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Abstract—This paper presents a relational framework for studying properties of

labeled data points related to proximity and labeling information in order to improve

the performance of the 1NN rule. Specifically, the class conditional nearest

neighbor (ccnn) relation over pairs of points in a labeled training set is introduced.

For a given class label c, this relation associates to each point a its nearest

neighbor computed among only those points with class label c (excluded a). A

characterization of ccnn in terms of two graphs is given. These graphs are used for

defining a novel scoring function over instances by means of an information-

theoretic divergence measure applied to the degree distributions of these graphs.

The scoring function is employed to develop an effective large margin instance

selection method, which is empirically demonstrated to improve storage and

accuracy performance of the 1NN rule on artificial and real-life data sets.

Index Terms—Computing methodologies, artificial intelligence, learning,

heuristics design, machine learning.
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1 INTRODUCTION

IN a typical classification problem, we are given a training set
consisting of sample points and their class labels. The training set
is used for predicting the class of new sample points. In particular,
the one nearest neighbor (1NN) rule classifies an unknown point
into the class of the nearest of the training set points. 1NN is used in
many applications because of its intuitive interpretation, flexibility,
and simple implementation. Moreover, for all distributions, the
1NN rule’s probability of error is bounded above by twice the
Bayes’ probability of error [12]. However, 1NN requires to
memorize the entire training set (that is, it is a memory-based
classifier), and its performance can be negatively affected by the
presence of many input variables (see, for instance, [18], [21], [32])
or noisy instances (see, for instance, [8], [40]). In order to tackle
these problems, various algorithms have been developed, such as
those for instance/prototype selection [1], [2], [3], [8], [20], [24],
[33], for feature selection [21], [27], [38], and for distance learning
[31], [42], [43].

The 1NN rule does not rely on knowledge of the underlying
data distribution (nonparametric classification), but uses directly
proximity followed by class labeling information for classifying
new points. Therefore, in this paper, we analyze proximity
conditioned to class labeling information in order to improve
accuracy and storage performance of the 1NN rule. We introduce a
relation called class conditional nearest neighbor (ccnn), defined on
pairs of points from a labeled training set as follows: For a given
class c, ccnn associates to instance a its nearest neighbor computed
among only those instances (excluded a) in the class c. Thus, this
relation describes proximity information conditioned to a class label,
for each class of the training set.

The ccnn relation is characterized by means of two graphs: the
between-class and within-class nearest neighbor graphs. These
graphs are used to define a new instance scoring function by means
of a directed information-theoretic measure (the K-divergence)
applied to the in-degree distributions of these graphs. The scoring
function is used to develop an effective large margin instance
selection method, called Class Conditional selection (CC). Points of
the training set with negative or zero score are discarded, since it is
shown that their removal increases the hypothesis margin of the
resulting 1NN rule. The instance selection method selects iteratively
instances, where instances with higher score are selected first. The
process terminates when the empirical error of the resulting 1NN

rule increases. Results of extensive experiments with artificial and
real-life data sets show that the method improves significantly the
1NN rule’s storage and test accuracy performance. Moreover, the
test accuracy results of CC are similar to those of the KNN classifier
that uses the entire training set and selects the number K of
neighbors by leave-one-out cross validation.

In order to further improve the storage performance of the
method, we develop a postprocessing algorithm, called Thin-out

selection (THIN) that selects points close to the decision boundary
of the 1NN rule. This is achieved by selecting instances having
positive in-degree in the between-class graph of the actual training
set. The process is repeated on the remaining instances until the
empirical error increases. Application of CC followed by THIN is
called Class Conditional Instance Selection (CCIS). Experimental
comparison with two state-of-the-art instance selection algorithms,
ICF and DROP3, described in Section 4.1, indicate similar storage
reduction of the methods. Test accuracy results of CCIS are
significantly better than those of ICF and similar to those of
DROP3. Finally, results show that CC has test accuracy significantly
better than that of these instance selection algorithms but worse
storage reduction.

These results show the usefulness of ccnn for defining proper-
ties of training set instances to be used for improving the
performance of the 1NN rule.

