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Abstract—Classifier learning with data-sets that suffer from im-
balanced class distributions is a challenging problem in data min-
ing community. This issue occurs when the number of examples
that represent one class is much lower than the ones of the other
classes. Its presence in many real-world applications has brought
along a growth of attention from researchers. In machine learning,
the ensemble of classifiers are known to increase the accuracy of
single classifiers by combining several of them, but neither of these
learning techniques alone solve the class imbalance problem, to
deal with this issue the ensemble learning algorithms have to be
designed specifically. In this paper, our aim is to review the state
of the art on ensemble techniques in the framework of imbalanced
data-sets, with focus on two-class problems. We propose a taxon-
omy for ensemble-based methods to address the class imbalance
where each proposal can be categorized depending on the inner
ensemble methodology in which it is based. In addition, we develop
a thorough empirical comparison by the consideration of the most
significant published approaches, within the families of the taxon-
omy proposed, to show whether any of them makes a difference.
This comparison has shown the good behavior of the simplest ap-
proaches which combine random undersampling techniques with
bagging or boosting ensembles. In addition, the positive synergy
between sampling techniques and bagging has stood out. Further-
more, our results show empirically that ensemble-based algorithms
are worthwhile since they outperform the mere use of preprocess-
ing techniques before learning the classifier, therefore justifying
the increase of complexity by means of a significant enhancement
of the results.

Index Terms—Bagging, boosting, class distribution, classifica-
tion, ensembles, imbalanced data-sets, multiple classifier systems.

1. INTRODUCTION

LASS distribution, i.e., the proportion of instances belong-
ing to each class in a data-set, plays a key role in classi-
fication. Imbalanced data-sets problem occurs when one class,
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usually the one that refers to the concept of interest (positive
or minority class), is underrepresented in the data-set; in other
words, the number of negative (majority) instances outnumbers
the amount of positive class instances. Anyway, neither uniform
distributions nor skewed distributions have to imply additional
difficulties to the classifier learning task by themselves [1]-[3].
However, data-sets with skewed class distribution usually tend
to suffer from class overlapping, small sample size or small dis-
juncts, which difficult classifier learning [4]-[7]. Furthermore,
the evaluation criterion, which guides the learning procedure,
can lead to ignore minority class examples (treating them as
noise) and hence, the induced classifier might lose its classifica-
tion ability in this scenario. As a usual example, let us consider
a data-set whose imbalance ratio is 1:100 (i.e., for each example
of the positive class, there are 100 negative class examples). A
classifier that tries to maximize the accuracy of its classification
rule, may obtain an accuracy of 99% just by the ignorance of
the positive examples, with the classification of all instances as
negatives.

In recent years, class imbalance problem has emerged as one
of the challenges in data mining community [8]. This situation
is significant since it is present in many real-world classifica-
tion problems. For instance, some applications are known to
suffer from this problem, fault diagnosis [9], [10], anomaly de-
tection [11], [12], medical diagnosis [13], e-mail foldering [14],
face recognition [15], or detection of oil spills [16], among oth-
ers. On account of the importance of this issue, a large amount of
techniques have been developed trying to address the problem.
These proposals can be categorized into three groups, which
depend on how they deal with class imbalance. The algorithm
level (internal) approaches create or modify the algorithms that
exist, to take into account the significance of positive exam-
ples [17]-[19]. Data level (external) techniques add a prepro-
cessing step where the data distribution is rebalanced in or-
der to decrease the effect of the skewed class distribution in
the learning process [20]-[22]. Finally, cost-sensitive methods
combine both algorithm and data level approaches to incorpo-
rate different misclassification costs for each class in the learning
phase [23], [24].

In addition to these approaches, another group of techniques
emerges when the use of ensembles of classifiers is consid-
ered. Ensembles [25], [26] are designed to increase the accu-
racy of a single classifier by training several different classifiers
and combining their decisions to output a single class label.
Ensemble methods are well known in machine learning and their
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application range over a large number of problems [27]-[30].
In the literature, the term “ensemble methods” usually refers to
those collection of classifiers that are minor variants of the same
classifier, whereas “multiple classifier systems” is a broader cat-
egory that also includes those combinations that consider the hy-
bridization of different models [31], [32], which are not covered
in this paper. When forming ensembles, creating diverse classi-
fiers (but maintaining their consistency with the training set) is a
key factor to make them accurate. Diversity in ensembles has a
thorough theoretical background in regression problems (where
it is studied in terms of bias-variance [33] and ambiguity [34]
decomposition); however, in classification, the concept of di-
versity is still formally ill-defined [35]. Even though, diversity
is necessary [36]-[38] and there exist several different ways to
achieve it [39]. In this paper, we focus on data variation-based
ensembles, which consist in the manipulation of the training
examples in such a way that each classifier is trained with a dif-
ferent training set. AdaBoost [40], [41] and Bagging [42] are the
most common ensemble learning algorithms among them, but
there exist many variants and other different approaches [43].

Because of their accuracy-oriented design, ensemble learn-
ing algorithms that are directly applied to imbalanced data-sets
do not solve the problem that underlay in the base classifier
by themselves. However, their combination with other tech-
niques to tackle the class imbalance problem have led to several
proposals in the literature, with positive results. These hybrid
approaches are in some sense algorithm level approaches (since
they slightly modify the ensemble learning algorithm), but they
do not need to change the base classifier, which is one of their ad-
vantages. The modification of the ensemble learning algorithm
usually includes data level approaches to preprocess the data
before learning each classifier [44]-[47]. However, other pro-
posals consider the embedding of the cost-sensitive framework
in the ensemble learning process [48]-[50].

In general, algorithm level and cost-sensitive approaches are
more dependent on the problem, whereas data level and en-
semble learning methods are more versatile since they can be
used independently of the base classifier. Many works have
been developed studying the suitability of data preprocessing
techniques to deal with imbalanced data-sets [21], [51], [52].
Furthermore, there exist several comparisons between different
external techniques in different frameworks [20], [53], [54]. On
the other hand, with regard to ensemble learning methods, a
large number of different approaches have been proposed in
the literature, including but not limited to SMOTEBoost [44],
RUSBoost [45], IVotes [46], EasyEnsemble [47], or SMOTE-
Bagging [55]. All of these methods seem to be adequate to deal
with the class imbalance problem in concrete frameworks, but
there are no exhaustive comparisons of their performance among
them. In many cases, new proposals are compared with respect
to a small number of methods and by the usage of limited sets
of problems [44]-[47]. Moreover, there is a lack of a unification
framework where they can be categorized.

Because of these reasons, our aim is to review the state of
the art on ensemble techniques to address a two-class imbal-
anced data-sets problem and to propose a taxonomy that defines
a general framework within each algorithm can be placed. We

consider different families of algorithms depending on which
ensemble learning algorithm they are based, and what type of
techniques they used to deal with the imbalance problem. Over
this taxonomy, we carry out a thorough empirical comparison
of the performance of ensemble approaches with a twofold ob-
jective. The first one is to analyze which one offers the best
behavior among them. The second one is to observe the suit-
ability of increasing classifiers’ complexity with the use of en-
sembles instead of the consideration of a unique stage of data
preprocessing and training a single classifier.

We have designed the experimental framework in such a way
that we can extract well-founded conclusions. We use a set of
44 two-class real-world problems, which suffer from the class
imbalance problem, from the KEEL data-set repository [56],
[57] (http://www.keel.es/dataset.php). We consider C4.5 [58]
as base classifier for our experiments since it has been widely
used in imbalanced domains [20], [59]-[61]; besides, most of
the proposals we are studying were tested with C4.5 by their
authors (e.g., [45], [50], [62]). We perform the comparison by
the development of a hierarchical analysis of ensemble methods
that is directed by nonparametric statistical tests as suggested
in the literature [63]-[65]. To do so, according to the imbalance
framework, we use the area under the ROC curve (AUC) [66],
[67] as the evaluation criterion.

The rest of this paper is organized as follows. In Section II, we
present the imbalanced data-sets problem that describes several
techniques which have been combined with ensembles, and dis-
cussing the evaluation metrics. In Section III, we recall different
ensemble learning algorithms, describe our new taxonomy, and
review the state of the art on ensemble-based techniques for
imbalanced data-sets. Next, Section IV introduces the experi-
mental framework, that is, the algorithms that are included in
the study with their corresponding parameters, the data-sets, and
the statistical tests that we use along the experimental study. In
Section V, we carry out the experimental analysis over the most
significant algorithms of the taxonomy. Finally, in Section VI,
we make our concluding remarks.

II. INTRODUCTION TO CLASS IMBALANCE PROBLEM
IN CLASSIFICATION

In this section, we first introduce the problem of imbalanced
data-sets in classification. Then, we present how to evaluate
the performance of the classifiers in imbalanced domains. Fi-
nally, we recall several techniques to address the class imbalance
problem, specifically, the data level approaches that have been
combined with ensemble learning algorithms in previous works.

Prior to the introduction of the problem of class imbalance,
we should formally state the concept of supervised classifica-
tion [68]. In machine learning, the aim of classification is to learn
a system capable of the prediction of the unknown output class of
a previously unseen instance with a good generalization ability.
The learning task, i.e., the knowledge extraction, is carried out
by a set of n input instances z1, . .., z, characterized by i fea-
tures ai,...,a; € A, which includes numerical or nominal val-
ues, whose desired output class labels y; € C = {c1,...,cn },
in the case of supervised classification, are known before to the
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Fig. 1. Example of difficulties in imbalanced data-sets. (a) Class overlapping.
(b) Small disjuncts.

learning stage. In such a way, the system that is generated by
the learning algorithm is a mapping function that is defined over
the patterns A’ — C, and it is called classifier.

A. The Problem of Imbalanced Data-sets

In classification, a data-set is said to be imbalanced when
the number of instances which represents one class is smaller
than the ones from other classes. Furthermore, the class with
the lowest number of instances is usually the class of interest
from the point of view of the learning task [22]. This prob-
lem is of great interest because it turns up in many real-world
classification problems, such as remote-sensing [69], pollution
detection [70], risk management [71], fraud detection [72], and
especially medical diagnosis [13], [24], [73]-[75].

In these cases, standard classifier learning algorithms have
a bias toward the classes with greater number of instances,
since rules that correctly predict those instances are positively
weighted in favor of the accuracy metric, whereas specific rules
that predict examples from the minority class are usually ig-
nored (treating them as noise), because more general rules are
preferred. In such a way, minority class instances are more of-
ten misclassified than those from the other classes. Anyway,
skewed data distribution does not hinder the learning task by
itself [1], [2], the issue is that usually a series of difficulties
related to this problem turn up.

1) Small sample size: Generally imbalanced data-sets do not
have enough minority class examples. In [6], the authors
reported that the error rate caused by imbalanced class
distribution decreases when the number of examples of
the minority class is representative (fixing the ratio of
imbalance). This way, patterns that are defined by positive
instances can be better learned despite the uneven class
distribution. However, this fact is usually unreachable in
real-world problems.

Overlapping or class separability [see Fig. 1(a)]: When it
occurs, discriminative rules are hard to induce. As a con-
sequence, more general rules are induced that misclassify
alow number of instances (minority class instances) [4]. If
there is no overlapping between classes, any simple clas-
sifier could learn an appropriate classifier regardless of the
class distribution.

Small disjuncts [see Fig. 1(b)]: The presence of small dis-
juncts in a data-set occurs when the concept represented by

2)

3)

TABLE 1
CONFUSION MATRIX FOR A TWO-CLASS PROBLEM

Positive prediction

True Positive (TP)
False Positive (FP)

Negative prediction

False Negative (FN)
True Negative (TN)

Positive class
Negative class

the minority class is formed of subconcepts [5]. Besides,
small disjuncts are implicit in most of the problems. The
existence of subconcepts also increases the complexity of
the problem because the amount of instances among them
is not usually balanced.

In this paper, we focus on two-class imbalanced data-sets,
where there is a positive (minority) class, with the lowest number
of instances, and a negative (majority) class, with the highest
number of instances. We also consider the imbalance ratio (IR)
[54], defined as the number of negative class examples that are
divided by the number of positive class examples, to organize
the different data-sets.

B. Performance Evaluation in Imbalanced Domains

The evaluation criterion is a key factor both in the assessment
of the classification performance and guidence of the classifier
modeling. In a two-class problem, the confusion matrix (shown
in Table I) records the results of correctly and incorrectly rec-
ognized examples of each class.

Traditionally, the accuracy rate (1) has been the most com-
monly used empirical measure. However, in the framework of
imbalanced data-sets, accuracy is no longer a proper measure,
since it does not distinguish between the numbers of correctly
classified examples of different classes. Hence, it may lead to
erroneous conclusions, i.e., a classifier that achieves an accuracy
of 90% in a data-set with an IR value of 9, is not accurate if it
classifies all examples as negatives.

B TP+ TN
" TP+FN+FP+TN’

For this reason, when working in imbalanced domains, there are
more appropriate metrics to be considered instead of accuracy.
Specifically, we can obtain four metrics from Table I to measure
the classification performance of both, positive and negative,
classes independently.
1) True positive rate T P, .10 = TPZ%
positive instances correctly classified.
2) True negative rate T'Nyto = % is the percentage of
negative instances correctly classified.
3) False positive rate F Py = % is the percentage of
negative instances misclassified.
4) False negative rate F' Nyute = %
of positive instances misclassified.
Clearly, since classification intends to achieve good quality
results for both classes, none of these measures alone is adequate
by itself. One way to combine these measures and produce an
evaluation criterion is to use the receiver operating characteristic
(ROC) graphic [66]. This graphic allows the visualization of
the trade-off between the benefits (1'P,,¢.) and costs (F P,a0);
thus, it evidences that any classifier cannot increase the number

Acc

ey

is the percentage of

is the percentage
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Fig. 2. Example of an ROC plot. Two classifiers’ curves are depicted: the
dashed line represents a random classifier, whereas the solid line is a classifier
which is better than the random classifier.

of true positives without the increment of the false positives.
The area under the ROC curve (AUC) [67] corresponds to the
probability of correctly identifying which one of the two stimuli
is noise and which one is signal plus noise. AUC provides a
single measure of a classifier’s performance for the evaluation
that which model is better on average. Fig. 2 shows how to
build the ROC space plotting on a two-dimensional chart, the
T P,ate (Y-axis) against the F'P, . (X-axis). Pointsin (0, 0) and
(1,1) are trivial classifiers where the predicted class is always
the negative and positive, respectively. On the contrary, (0, 1)
point represents the perfect classification. The AUC measure is
computed just by obtaining the area of the graphic:

1 + TRate - FPrate

AUC =
2

2

C. Dealing With the Class Imbalance Problem

On account of the importance of the imbalanced data-sets
problem, a large amount of techniques have been developed
to address this problem. As stated in the introduction, these
approaches can be categorized into three groups, depending on
how they deal with the problem.

