GENERATED CLASS

100-100
OrAda

Recall
-100

F-measure | MAUC
-100 -99

G-mean
-100

Precision
-100

B. Balanced Cases

In order to find out whether the “multiclass” issue is due
to the type of multiclass imbalance or the multiclass itself,
we first examine how it affects the classification performance
on balanced data. We carry out Spearman’s rank correlation
analysis between performance measures and the number of
classes by adding new classes of data with the equal size.
Only the conventional AdaBoost (i.e., OrAda) is applied since
resampling is not necessary for balanced data. The three single-
class measures are tracked for the first generated class that joins
all of the training sessions. Table II presents the correlation
coefficients, where each entry ranges in [—1, 1] (in percent).
A positive (negative) value indicates a monotone increasing
(decreasing) relationship, and a coefficient of zero indicates no
tendency between them.

Almost all of the measures have coefficients of —1 in
Table II, which means that they present very strong negative
correlations with the number of classes. As more classes are
added into the training data, the performance of AdaBoost in
predicting any single class and its overall ability to discriminate
between classes become worse. Multiclass itself increases the
data complexity and negatively affects the classification perfor-
mance regardless of whether data are imbalanced. It may imply
that multiclass imbalance problems cannot be simply solved by
rebalancing the number of examples among classes. Next, let
us examine the imbalanced cases.

C. Multiminority Cases

The correlation analysis and performance pattern analysis
are conducted on the multiminority cases in this section. The
number of minority classes is varied from 1 to 20. The impact
of multiminority on the performance of oversampling and un-
dersampling techniques is illustrated and analyzed in depth.

1) Correlation Analysis: Five performance measures and
three ensemble training methods (i.e., OrAda, OvAda, and
UnAda) permit 15 pairwise correlations with respect to the
number of minority classes. They show that if multiminority
degrades the classification performance of the three ensemble
training methods and which performance aspects are affected.
The three single-class measures are recorded for the minor-
ity class that joins all the training sessions from 1 to 20.
Table IIT summarizes the correlation coefficients for “10-100”
and “100-1000" data groups.

All pairs present very strong negative correlations on both
groups of small and large data sets. It implies a strong monotone
decreasing relationship between the measures and the number
of minority classes. All of them are decreasing as more minority
classes are added into the training data, regardless of the size
of the training data and whether resampling is applied. In
other words, multiminority reduces the performance of these
ensembles consistently, and data resampling seems not to be
helpful. Next, we will give a further investigation into the
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TABLE III
RANK CORRELATION COEFFICIENTS (IN PERCENT) BETWEEN THE
NUMBER OF MINORITY CLASSES AND FIVE PERFORMANCE MEASURES
FOR THREE ENSEMBLE METHODS ON “10-100” AND “100-1000” DATA.
RECALL, PRECISION, AND F-MEASURE ARE CALCULATED
FOR THE MINORITY CLASS

10-100 Recall | Precision | F-measure | MAUC | G-mean
OrAda -89 -94 91 -92 -97
OvAda -88 -93 91 -94 -98
UnAda -93 -93 -93 -91 -99
100-1000 | Recall | Precision | F-measure | MAUC | G-mean
OrAda -99 -99 -100 -98 -100
OvAda -99 -99 -99 -94 -100
UnAda -99 -99 -100 -93 -100

performance degradation caused by multiminority classes from
the level of every single class.

2) Performance Pattern Analysis: We now focus on the
“10-100" group of data sets and illustrate the changing tenden-
cies of single-class measures for all classes as the class number
increases. In Fig. 1, the presented pattern reveals detailed
information about how the classification performance of each
class is affected and the differences among ensemble methods
and evaluated measures. All of the following pattern plots are
scaled in the same range.

According to Fig. 1, every class’s performance is decreasing.
No evidence shows which class suffers from more performance
degradation than other classes. The classification gets equally
difficult on all classes. For each class, corresponding to one
curve in the plot, the measure value drops faster at the first few
steps, when the number of minority classes is approximately
smaller than 10. As it gets larger, the reduction slows down.

Among the three performance measures, the drop of pre-
cision [Fig. 1(d) and (e)] is more severe than that of recall
[Fig. 1(a) and (b)] in OrAda and OvAda. Precision is the
main cause of the decrease in F-measure. The reason is that
multiminority increases the risk of predicting an example into
a wrong class. As to recall, it seems that the difficulty of
recognizing examples within each class is less affected by
multiminority as compared to precision because the proportion
of each class of data in the whole data set is hardly changed by
adding a small class. In UnAda, each class is reduced to have
a small size. Adding minority classes changes the proportion
of each class significantly. It explains why UnAda’s recall
[Fig. 1(c)] presents higher sensitivity to multiminority than the
recall produced by OrAda and OvAda [Fig. 1(a) and (b)].

Among the three ensemble methods, OrAda and OvAda have
similar performance patterns, where the majority class obtains
higher recall and F-measure than the minority classes, but lower
precision values. Oversampling does not alleviate the multiclass
problem. Although oversampling increases the quantity of mi-
nority class examples to make every class have the same size,
the class distribution in data space is still imbalanced, which
is dominated by the majority class. In UnAda, undersampling
counteracts the performance differences among classes. During
the first few steps, UnAda presents better recall and F-measure
on minority classes [Fig. 1(c) and (i)] than OrAda and OvAda
[Fig. 1(a), (b), (g), and (h)]. From this point of view, it seems
that using undersampling might be a better choice. However,
its advantage is weakened as more minority classes join the
training. When the class number reaches 20, three ensemble
algorithms have very similar minority-class performance. The
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Single-class performance patterns among classes in multiminority cases of “10-100" (z-axis: number of minority classes; y-axis: performance output).