1.1 Related Work

The ccnn relation is related to Hit Miss networks (HMNs)
introduced in [29]. In that paper, it was shown that structural
properties of HMNs correspond to properties of training points
related to the decision boundary of the 1NN rule, such as being
border or central point. This observation was used to introduce an
instance selection heuristic algorithm for the 1NN rule based on
HMNs. Here, we use two components of HMNs for defining a new
information-theoretic instance scoring function used to perform
large margin instance selection.

Graph-based representations of training sets in the context of
1NN-based classification mainly use proximity graphs. Proximity
graphs are defined as graphs in which points close to each other by
some definition of closeness are connected [4]. The nearest
neighbor graph (NNG) is a typical example of proximity graph,
where each vertex is a data point that is joined by an edge to its
nearest neighbor. Representations of a data set based on proximity
graphs have been used with success to define algorithms for
improving storage and accuracy of the nearest neighbor rule. For a
thorough survey of graph-based methods for nearest neighbor
classification, the reader is referred to [40].

A popular relation involving both proximity and class labeling
information is the nearest unlike neighbor (NUN) [14], which links
one point with its nearest neighbor among those points with
different class label. NUN has been used in [16] to provide a
measure of confidence in the decisions made by the 1NN-based
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decision systems, and employed in [15] for defining hybrid

condensing algorithms. We show that ccnn incorporates both

types of label-independent (nearest neighbor) and label-dependent

(nearest unlike neighbor) information.
The heuristic algorithms CC and THIN are motivated by works

on large margin analysis of prototype selection [6], [13] and feature
selection [21]. In [21], hypothesis margin is used to define a loss
function for performing feature weighting, and introduce a large
margin bound of the generalization error for the 1NN rule, which
uses a set of selected features. In [13], the notion of hypothesis
margin is introduced and used to provide a large margin bound
for the generalization error of a family of prototype selection
algorithms. In particular, they show that 1NN generalizes well if a
prototype selection algorithm selects a small number of prototypes
with large hypothesis margin and small training error. These three
objectives are directly used in the heuristic algorithms for instance
selection that we propose.

The main differences between CCIS and prototype selection
algorithms, such as those analyzed in [13], are that, in CCIS,

prototypes are members of the training set and are automatically
computed. Indeed, CCIS belongs to the family of instance selection
algorithms. Instance selection algorithms, and in particular CCIS,
can be interpreted as procedures for training Voronoi networks
(Vnets) [26]. Voronoi networks discretize the feature space into
Voronoi regions and assign the samples in each region to a class. In
[26], it is shown that Vnets asymptotically converge to the Bayes
classifier with arbitrary high probability provided the number of
representative samples grows slower than the square root of the
number of training samples.

The heuristic for instance selection here proposed differs from

previous instance selection algorithms, such as those mentioned in

Section 1, mainly because it employs a new instance scoring

function that is used to directly enlarge the hypothesis margin

while selecting instances.
The rest of the paper is organized as follows: After presenting

the notation used throughout the paper, Section 2 introduces the

ccnn relation, its graph-based representation, and comparison with

NNG and NUN. In Section 3, we develop a large margin instance

selection algorithm based on ccnn, whose performance is compara-

tively analyzed experimentally in Section 4 on a large collection of

data sets. Finally, we conclude the paper in Section 5 with a

summary of the contributions and point to future work.

1.2 Background

In this paper, we use A to denote a data set of n instances
A ¼ fa1; . . . ; ang, where ai is a real-valued vector of dimension m.
Let C denote the set of class labels of A and let l : A! C the
function mapping each instance ai to its class label lðaiÞ.

A graph G ¼ ðV ;EÞ consists of a finite set V and a subset

E � V � V . The elements of V are the vertices of the graph and

those of E are the edges of the graph. In this work, we consider

directed graphs, that is, such that each edge ðu; vÞ 2 E is oriented

(from u to v). We say that u and v are adjacent vertices, denoted by

u � v, if ðu; vÞ 2 E. The degree function deg is defined by

degðuÞ ¼ jfv j u � v or v � ugj. The in-degree function in deg is

defined by in degðuÞ ¼ jfv j v � ugj.
We denote by �S the leave-one-out error of A calculated using the

1NN rule with S as training set; that is, if a 2 A is also in S, then it is

classified by the 1NN rule using as training set S without a [21]. We

denote by �S the training or empirical error of S.