1) Algorithm level approaches (also called internal) try to
adapt existing classifier learning algorithms to bias the
learning toward the minority class [76]-[78]. These meth-
ods require special knowledge of both the corresponding
classifier and the application domain, comprehending why
the classifier fails when the class distribution is uneven.

2) Data level (or external) approaches rebalance the class
distribution by resampling the data space [20], [52], [53],
[79]. This way, they avoid the modification of the learn-
ing algorithm by trying to decrease the effect caused by
imbalance with a preprocessing step. Therefore, they are
independent of the classifier used, and for this reason,
usually more versatile.

3) Cost-sensitive learning framework falls between data and
algorithm level approaches. It incorporates both data level
transformations (by adding costs to instances) and algo-
rithm level modifications (by modifying the learning pro-
cess to accept costs) [23], [80], [81]. It biases the classifier
toward the minority class the the assumption higher mis-
classification costs for this class and seeking to minimize
the total cost errors of both classes. The major drawback
of these approaches is the need to define misclassification
costs, which are not usually available in the data-sets.

In this work, we study approaches that are based on ensemble
techniques to deal with the class imbalance problem. Aside
from those three categories, ensemble-based methods can be
classified into a new category. These techniques usually consist
in a combination between an ensemble learning algorithm and
one of the techniques above, specifically, data level and cost-
sensitive ones. By the addition of a data level approach to the
ensemble learning algorithm, the new hybrid method usually
preprocesses the data before training each classifier. On the other
hand, cost-sensitive ensembles instead of modifying the base
classifier in order to accept costs in the learning process guide
the cost minimization via the ensemble learning algorithm. This
way, the modification of the base learner is avoided, but the
major drawback (i.e., costs definition) is still present.

D. Data Preprocessing Methods

As pointed out, preprocessing techniques can be easily em-
bedded in ensemble learning algorithms. Hereafter, we recall
several data preprocessing techniques that have been used to-
gether with ensembles, which we will analyze in the following
sections.

In the specialized literature, we can find some papers about
resampling techniques that study the effect of changing class
distribution to deal with imbalanced data-sets, where it has been
empirically proved that the application of a preprocessing step
in order to balance the class distribution is usually a positive
solution [20], [53]. The main advantage of these techniques,
as previously pointed out, is that they are independent of the
underlying classifier.

Resampling techniques can be categorized into three groups.
Undersampling methods, which create a subset of the origi-
nal data-set by eliminating instances (usually majority class
instances); oversampling methods, which create a superset of
the original data-set by replicating some instances or creating
new instances from existing ones; and finally, hybrids methods
that combine both sampling methods. Among these categories,
there exist several different proposals; from this point, we only
center our attention in those that have been used in combination
with ensemble learning algorithms.

1) Random undersampling: It is a nonheuristic method
that aims to balance class distribution through the ran-
dom elimination of majority class examples. Its major
drawback is that it can discard potentially useful data,
which could be important for the induction process.

2) Random oversampling: In the same way as random un-
dersampling, it tries to balance class distribution, but in
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this case, randomly replicating minority class instances.
Several authors agree that this method can increase the
likelihood of occurring overfitting, since it makes exact
copies of existing instances.

Synthetic minority oversampling technique (SMOTE)
[21]: Tt is an oversampling method, whose main idea is
to create new minority class examples by interpolating
several minority class instances that lie together. SMOTE
creates instances by randomly selecting one (or more de-
pending on the oversampling ratio) of the k& nearest neigh-
bors (KNN) of a minority class instance and the generation
of the new instance values from a random interpolation of
both instances. Thus, the overfitting problem is avoided
and causes the decision boundaries for the minority class
to be spread further into the majority class space.

4) Modified synthetic minority oversampling technique
(MSMOTE) [82]: It is a modified version of SMOTE.
This algorithm divides the instances of the minority class
into three groups, safe, border and latent noise instances
by the calculation of the distances among all examples.
When MSMOTE generates new examples, the strategy to
select the nearest neighbors is changed with respect to
SMOTE that depends on the group previously assigned to
the instance. For safe instances, the algorithm randomly
selects a data point from the kNN (same way as SMOTE);
for border instances, it only selects the nearest neighbor;
finally, for latent noise instances, it does nothing.
Selective preprocessing of imbalanced data (SPIDER)
[52]: It combines local oversampling of the minority class
with filtering difficult examples from the majority class. It
consists in two phases, identification and preprocessing.
The first one identifies which instances are flagged as noisy
(misclassified) by kKNN. The second phase depends on the
option established (weak, relabel, or strong); when weak
option is settled, it amplifies minority class instances; for
relabel, it amplifies minority class examples and relabels
majority class instances (i.e., changes class label); finally,
using strong option, it strongly amplifies minority class
instances. After carrying out these operations, the remain-
ing noisy examples from the majority class are removed
from the data-set.

3)

5)

III. STATE OF THE ART ON ENSEMBLES TECHNIQUES
FOR IMBALANCED DATA-SETS

In this section, we propose a new taxonomy for ensemble-
based techniques to deal with imbalanced data-sets and we re-
view the state of the art on these solutions. With this aim, we start
recalling several classical learning algorithms for constructing
sets of classifiers, whose classifiers properly complement each
other, and then we get on with the ensemble-based solutions to
address the class imbalance problem.

A. Learning Ensembles of Classifiers: Description and
Representative Techniques

The main objective of ensemble methodology is to try to
improve the performance of single classifiers by inducing sev-

eral classifiers and combining them to obtain a new classifier
that outperforms every one of them. Hence, the basic idea is
to construct several classifiers from the original data and then
aggregate their predictions when unknown instances are pre-
sented. This idea follows the human natural behavior that tends
to seek several opinions before making any important decision.
The main motivation for the combination of classifiers in redun-
dant ensembles is to improve their generalization ability: each
classifier is known to make errors, but since they are different
(e.g., they have been trained on different data-sets or they have
different behaviors over different part of the input space), mis-
classified examples are not necessarily the same [83]. Ensemble-
based classifiers usually refer to the combination of classifiers
that are minor variants of the same base classifier, which can
be categorized in the broader concept of multiple classifier sys-
tems [25], [31], [32]. In this paper, we focus only on ensembles
whose classifiers are constructed by manipulating the original
data.

In the literature, the need of diverse classifiers to compose an
ensemble is studied in terms of the statistical concepts of bias-
variance decomposition [33], [84] and the related ambiguity
[34] decomposition. The bias can be characterized as a measure
of its ability to generalize correctly to a test set, whereas the
variance can be similarly characterized as a measure of the
extent to which the classifier’s prediction is sensitive to the
data on which it was trained. Hence, variance is associated
with overfitting, the performance improvement in ensembles is
usually due to a reduction in variance because the usual effect of
ensemble averaging is to reduce the variance of a set of classifiers
(some ensemble learning algorithms are also known to reduce
bias [85]). On the other hand, ambiguity decomposition shows
that, taking the combination of several predictors is better on
average, over several patterns, than a method selecting one of
the predictors at random. Anyway, these concepts are clearly
stated in regression problems where the output is real-valued
and the mean squared error is used as the loss function. However,
in the context of classification, those terms are still ill-defined
[35], [38], since different authors provide different assumptions
[86]-[90] and there is no an agreement on their definition for
generalized loss functions [91].

Nevertheless, despite not being theoretically clearly defined,
diversity among classifiers is crucial (but alone is not enough) to
form an ensemble, as shown by several authors [36]-[38]. Note
also that, the measurement of the diversity and its relation to
accuracy is not demonstrated [43], [92], but this is probably due
to the measures of diversity rather than for not existing that rela-
tion. There are different ways to reach the required diversity, that
is, different ensemble learning mechanisms. An important point
is that the base classifiers should be weak learners; a classifier
learning algorithm is said to be weak when low changes in data
produce big changes in the induced model; this is why the most
commonly used base classifiers are tree induction algorithms.

Considering a weak learning algorithm, different techniques
can be used to construct an ensemble. The most widely used
ensemble learning algorithms are AdaBoost [41] and Bagging
[42] whose applications in several classification problems have
led to significant improvements [27]. These methods provide a
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Algorithm 1 Bagging

Algorithm 2 Ivotes

Input: S: Training set; 7": Number of iterations;

n: Bootstrap size; I: Weak learner
T

Input: S: Training set; 7": Number of iterations;

n: Bootstrap size; I: Weak learner
T

Output: Bagged classifier: H(z) = sign (Z ht(m)> where h; € Output: Bagged classifier: H(x) = sign (Z ht(af)> where h; €

T

t=1
[—1,1] are the induced classifiers
fort =1t T do
St + RandomSampleReplacement(n,S)
ht < I(St)

end for

way in which the classifiers are strategically generated to reach
the diversity needed, by manipulating the training set before
learning each classifier.

From this point, we briefly recall Bagging (including the
modification called pasting small votes with importance sam-
pling) and Boosting (AdaBoost and its variants AdaBoost.M1
and AdaBoost.M2) ensemble learning algorithms, which have
been then integrated with previously explained preprocessing
techniques in order to deal with the class imbalance problem.

1y

2)

Bagging: Breiman [42] introduced the concept of boot-
strap aggregating to construct ensembles. It consists in
training different classifiers with bootstrapped replicas of
the original training data-set. That is, a new data-set is
formed to train each classifier by randomly drawing (with
replacement) instances from the original data-set (usually,
maintaining the original data-set size). Hence, diversity
is obtained with the resampling procedure by the usage
of different data subsets. Finally, when an unknown in-
stance is presented to each individual classifier, a majority
or weighted vote is used to infer the class. Algorithm 1
shows the pseudocode for Bagging.

Pasting small votes is a variation of Bagging originally
designed for large data-sets [93]. Large data-sets are parti-
tioned into smaller subsets, which are used to train differ-
ent classifiers. There exist two variants, Rvotes that creates
the data subsets at random and [votes that create consec-
utive data-sets based on the importance of the instances;
important instances are those that improve diversity. The
way used to create the data-sets consists in the usage of a
balanced distribution of easy and difficult instances. Dif-
ficult instances are detected by out-of-bag classifiers [42],
that is, an instance is considered difficult when it is mis-
classified by the ensemble classifier formed of those clas-
sifiers which did not use the instance to be trained. These
difficult instances are always added to the next data subset,
whereas easy instances have a low chance to be included.
We show the pseudocode for Ivotes in Algorithm 2.
Boosting: Boosting (also known as ARCing, adaptive re-
sampling and combining) was introduced by Schapire in
1990 [40]. Schapire proved that a weak learner (which is
slightly better than random guessing) can be turned into a
strong learner in the sense of probably approximately cor-
rect (PAC) learning framework. AdaBoost [41] is the most
representative algorithm in this family, it was the first ap-
plicable approach of Boosting, and it has been appointed as
one of the top ten data mining algorithms [94]. AdaBoost

1:
2:
3
4
5:
6
7
8

15:

t=1
[—1, 1] are the induced classifiers
enew < 0.5
repeat
€old € €new
St «~0
while size(S:) < n do {Importance sampling}
z < RandomlInstance(S)
if  misclassified by out-of-bag classifier then

St < St U {1’}
else
Si < Sy U {z} with probability li—"e’@’;
end if o
end while
hi < I(St)

enew < error of out-of-bag classifier
until epew > €014

is known to reduce bias (besides from variance) [85], and
similarly to support vector machines (SVMs) boosts the
margins [95]. AdaBoost uses the whole data-set to train
each classifier serially, but after each round, it gives more
focus to difficult instances, with the goal of correctly clas-
sifying examples in the next iteration that were incorrectly
classified during the current iteration. Hence, it gives more
focus to examples that are harder to classify, the quan-
tity of focus is measured by a weight, which initially is
equal for all instances. After each iteration, the weights
of misclassified instances are increased; on the contrary,
the weights of correctly classified instances are decreased.
Furthermore, another weight is assigned to each individ-
ual classifier depending on its overall accuracy which is
then used in the test phase; more confidence is given to
more accurate classifiers. Finally, when a new instance is
submitted, each classifier gives a weighted vote, and the
class label is selected by majority.