(a) Recall: OrAda. (b) Recall: OvAda. (c) Recall: UnAda. (d) Precision: OrAda. (e) Precision: OvAda. (f) Precision: UnAda. (g) F-measure: OrAda. (h) F-measure:

OvAda. (i) F-measure: UnAda.

reason could be that undersampling explicitly empties some
space for recognizing minority classes by removing examples
from the majority class region. When there is only one minority
class, a classifier is very likely to assign the space to this class.
When there are many minority classes, they have to share the
same space. Hence, the effect of undersampling is reduced.
Undersampling seems to be more sensitive to multiminority.
For this consideration, it would be better to expand the clas-
sification area for each minority class, instead of shrinking
the majority class. To achieve this goal, advanced techniques
are necessary to improve the classification generalization over
minority classes.

D. Multimajority Cases

We proceed with the same analyses for the multimajority data
“10-100" and “100-1000.” The number of majority classes is
varied from 1 to 20. The impact of multimajority is studied here.

TABLE 1V
RANK CORRELATION COEFFICIENTS (IN PERCENT) BETWEEN THE
NUMBER OF MAJORITY CLASSES AND FIVE PERFORMANCE MEASURES IN
THREE ENSEMBLE METHODS ON “10-100" AND “100-1000" DATA.
RECALL, PRECISION, AND F-MEASURE ARE CALCULATED
FOR THE MINORITY CLASS

10-100 Recall | Precision | F-measure | MAUC | G-mean
OrAda =79 -89 -85 -92 -97
OvAda -84 -93 -86 -92 -97
UnAda -92 -94 -94 -95 -99
100-1000 | Recall | Precision | F-measure | MAUC | G-mean
OrAda -100 -96 -100 -90 -100
OvAda -100 -93 -100 -86 -100
UnAda -99 -99 -100 -83 -100

1) Correlation Analysis: Table IV summarizes the cor-
relation coefficients. Single-class performance measures are
recorded for the only minority class of each data set. Similar to
the multiminority cases, strong negative correlations between
five performance measures and the number of majority classes
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Fig. 2. Single-class performance patterns among classes in multimajority cases of “10-100" (z-axis: number of majority classes; y-axis: performance output).
(a) Recall: OrAda. (b) Recall: OvAda. (c) Recall: UnAda. (d) Precision: OrAda. (e) Precision: OvAda. (f) Precision: UnAda. (g) F-measure: OrAda. (h) F-measure:

OvAda. (i) F-measure: UnAda.

are observed in both groups of small and large data sets,
which indicate a monotone decreasing relationship. All three
ensemble training methods suffer from performance reduction
caused by “multimajority.”

2) Performance Pattern Analysis: To gain more insight, we
focus on the “10-100” group of data sets and present the
changing tendencies of single-class measures for each class
along with the increase of the number of majority classes in
Fig. 2. All plots are in the same axis scale.

Among the classes in each plot, adding majority classes
makes the recognition of examples of each class [i.e., recall
presented in Fig. 2(a)-(c)] equally difficult. In OrAda and
OvAda, minority-class precision drops faster than that of the
majority classes [Fig. 2(d) and (e)] because the large quantity
of new majority class examples overwhelms the minority class
even more. Minority class examples are more likely to be
misclassified than before compared to majority class examples.

All performance measures present a drastic decrease. Espe-
cially in recall plots of OrAda and OvAda [Fig. 2(a) and (b)],
more and more majority class examples take the recognition
rate of the minority class down to nearly 0. For every existing
majority class, adding more majority classes can make it appear
to be in minority. Therefore, the recall of majority classes also
shows a fast drop.

Among the three ensemble methods, UnAda produces better
minority-class F-measure than OrAda and OvAda, but the recall
of majority classes is sacrificed greatly. It causes the concern
that using undersampling will lose too much data information
when multiple majority classes exist and can lead to severe
performance reduction in majority classes.

Based on all of the observations in this section, we make the
following conclusion: 1) As no new information is introduced
into the minority class to facilitate the classification in OrAda
and OvAda, overfitting minority-class regions happens with
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low recall and high precision values when compared with
those measures obtained from the majority classes. Oversam-
pling does not help for both multiminority and multimajority
cases. 2) UnAda performs the same under multiminority and
multimajority cases due to undersampling. In the multimi-
nority case, UnAda can be sensitive to the class number; in
the multimajority case, there is a high risk of sacrificing too
much majority-class performance. 3) Between multiminority
and multimajority, the multimajority case seems to be more
difficult than the multiminority case. OrAda and OvAda present
much worse minority-class performance in Fig. 2(g) and (h)
compared to Fig. 1(g) and (h). This is because adding majority
class examples aggravates the imbalanced situation. 4) Between
balanced and imbalanced data, multiclass leads to performance
degradation in both scenarios. We believe that learning imbal-
anced data is much harder than learning balanced one, for the
performance difference between the types of classes shown in
the performance pattern analysis and the particular performance
requirement for minority classes, which would not happen in
the balanced case. Because of different learning objectives,
different treatments should be considered.