2 CLASS CONDITIONAL NEAREST NEIGHBOR

With the aim to analyze class and proximity information

contained in a training set in an integrated fashion, the following

relation is introduced:

Definition 2.1 (ccnn). Given a class c, the nearest neighbor of a
conditioned to c, denoted by 1NNða; cÞ, is the nearest neighbor of a
computed among those points in A, excluding a, having class label c.
We call ccnn the set of pairs ða; bÞ such that b ¼ 1NNða; cÞ for some
class c of C.

Let 1NNðaÞ denote the nearest neighbor of a inA. In the following,
we assume for simplicity that 1NNðaÞ and 1NNða; cÞ are unique.

We use a graph-based representation of the class conditional
nearest neighbor, where nodes are instances and there is an edge
ða; bÞ iff ða; bÞ is in ccnn.

Such a graph-based representation of the training set is shown
in Fig. 1 for a toy binary classification problem. The in-degree of
each point is also plotted. Observe that the two points with zero in-
degree are relatively isolated from other points. Moreover, points
with high number of incoming edges from a different class are
closer to the 1NN decision boundary.

Constructing such a graph representation requires quadratic
time complexity in the number of points. Nevertheless, by
using metric trees or other spatial data structures, this bound
can be reduced [22], [25]. For instance, for low input
dimension, using kd trees, whose construction takes time
proportional to nlogðnÞ, nearest neighbor search exhibits
approximately Oðn1=2Þ behavior [22].

It is easy to check that ccnn is characterized in graph terms by
the union of the two orthogonal graphs: the within and between-
class directed nearest neighbor graphs, defined as follows:

Definition 2.2. The within-class 1NN graph, denoted by
Gwc ¼ ðV ;EwcÞ, is such that V ¼ A and

Ewc ¼ fðai; ajÞ j aj ¼ 1NNðai; lðaiÞÞg:

The between-class 1NN graph, denoted by Gbc ¼ ðV ;EbcÞ, is such
that V ¼ A and

Ebc ¼ fðai; ajÞ j aj ¼ 1NNðai; cÞ; c 2 C and c 6¼ lðaiÞg:

Gwc represents the directed 1NN relation between points of the same
class in the training set. Gbc represents the directed 1NN relation
between points of each pair of different classes in the training set.

The ccnn relation contains and integrates two popular relations
introduced in past work on training set analysis and instance
selection for the 1NN rule: the (directed) nearest neighbor (NNG)
and the NUN.

The (directed) nearest neighbor relation has been applied with
success in studies and applications of the nearest neighbor rule
(see, e.g., [40]). This relation is strictly contained in ccnn. Moreover,
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Fig. 1. Graph representation of ccnn for a toy data set with two classes, with
number of incoming within and between-class edges reported near each node.
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one can easily show that NNG and Gwc coincide for those training
sets A such that �A ¼ 0.

The NUN is a useful concept used for decades in diverse
application domains, for instance, geology [30] for detecting border
points. Here, we consider the NUN concept as defined in [14] in the
machine learning community: The nearest unlike neighbor of a is
its nearest neighbor among those points in A having different class
label. This concept was applied in [16] to provide a measure of
confidence in the decisions made by the 1NN-based decision
systems, and employed in [15] for defining hybrid condensing
algorithms. Clearly, in general, the NUN relation is strictly included
in the between-class nearest neighbor (Gbc), and it coincides with it
only for binary classification problems.

In the sequel, we use the in-degree of points in the Gwc and Gbc

graphs for developing a large margin instance selection heuristic.
For simplicity, we will refer to the in-degree of a in Gwc and Gbc as
the within and between in-degree of a, respectively.

3 CLASS CONDITIONAL INSTANCE SELECTION

Margins play an important role in machine learning research, as a
tool for performing theoretic analysis [5], [37], for developing new
machine learning algorithms [11], and for improving the accuracy
performance of nearest neighbor-based classifiers [6], [13], [21]. In
particular, the hypothesis margin is defined as the distance between
the hypothesis and the closest hypothesis that assigns alternative
label to the given instance. For the 1NN rule, the hypothesis margin
of an instance a with respect to a training set A can be easily
computed as follows:

�AðaÞ ¼ ka� nearestmissðaÞk � kx� nearesthitðaÞk;

where nearesthitðaÞ and nearestmissðaÞ are the nearest neighbors
of a with equal and different class labels, and k � k denotes the
euclidean norm [13].