In this work, we will use the original two-class Ad-
aBoost (Algorithm 3) and two of its very well-known
modifications [41], [96] that have been employed in
imbalanced domains: AdaBoost.M1 and AdaBoost.M2.
The former is the first extension to multiclass classi-
fication with a different weight changing mechanism
(Algorithm 4); the latter is the second extension to mul-
ticlass, in this case, making use of base classifiers’ confi-
dence rates (Algorithm 5). Note that neither of these algo-
rithms by itself deal with the imbalance problem directly;
both have to be changed or combined with another tech-
nique, since they focus their attention on difficult examples
without differentiating their class. In an imbalanced data-
set, majority class examples contribute more to the accu-
racy (they are more probably difficult examples); hence,
rather than trying to improve the true positives, it is eas-
ier to improve the true negatives, also increasing the false
negatives, which is not a desired characteristic.
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Algorithm 3 AdaBoost

Algorithm 5 AdaBoost.M2

Input: Training set S = {x;,y:}, ¢ = 1,...,N; and y; €
{=1,+1}; T: Number of iterations; I: Weak learner

.
Output: Boosted classifier: H(z) = sign Zatht(m) where

t=1
he, o are the induced classifiers (with hy(xz) € {—1,1}) and
their assigned weights, respectively

1: Di(i) < 1/N fori=1,...,N
2: fort=1to T do
3: ht < [(S, Dt)
4: &t < Z Dt(Z)
4y Ahe (x4)
s: if £ > 0.5 then
6: T+t—1
7: return
8: end if
9 = %1n 1;45

100 Dyy1(i) = Dy(s) - emtm v for 4 =1,... N
11:  Normalize D:+1 to be a proper distribution
12: end for

Algorithm 4 AdaBoost.M1

Input: Training set S = {x;,¥:}, i =1,...,N;and y; € C,C =
{c1,...,¢em}; Tt Number of iterations; I: Weak learner
Output: Boosted classifier:

T
H(x) = arg I;lgé(;ln <%) [ht(x) = y] where h¢, B¢

are the induced classifiers (with h.(x) € C) and their assigned
weights, respectively

1: Di(i) < 1/N fori=1,...,N

2: fort=1to T do

3: ht < I(S, Dt)
N

4 e ey Di(i)he(xi) # ui
i=1

s: if £, > 0.5 then

6: T+—t—-1

7: return

8: end if

9: Bt = J‘liat

10: Deyr(3) = Dy(a) - B P07 for j =1, N
11:  Normalize D41 to be a proper distribution
12: end for

B. Addressing Class Imbalance Problem
With Classifier Ensembles

As we have stated, in recent years, ensemble of classifiers
have arisen as a possible solution to the class imbalance problem
attracting great interest among researchers [45], [47], [50], [62].
In this section, our aim is to review the application of ensemble
learning methods to deal with this problem, as well as to present
ataxonomy where these techniques can be categorized. Further-
more, we have selected several significant approaches from each
family of our taxonomy to develop an exhaustive experimental
study that we will carry out in Section V.

To start with the description of the taxonomy, we show
our proposal in Fig. 3, where we categorize the different ap-
proaches. Mainly, we distinguish four different families among
ensemble approaches for imbalanced learning. On the one hand,
cost-sensitive boosting approaches, which are similar to cost-
sensitive methods, but where the costs minimization is guided

Input: Training set S = {x;,¥:},¢=1,...,N;and y; € C,C =
{c1,...,em}; T Number of iterations; I: Weak learner
Output: Boosted classifier:

a 1
H(z) = arg I;lgggln (E) hi(z,y)

where hy, B (with he(z,y) € [0,1]) are the classifiers and their
assigned weights, respectively

1: D1(i) + 1/N fori=1,...,N
2: w}‘y «~D@E)/(m—1)fori=1,...,N, ye C—{y;}
3: fort =1t 71 do
4@ Wie Y,

Y#Y;
s ar(iy) + G fory # i

it

6: Dt(’l) <« —(“’j/.ZW.L
70 he < I(S, D)
8: €4

N

32 D) [ 1= ha(xiw) + Y qei, y)he(xi,)

i=1 HYFY;

9: ﬁt = 1it€[
' 3 (1thy (xi,y:)— e (x4,y))
10: wﬁzl =wi, B¢ PRy TRy
fort=1,...,N, y € C— {y;}

11: end for

by the boosting algorithm. On the other hand, we difference
three more families that have a characteristic in common; all of
them consist in embedding a data preprocessing technique in
an ensemble learning algorithm. We categorize these three fam-
ilies depending on the ensemble learning algorithm they use.
Therefore, we consider boosting- and bagging-based ensem-
bles, and the last family is formed by hybrids ensembles. That
is, ensemble methods that apart from combining an ensemble
learning algorithm and a preprocessing technique, make use of
both boosting and bagging, one inside the other, together with
a preprocessing technique.

Next, we look over these families, reviewing the existing
works and focusing in the most significant proposals that we
use in the experimental analysis.

1) Cost-sensitive Boosting: AdaBoost is an accuracy-
oriented algorithm, when the class distribution is uneven, this
strategy biases the learning (the weights) toward the major-
ity class, since it contributes more to the overall accuracy. For
this reason, there have been different proposals that modify the
weight update of AdaBoost (Algorithm 3, line 10 and, as a
consequence, line 9). In such a way, examples from different
classes are not equally treated. To reach this unequal treatment,
cost-sensitive approaches keep the general learning framework
of AdaBoost, but at the same time introduce cost items into the
weight update formula. These proposals usually differ in the
way that they modify the weight update rule, among this fam-
ily AdaCost [48], CSB1, CSB2 [49], RareBoost [97], AdaCl,
AdaC2, and AdaC3 [50] are the most representative approaches.

1) AdaCost: In this algorithm, the weight update is modi-

fied by adding a cost adjustment function . This func-
tion, for an instance with a higher cost factor increases
its weight “more” if the instance is misclassified, but de-
creases its weight “less” otherwise. Being C; the cost
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Ensembles to Address Class Imbalance Problem

/\

Cost-Sensitive Ensembles

/

Data Preprocessing + Ensemble Learning

Cost-Sensitive Boosting Boosting-based

AdaCost [48]
CSBI1, CSB2 [49]
RareBoost [97]
AdaCl [50]
AdaC2 [50]
AdaC3 [50]

Proposed taxonomy for ensembles to address the class imbalance problem.

of misclassifying the ith example, the authors provide
their recommended function as ¢, = —0.5C; + 0.5 and
@_ = 0.5C; + 0.5. The weighting function and the com-
putation of oy are replaced by the following formulas:

Dt+1(i) =D, (Z) cem@tyihy (Xi)Psign(hy (x;).97) (3)

1 | 1+ Zi Dt(l) . e*afyf,hf(Xv‘,)%ign(ht(x,>.y,>
5 I 1— Zi Dt(Z) . e*afymhf(Xv‘,)%ign(h,(x,>.y,>

CSB: Neither CSB1 nor CSB2 use an adjustment function.
Moreover, these approaches only consider the costs in
the weight update formula, that is, none of them changes
the computation of a,. CSB1 because it does not use oy
anymore (o = 1) and CSB2 because it uses the same o
computed by AdaBoost. In these cases, the weight update
is replaced by

Dt+l (Z) = Dt (i)Csign(ht(xz)‘g/,) cem Mty he (x:) (5)

“

o =

where C', = 1and C_ = C; > 1 are the costs of misclas-
sifying a positive and a negative example, respectively.

RareBoost: This modification of AdaBoost tries to tackle
the class imbalance problem by simply changing «;’s
computation (Algorithm 3, line 9) making use of the con-
fusion matrix in each iteration. Moreover, they compute
two different o, values in each iteration. This way, false
positives (F'P; is the weights” sum of FP in the tth itera-
tion) are scaled in proportion to how well they are distin-
guished from true positives (1'F;), whereas false negatives
(F'N;) are scaled in proportion to how well they are dis-
tinguished from true negatives (7'N;). On the one hand,
ol =TP,/FP, is computed for examples predicted as
positives. On the other hand, o} = TN, /FN; is com-
puted for the ones predicted as negatives. Finally, the
weight update is done separately by the usage of both
factors depending on the predicted class of each instance.
Note that, despite we have include RareBoost in cost-
sensitive boosting family, it does not directly make use

SMOTEBoost [44]
MSMOTEBoost [82]
RUSBoost [45]
DataBoost-IM [98]

/\

Bagging-based Hybrid

« OverBagging [55]
— SMOTEBagging [55]
« UnderBagging [99]
— QuasiBagging [100]
— Asymetric Bagging [101]
— Roughly Balanced Bagging [102]
— Partitioning [103], [104]
Bagging Ensemble Variation [105]
« UnderOverBagging [55]
« II'Votes [46]

« EasyEnsemble [47]
« BalanceCascade [47]

of costs, which can be an advantage, but it modifies Ad-
aBoost algorithm in a similar way to the approaches in this
family. Because of this fact, we have classified into this
group. However, this algorithm has a handicap, T'F; and
TN, are reduced, and F'P, and F'T; are increased only if
TP, > FP,and TN, > F Ny, thatis equivalent to require
an accuracy of the positive class greater than 50%:

TP,/(TP, + FP,) > 0.5. (6)

This constraint is not trivial when dealing with the class
imbalance problem; moreover, it is a strong condition.
Without satisfying this condition, the algorithm will col-
lapse. Therefore, we will not include it in our empirical
study.

4) AdaCl: This algorithm is one of the three modifications

of AdaBoost proposed in [50]. The authors proposed dif-
ferent ways in which the costs can be embedded into the
weight update formula (Algorithm 3, line 10). They de-
rive different computations of «; depending on where they
introduce the costs. In this case, the cost factors are intro-
duced within the exponent part of the formula:

Dyy1 (i) = Dy (i) - e e il x)vs (7

where C; € [0, +00). Hence, the computation of the clas-
sifiers’ weight is done as follows:

1 In 1+Zr=u,:h[(x¢') C":Df(”iz'ﬁ»y;%/u(xw CiDi (i) .
2 I*Za.y,:mwC”‘D*(”*Znuf#hmmC"D’m
(®)
Note that AdaCost is a variation of AdaC1 where there
is a cost adjustment function instead of a cost item inside
the exponent. Though, in the case of AdaCost, it does not
reduce to the AdaBoost algorithm when both classes are
equally weighted (contrary to AdaCl).

o =

5) AdaC2: Likewise AdaCl, AdaC2 integrates the costs in

the weight update formula. But the procedure is different;
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the costs are introduced outside the exponent part:

Dt+1 (Z) = Cl‘Df, (Z) . efo‘fht (xi)yi . 9)
In consequence, a;’s computation is changed:
1 = (x) Ci Dy (i
o = - In 2= () ¢ (4) (10)

2 Zi,y,#ht(xz) CLDt(Z)

6) AdaC3: This modification considers the idea of AdaCl
and AdaC2 at the same time. The weight update formula is
modified by introducing the costs both inside and outside
the exponent part:

Dis1 (i) = GiDy (i) - em Cilebem iy

In this manner, over again o, changes:

Z, C"D‘(ZHZ,_;,,:/I,(X;) C?D*(‘FZ;.M,#}” (x;) CID:()
Z/ c,D, “)’Za.u,-:wxn c;?Df(vHZw' Sh ) EPNT
(12)

2) Boosting-based Ensembles: In this family, we have in-
cluded the algorithms that embed techniques for data prepro-
cessing into boosting algorithms. In such a manner, these meth-
ods alter and bias the weight distribution used to train the next
classifier toward the minority class every iteration. Inside this
family, we include SMOTEBoost [44], MSMOTEBoost [82],
RUSBoost [45], and DataBoost-IM [98] algorithms.

a) SMOTEBoost and MSMOTEBoost: Both methods in-
troduce synthetic instances just before Step 4 of Ad-
aBoost.M2 (Algorithm 2), using the SMOTE and
MSMOTE data preprocessing algorithms, respectively.
The weights of the new instances are proportional to the
total number of instances in the new data-set. Hence, their
weights are always the same (in all iterations and for
all new instances), whereas original data-set’s instances
weights are normalized in such a way that they form a
distribution with the new instances. After training a clas-
sifier, the weights of the original data-set instances are
updated; then another sampling phase is applied (again,
modifying the weight distribution). The repetition of this
process also brings along more diversity in the training
data, which generally benefits the ensemble learning.
RUSBoost: In other respects, RUSBoost performs simi-
larly to SMOTEBoost, but it removes instances from the
majority class by random undersampling the data-set in
each iteration. In this case, it is not necessary to assign
new weights to the instances. It is enough with simply
normalizing the weights of the remaining instances in the
new data-set with respect to their total sum of weights.
The rest of the procedure is the same as in SMOTEBoost.
¢) DataBoost-IM: This approach is slightly different to the

previous ones. Its initial idea is not different, it combines
AdaBoost.M1 algorithm with a data generation strategy.
Its major difference is that it first identifies hard exam-
ples (seeds) and then carries out a rebalance process,
always for both classes. At the beginning, the Ny in-
stances (as many as misclassified instances by the cur-
rent classifier) with the largest weights are taken as seeds.
Considering that Ny,;, and Ny,,; are the number of in-

a;=+1n

b)

stances of the minority and majority class, respectively;
whereas Ngyin and Ngy,.j are the number of seed in-
stances of each class; My = min(Nmaj/Nmin, NVsmaj)
and Mg = min((Nmaj - M1z )/Nmin, Nemin ) minority and
majority class instances are used as final seeds. Each seed
produce NV, or Ny, new examples, depending on its
class label. Nominal attributes’ values are copied from the
seed and the values of continuous attributes are randomly
generated following a normal distribution with the mean
and variance of class instances. Those instances are added
to the original data-set with a weight proportional to the
weight of the seed. Finally, the sums of weights of the
instances belonging to each class are rebalanced, in such a
way thatboth classes’ sum is equal. The major drawback of
this approach is its incapability to deal with highly imbal-
anced data-sets, because it generates an excessive amount
of instances which are not manageable for the base classi-
fier (i.e., Nimaj = 3000 and Ni, = 29 with Err = 15%,
there will be 100 seed instances, where 71 have to be
from the majority class and at least 71 - 3000 = 213000
new majority instances are generated in each iteration).
For this reason, we will not analyze it in the experimental
study.

3) Bagging-based Ensembles: Many approaches have been
developed using bagging ensembles to deal with class imbal-
ance problems due to its simplicity and good generalization
ability. The hybridization of bagging and data preprocessing
techniques is usually simpler than their integration in boosting.
A bagging algorithm does not require to recompute any kind
of weights; therefore, neither is necessary to adapt the weight
update formula nor to change computations in the algorithm. In
these methods, the key factor is the way to collect each bootstrap
replica (Step 2 of Algorithm 1), that is, how the class imbalance
problem is dealt to obtain a useful classifier in each iteration
without forgetting the importance of the diversity.

We distinguish four main algorithms in this family, OverBag-
ging [55], UnderBagging [99], UnderOverBagging [55], and
II'Votes [46]. Note that, we have grouped several approaches
into OverBagging and UnderBagging due to their similarity as
we explain hereafter.

a) OverBagging: An easy way to overcome the class imbal-
ance problem in each bag is to take into account the classes
of the instances when they are randomly drawn from the
original data-set. Hence, instead of performing a random
sampling of the whole data-set, an oversampling process
can be carried out before training each classifier (OverBag-
ging). This procedure can be developed in at least two
ways. Oversampling consists in increasing the number of
minority class instances by their replication, all majority
class instances can be included in the new bootstrap, but
another option is to resample them trying to increase the
diversity. Note that in OverBagging all instances will prob-
ably take part in at least one bag, but each bootstrapped
replica will contain many more instances than the original
data-set.