IV. COMPARATIVE STUDY OF ENSEMBLE ALGORITHMS ON
MULTICLASS IMBALANCE PROBLEMS

Armed with a better understanding of multiclass imbalance
problems, this section aims to find a simple and effective
ensemble learning method without using class decomposition.
The presence of multiple minority classes increases data com-
plexity. In addition to more complex data distributions, the
presence of multiple majority classes makes a data set even
more imbalanced. Balancing the performance among classes
appropriately is important. Suggested by the analysis in the
previous section, we attempt to improve the generalization of
the learning method by focusing on minority classes, instead of
shrinking majority classes through undersampling, in order to
avoid losing useful data information and to keep the learning
method less sensitive to the number of minority classes.

In our previous study [14], we found that the “random
oversampling + AdaBoost.NC” tree ensemble is effective in
handling two-class imbalance problems. It shows a good recog-
nition rate of the minority class and balances the performance
between minority and majority classes well by making use
of ensemble diversity. Moreover, its training strategy is flex-
ible and simple without removing any training data. For the
aforementioned reasons, we look into this algorithm and ex-
tend our study to multiclass cases in this section. The main
research question here is whether AdaBoost.NC is still effective
in solving multiclass imbalance problems. In order to answer
the question and to find out if class decomposition is nec-
essary, AdaBoost.NC is compared with other state-of-the-art
methods in cases of using and not using class decomposi-
tion, including the conventional AdaBoost, resampling-based
AdaBoost, and SMOTEBoost [4]. AdaBoost is discussed as
the baseline method, because the AdaBoost.NC algorithm is
in the boosting training framework. Resampling techniques
and the SMOTEBoost algorithm are chosen for their wide use
in the multiclass imbalance learning literature [5], [17]. More
ensemble solutions exist for two-class imbalance problems,
such as RAMOBoost [36] and JOUS-Boost [37], which will be
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TABLE V
SUMMARY OF BENCHMARK DATA SETS

Data Class Size Distribution
New-thyroid 3 215 150/35/30
Balance 3 625 49/288/288
Car 4 1728 1210/384/69/65
Nursery 4 12958 4320/328/4266/4044
Glass 6 214 70/76/17/13/9/29
Annealing 5 898 8/99/684/67/40
Solarflare2 6 1066 147/211/239/95/43/331
Page 5 5473 4913/329/28/88/115
Ecoli 5 327 143/77/52/35/20
Cleveland 5 303 164/55/36/35/13
Yeast 10 1484 | 463/429/244/163/51/44/35/30/20/5
Satimage 6 6435 1533/703/1358/626/707/1508

studied as our next step on how they perform when dealing with
multiclass cases and what advantages they might have over the
methods that we discuss in this paper. Cost-sensitive algorithms
are another class of solutions. They are not considered in our
experiments since we do not assume the availability of explicit
cost information in our algorithm.

A. Data Sets and Experimental Settings

In the experiments, we evaluate our candidate methods on
12 classification benchmark problems from the UCI repository
[38]. Each data set has more than two classes. At least one of
them is significantly smaller than one of the others. The data
information with class distributions is summarized in Table V.

Six ensemble models are constructed and compared, includ-
ing AdaBoost without resampling applied (OrAda, the base-
line model), “random oversampling + AdaBoost” (OvAda),
“random undersampling + AdaBoost” (UnAda), “random over-
sampling + AdaBoostNC” with A =2 (OvNC2), “random
oversampling + AdaBoost.NC” with A =9 (OvNC9), and
SMOTEBoost [4] (SMB).

With respect to parameter settings, the penalty strength A
in AdaBoost.NC is set to 2 and 9 based on our previous
findings [32]. A =2 is a relatively conservative setting to
show if AdaBoost.NC can make a performance improvement,
and A\ =9 encourages ensemble diversity aggressively, as we
have explained in Section II. For a better understanding of
how AdaBoost.NC can facilitate multiclass imbalance learning,
both values (representing two extremes) are discussed here.
Applying random oversampling is necessary for AdaBoost.NC
not to ignore the minority class [14]. For SMOTEBoost, the
nearest neighbor parameter k is set to 5, the most accepted
value in the literature. The amount of new data for a class c is
roughly the size difference between the largest class and class c,
considering that the other models also adjust the between-class
ratio to one. For now, we use fixed parameters for the algorithms
that we compare with in order to single out the impact of
different algorithmic features on the performance. Once we
have a better understanding of the algorithms, we can then tune
and optimize parameters by using some existing parameter-
optimizing methods in our future studies [39].