A Learning Vector Quantization (LVQ) algorithm seeks a set of
prototypes of a given size in the input space, typically by
minimizing a suitable loss function using gradient search. In [13],
it is shown that this popular prototype selection algorithm belongs
to a family of maximal margin algorithms [19], [41]. Furthermore, it
is theoretically shown that if a prototype selection algorithm selects
a small set of prototypes with large margin � and small �-error,
then the resulting 1NN rule will generalize well.

Here, we consider instance selection, that is, prototypes are
constrained to be members of the training set. Instance selection
can be interpreted as training process for a family of learning
machines, also known in the literature as Voronoi networks [26].
Since LVQ and Voronoi networks are different and we are not
aware of large margin bounds results for Voronoi networks, we
use the above theoretical result given in [13] as a guideline for
developing a large margin instance selection method that consists
of the following two phases:

. Class Conditional selection phase (CC). It removes from the
training set outliers, isolated points, and points close to the
1NN decision boundary. This phase aims at enlarging the
hypothesis margin and reducing the empirical error.

. Thin-out selection phase (THIN). It thins out points that
are not important to the decision boundary of the
resulting 1NN rule. This phase aims at selecting a small
number of instances without negatively affecting the 1NN

empirical error.

The two phases are described in detail below.

3.1 Class Conditional Selection: CC
A subset of the original training set is constructed from an initial
small core S by adding incrementally points to S. The crucial

step of CC is the criterion used for selecting one instance at each
iteration. We propose a static instance selection criterion based
on a directed information-theoretic divergence measure known
as K-divergence (see, for instance, [28]).

Let p1 and p2 be two discrete probability distributions over X.
The K-divergence between p1 and p2 is

Kðp1; p2Þ ¼
X

x2X
p1ðxÞ log

p1ðxÞ
1
2 p1ðxÞ þ 1

2 p2ðxÞ
:

Kðp1; p2Þ can also be defined as the Kullback-Leibler (KL)
divergence of p1 and 1

2 p1 þ 1
2 p2, KLðp1k 1

2 p1 þ 1
2 p2Þ. The K-diver-

gence is a nonsymmetric, bounded measure of divergence [28].
Here, we choose as p1 and p2 the normalized within and

between-in-degree distributions, denoted by pw and pb, respec-
tively; that is, pwðaÞ and pbðaÞ are the within and between-in-degree
of point a divided by the total in-degree of Gwc and Gbc,
respectively. Note that pw and pb are, in general, different
distributions and pwðaÞ 6¼ 1� pbðaÞ.

Denote by

Kðp1; p2ÞðaÞ ¼ p1ðaÞ log
p1ðaÞ

1
2 p1ðaÞ þ 1

2 p2ðaÞ
;

the contribution of instance a to the K-divergence. We consider the
difference of the contributions of a to Kðpw; pbÞ and Kðpb; pwÞ as a
measure for scoring points.

Definition 3.1. The class conditional score of an instance a is

ScoreðaÞ ¼ Kðpw; pbÞðaÞ �Kðpb; pwÞðaÞ.

Points that contribute more to Kðpb; pwÞ than to Kðpw; pbÞ have
negative score. In particular, a point a with higher between-class
than within-class in-degree has negative score. Removing a from
the training set will increase the hypothesis margin of a number of
points equal to the difference of its between and within-class in-
degrees. Therefore, we discard points with negative score (see
line 5 of Fig. 2).

Fig. 2 shows the algorithm in pseudocode. The initial core S
consists of the k0 instances having highest score, with
k0 ¼ maxðc; d�

A

2 eÞ, that is, we choose an initial core of instances of
size proportional to the difficulty of the task, as measured by �A.
This choice is motivated by the following reasoning. We want to
have at least one point for each class. The number of misclassified
instances of the training set is equal to �A. Without any prior
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Fig. 2. Pseudocode of CC. Input: training set A. Output: subset S of A.
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knowledge, we assume with equal probability that each of these
instances is either an outlier or a regular instance. In order to be
correctly classified, these regular instances have to be included in
the training set. Therefore, S will contain at least d�A2 e points.
Application of automatic parameter tuning procedures to choose
k0, for instance, internal cross validation, may possibly yield
improved performance.