On the other hand, another different manner to over-
sample minority class instances can be carried out by the



10

b)

c)

d)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS

usage of the SMOTE preprocessing algorithm. SMOTE-
Bagging [55] differs from the use of random oversampling
not only because the different preprocessing mechanism.
The way it creates each bag is significantly different. As
well as in OverBagging, in this method both classes con-
tribute to each bag with V,,,; instances. But, a SMOTE
resampling rate (%) is set in each iteration (ranging from
10% in the first iteration to 100% in the last, always be-
ing multiple of 10) and this ratio defines the number of
positive instances (a% - Ny ;) randomly resampled (with
replacement) from the original data-set in each iteration.
The rest of the positive instances are generated by the
SMOTE algorithm. Besides, the set of negative instances
is bootstrapped in each iteration in order to form a more
diverse ensemble.

UnderBagging: On the contrary to OverBagging, Under-
Bagging procedure uses undersampling instead of over-
sampling. However, in the same manner as OverBagging,
it can be developed in at least two ways. The undersam-
pling procedure is usually only applied to the majority
class; however, a resampling with replacement of the mi-
nority class can also be applied in order to obtain a priori
more diverse ensembles. Point out that, in UnderBagging it
is more probable to ignore some useful negative instances,
but each bag has less instances than the original data-set
(on the contrary to OverBagging).

On the one hand, the UnderBagging method has been
used with different names, but maintaining the same func-
tional structure, e.g., Asymmetric Bagging [101] and Qua-
siBagging [100]. On the other hand, roughly-balanced
Bagging [102] is quite similar to UnderBagging, but it
does not bootstrap a totally balanced bag. The number
of positive examples is kept fixed (by the usage of all of
them or resampling them), whereas the number of nega-
tive examples drawn in each iteration varies slightly fol-
lowing a negative binomial distribution (with ¢ = 0.5 and
n = Npnin ). Partitioning [103], [104] (also called Bagging
Ensemble Variation [105]) is another way to develop the
undersampling, in this case, the instances of the majority
class are divided into IR disjoint data-sets and each clas-
sifier is trained with one of those bootstraps (mixed with
the minority class examples).
UnderOverBagging:UnderBagging to OverBagging fol-
lows a different methodology from OverBagging and Un-
derBagging, but similar to SMOTEBagging to create each
bag. It makes use of both oversampling and undersampling
techniques; a resampling rate (a%) is set in each iteration
(ranging from 10% to 100% always being multiple of 10);
this ratio defines the number of instances taken from each
class (% - Niaj instances). Hence, the first classifiers are
trained with a lower number of instances than the last ones.
This way, the diversity is boosted.

IIVotes:Imbalanced IVotes is based on the same combina-
tion idea, but it integrates the SPIDER data preprocessing
technique with I'Votes (a preprocessing phase is applied in
each iteration before Step 13 of Algorithm 2). This method
has the advantage of not needing to define the number of

bags, since the algorithm stops when the out-of-bag error
estimation no longer decreases.

4) Hybrid Ensembles: The main difference of the algorithms
in this category with respect to the previous ones is that they
carry out a double ensemble learning, that is, they combine
both bagging and boosting (also with a preprocessing tech-
nique). Both algorithms that use this hybridization were pro-
posed in [47], and were referred to as exploratory undersampling
techniques. EasyEnsemble and BalanceCascade use Bagging as
the main ensemble learning method, but in spite of training a
classifier for each new bag, they train each bag using AdaBoost.
Hence, the final classifier is an ensemble of ensembles.

In the same manner as UnderBagging, each balanced bag
is constructed by randomly undersampling instances from the
majority class and by the usage of all the instances from the
minority class. The difference between these methods is the way
in which they treat the negative instances after each iteration, as
explained in the following.

a) EasyEnsemble: This approach does not perform any op-
eration with the instances from the original data-set after
each AdaBoost iteration. Hence, all the classifiers can be
trained in parallel. Note that, EasyEnsemble can be seen as
an UnderBagging where the base learner is AdaBoost, if
we fix the number of classifiers, EasyEnsemble will train
less bags than UnderBagging, but more classifiers will be
assigned to learn each single bag.

b) BalanceCascade: BalanceCascade works in a supervised
manner, and therefore the classifiers have to be trained
sequentially. In each bagging iteration after learning the
AdaBoost classifier, the majority class examples that are
correctly classified with higher confidences by the current
trained classifiers are removed from the data-set, and they
are not taken into account in further iterations.

IV. EXPERIMENTAL FRAMEWORK

In this section, we present the framework used to carry out
the experiments analyzed in Section V. First, we briefly de-
scribe the algorithms from the proposed taxonomy that we have
included in the study and we show their set-up parameters in
Subsection IV-A. Then, we provide details of the real-world
imbalanced problems chosen to test the algorithms in Subsec-
tion IV-B. Finally, we present the statistical tests that we have
applied to make a proper comparison of the classifiers’ results
in Subsection IV-C. We should recall that we are focusing on
two-class problems.

A. Algorithms and Parameters

In first place, we need to define a baseline classifier which we
use in all the ensembles. With this goal, we will use C4.5 de-
cision tree generating algorithm [58]. Almost all the ensemble
methodologies we are going to test were proposed in combi-
nation with C4.5. Furthermore, it has been widely used to deal
with imbalanced data-sets [59]-[61], and C4.5 has also been
included as one of the top-ten data-mining algorithms [94]. Be-
cause of these facts, we have chosen it as the most appropriate
base learner. C4.5 learning algorithm constructs the decision
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TABLE II
PARAMETER SPECIFICATION FOR C4.5

Parameters

Prune = True

Confidence level = 0.25

Minimum number of item-sets per leaf = 2
Confidence = Laplace Smoothing [107]

tree top-down by the usage of the normalized information gain
(difference in entropy) that results from choosing an attribute
for splitting the data. The attribute with the highest normal-
ized information gain is the one used to make the decision. In
Table II, we show the configuration parameters that we have
used to run C4.5. We acknowledge that we could consider the
use of a classification tree algorithm, such as Hellinger distance
tree [106], that is specifically designed for the solution of im-
balanced problems. However, in [106], the authors show that
it often experiences a reduction in performance when sampling
techniques are applied, which is the base of the majority of the
studied techniques; moreover, being more robust (less weak)
than C4.5 in the imbalance scenario, the diversity of the ensem-
bles could be hindered.

Besides the ensemble-based methods that we consider, we
include another nonensemble technique to be able to analyze
whether the use of ensembles is beneficial, not only with respect
to the original base classifier, but also to outperform the results
of the classifier trained over preprocessed data-sets. To do so,
before learning the decision trees, we use SMOTE preprocessing
algorithm to rebalance the data-sets before the learning stage
(see Section II-D). Previous works have shown the positive
synergy of this combination leading to significant improvements
[20], [53].

Regarding ensemble learning algorithms, on the one hand,
we include classic ensembles (which are not specifically de-
veloped for imbalanced domains) such as Bagging, AdaBoost,
AdaBoot.M1, and AdaBoost.M2. On the other hand, we in-
clude the algorithms that are designed to deal with skewed class
distributions in the data-sets which, following the taxonomy
proposed in Section III-B, are distinguished into four families:
Cost-sensitive Boosting, Boosting-based, Bagging-based, and
Hybrid ensembles.

Concerning the cost-sensitive boosting framework, a thor-
ough empirical study was presented in [50]. To avoid the repe-
tition of similar experiments, we will follow the results where
AdaC2 algorithm stands out with respect to the others. Hence,
we will empirically study this algorithm among the ones from
this family in the experimental study.

Note that in our experiments we want to analyze which is
the most robust method among ensemble approaches, that is,
given a large variety of problems which one is more capable
of assessing an overall good (better) performance in all the
problems. Robustness concept also has an implicit meaning of
generality, algorithms whose configuration parameters have to
be tuned depending on the data-set are less robust, since changes
in the data can easily worsen their results; hence, they have more
difficulties to be adapted to new problems.

Recall from Section II-C that cost-sensitive approaches’
weakness is the need of costs definition. These costs are not
usually presented in classification data-sets, and on this account,
they are usually set ad-hoc or found conducting a search in the
space of possible costs. Therefore, in order to execute AdaC2,
we set the costs depending on the IR of each data-set. In other
words, we set up an adaptive cost strategy, where the cost of
misclassifying a minority class instance is always Cpi, = 1,
whereas that of misclassifying a majority class instance is in-
versely proportional to the IR of the data-set (Caj = 1/IR).

The Boosting-based ensembles that are considered in our
study are RUSBoost, SMOTEBoost and MSMOTEBoost. As
we have explained, DataBoost-IM approach is not capable of
dealing with some of the data-sets that are used in the study
(more details in Subsection IV-B).

With respect to Bagging-based ensembles, we include from
the OverBagging group, OverBagging (which uses random
oversampling) and SMOTEBagging due to the great difference
in their way to perform the oversampling to create each bag.
In the same manner that we use MSMOTEBoost, in this case,
we have also developed a MSMOTEBagging algorithm, whose
unique difference with SMOTEBagging is the use of MSMOTE
instead of SMOTE. Hence, we are able to analyze the suitability
of their integration in both Boosting and Bagging. Among Un-
derBagging methods, we consider the random undersampling
method to create each balanced bag. We discard rest of the ap-
proaches (e.g., roughly balanced bagging or partitioning) given
their similarity; hence, we only develop the more general ver-
sion. For UnderBagging and OverBagging, we incorporate their
both possible variations (resampling of both classes in each bag
and resampling of only one of them), in such a way that we can
analyze their influence in the diversity of the ensemble. The set
of Bagging-based ensembles ends with UnderOverBagging and
the combination of SPIDER with I'Votes, for IIVotes algorithm
we have tested the three configurations of SPIDER.

Finally, we consider both hybrid approaches, EasyEnsemble,
and BalanceCascade.

For the sake of clarity for the reader, Table III summarizes
the whole list of algorithms grouped by families, we also show
the abbreviations that we will use along the experimental study
and a short description.

In our experiments, we want all methods to have the same
opportunities to achieve their best results, but always without
fine-tuning their parameters depending on the data-set. Gen-
erally, the higher the number of base classifiers, the better the
results we achieve; however, this does not occur in every method
(i.e., more classifiers without spreading diversity could worsen
the results and they could also produce overfitting). Most of the
reviewed approaches employ ten base classifiers by default, but
others such as EasyEnsemble and BalanceCascade need more
classifiers to make sense (since they train each bag with Ad-
aBoost). In that case, the authors use a total of 40 classifiers
(four bagging iterations and ten AdaBoost iterations per bag).
On this account, we will first study which configuration is more
appropriate for each ensemble method and then we will fol-
low with the intrafamily and interfamily comparisons. Table IV
shows the rest of the parameters required by the algorithms we
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TABLE III TABLE IV
ALGORITHMS USED IN THE EXPERIMENTAL STUDY CONFIGURATION PARAMETERS FOR THE ALGORITHMS USED IN THE