We still employ C4.5 decision tree as the base learner,
following the same settings as in the previous section. Each
ensemble consists of 51 trees. As some data sets have very small
classes, we perform a five-fold cross-validation (CV) with ten
runs instead of the traditional ten-fold CV, to guarantee that
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TABLE VI
MEAN RANKS OF THE S1X ENSEMBLE MODELS WITHOUT USING OAA
OVER 12 DATA SETS, INCLUDING OrAda, OvAda,
UnAda, OvNC2, OvNC9, AND SMB

Rank OrAda | OvAda | UnAda | OVNC2 | OvNC9 | SMB
MAUC 1.833 3.500 5.167 3.417 4.500 2.583
G-mean | 5.000 | 4.333 3917 3.667 1.833 2.250
Rinin 5.083 4.625 1.375 3917 2.000 3.833
Prin 2.750 2917 4.833 3.250 4.250 3.000
Rinaj 2.500 2.250 5.500 2.750 4.500 3.500
Praj 3.500 | 4.250 3.583 3.667 3.333 2.667

each fold of data contains at least one example from every
minority class.

MAUC [26] and extended G-mean [19] are used to eval-
uate the overall performance as before. Recall and precision
are recorded as the single-class performance measures to ex-
plain how an overall performance improvement or degradation
happens.

B. Ensemble Algorithms for Multiclass Imbalance Problems

In this section, we first give respective discussions on the
performance of ensemble algorithms without using any class
decomposition and the ones using the OAA scheme of class
decomposition—the most frequently used scheme in the litera-
ture. Based on the observations and analysis, an improved com-
bination strategy for OAA-based ensembles is then proposed.
In order to evaluate the significance of the results from the
comparative methods, we carry out the Friedman test [40] with
the corresponding post-hoc test recommended by Demsar [41].
The Friedman test is a nonparametric statistical method for test-
ing whether all of the algorithms are equivalent over multiple
data sets. If the test result rejects the null hypothesis, i.e., there
are some differences between the algorithms, we then proceed
with a post-hoc test to find out which algorithms actually differ.
This paper uses an improved Friedman test proposed by Iman
and Davenport [42]. The Bonferroni—-Dunn test [43] is used
as the post-hoc test method. Finally, we show whether class
decomposition is necessary for multiclass imbalance learning
based on the student T-test with 95% confidence level.

1) Ensemble Models Without Using OAA: Tables VI and
VII present the Friedman and post-hoc test results on MAUC,
extended G-mean, recall, and precision for the six ensemble
models without using class decomposition. Considering the
existence of multiple minority and majority classes, we only
discuss recall and precision for the smallest class and the largest
class, which should be the most typical ones in the data set. The
minority-class recall and precision are denoted by R, and
Ppin, and the majority-class recall and precision are denoted by
Ry and P, The Friedman test compares the mean ranks
of algorithms, which are shown in Table VI. A smaller value
indicates a higher rank, i.e., better performance. Table VII gives
the Friedman and post-hoc test results by choosing OvNC9 as
the “control” method, in which each number is the difference of
mean ranks between the “control” method and one of the other
methods in the corresponding column. The CD value shown at
the bottom is the critical difference value [41]. It is determined
by the number of algorithms and data sets, and a critical value
., that is equal to 2.326 in our case. The performance of any
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TABLE VII
FRIEDMAN TEST WITH THE CORRESPONDING POST-HOC TEST
(BONFERRONI-DUNN) FOR THE S1X ENSEMBLE MODELS WITHOUT USING
OAA. THE DIFFERENCE OF MEAN RANKS BETWEEN OvNC9 AND EVERY
OTHER METHOD IS CALCULATED. CD IS THE CRITICAL DIFFERENCE [41].
A VALUE LARGER THAN CD INDICATES A SIGNIFICANT DIFFERENCE
BETWEEN THE METHODS, HIGHLIGHTED IN BOLDFACE

Friedman | OrAda | OvAda | UnAda | OYNC2 | SMB
MAUC Reject 2.667 1.000 0.667 1.083 | 1.917
G-mean Reject 3.167 | 2.500 2.084 1.834 | 0.417
Rin Reject 3.083 | 2.625 0.625 1917 | 1.833
Pin Reject 1.500 1.333 0.583 1.000 | 1.250
Rinag Reject 2.000 | 2.250 1.000 1.750 | 1.000
Praj Not reject
*CD = 1.776

two methods is significantly different if their difference of mean
ranks is larger than CD.

For the overall performance measures MAUC and G-mean,
we make the following observations. AdaBoost.NC does not
show much advantage over other methods in terms of MAUC,
where the mean ranks of OvNC2 and OvNC9 are 3.417 and
4.5, respectively. OrAda has the highest rank. The Friedman
test rejects the null hypothesis of MAUC, which means the
existence of significant differences among the algorithms. Con-
cretely, OrAda and SMB produce significantly better MAUC
than OVNC9, and OvNC9 produces comparable MAUC to
the others. However, different observations happen to G-mean.
OvNC9 achieves the best G-mean, and OrAda gives the worst.
OvVNCQD9 is significantly better than resampling-based AdaBoost
and comparable to SMB.

It is interesting to observe that the conventional AdaBoost
without using any specific rebalancing technique is good at
MAUC and bad at G-mean. It is known that AdaBoost it-
self cannot handle class imbalance problems very well. It is
sensitive to imbalanced distributions [24], [44]. Meanwhile,
our experiments in the previous section show that it suffers
from multiclass difficulties significantly. It means that the low
G-mean of AdaBoost results from its low recognition rates on
the minority classes, and the high MAUC is probably attributed
to the relatively good discriminability between the majority
classes. The other ensemble methods, namely, AdaBoost.NC,
SMOTEBoost, and resampling-based AdaBoost, seem to be
more effective in improving G-mean than MAUC.