EXPERIMENTAL STUDY

Non-ensemble Classifiers

Abbr.  Method Short Description Algorithm Parameters
C45 C45 Classic C4.5 decision tree learning algorithm SMOTE guml:ir O:fll;le]lghbors k=5
SMT SMOTE + C4.5 C4.5 applied on data-sets previously preprocessed with antity aance . .
. SM OTE Distance = Heterogeneous Value Difference Metric (HVDM)
i c2 Cmin =1
Classic Ensembles Coer — 1JIR
Abbr. Method Short Description
SBO Use SMOTE’s configuration
ADAB AdaBoost Classic AdaBoost, without using confidences MBO &
M1  AdaBoost.M1 Multi-class AdaBoost, slightly different weight update . _
M2 AdaBoost.M2 Multi-class AdaBoost using confidence estimates SPIDER Number of Neighbors & = 5
BAG Bagging Classic Bagging, resampling with replacement, bag EASY Number of Bags = 4
size equal to orignal data-set size BAL AdaBoost Iterations = 10
Cost-sensitive Boosting Ensembles
Abbr. Method Short Description
C2  AdaC2 AdaBoost with costs outside the exponent
Boosting-based Ensembles
Abbr: Method Short Descripti TABLE V
r Metho ort Description SUMMARY DESCRIPTION OF THE IMBALANCED DATA-SETS USED IN THE
RUS  RUSBoost AdaBoost.M2 with random undersampling in each EXPERIMENTAL STUDY
iteration
SBO SMOTEBoost AdaBoost.M2 with SMOTE in each iteration _ . o .0 R
MBO MSMOTEBoost  AdaBoostM2 with MSMOTE in each iteration Data-set #Ex. #Atls.  Class (minmaj)  (%min;%maj) IR
Bagging-based Ensembles Glassl 214 9 (bmId-w1n-n9n_ﬂoat-proc; (35.51, 64.49) 1.82
remainder)
Abbr.  Method Short Description EcoliOvsl 220 7 (im; cp) (35.00, 65.00) 1.86
- - - - — Wisconsin 683 9 (malignant; benign) (35.00, 65.00) 1.86
UB  UnderBagging Bagging with undersampling of the majority class, Pima 768 8 (tested-positive; (34.84, 66.16)  1.90
data-set size doubles the number of positive instances tested-negative)
UB2  UnderBagging?2 Bagging }Jvith resampling of both clas.szlts (‘bala.nce), IrisO 150 4 (Iris-Setosa; remainder) (3333, 66.67)  2.00
) data-s'et size doubles the. number Of.pOS}tIVC instances GlassO 214 9 (build-win-float-proc; (3271, 67.29)  2.06
OB OverBagging Bagging with oversampling of the minority class, data- remainder)
set size doubles the number of negative instances Yeast| 1484 8 (nuc; remainder) (2891, 71.09)  2.46
OB2  OverBagging2 Bagging with resampling of both classes (balance), Vehiclel 846 18 (Saab; remainder) (2837, 71.63)  2.52
data-set size doubles the number of negative instances Vehicle2 846 18 (Bus; remainder) (2837, 71.63)  2.52
UOB  UnderOverBagging Bagging where the number of instances of each bag Vehicle3 846 18 (Opel" remainder) (28‘37, 71.63) 2.52
. varies_ (from “"dersamp“_“g to °Versampli_"g) . Haberman 306 3 (Die; Survive) (27.42, 73.58)  2.68
SBAB SMOTEBaggmg Bagggng where each bag.s SMOTE quantity varies Glass0123vsd56 214 9 (non-window glass; (23.83,76.17) 3.19
MBAG MSMOTEBagging Bagging where each bag’s MSMOTE quantity varies remainder)
SPw  IIVotes weak IVotes with SPIDER (weak) in each iteration VehicleO 846 18 (Van; remainder) (23.64, 76.36) 3.3
SPr  1IVotes relabel IVotes with SPIDER (relabel) in each iteration Ecolil 136 7 (im"remainder) (22.92' 77.08)  3.36
SPs  IIVotes strong IVotes with SPIDER (strong) in each iteration New-thyroid2 215 5 (hypo; remainder) (16.89, 83.11)  4.92
Hybrid Ensembles New-thyroid1 215 5 (hyper; remainder) (16.28, 83.72) 5.14
— Ecoli2 336 7 (pp; remainder) (15.48, 84.52) 5.46
Abbr. Method Short Description Segment( 2308 19 (brickface; remainder)  (14.26, 85.74)  6.01
EASY EasyEnsemble UB2 but learning each bag with AdaBoost (Yllassg ]24]844 g (headla;r}ps; re.mgmder) (:ggg ggg;) gﬁ
BAL  BalanceCascade Similar to EASY but removing examples from the Ei?jig 136 7 E::Ui lr_::'::i?] dzg E 1 0‘88, 89. 1 2; 8‘ 19
ority class i h L2 ; .88, 89. .
majority class in each bagging iteration Page-blocks0 5472 10 (remainder; text) (1023, 89.77)  8.77
Yeast2vs4 514 8 (cyt; me2) (9.92, 90.08) 9.08
Yeast05679vs4 528 8 (me2; mit,me3,exc,vac.erl) (9.66, 90.34)  9.35
: . : _ VowelO 988 13 (hid; remainder) (9.01, 90.99) 10.10
have used in th'e experiments, wh1ch are the parameters recom Glass016ve2 9 o (vewin float.proc: (8899111 1029
mended by their authors. All experiments have been developed build-win-float-proc,
. ild-win- :
using the KEEL! software [56], [57]. build W}i:agf;;g;’;“ proc,
Glass2 214 9 (ve-win-float-proc; (8.78,91.22) 10.39
remainder)
B. Data-sets Ecoli4 336 7 (om; remainder) (6.74,93.26)  13.84
. A Yeastlvs7 459 8 (nuc; vac) (6.72,93.28) 13.87
In the study, we have considered 44 binary data-sets from ShuttleOvs4 1820 9 (Rad Flow; Bypass)  (6.72, 93.28) 13.87
KEEL data-set repository [56], [57], which are publicly avail- Glass4 214 9 (containers; remainder) ~ (6.07,93.93) 1547
p . y [ ]’ [ ]’ 2 . . p y Page-blocks13vs2 472 10  (graphic; horiz.line,picture) (5.93, 94.07) 15.85
able on the corresponding web-page,” which includes general Abalone9vs18 731 8 (18: 9) (5.65,94.25)  16.68
inf : h Iticl ifi Glass016vsS 184 9 (tableware; (4.89,95.11) 19.44
information about them. Multiclass data-sets were modified to buildewin-float-proc
obtain two-class imbalanced problems so that the union of one build-win-non_float-proc
- . headlamps)
or more classes became the positive class and the union of one Shuttleavsd 9 9 (Fpv Open: Bypass) (465.9535) 205
or more of the remaining classes was labeled as the negative Yeast1458vs7 693 8  (vac; nuc,me2,me3,pox)  (4.33,95.67) 22.10
. . . Glass5 214 9 (tableware; remainder) (4.20, 95.80) 22.81
class. This way, we have different IRs: from low imbalance to Yeast2vs8 s (pox: cyt) (415, 9585) 23.10
highly imbalanced data-sets. Table V summarizes the proper- Yeast4 1484 8 (me2; remainder) (3.43,96.57)  28.41
. Yeast1289vs7 947 8 (vac; nuc,cyt,pox.erl) (3.17, 96.83)  30.56
ties of the selected data-sets: for each data-set, the number of Yeasts 1484 8 (mel; remainder) (2.96, 97.04) 3278
Ecoli0137vs26 281 7 (pp.imL; cp.im,imU,imS)  (2.49, 97.51)  39.15
Yeast6 1484 8 (exc; remainder) (2.49,97.51) 39.15
lhttp://www.keel.es Abalonel9 4174 8 (19; remainder) (0.77, 99.23) 128.87

Zhttp://www.keel.es/dataset.php



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GALAR et al.: REVIEW ON ENSEMBLES FOR THE CLASS IMBALANCE PROBLEM

examples (#Ex.), number of attributes (#Atts.), class name of
each class (minority and majority), the percentage of examples
of each class and the IR. This table is ordered according to this
last column in the ascending order.

We have obtained the AUC metric estimates by means of a
5-fold cross-validation. That is, the data-set was split into five
folds, each one containing 20% of the patterns of the data-
set. For each fold, the algorithm is trained with the examples
contained in the remaining folds and then tested with the current
fold. The data partitions used in this paper can be found in
KEEL-dataset repository [57] so that any interested researcher
can reproduce the experimental study.

C. Statistical Tests

In order to compare different algorithms and to show whether
there exist significant differences among them, we have to give
the comparison a statistical support [108]. To do so, we use
nonparametric tests according to the recommendations made
in [63]-[65], [108], where a set of proper nonparametric tests for
statistical comparisons of classifiers is presented. We need to use
nonparametric tests because the initial conditions that guarantee
the reliability of the parametric tests may not be satisfied causing
the statistical analysis to lose its credibility [63].

In this paper, we use two types of comparisons: pairwise
(between a pair of algorithms) and multiple (among a group of
algorithms).

1) Pairwise comparisons: we use Wilcoxon paired signed-
rank test [109] to find out whether there exist significant
differences between a pair of algorithms.

2) Multiple comparisons: we first use the Iman—Davenport
test [110] to detect statistical differences among a group of
results. Then, if we want to check out if a control algorithm
(usually the best one) is significantly better than the rest
(1 X m comparison), we use the Holm post-hoc test [111].
Whereas, when we want to find out which algorithms are
distinctive among an n X n comparison, we use the Shaf-
fer post-hoc test [112]. The post-hoc procedures allow us
to know whether a hypothesis of comparison of means
could be rejected at a specified level of significance «
(i.e., there exist significant differences). Besides, we com-
pute the p-value associated with each comparison, which
represents the lowest level of significance of a hypothesis
that results in a rejection. In this manner, we can also know
how different two algorithms are.

These tests are suggested in different studies [63]-[65], where
their use in the field of machine learning is highly recommended.
Any interested reader can find additional information on the
Website http://sci2s.ugr.es/sicidm/, together with the software
for applying the statistical tests.

Complementing the statistical analysis, we also consider the
average ranking of the algorithms in order to show at a first
glance how good a method is with respect to the rest in the
comparison. The rankings are computed by first assigning a
rank position to each algorithm in every data-set, which consists
in assigning the first rank in a data-set (value 1) to the best per-
forming algorithm, the second rank (value 2) to the second best

algorithm, and so forth. Finally, the average ranking of a method
is computed by the mean value of its ranks among all data-sets.

V. EXPERIMENTAL STUDY

In this section, we carry out the empirical comparison of the
algorithms that we have reviewed. Our aim is to answer several
questions about the reviewed ensemble learning algorithms in
the scenario of two-class imbalanced problems.

1) In first place, we want to analyze which one of the ap-

proaches is able to better handle a large amount of imbal-
anced data-sets with different IR, i.e., to show which one
is the most robust method.
We also want to investigate their improvement with respect
to classic ensembles and to look into the appropriateness
of their use instead of applying a unique preprocessing
step and training a single classifier. That is, whether the
trade-off between complexity increment and performance
enhancement is justified or not.

Given the amount of methods in the comparison, we cannot
afford it directly. On this account, we develop a hierarchical
analysis (a tournament among algorithms). This methodology
allows us to obtain a better insight on the results by discarding
those algorithms which are not the best in a comparison. We
divided the study into three phases, all of them guided by the
nonparametric tests presented in Section I'V-C:

1) Number of classifiers: In the first phase, we analyze which
configuration of how many classifiers is the best for the
algorithms that are configurable to be executed with both
10 and 40 classifiers. As we explained in Section IV-A, this
phase allows us to give all of them the same opportunities.
Intra-family comparison: The second phase consists in
analyzing each family separately. We investigate which of
their components has the best (or only a better) behavior.
Those methods will be then considered to take part on the
final phase (representatives of the families).

3) Inter-family comparison: In the last phase, we develop a
comparison among the representatives of each family. In
such a way, our objective is to analyze which algorithm
stands out from all of them as well as to study the behavior
of ensemble-based methods to address the class imbal-
ance problem with respect to the rest of the approaches
considered.

Following this methodology, at the end, we will be able to
account for the questions that we have set out. We divide this
section into three subsections according to each one of the goals
of the study, and a final one (Subsection V-D) where we discuss
and sum up the results obtained in this study.

Before starting with the analysis, we show the overall train
and test AUC results (4 for standard deviation) in Table VI. The
detailed test results of all methods and data-sets are presented
in the Appendix.

2)

2)

A. Number of Classifiers

We start investigating the configuration of the number of clas-
sifiers. This parameter is configurable in all except nonensem-
bles, hybrids, and IIVotes methods.
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TABLE VI
MEAN AUC TRAIN AND TEST RESULTS FOR ALL THE ALGORITHMS IN THE
EXPERIMENTAL STUDY (& FOR STANDARD DEVIATION)

Non-ensemble

Algorithm AUCT, AUCTst

C45 .8733 £ .0354 .7929 £ .0687
SMT 19682 + .0099 .8257 £+ .0631

Classic Ensembles

Algorithm AUCr, AUCr4

ADABI 19920 + .0045 .8016 + .0613
ADAB4 19920 + .0045 .8040 + .0610
Ml1 19918 + .0049 .8028 + .0627
Ml4 19918 + .0050 .8022 + .0619
M21 9871 + .0026 .8023 + .0636
M24 19862 + .0019 .8019 + .0611
BAGI .8822 + .0381 7810 £ .0614
BAG4 .8924 + .0432 7927 £+ .0632

Cost-sensitive Boosting

Algorithm AUCT, AUCrst

C21 19485 + .0130 .8246 + .0549
C24 19468 + .0281 .8278 £+ .0594

Boosting-based Ensembles

Algorithm AUC . AUC7rst

RUSI 19433 £ .0027 .8555 £+ .0526
RUS4 .9434 + .0030 .8359 + .0531
SBO1 19896 + .0268 .8450 + .0541
SBO4 19900 + .0265 .8424 + .0554
MBOLI 19279 + .0244 .8204 + .0702
MBO4 19294 + .0218 .8209 + .0654

Bagging-based Ensembles

Algorithm AUCT, AUCTs

UBI 9130 £ .0153 .8518 + .0486
UB4 19187 £ .0140 .8637 £ .0463
UB21 19225 + .0152 .8511 £ .0553
UB24 19341 £ .0135 .8584 + .0507
OBI 19835 £ .0072 .8162 + .0663
OB4 19850 £ .0071 .8158 £+ .0639
OB21 19820 + .0075 .8309 + .0633
OB24 19846 + .0064 .8330 £ .0623
UOBI 19692 + .0076 .8422 + .0536
UOB4 19904 + .0049 .8340 + .0639
SBAGI 19591 + .0094 .8509 + .0601
SBAG4 19618 + .0098 .8528 + .0585
MBAG1 9161 £ .0169 .8323 £ .0604
MBAG4 9184 + .0177 .8365 + .0638
SPw 9767 £ .0072 .8302 £ .0560
SPr 9720 £ .0074 .8336 £ .0633
SPs 19793 £+ .0074 .8194 + .0649

Hybrid Ensembles

Algorithm AUCT, AUC Tt

EASY .9041 + .0206 .8433 + .0478
BAL 19036 + .0207 .8371 + .0537

Since we compare pairs of result sets, we use the Wilcoxon
signed-rank test to find out whether there are significant differ-
ences between the usage of one or another configuration, and
if not, to select the set-up which reaches the highest amount of
ranks. This does not mean that the method is significantly better,
but that it has an overall better behavior among all the data-sets,
so we will use it in further comparisons.

Table VII shows the outputs of the Wilcoxon tests. We append
a “1” to the algorithm abbreviation to refer that it uses ten
classifiers and we do the same with a “4” whenever it uses 40
classifiers. We show the ranks for each method and whether the
hypothesis is rejected with a significance value of o = 0.05, but

TABLE VII
WILCOXON TESTS TO DECIDE THE NUMBER OF CLASSIFIERS

Comparison RT R~ Hypothesis(a = 0.05) p-value Selected
ADAB4 vs. ADAB1 616.5 373.5 Not Rejected 0.17791 ADAB4
M14 vs. MI1 558.0 432.0 Not Rejected 0.58135  Ml4
M24 vs. M21 487.0 503.0 Not Rejected 0.94587  M21
BAG4 vs. BAGI 792.5 197.5 Rejected for BAG4  0.00063 BAG4
C24 vs. C21 680.5 309.5 Not Rejected 0.05341 C24
RUS4 vs. RUS1 301.0 689.0 Rejected for RUS1  0.01934 RUSI
SBO4 vs. SBO1 4935 496.5 Not Rejected 0.80592  SBOI
MBO4 vs. MBO1 5040 486.0 Not Rejected 0.93076 MBO4
UB4 vs. UBI 834.5 1555 Rejected for UB4 0.00009  UB4
UB24 vs. UB21 7535 2365  Rejected for UB24  0.00404 UB24
OB4 vs. OBI1 502.0 488.0 Not Rejected 0.95909  OB4
OB24 vs. OB21 601.0 389.0 Not Rejected 0.26104 OB24
UOB4 vs. UOBI 385.0 605.0 Not Rejected 0.13926 UOBI
SBAG4 vs. SBAGl 6255 364.5 Not Rejected 0.11482 SBAG4
MBAGH4 vs. MBAGI 643.5 346.5 Not Rejected 0.07690 MBAG4

R' corresponds to the execution with 40 and R~ to 10 classifiers.

also the p-value which give us important information about the
differences. The last column shows the configuration that we
have selected for the next phase depending on the rejection of
the hypothesis or if is not rejected, depending on the ranks.

Looking at Table VII, we observe that classic boosting meth-
ods have different behaviors; ADAB and M1 have better per-
formance with 40 classifiers, whereas M2 is slightly better with
10. Classic bagging, as well as most of the bagging-based ap-
proaches (except UOB), has significantly better results using 40
base classifiers. The cost-sensitive boosting approach obtains
a low p-value (close to 0.05) in favor of the configuration of
40 classifiers; hence, it benefits this strategy. With respect to
boosting-based ensembles, RUS performance clearly outstands
when only ten classifiers are used; on the other hand, the con-
figuration of SBO and MBO is quite indifferent. As in the case
of cost-sensitive boosting, for both SBAG and MBAG the p-
value is quite low and the sum of ranks stresses the goodness
of the selection of 40 classifiers in these ensemble algorithms.
Bagging-based approaches that use random oversampling (OB,
OB2, and UOB) have not got so big differences, but UOB is
the unique that works globally better with the low number of
classifiers.

B. Intrafamily Comparison

In this subsection, we develop the comparisons in order to
select the best representatives of the families. When we only
have a pair of algorithms in a family, we use the Wilcoxon
signed-rank test; otherwise, we use the Iman—Davenport test
and we follow with Holm post-hoc if it is necessary.

We divided this subsection into five parts, one for the analysis
of each family. We have to recall that we do not analyze cost-
sensitive Boosting approaches since we are only considering
AdaC2 approach; hence, it will be their representative in the last
phase. Therefore, first we get on with nonensemble and classic
ensemble techniques and then, we go through the remaining
three families of ensembles especially designed for imbalanced
problems.

1) Nonensemble Techniques: Firstly, we execute the
Wilcoxon test between the results of the two non-ensemble
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TABLE VIII
‘WILCOXON TESTS FOR NONENSEMBLE METHODS

Selected
SMT

Comparison R~ Hypothesis(a = 0.05)  p-value

SMT vs. C45 7985 1915 Rejected for SMT 0.00039

R are ranks in favor of SMT and R™ in favor of C45.

2.39 238

Average Rankings
—_— NN
wn © W

ADAB4 Mi14

M21

BAG4

Fig. 4. Average rankings of classic ensembles.

techniques we are considering, C45 and SMT, that is, C4.5 de-
cision tree alone and C4.5 trained over preprocessed data-sets
(using SMOTE). The result of the test is shown in Table VIII.

We observe that the performance of C45 is affected by the
presence of class imbalance. The Wilcoxon test shows, in con-
cordance with previous studies [20], [53], that making use of
SMOTE as a preprocessing technique significantly outperforms
C4.5 algorithm alone. The overall performance of SMT is bet-
ter, achieving higher ranks and rejecting the null hypotheses of
equivalence with a p-value of 0.00039. For this reason, SMT
will be the algorithm representing the family of nonensembles.

2) Classic Ensembles: Regarding classic ensembles, Boost-
ing (AdaBoost, AdaBoost.M1 and AdaBoost.M2) and Bagging,
we carry out Iman—Davenport test to find out whether they are
statistically different in the imbalance framework. Fig. 4 shows
the average rankings of the algorithms computed for the Iman—
Davenport test.

We observe that the ranking of BAG4 is higher than the rest,
which means that is the worst performer, whereas the rankings
of Boosting algorithms are similar, which is understandable be-
cause of their common idea. However, the absolute differences
of ranks are really low, this is confirmed by the Iman—Davenport
test which obtains a p-value of 0.49681. Hence, we will select
as representative of the family M 14 for having the lowest aver-
age rank, but notice that in spite of selecting M 14, there are not
significant differences in this family.

3) Boosting-based Ensembles: This kind of ensembles in-
cludes RUSBoost, SMOTEBoost, and MSMOTEBoost ap-
proaches. We show the rankings computed to carry out the test
in Fig. 5. In this case, Iman—Davenport test rejects the null hy-
pothesis with a p-value of 2.97F — 04. Hence, we execute the
Holm post-hoc test with RUS1 as control algorithm since it has
the lowest ranking.

Holm test shows that RUS| is significantly better than MBO4,
whereas the same significance is not reached with respect to
SBOI (the results are shown in Table IX).

We want to better analyze the relation between RUS1 and
SBOI, so we execute Wilcoxon test for this pair. The result
is shown in Table X, RUS1 has a better overall behavior as
expected, the p-value returned by the comparison is low, but
despite this situation neither significant differences are attained.

3.0
25
2.0
1.5

2.47
1.86

0.5
0.0

Average Rankings

RUSI1 SBO1 MBO4

Fig. 5. Average rankings of boosting-based ensembles.
TABLE IX
HOLM TABLE FOR BOOSTING-BASED METHODS

¢ Algorithm (Rank) z p-value  Holm  Hypothesis (o = 0.05)

2 MBO4 (2.47) 3.73101  0.00019  0.025 Rejected for RUS1

1 SBO1 (1.86) 0.90610  0.36488 0.05 Not Rejected

Control method: RUSI, Rank: 1.67.

TABLE X

WILCOXON TESTS TO SHOW DIFFERENCES BETWEEN SBO1 AND RUS1

RT R~
SBOI vs. RUST  375.0 615.0
R* are ranks for SBO1 and R~ for RUSI.

Comparison Hypothesis(cw = 0.05)  p-value  Selected

Not Rejected 0.1466 RUSI

TABLE XI
WILCOXON TESTS FOR BAGGING-BASED ENSEMBLES REDUCTION

Comparison RT R~ Hypothesis(a = 0.05) p-value Selected
UB24 vs. UB4 458.5 531.5 Not Rejected 0.63516 UB4
OB24 vs. OB4 913.0 77.0  Rejected for OB24  1.06E-06 OB24

MBAG4 vs. SBAG4 285.0 705.0 Rejected for SBAG4  0.01065 SBAG4

RUST1 will represent this family in the next phase due to its
better general performance.

4) Bagging-based Ensembles: Because of the number of
Bagging-based approaches, we start making a preselection be-
fore to the comparison between the family members. On the one
hand, we will make a reduction between similar approaches such
as UB/UB2, OB/OB2, and SBAG/MBAG. On the other hand,
we will select the best IIVotes ensemble comparing the three
ways to develop the SPIDER preprocessing inside the IVotes
iterations.

To get on with the first part, we use the Wilcoxon test to
investigate which one of each pair of approaches is more ade-
quate. The results of these tests are shown in Table XI. Between
UnderBagging approaches, UB4 (which always uses all the mi-
nority class examples without resampling) obtains higher ranks.
This result stresses that the diversity is no more exploited when
minority class examples are also bootstrapped, this can be be-
cause not using all the minority class instances could make more
difficult to learn the positive concept in some of the classifiers
of the ensemble. In the case of OverBagging, the use of re-
sampling of the majority class (OB2) clearly outperforms OB,
this makes sense since the diversity of OB2 is a priori higher
than the one of OB. In addition, between synthetic oversampling
approaches, the original SMOTEBagging is significantly better
than its modification with MSMOTE, which seems not to work
as well as the original. Therefore, only UB4, OB24, and SBAG4
are selected for the next phase.
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Fig. 7.  Average rankings of bagging-based ensembles.
TABLE XII
HOLM TABLE FOR BEST BAGGING-BASED METHODS
i Algorithm (Rank) Z p-value Holm Hypothesis (a = 0.05)
4 UOBI (3.5) 3.37100  0.00075 0.0125 Rejected for SBAG4
3 OB24 (3.36) 2.96648  0.00301  0.01667 Rejected for SBAG4
2 SPr (3.15) 2.32599  0.02002 0.025 Rejected for SBAG4
1 UB4 (2.63) 0.77533  0.43814 0.05 Not Rejected

Control method: SBAG4, Rank:2.36.

Regarding II'Votes methods, we start the multiple compar-
isons by executing the Iman—Davenport test which returns a
p-value of 0.1208. Therefore, the hypothesis of equivalence is
not rejected. However, as Fig. 6 shows, the rankings obtained
by SPr are higher than the ones of the other two methods. Fol-
lowing these results, we will only take into account SPr in the
following phase.

Once we have reduced the number of Bagging-based algo-
rithms, we can develop the proper comparison among the re-
maining methods. The Iman—-Davenport test executed for this
group of algorithms returns a p-value of 0.00172, which means
that there exist significant differences (in Fig. 7, we show the
average rankings).

Hence, we apply the Holm post-hoc procedure to com-
pare SBAG4 (the one with the best ranking) with the rest of
the Bagging-based methods. Observing the results shown in
Table XII, SBAG4 clearly outperforms the other methods (ex-
cept for UB4) with significant differences.

Regarding UB4, and given its similar behavior to SBAG4 with
respect to the rest, we will carry out a Wilcoxon test (Table XIII)
in order to check whether there are any significant differences
between them. From this test we conclude that, when both algo-
rithms are confronted one versus the other, they are equivalent.
On the contrary to the rankings computed among the group of
algorithms, the ranks in this case are nearly the same. This oc-
curs because SBAG4 has a good overall behavior among more
data-sets, whereas UB4 stands out more in some of them and
less in others. As a consequence, when they are put together
with other methods, UB4 ranking decreases, whereas SBAG4
excels in spite of UB4 mean test result is slightly higher than

TABLE XIII
WILCOXON TESTS TO SHOW DIFFERENCES BETWEEN SBAG4 AND UB4

Comparison RT R~ Hypothesis(a = 0.05) p-value
SBAG4 vs. UB4 492.5 497.5 Not Rejected 0.94224
R are ranks for SBAG4 and R~ for UB4.
TABLE XIV
WILCOXON TESTS FOR NONENSEMBLE METHODS
Comparison Rt R~ Hypothesis(ce = 0.05)  p-value  Selected
BAL vs. EASY 4185 571.5 Not Rejected 0.3356 EASY

R are ranks for BAL and R~ for EASY.

TABLE XV
REPRESENTATIVE METHODS SELECTED FOR EACH FAMILY

Family Abbr. Method

Non-ensembles SMT SMOTE

Classic M14 AdaBoost.M2 (T = 40)
Cost-sensitive C24 AdaC2 (T = 40)
Boosting-based RUS1 RUSBoost (7" = 10)
Bagging-based SBAG4 SMOTEBagging (1" = 40)
Hybrids EASY EasyEnsemble

SBAG4. Knowing that both algorithms achieve similar perfor-
mances, we will use as representative SBAG4 because its overall
behavior when the comparison has included more methods has
been better.

5) Hybrid Ensembles: This last family only has two meth-
ods; hence, we execute Wilcoxon signed-rank test to find out
possible differences. Table XIV shows the result of the test,
both methods are quite similar, but EASY attains higher ranks.
This result is in accordance with previous studies [47], where
the advantage of BAL is its efficiency when dealing with large
data-sets without highly decreasing the performance with re-
spect to EASY. Following the same methodology as in previous
families, we will use EASY as representative.

C. Interfamily Comparison

We have selected a representative for every family, so now
we can proceed with the global study of the performance. First,
we recall the selected methods from the intrafamily comparison
in Table XV.

We have summarized the results for the test partitions of these
methods in Fig. 8 using the box plot as representation scheme.
Box plots proved a most valuable tool in data reporting, since
they allow the graphical representation of the performance of
the algorithms, indicating important features such as the median,
extreme values and spread of values about the median in the form
of quartiles. We can observe that the RUS1 box is compact,
as well as the SBAG4 box, both methods have similar results
(superior to the rest), but the RUS1 median value is better. On
the other hand, SMT seemsto be inferior to the other approaches
with the exception of M 14, which variance is the highest.

Starting with the comparison itself, we use the Iman—
Davenport test to find out significant differences among these
methods. The rankings computed to carry out the test are de-
picted in Fig. 9. The p-value returned by the test is very low
(1.27E — 09); hence, there exist differences among some of
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TABLE XVI
HOLM TABLE FOR BEST INTERFAMILY ANALYSIS

i Algorithm (Rank) zZ p-value Holm Hypothesis (a« = 0.05)
5 M14 (4.76) 5.78350  0.00000 0.01 Rejected for SBAG4
4 SMT (4.01) 3.90315 0.00009  0.0125 Rejected for SBAG4
3 C24 (3.58) 2.82052  0.00479  0.01667 Rejected for SBAG4
2 EASY (3.51) 2.64958  0.00806 0.025 Rejected for SBAG4
1 RUSI (2.68) 0.56980  0.56881 0.05 Not Rejected
Control method : SBAG4, Rank :2.45.
TABLE XVII

‘WILCOXON TESTS TO SHOW DIFFERENCES BETWEEN SBAG4 AND RUS|1

R* R~
SBAG4 vs. RUSI 527.5 462.5
R are ranks for SBAG4 and R~ for RUSI.

Comparison Hypothesis(ov = 0.05) p-value

Not Rejected 0.71717

these algorithms and we continue with the Holm post-hoc test.
The results of this test are shown in Table XVI.