To explain this observation, let us recall the definitions of
MAUC and G-mean. G-mean is the geometric mean of recall
over all classes. If any single class receives very low recall,
it will take the G-mean value down. It can tell us how well a
classifier can balance the recognition among different classes.
A high G-mean guarantees that no class is ignored. MAUC
assesses the average ability of separating any pair of classes.
A high MAUC implies that a classifier is good at separating
most pairs, but it is still possible that some classes are hard
to be distinguished from the others. G-mean is more sensitive
to single-class performance than MAUC. From this point of
view, it may suggest that those ensemble solutions for class
imbalance learning, especially OvNC9, can better recognize
examples from the minority classes but are not good at dis-
criminating between some majority classes. To confirm our
explanations, we look into single-class performance next.

Not surprisingly, UnAda performs best in recall but produces
the worst precision for the minority class because of the loss
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TABLE VIII
MEAN RANKS OF THE SIX ENSEMBLE MODELS USING OAA OVER 12
DATA SETS, INCLUDING OrAda-d, OvAda-d, UnAda-d, OvNC2-d,
OvNC9-d, AND SMB-d

Rank OrAda | OvAda | UnAda | OYNC2 | OVNC9 | SMB
-d -d -d -d -d -d

MAUC | 3.167 | 3.500 5.167 3.083 3.667 | 2.417
G-mean | 3.333 3.167 4.000 3417 | 4333 | 2750
Ropin 3750 | 3917 2.083 3417 | 4.000 | 3.500
min 2.083 2.583 5.000 3.167 | 4.583 | 3.500
Rmaj 2.542 | 2.542 4.208 2958 | 4.625 | 4.125
Praj 3917 | 3917 3.250 3333 3.583 | 3.000

of a large amount of majority class data. OvNC9 ranks second
in minority-class recall, which is competitive with UnAda and
significantly better than the others. OvNC9 produces higher
minority-class recall than OvNC2, which implies that a large A
can further generalize the performance of AdaBoost.NC on the
minority class. More minority class examples can be identified
by setting a large A\. Meanwhile, it is encouraging to see that
OvVNC9 does not lose too much performance on minority-class
precision, where no significant differences are observed. How-
ever, it sacrifices some majority-class recall when compared
with OrAda and OvAda because of the performance tradeoff
between minority and majority classes.

The observations on the smallest and largest classes explain
that the good G-mean of OVNCY results from the greater
improvement in recall of the minority classes than the re-
call reduction of the majority classes. Its ineffectiveness in
MAUC should be caused by the relatively poor performance
in the majority classes. Based on the aforementioned results,
we conclude that AdaBoost.NC with a large A is helpful in
recognizing minority class examples with high recall and is
capable of balancing the performance across different classes
with high G-mean. From the view of MAUC and majority-
class performance, it could lose some learning ability to sep-
arate majority classes. In addition, SMOTEBoost presents a
quite stable overall performance in terms of both MAUC and
G-mean.

2) Ensemble Models Using OAA: We use exactly the same
ensemble methods here, but we let them work with the OAA
class decomposition scheme. In this group of models, one
builds a set of binary classifiers, which will then be combined
for a final decision. We adopt the combining strategy used
in [8], which outputs the class whose corresponding binary
classifier produces the highest value of belongingness among
all. These models are denoted by “-d,” to indicate that OAA
is used.

The comparison results for the ensembles using OAA are
summarized in Tables VIII and IX. Table VIII presents the
mean ranks of constructed models on all of the performance
measures. Based on the ranks, the Friedman and post-hoc
test results are given in Table IX by choosing OvNC9-d as
the “control” method. We observe that no single class imbal-
ance learning method actually outperforms the conventional
AdaBoost (i.e., OrAda-d) significantly in terms of either
MAUC or G-mean. SMB-d appears to be relatively stable, with
slightly better MAUC and G-mean than the others. UnAda-d
has the lowest rank of MAUC, and OvNC9-d has the lowest
rank of G-mean. Generally speaking, the overall performance
of all of the methods is quite close between each other. These
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TABLE IX
FRIEDMAN TEST WITH THE CORRESPONDING POST-HOC TEST
(BONFERRONI-DUNN) FOR THE S1X ENSEMBLE MODELS USING OAA.
THE DIFFERENCE OF MEAN RANKS BETWEEN OvNC9-d AND EVERY
OTHER METHOD IS CALCULATED. CD IS THE CRITICAL DIFFERENCE [41].
A VALUE LARGER THAN CD INDICATES A SIGNIFICANT DIFFERENCE
BETWEEN THE METHODS, HIGHLIGHTED IN BOLDFACE

Friedman | OrAda | OvAda | UnAda | OVNC2 | SMB
-d -d -d -d -d

MAUC Reject 0.500 | 0.167 | 1.500 | 0.584 1.250
G-mean Not reject
Roin Not reject
Poin Reject 2.500 | 2.000 | 0.417 1.416 1.083
Rimaj Reject 2.083 | 2.083 | 0417 1.667 | 0.500
Pnaj Not reject
*CD = 1.776

results are different from what we have observed in the cases
without using OAA, where OvNC9 yields the best G-mean.
It seems that class imbalance techniques are not very effective
when working with the OAA scheme.

As to the single-class performance in the smallest class, there
is no significant difference among the methods in terms of recall
because the Friedman test does not reject the null hypothesis.
Resampling techniques, SMOTEBoost, and AdaBoost.NC do
not show much advantage in identifying minority class ex-
amples. In terms of the minority-class precision, OvNC9-d is
significantly worse than OrAda-d and OvAda-d according to
Table IX. Similar happens to the largest class. We conclude that
class imbalance learning techniques exhibit ineffectiveness in
both minority and majority classes when compared with the
conventional AdaBoost in this group of comparisons. Neither
type of classes is better recognized. When the OAA scheme is
applied to handling multiclass, they do not bring any perfor-
mance improvement.

According to our results here, AdaBoost.NC does not show
any significant improvement in minority-class and overall per-
formance when working with the class decomposition scheme
in multiclass imbalance scenarios, although it showed good
classification ability to deal with two-class imbalance problems
[14]. A possible reason for its poor performance could be that
the combining step of OAA messes up the individual results.
Without using OAA, AdaBoost.NC receives and learns from
complete data information of all classes, which allows the al-
gorithm to consider the difference among classes during learn-
ing with full knowledge. The OAA scheme, however, makes
AdaBoost.NC learn from several decomposed subproblems
with partial data knowledge. The relative importance between
classes is lost. Even if AdaBoost.NC can be good at handling
each subproblem, their combination does not guarantee good
performance for the whole problem. Therefore, it may not be a
wise idea to integrate class decomposition with class imbalance
techniques without considering the class distribution globally.
A better combining method for class decomposition schemes is
needed.

3) Ensemble Models Using OAA With an Improved Com-
bination Method: To take into account the class information
of the whole data set, we improve the combination method
of OAA in this section by using a weighted combining rule.
Instead of the traditional way of treating the outputs of binary
classifiers equally [8], we assign them different weights, deter-
mined by the size of each class. For any input example z, its
belongingness value of class ¢ from the ith binary classifier is
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TABLE X
MEAN RANKS OF THE SIX ENSEMBLE MODELS USING OAA WITH THE
WEIGHTED COMBINATION OVER 12 DATA SETS, INCLUDING OrAda-dw,
OvAda-dw, UnAda-dw, OvNC2-dw, OvNC9-dw, AND SMB-dw

IEEE TRANSACTIONS ON SYSTEMS, MAN,
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TABLE XII
MEANS AND STANDARD DEVIATIONS OF MAUC, G-MEAN, AND
MINORITY-CLASS RECALL BY AdaBoost NC WITH A = 9 AND
SMOTEBoost METHODS WITHOUT USING OAA (i.e., OVYNC9 AND SMB)
AND USING OAA WITH THE WEIGHTED COMBINATION (i.e., OVYNC9-dw