The Holm test brings out the dominance of SBAG4 and RUS1
over the rest of the methods. SBAG4 significantly outperforms
all algorithms except RUS 1. We have two methods which behave
similarly with respect to the rest, SBAG4 and RUS1; therefore,
we will get them into a pairwise comparison via a Wilcoxon test.
In such a way, our aim is to obtain a better insight on the behav-
ior of this pair of methods (in Table XVII, we show the result).
The Wilcoxon test neither indicates the existence of statistical
differences; moreover, both algorithms are similar in terms of
ranks, SBAG4 has an advantage and hence, apparently a better
overall behavior, but we cannot support this fact with this test.
Therefore, SBAG4 is the winner of the hierarchical analysis in
terms of ranks, but it is closely followed by RUS1 and UB4

TABLE XVIII
SHAFFER TESTS FOR INTERFAMILY COMPARISON

SMT Mi4 C24 RUSI SBAG4  EASY
SMT x =(0.24024)  =(1.0)  -(0.00858) -(0.00095)  =(1.0)
M14  =(0.24024) x 20.03047)  -(0.0) 20.0)  -(0.01725)
C24  =(1.0)  +(0.03047) x =(0.17082) -(0.03356)  =(1.0)
RUS1 +(0.00858)  +0.0)  =(0.17082) x =(1.0)  =(0.22527)
SBAG4 +(0.00095)  +0.0)  +(0.03356)  =(1.0) x =(0.05641)
EASY +(0.01725)  =(1.0) =(1.0)  =(0.22527) =(0.05641) x

(as we have shown in Section V-B4). However, despite SBAG4
wins in terms of ranks, since there does not exist any statisti-
cal difference, we may also pay attention to the computational
complexity of each algorithm in order to establish a preference.
In this sense, RUS1 undoubtedly stands out with respect to both
SBAG4 and UB4. RUS1 and UB4 classifiers’ building time is
lower than that of SBAG4’s classifiers; this is due to the un-
dersampling process they develop instead of the oversampling
that is carried out by SBAG4, in such a way, the classifiers are
trained with much less instances. Moreover, RUS1 only uses ten
classifiers against the 40 classifiers that are used by SBAG4 and
UB4, which apart from resulting in a less complex and more
comprehensible ensemble, needs four times less time than UB4
to be constructed.

To end and complete the statistical study, we carry out another
post-hoc test for the interfamily comparison in order to show the
relation between all representatives, thatis, an X n comparison.
To do so, we execute the Shaffer post-hoc test and we show the
results in Table X VIIIL. In this table, a “+” symbol implies that
the algorithm in the row is statistically better than the one in
the column, whereas “—”" implies the contrary; “="" means that
the two algorithms that are compared have no significant differ-
ences. In brackets, the adjusted p-value that is associated with
each comparison is shown. In this table, we can also observe the
superiority of SBAG4 and RUS1 against the remaining algo-
rithms and besides, the similarity (almost equivalence) between
both approaches.

D. Discussion: Summary of the Results

In order to summarize the whole hierarchical analysis devel-
oped in this section, we include a scheme showing the global
analysis in Fig. 10. Each algorithm is represented by a gray tone
(color). For Wilcoxon tests, we show the ranks and the p-value
returned; for Iman—-Davenport tests, we show the rankings and
whether the hypothesis has been rejected or not by the usage of
the Holm post-hoc test. This way, the evolution of the analysis
can be easily followed.

Summarizing the results of the hierarchical analysis, we point
out the main conclusions that we have extracted from the exper-
imental study afterwards:

1) The methods with the best (the most robust) behavior are
SMOTEBagging, RUSBoost, and UnderBagging. Among
them, in terms of ranks, SMOTEBagging stands out
obtaining slightly better results. Anyway, this triple of
algorithms outperforms statistically the others considered
in this study, but they are statistically equivalent; for this
reason, we should take the computational complexity into
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Global analysis scheme. A gray tone (color) represents each al-

gorithm. Rankings and p-values are shown for Wilcoxon tests whereas only
rankings and the hypothesis results are shown for Iman-Davenport and Holm

tests.

2)

account, in such a manner, RUSBoost excels as the most
appropriate ensemble method (Item 5 extends this issue).
More complex methods does not perform better than sim-
pler ones. It must be pointed out that the performance
of two of the simplest approaches (RUSBoost and Un-
derBagging), with the usage of a random and easy-to-
develop strategy, achieve better results than many other
approaches. The positive synergy between random under-
sampling and ensemble techniques has stood out look-
ing at the experimental analysis. This sampling technique
eliminates different majority class examples in each iter-
ation; this way, the distribution of the class overlapping
differs in all data-sets, and this causes the diversity to
be boosted. In addition, in contrast with the mere use of
an undersampling process before learning a nonensemble
classifier, carrying it out in every iteration when construct-
ing the ensemble allows the consideration of most of the
important majority patterns that can be defined by con-

TABLE XIX
DETAILED TEST RESULTS TABLE OF NONENSEMBLE METHODS AND CLASSIC
ENSEMBLE ALGORITHMS
Non-ens. Classic

Data-set R C45 SMT ADABI ADAB4 MI1 Mi4 M21 M24  BAGl BAG4

Glassl 1.82 .7399 .7368 .7875 .7925 .7875 .8059 .7625 .7630 .7361 .7389
EcoliOvs1 1.86 9832 .9729 .9692 .9692 .9726 .9726 .9692 .9692 9832 9832

Wisconsin 1.86 .9454 .9532 .9666 .9645 .9656 .9656 .9529 .9666 .9668 .9613
Pima 1.90 .7012 .7245 .6886 .7108 .6863 .6968 .7263 .7189 .7155 .7205
IrisO 2.00 .9900 .9900 .9900 .9900 .9900 .9900 .9900 .9900 .9800 .9800
GlassO 2.06 .8167 .7752 .8267 .8408 .8090 .8267 .8050 .8262 .7802 .8159
Yeastl 2.46 .6642 .7090 .6462 .6642 .6468 .6681 .6663 .6743 .6930 .6989
Vehiclel 2.52 .6717 .7301 .6718 .7005 .7058 .6896 .6810 .6700 .6583 .6643
Vehicle2 2.52 .9561 .9498 .9708 .9723 .9708 .9754 .9761 .9801 .9547 .9654
Vehicle3 2.52 .6637 .7282 .6906 .7089 .6852 .6979 .6822 .6820 .6760 .6766
Haberman 2.68 .5757 .6163 .5815 .5815 .5815 .5815 .6086 .6022 .5662 .5514
Glass0123vs456 3.19 .9155 .9232 .8625 .8634 .8625 .8634 .9025 .8903 .8956 .9156
VehicleO 3.23 .9296 .9188 .9511 .9703 .9503 .9703 .9556 .9589 .9519 .9594
Ecolil 3.36 .8586 .9105 .8222 .8567 .8403 .8524 .8433 .8504 .8480 .8644
New-thyroid2 4.92 .9373 .9659 .9373 .9373 .9516 .9516 .9659 .9659 .9488 .9516
New-thyroid1l 5.14 .9143 .9631 .9687 .9544 .9687 .9544 .9659 .9829 .9516 .9401

Ecoli2 5.46 .8641 .8811 .8632 .8523 .8632 .8523 .8841 .8823 .8884 .8705
Segment0 6.01 .9826 .9927 .9916 .9916 .9916 .9916 .9949 .9932 .9848 .9838
Glass6 6.38 .8132 .8842 .8725 .8752 .8725 .8752 .8698 .8659 .8632 .8838
Yeast3 8.11 .8597 .8905 .8249 .8224 .8023 .8226 .8437 .8315 .8504 .8589
Ecoli3 8.19 .7280 .8123 .7641 .7960 .7767 .7960 .7717 .8262 .7498 .7658
Page-blocks0 8.77 .9221 .9504 .9294 .9291 .9292 .9281 .9302 .9286 .9284 .9251
Yeast2vs4 9.08 .8307 .8588 .8518 .8128 .8518 .8228 .8853 .8516 .8241 .8330
Yeast05679vs4 9.35 .6802 .7602 .7067 .6838 .6967 .6838 .6795 .6927 .6868 .6868
Vowel0 10.10 .9706 .9505 .9706 .9706 .9706 .9706 .9594 .9822 .9433 .9594
Glass016vs2 10.29 .5938 .6062 .5355 .5355 .5355 .5355 .5660 .5688 .5526 .5305
Glass2 10.39 .7194 .6390 .6137 .5354 .6137 .5354 .5271 .5521 .5296 .5423
Ecoli4 13.84 .8437 .7794 .8421 .8671 .8421 .8671 .8655 .8171 .8452 .8437
ShuttleOvs4 13.87 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9994 .9997
Yeast1vs7 13.87 .6275 .7003 .6252 .6097 .6252 .6097 .5717 .5942 .5833 .5965
Glass4 15.47 .7542 .8867 .7875 .7875 .7875 .7875 .8733 .8450 .8208 .8233
Page-blocks13vs2  15.85 9978 .9955 9978 9978 .9644 .9644 .9778 .9588 .9978 .9978

Abalone9vs18 16.68 .5983 .6283 .6336 .6276 .6336 .6283 .6093 .6262 .6040 .6055
Glass016vs5 19.44 8943 .8129 .8943 .8943 .8943 .8943 .8943 .8943 .7914 .8914
Shuttle2vs4 20.50 .9500 .9917 .9500 .9500 .9500 .9500 1 1 8500 .9500
Yeast1458vs7 22.10 5000 .5367 .5288 .5477 .5114 .5318 .5462 .5144 .4992 .5000
Glass5 22.81 8976 .8805 .9476 .9476 .9476 .9476 .8976 .8976 .8427 .8451
Yeast2vs8 23.10 5250 .8338 L6989 .7489 .7239 .7489 .7478 .7239 .5250 .5250
Yeast4 28.41 6135 .7121 .5798 .6043 .6205 .5940 .5918 .6032 .5949 .6247
Yeast1289vs7 30.56 6156 .6832 .5956 .5962 .5962 .5790 .6112 .6295 .5312 .5489
Yeast5 32.78 8833 .9337 .8483 .8712 .8483 .8712 .8493 .8597 .8622 .8951
Ecoli0137vs26 39.15 7481 .8136 .8481 8481 8481 8481 .6482 .6445 .6981 .7481
Yeast6 39.15 7115 .8294 .7380 .6962 .7527 .6972 .7380 .7098 .7126 .7558
Abalonel9 128.87 5000 .5205 .4987 .4995 .4990 .4999 .5159 .4999 .5000 .5000
Mean 7929 .8257 .8016 .8040 .8028 .8022 .8023 .8019 .7810 .7927

TABLE XX

DETAILED TEST RESULTS TABLE FOR COST-SENSITIVE BOOSTING,
BOOSTING-BASED, AND HYBRID ENSEMBLES

Cost-sen. Boosting-based Hybrids
Data-set R C21 C24 RUSI RUS4 SBO1 SBO4 MBOl MBO4 EASY BAL
Glassl 1.82 .7866 .7867 .7632 .8116 .8206 .7932 .7259 .7400 .7222 .6971
EcoliOvs] 1.86 .9692 .9692 .9691 .9726 .9691 .9692 .9692 .9692 .9796 .9762
Wisconsin 1.86 .9653 .9725 .9643 .9653 .9590 .9653 .9608 .9608 .9542 .9603
Pima 1.90 .7096 .7128 .7263 .7251 .7126 .7223 .7385 .7410 .7230 .6722
IrisO 2.00 .9900 .9900 .9900 .9900 .9900 .9900 .9900 .9900 .9900 .9900
GlassO 2.06 .8101 .8177 .8129 .8377 .8413 .8622 .7819 .7821 .7830 .7834
Yeastl 2.46 .6604 .6752 .7188 .6998 .7008 .6983 .7130 .7089 .7147 .6830
Vehiclel 2.52 .7531 .8007 .7469 .7207 .7486 .7501 .7313 .7306 .7406 .7580
Vehicle2 2.52 .9729 .9814 .9698 .9784 .9851 .9851 .9637 .9607 .9656 .9577
Vehicle3 2.52 .7345 .7699 .7653 .7655 .7458 .7450 .7699 .7723 .7591 .7611
Haberman 2.68 .5604 .5604 .6549 .6273 .6347 .6433 .6313 .6291 .6521 .5943
Glass0123vsd56 3.19 .9033 .9233 .9302 .9264 .9223 .9223 .9163 .9163 .9025 .8650
VehicleO 3.23 .9438 9768 .9583 .9605 .9649 .9730 .9402 .9450 .9375 .9502
Ecolil 3.36 .8763 .8928 .8829 .8894 .8604 .8571 .9017 .8922 .8844 .9021
New-thyroid2 4.92 .9575 .9575 .9377 .9774 .9778 .9833 .9460 .9433 .9187 .9266
New-thyroidl 5.14 .9464 .9464 .9575 .9687 .9889 .9889 .9659 .9659 .9353 .9381
Ecoli2 5.46 .8845 .8835 .8989 .9082 .9017 .9088 .8843 .8843 .8858 .8914
Segment0 6.01 .9826 .9826 .9927 .9921 .9962 .9962 .9899 .9899 .9836 .9836
Glass6 6.38 .8923 .8923 .9176 .9230 .8477 .8505 .9365 .9365 .8851 .8932
Yeast3 8.11 .9108 .8931 .9247 .9238 .8966 .8947 .8977 .8977 .9369 .9312
Ecoli3 8.19 .8478 .8224 .8563 .8794 .8634 .8558 .8449 .8449 .8917 .8910
Page-blocks0 8.77 .8816 .8154 .9484 .9450 .9376 .9407 .9394 .9394 .9502 .9464
Yeast2vsd 9.08 .9172 .9205 .9333 .9241 .8961 .8993 .8813 .8813 .9411 .9292
Yeast05679vs4 9.35 .7610 .7816 .8033 .7789 .7763 .7784 .7700 .7620 .7460 .7812
Vowel0 10.10 .9706 .9706 9427 .9672 .9894 9917 .9528 .9528 9410 .9388
Glass016vs2 10.29 .5400 .5536 .6167 .5795 .5931 .6321 .5479 .5479 .6129 .6193
Glass2 10.39 7099 .7308 7797 L7217 7740 .7433 .6566 .6842 7132 .7154
Ecoli4 13.84 .9280 .9280 9418 .8874 .9092 .8889 .8687 .8671 .8770 .7787
ShuttleOvs4 13.87 .9997 .9997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1000
Yeastlvs7 13.87 .7049 .7049 .7149 .6937 .6425 .6375 .6255 .6290 .7212 .6791
Glass4 5.47 .8706 .8706 .9151 .7967 .9226 .9226 .7083 .7083 .8505 .8381
Page-blocksI3vs2  15.85  .9978 9978 9865 .9800 .9944 .9944 .9921 .9921 .9831 .9661
Abalone9vs18 16.68 .6954 .6954 .6933 .6793 .7661 .7136 .6840 .6855 .6999 .7161
Glass016vs5 19.44 .8800 .8800 .9886 .9386 .8829 .9386 .8829 .8829 .9429 .9429
Shuttle2vs4 20.50 9500 .9500 1.000  1.000 1.000 1.000 1.000 1.000 9875 .9875
Yeast1458vs7 22.10 .5426 .5426 .5674 .4896 .5948 .5394 .5145 .5152 .5496 .5987
GlassS 22.81 .9732 .9732 .9427 .9402 .9805 .9805 .8902 .8854 .9488 .9488
Yeast2vs8 23.10 6218 .6218 7893 .7392 .7403 .7446 .7717 .7728 7168 .7482
Yeast4 28.41 .7204 .7204 .8124 .7689 .7154 .6696 .7378 .7378 .8477 .8311
Yeast1289vs7 30.56 6376 .6376 7209 .6394 .6509 .6386 .5369 .5369 7019 .6550
YeastS 32.78 .8833 .8833 .9587 .9594 .9229 .9010 .9215 .9208 .9531 .9618
Ecoli0137vs26 39.15 8154 .8154 7935 .5463 .8372 .8391 .7445 .7445 7318 .7427
Yeast6 39.15 7163 .7163 8233 .8244 .7872 .7893 .7757 .7757 8492 .8468
Abalonel9 128.87 .5085 .5085 .6306 .5372 .5387 .5272 .4981 .4981 .6956 .6565
Mean 8246 .8278 .8555 .8359 .8450 .8424 .8204 .8209 .8433 .8371

3)

crete instances
lost.