Rank | OrAda | OvAda | UnAda | OYNC2 | OVNC9 | SMB AND SMB-dw). RECALL IS COMPUTED FOR THE SMALLEST CLASS OF
-dw -dw -dw -dw -dw -dw EACH DATA SET. VALUES IN BOLDFACE INDICATE “SIGNIFICANTLY
MAUC 2.750 3.167 5.750 3.167 3.583 2.583 BETTER” BETWEEN OvNC9/SMB AND OvNC9-dw/SMB-dw
G-mean 4.583 3.750 4.583 3.750 1.667 2.667 MATC
Rmin 4.583 4.625 1.500 4.042 2.167 4.000 OVNCD OVNCO-dw SME SMB-dw
Prin | 2333 | 2167 | 5250 | 3500 | 3917 | 3.750 New-thyroid | 0.983£0.013 | 0.0730.005 | 0.988£0.014 | 0.988=0.003
Rpma; | 1958 | 2,125 | 5708 | 2.792 | 4.542 | 3.875 Balance | 0.704£0.037 | 0.703£0.003 | 0.70320.027 | 0.633£0.004
Praj | 4417 | 3750 | 2.833 | 3.750 | 2.833 | 3417 Car 0.9820.005 | 0.980-0.001 | 0.9940.003 | 0.997-0.000
Nursery | 0.99520.001 | 0.998L0.000 | 0.999£0.000 | 0.99940.000
Glass 0.876£0.037 | 0.88120.000 | 0.925£0.030 | 0.924%0.009
TABLE XI Annealing | 0.986£0.009 | 0.9750.003 | 0.984=0.018 | 0.98140.004
FRIEDMAN TEST WITH THE CORRESPONDING POST-HOC TEST Solarflare2 | 0.866:£0.020 | 0.901£0.003 | 0.890£0.015 | 0.891£0.002
(BONFERRONI-DUNN) FOR THE S1X ENSEMBLE MODELS USING OAA Page 0.98910.004 | 0.984L0.001 | 0.989L0.005 | 0.973+L0.002
WITH THE WEIGHTED COMBINATION. THE DIFFERENCE OF MEAN RANKS Ecoli 0.952+0.020 | 0.957£0.002 | 0.954+0.019 | 0.963L0.004
BETWEEN OvNC9-dw AND EVERY OTHER METHOD IS CALCULATED. Cleveland | 0.727E0.046 | 0.76620.004 | 0.7640.040 | 0.76720.007
CD IS THE CRITICAL DIFFERENCE [41]. A VALUE LARGER THAN CD Yeast 0.810+£0.020 | 0.857+0.004 | 0.831£0.021 | 0.847+0.003
INDICATES A SIGNIFICANT DIFFERENCE BETWEEN THE METHODS, Satimage 0.98440.002 0.990+0.000 0.991+£0.001 0.992-+0.000
HIGHLIGHTED IN BOLDFACE G-mean
OvNC9 OVNC9-dw SMB SMB-dw
Friedman | OrAda | OvAda | UnAda | OYNC2 | SMB New-thyroid | 0.927£0.052 | 0.015£0.056 | 0.934£0.060 | 0.940+0.057
-dw -dw -dw -dw -dw Balance | 0.3214£0.173 | 0.319£0.180 | 0.0004£0.000 | 0.000-£0.000
MAUC Reject 0833 | 0.416 | 2.167 0.416 1.000 Car 0.92440.024 | 0.897£0.038 | 0.92840.033 | 0.944+0.031
G-mean Reject 2.916 2.083 2.916 2.083 1.000 Nursery 0.95440.006 0.9671+0.006 0.992+0.004 0.99610.003
o Reject | 2416 | 2458 | 0667 | 1575 | 1533 Glass 0.571£0.278 | 0.578£0.249 | 0.5610.343 | 0.508:0.344
min J Annealing | 0.823:20.310 | 0.89510.191 | 0.7640.341 | 0.8540.258
Prin Reject | 1.584 | 1.750 | 1.333 | 0.417 | 0.167 Solarflare2 | 0486F0.112 | 0.540-£0.096 | 0.520+0.120 | 0.51440.094
Rinaj Reject | 2.584 | 2417 | 1.166 | 1.750 | 0.667 Page 0.912£0.031 | 0.920£0.026 | 0.860£0.048 | 0.871£0.052
Praj Not reject Ecoli 0.776£0.069 | 0.790£0.062 | 0.798E£0.052 | 0.803£0.059
*CD = 1.776 Cleveland | 0.117£0.160 | 0.07540.144 | 0.009:£0.066 | 0.00020.000
Yeast 0.23710.270 | 0.190£0.257 | 0.140420.240 | 0.060L0.164
Satimage | 0.87240.011 | 0.881:£0.009 | 0.89510.011 | 0.898-£0.010
multiplied by the inverse of its imbalance rate. The imbalance Minority-Class Recall
. . : ER OvNC9 OVNC9-dw SMB SMB-dw
rate is defined as the proportion of this class of data within e G 5T T T T G90020.12T | 0:90620.175
the whole data set. The final decision of OAA will be the Balance | 0.14410.112 | 0.150.00.112 | 0.00010.000 | 0.0000.000
class receiving the highest belongingness value among all after Car 0-9801t0-043 0-99710-021 0-967i04058 8-3;&8-8?;
. . Nurser 0.9852£0.020 | 0.9922£0.018 | 0.083E£0.017 | 0. X
adjusted by the weights. ‘ ) Glass T 0.99050.070 | 0.93020203 | 05100218 T 0.860.00.248
We apply the same ensemble methods in the previous sec- Amnealing | 0.790£0.351 | 0.870£0.263 | 0.730£0.380 | 0.850£0.307
tions on the 12 UCI data sets. Six ensemble models are Solarflare2 | 0.4004+0.193 | 0.456+0.190 | 0.275+0.142 | 0.353+0.169
€ g 1 Page 0.974.£0.076 | 0.985£0.052 | 0.8810.161 | 0.822+0.187
constructed. They are denoted by “-dw,” indicating that class Ecoli 0.820£0.182 | 0.860=0.176 | 0.870L£0.160 | 0.880£0.153
decomposition with a weighted combination is used. The Cleveland | 0.16710.212 | 0.197420.246 | 0.030£0.119 | 0.030L£0.104
Friedman and post-hoc test results are summarized in Tables X Yeast 0.09740.117 | 0.070£0.101 | 0.056+0.092 | 0.023+0.058
and XL Satimage | 0.72140.042 | 0.800-£0.037 | 0.69240.050 | 0.709-£0.040

It is encouraging to observe that the ineffectiveness of
AdaBoost.NC used with OAA is rectified by the weighted
combination method in terms of G-mean and minority-class
recall. The following observations are obtained: 1) OvNC9-dw
presents significantly better MAUC than UnAda-dw and is
competitive with the others. 2) OvNC9-dw produces the best
G-mean with the highest mean rank, which is significantly
better than the others expect for SMB-dw. UnAda-dw gives the
worst G-mean. 3) Except for UnAda-dw, OvNC9-dw produces
significantly better minority-class recall than the other mod-
els without sacrificing minority-class precision. OvNC9-dw
shows competitive ability to recognize minority class exam-
ples with UnAda-dw. 4) OvNC9-dw loses some accuracy in
finding majority class examples compared to OrAda-dw and
OvAda-dw.

In summary, by applying the improved combination method
to OAA, AdaBoost.NC with a large A can find more minority
class examples with a higher recall and better balance the
performance across different classes with a higher G-mean than
other methods. SMOTEBoost is a relatively stable algorithm in
terms of overall performance that presents competitive MAUC
and G-mean with AdaBoost.NC.