Bagging techniques are not only easy to develop, but also
powerful when dealing with class imbalance if they are
properly combined. Their hybridization with data prepro-
cessing techniques has shown competitive results, the key

which using a unique classifier could be
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TABLE XX1
DETAILED TEST RESULTS TABLE FOR BAGGING-BASED ALGORITHMS

Bagging-based

Data-set R UBL UB4 uB21 UB24 OBI 0OB4 0B21 0B24 UOBI1 UOB4 SBAG1 SBAG4 MBAG1 MBAG4 SPw SPr SPs.

Glass1 1.82 7483 .7372 L6910 7519 L7638 .TH76 L7789 .T796 .7520 L7742 .7840 L7279 L7551 L7321 L7596 L7662 L7764
EcoliOvs1 1.86 9693 L9796 L9693 9796 .9798 L9798 L9796 L9796 L9796 L9796 L9761 9832 9832 9832 L9726 L9587 L9656
Wisconsin 1.86 .9565 L9597 .9685 9706 .9634 .9643 9780 L9727 .9641 L9612 19622 .9600 .9603 .9642 .9664 .9729 .9696
Pima 1.90 7581 L7600 .7463 7529 L7196 .7148 .7236 .7385 .7354 L7359 .7385 L7509 .7372 .7490 7632 L7539 .7381
Iris0 2.00 9900 .9900 L9800 9800 .9800 L9800 L9800 .9800 L9800 L9800 .9800 .9800 .9800 L9800 .9900 .9900 .9900
GlassO 2.06 8177 .8143 .8206 8244 .8126 .8268 .8446 .8342 L7920 .8377 .8318 .8387 .7935 .8006 .8243 .8286 .8139
Yeast] 2.46 7156 .7218 L7169 7207 L7116 L7173 L7105 .7344 .7229 .7234 L7113 .7336 .7033 L7392 .7254 L7275 .7104
Vehiclel 2.52 7648 L7873 .7434 7605 .7144 L7162 L7509 L7567 .7354 .7244 L7505 L7692 .7307 L7612 L7229 L7173 L7113
Vehicle2 2.52 9572 .9635 L9674 9642 9551 L9566 L9645 L9676 .9643 L9653 L9702 .9664 .9623 L9639 L9768 L9721 L9746
Vehicle3 2.52 7638 8023 .7694 7843 .7027 .7059 L7691 .7385 .7417 .7222 .7380 L7629 .7337 .7866 .7480 L7632 .7535
Haberman 2.68 6578 .6644 .6342 6680 .6055 .6144 .6221 .6416 .6297 5877 L6590 .6560 .6375 L6611 .6100 .6414 .6283
Glass0123vs456 3.19 8939 .9039 .9431 9169 .9316 .9347 L9172 L9264 .9010 L9116 .8992 9455 .9062 L9099 .9223 L9123 .8923
VehicleO 3.23 9453 .9523 L9511 .9542 L9357 .9448 L9562 L9665 .9490 .9523 .9464 L9650 L9397 .9492 L9577 L9689 L9519
Ecolil 3.36 8978 .8996 L9107 9021 .8662 .8646 8746 .8875 9190 .8862 L9002 .9002 L9170 L9112 L9012 .8706 8722
New-thyroid2 4.92 9468 L9579 L9325 9381 L9317 L9317 L9317 L9317 .9290 .9544 L9607 .9607 L9631 L9516 L9857 L9687 L9687
New-thyroid1 5.14 9552 L9635 L9635 9690 .9544 .9401 L9774 L9631 L9575 L9774 L9774 .9746 L9603 L9774 .9488 L9687 L9687
Ecoli2 5.46 8704 .8844 L8718 8806 .8734 .8925 .8984 .8972 .8794 L8799 .8802 .8875 .8736 8761 .9008 L8817 .8817
Segment( 6.01 9851 L9876 .9846 L9858 L9919 L9919 L9932 .9934 L9927 L9914 L9939 .9944 L9914 L9911 .9934 L9949 .9954
Glass6 6.38 8851 .9041 .9203 9257 .8838 .8865 L9311 .9144 .9284 L9171 .9338 L9311 .9063 .9284 L9225 9365 .8998
Yeast3 8.11 9403 .9338 .9388 9444 .8983 L9057 .8995 L9112 L9225 L9173 L9286 .9436 .9352 L9385 .8976 L8972 8774
Ecoli3 8.19 8824 9077 .8857 8941 .7448 L7399 L7904 .8096 .8123 .8113 .8694 .8848 .8535 .8694 .8491 .8618 .8474
Page-blocks0 8.77 .9516 L9580 L9569 9585 L9370 L9379 .9406 .9443 L9500 L9528 L9509 L9531 .9484 L9536 L9467 L9491 L9504
Yeast2vs4 9.08 9403 L9360 .9304 9293 .8613 .8513 L8972 .9004 L9275 .8915 .8846 .8968 .8827 .9074 .8656 .8633 8767
Yeast05679vs4 9.35 7823 .7943 L7933 8137 .7125 L7062 L7731 .7405 L7907 L7373 .8130 8182 .8081 L7912 .7478 .7648 .7276
Vowel0 10.10 9438 .9466 .9427 9466 L9661 L9672 L9661 L9683 .9628 L9672 .9828 .9883 .9428 .9494 L9656 L9650 L9594
Glass016vs2 10.29 6364 7538 6414 6248 L6157 .6129 L6157 .6100 L6100 L6157 .6364 .5588 .6400 L6067 L5631 L6631 .5576
Glass2 10.39 7584 .7685 L6519 7059 .6918 L6585 .6843 L7118 L7074 L6969 L7788 LT787 .7023 .6947 .6029 .6036 .5502
Ecoli4 13.84 8914 .8883 L8792 8994 .8639 .8639 .8889 .8639 L9139 .8389 L9060 .9326 .8592 .8842 .8937 .8889 .8937
ShuttleOvs4 13.87 1.000 1.000 1.000 1.000 L9997 L9997 .9994 L9997 L9994 L9997 L9997 L9997 L9997 L9997 L9997 .9997 L9997
Yeastlvs7 13.87 7468 7857 L7377 7731 .6468 .6325 6456 .6825 .6340 L6872 L6801 .6967 .6829 L7007 .6325 L5732 .6492
Glass4 15.47 8530 .8456 L8702 8705 .8967 .8942 9375 L9275 L9200 L9275 8767 .8742 L7750 L7750 .8300 .8108 .8183
Page-blocks13vs2 15.85 9752 L9775 L9515 9752 9978 9978 9978 9978 9978 9978 L9888 L9876 L9910 L9933 9978 .9933 9978
Abalone9vs18 16.68 7101 L7189 L7182 7100 L6095 L6124 L6310 L6561 .6828 .6553 L7532 L7451 L7158 L7055 L6669 .6655 .6500
Glass016vs5 19.44 9429 .9429 19429 9429 .7886 L7857 L7857 L7857 L9329 .8914 8771 .8657 .8443 8443 L9414 L9414 19443
Shuttle2vs4 20.50 9875 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Yeast1458vs7 22.10 5630 .6062 L6067 6172 .5418 .5175 .5819 .5372 .5509 .5304 6268 .6230 .4963 .4963 .5553 .5591 .5599
Glasss 22.81 9488 .9488 .9488 9488 .8927 .8927 8878 .8878 9854 .9402 8756 .8780 .8878 8878 .9476 .8976 .8976
Yeast2vs8 23.10 7613 L7830 L7393 7469 L7946 L7935 L7903 .8185 .8098 .8207 L7881 L7837 L7739 L7739 L6957 L7457 L6457
Yeast4 28.41 8601 8552 .8337 .8542 L6730 .6923 L7033 .6953 .7439 L7011 L7925 L7733 .7373 .7257 L6637 .7037 .6258
Yeast1289vs7 30.56 6746 7335 L7046 6887 .5858 .6085 .5858 L6197 L6121 6175 .6408 .6575 .5569 .5563 L6079 .6202 L6096
Yeasts 32.78 9642 L9521 L9639 9559 8677 .8556 L9118 L9014 19441 .9333 .9622 L9618 9656 L9653 L9139 L9365 L9125
Ecoli0137vs26 39.15 .7263 7445 .8063 7809 L7409 L7409 7409 .7409 .8318 .7355 .8281 .8281 .8463 .8445 .8445 .8445 .7463
Yeast6 39.15 8641 .8685 8577 8779 L7865 .7869 .8032 .8039 .8259 .8155 .8354 .8358 .8151 8155 .7934 .8060 L7802
Abalone19 128.87 .6950 7206 L6619 6797 .5203 .5195 .5208 .5358 .5353 .5513 L5710 L5716 L5271 .5125 .5149 .5290 .5155
Mean .8518 8637 L8511 .8584 .8162 .8158 .8309 .8330 .8422 .8340 .8509 .8528 .8323 .8365 .8302 .8336 .8194

issue of these methods resides in properly exploiting the
diversity when each bootstrap replica is formed.

Clearly, the trade-off between complexity and perfor-
mance of ensemble learning algorithms adapted to han-
dle class imbalance is positive, since the results are sig-
nificantly improved. They are more appropriate than the
mere use of classic ensembles or data preprocessing tech-
niques. In addition, extending the results of the last part
of the experimental study, base classifier’s results are out-
performed.

Regarding the computational complexity, even though our
analysis is mainly devoted to algorithms’ performance,
we should highlight that RUSBoost is competing against
SMOTEBagging and UnderBagging with only ten classi-
fiers (since it achieves better performance with less classi-
fiers). The reader might also note that, RUSBoost’s classi-
fiers are much faster in building time, since less instances
are used to construct each classifier (due to the undersam-
pling process); besides, the ensemble is more comprehen-
sible, containing only ten smaller trees. On the other hand,
SMOTEBagging constructs larger trees (due to the over-
sampling mechanism). Likewise, UnderBagging is com-
putationally harder than RUSBoost, in spite of obtaining
comparable size trees, it uses four times more classifiers.

4)

5)

VI. CONCLUDING REMARKS

In this paper, the state of the art on ensemble methodologies
to deal with class imbalance problem has been reviewed. This
issue hinders the performance of standard classifier learning
algorithms that assume relatively balanced class distributions,

and classic ensemble learning algorithms are not an exception.
In recent years, several methodologies integrating solutions to
enhance the induced classifiers in the presence of class imbal-
ance by the usage of ensemble learning algorithms have been
presented. However, there was a lack of framework where each
one of them could be classified; for this reason, a taxonomy
where they can be placed has been presented. We divided these
methods into four families depending on their base ensemble
learning algorithm and the way in which they address the class
imbalance problem.

Once that the new taxonomy has been presented, thorough
study of the performance of these methods in a large number of
real-world imbalanced problems has been performed, and these
approaches with classic ensemble approaches and nonensemble
approaches have been compared. We have performed this study
developing a hierarchical analysis over the taxonomy proposed,
which was guided by nonparametric statistical tests.

Finally, we have concluded that ensemble-based algorithms
are worthwhile, improving the results that are obtained by the
usage of data preprocessing techniques and training a single
classifier. The use of more classifiers makes them more com-
plex, but this growth is justified by the better results that can
be assessed. We have to remark the good performance of ap-
proaches such as RUSBoost or UnderBagging, which despite be-
ing simple approaches, achieve higher performances than many
other more complex algorithms. Moreover, we have shown
the positive synergy between sampling techniques (e.g., un-
dersampling or SMOTE) and Bagging ensemble learning algo-
rithm. Particularly noteworthy is the performance of RUSBoost,
which is the computationally least complex among the best
performers.
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APPENDIX

DETAILED RESULTS TABLE

In this appendix, we present the AUC test results for all the
algorithms in all data-sets. Table XIX shows the results for
nonensembles and classic ensembles. In Table XX we show
the test results for cost-sensitive boosting, boosting-based and
hybrid ensembles, whereas Table XXI shows the test results for
bagging-based ones. The results are shown in ascending order
of the IR. The last row in each table shows the average result of
each algorithm. We stress with bold-face the best results among
all algorithms in each data-set.
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