4) Is Class Decomposition Necessary?: The discussions
in this section aim to answer the question of whether it is
necessary to use class decomposition for handling multiclass
imbalance problems. We compare the overall and minority-
class performance of OvNC9 and SMB with the performance
of OVNC9-dw and SMB-dw. AdaBoost.NC with A =9 and
SMOTEBoost are chosen because AdaBoost.NC performs bet-
ter at G-mean and minority-class recall, and SMOTEBoost
presents good and stable MAUC and G-mean. Raw perfor-
mance outputs from the 12 data sets are shown in Table XII.
Values in boldface indicate “significantly better” between
OvNC9 (SMB) and OvNC9-dw (SMB-dw) based on the stu-
dent T-test with 95% confidence level.

According to the table, no consistent difference is observed
between OvNC9 and OvNC9-dw in the three performance mea-
sures. In most cases, they present competitive measure values
with each other. OvNC9-dw shows slightly better G-mean with
more wins. The same happens between SMB and SMB-dw.
It suggests that whether to apply OAA does not affect class
imbalance learning methods much. Learning from the whole
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data set directly is sufficient for them to achieve good MAUC
and G-mean and to find minority-class examples effectively.
Therefore, we conclude that using class decomposition is not
necessary to tackle multiclass imbalance problems. Moreover,
Table XII further confirms our previous conclusion from the
Friedman and post-hoc tests that AdaBoostNC has better
generalization especially for the minority class. For example,
SMOTEBoost produces zero G-mean and zero minority-class
recall on data set “Balance,” which means that no examples
from the minority class are found and the obtained classifier is
barely useful, while AdaBoost.NC changes this situation with
much better G-mean and minority-class recall.

V. CONCLUSION

This paper has studied the challenges of multiclass imbal-
ance problems and has investigated the generalization ability
of ensemble algorithms, including AdaBoost.NC [1], to deal
with multiclass imbalance data. Two types of multiclass imbal-
ance problems, i.e., the multiminority and multimajority cases,
are studied in depth. For each type, we examine overall and
minority-class performance of three ensemble methods based
on the correlation analysis and performance pattern analysis.
Both types show strong negative correlations with the five per-
formance measures, which are MAUC, G-mean, minority-class
recall, minority-class precision, and minority-class F-measure.
It implies that the performance decreases as the number of
imbalanced classes increases. The results from the performance
pattern analysis show that the multimajority case tends to cause
more performance degradation than the multiminority case
because the imbalance rate gets more severe. Oversampling
does not help the classification and causes overfitting to the
minority classes with low recall and high precision values. Un-
dersampling is sensitive to the number of minority classes and
suffers from performance loss on majority classes. It suggests
that a good solution should overcome the overfitting problem
of oversampling but not by cutting down the size of majority
classes.

Based on the analysis, we investigate a group of ensemble
approaches, including AdaBoost.NC, on a set of benchmark
data sets with multiple minority and/or majority classes with
the aim of tackling multiclass imbalance problems effectively
and efficiently. When the ensembles are trained without using
class decomposition, AdaBoost.NC working with random over-
sampling shows better G-mean and minority-class recall than
the others, which indicates good generalization for the minority
class and the superior ability to balance the performance across
different classes.

Our results also show that using class decomposition (the
OAA scheme in our experiments) does not provide any advan-
tages in multiclass imbalance learning. For AdaBoost.NC, its
G-mean and minority-class recall are even reduced significantly
by the use of class decomposition. The reason for this perfor-
mance degradation seems to be the loss of global information
of class distributions in the process of class decomposition. An
improved combination method for the OAA scheme is therefore
proposed, which assigns different weights to binary classifiers
learned from the subproblems after the decomposition. The
weight is decided by the proportion of the corresponding class
within the data set, which delivers the distribution information
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of each class. By doing so, the effectiveness of AdaBoost.NC
in G-mean and minority-class recall is improved significantly.

In regard to other methods, SMOTEBoost shows a quite sta-
ble performance in terms of MAUC and G-mean. Oversampling
itself does not bring much benefit to AdaBoost. Undersampling
harms majority-class performance greatly.

Finally, we compare the ensembles without using OAA and
the ones using OAA with the weighted combination method.
The result suggests that it is not necessary to use class de-
composition, and learning from the whole data set directly is
sufficient for class imbalance learning techniques to achieve
good performance.

Future work of this study includes the following: 1) an in-
depth study of conditions, including parameter values, under
which an ensemble approach, such as AdaBoost.NC, is able
to improve the performance of multiclass imbalance learning;
currently, the parameter of A in AdaBoost.NC is predefined, and
a large A\ shows greater benefits; some parameter-optimizing
methods might be helpful here [39]; 2) an investigation of
other two-class imbalance learning methods into how their
effectiveness is affected by multiclass and their potential advan-
tages, such as RAMOBoost [36], RareBoost [45], JOUS-Boost
[37], and cost-sensitive methods; 3) a theoretical study of the
advantages and disadvantages of the proposed methods for mul-
ticlass imbalance problems and how they handle the multiclass
imbalance; 4) an investigation of new ensemble algorithms
that combine the strength of AdaBoost.NC and SMOTEBoost;
5) a theoretical framework for analyzing multiclass imbalance
problems since it is unclear how an imbalance rate could be
more appropriately defined.
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