At each iteration, CC selects the instance with the highest score
that best contributes to achieve a large hypothesis margin, that is,
being far from points of other classes and close to points of the
same class. The iterative process continues while the empirical
error �S decreases, until �S becomes smaller than �A.

The algorithm is applied independently to c pairs of classes.
Such pairs are selected as follows: For each class c, the class most
similar to c is selected. Here, similarity between classes c and c0 is
defined by considering the subgraph induced by nodes of c and c0,
and by computing the correlation between the within and between-
class in-degrees of the points in class c in such a graph. The union of
the selected instances obtained from the c independent applications
of the algorithm is given as final result of CC.

Fig. 3a illustrates the effect of the algorithm on a training set of
the XOR classification problem. In particular, it shows that CC

selection discards the outlier point (indicated by an arrow),
isolated instances (with negative or zero score, see line 5), as well
as instances close to the 1NN decision boundary, thus, enlarging
the 1NN hypothesis margin.

We turn now to the description of the second phase of the
method.

3.2 Thin-Out Instance Selection: THIN
The reduced training set S given as output of CC is further processed
by selecting only points considered important to the decision
boundary. Pseudocode of THIN is given in Fig. 4, whereGS

bc denotes
the between-class graph constructed using only points in S.

The algorithm takes as input the subset S of the training set
produced by CC and outputs the subset Sf of S constructed as
follows: Sf is initialized to the set of those points close to the 1NN
decision boundary of S, that is, having positive in-degree in the
between-class graph GS

bc. Points of Sf are removed from S. The
resulting set is denoted by S1 (initialized in line 3 and updated in
line 11). The process is iterated as follows (lines 5-13): Points
having positive in-degree in the GS1

bc are added to Sf if they were
not “iolated” in the previous iteration, that is, if their in-degree was
not zero (see line 6). This latter condition is justified by the fact that
removing points with zero in-degree from a training set does not
change the original 1NN decision boundary (see [29]). The iterative
process terminates when the empirical error increases (when
go_on becomes false, see line 7).

The effect of the THIN on the XOR example is illustrated in
Fig. 3b. Indeed, points close to the 1NN decision boundary are
selected.

3.3 Computational Complexity

Constructing Gwc and Gbc and sorting the CC of the training set take
time proportional to n logðnÞ. The iterative process, in the worst-
case, amounts to calculate at each iteration �S , where at each
iteration, one point is added to S.

The computation of �S requires n tests. Indeed, suppose for each
b 2 A, we memorize its nearest neighbor in S n fbg, say bS . Let a be
the new point added to S and let S0 ¼ S [ fag. Then, for each
b 2 A n fag, if kbS � bk > ka� bk, then set bS0 ¼ a; otherwise,
bS0 ¼ bS .

Thus, CC performs at most n� k0 þ 1 iterations. Then the

worst-case runtime complexity of CC selection is Oðmaxðnðn �
k0 þ 1Þ; n logðnÞÞ. THIN does not increase the computational

complexity of the algorithm. Experimental evidence on the real-

life data sets here considered shows that a small number of

iterations are performed in practice. Indeed, on the considered

data sets, CC reduces the training set to about 40 percent of its

initial size and THIN performs, on average, 3.5 iterations on the

reduced training set.

4 EXPERIMENTS

In order to assess the performance of the proposed instance
selection algorithm, experiments on artificial and real-life data sets
are conducted. These data sets are publicly available at Raetsch’s
benchmark repository,1 Chapelle’s repository,2 and UCI Machine
Learning repository.3

4.1 Methods

We perform experiments with five algorithms as follows:

. 1NN that uses the entire training set.

. KNN that uses the entire training set and with number K of
neighbor selected by leave-one-out cross validation.

. CCIS, consisting of CC selection followed by THIN.

. Iterative Case Filtering (ICF) introduced in [7].

. The best performing of the Decremental Reduction Optimiza-
tion algorithms, DROP3 [45], [46].

The Iterative Case Filtering method first applies a noise reduction

algorithm iteratively until it cannot remove any point, and then, it
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1. http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm.
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Fig. 3. Application of (a) CC selection and (b) THIN. The points selected have filled markings. The arrow points to one outlier.
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iteratively removes points as follows: At each iteration, all points
for which the so-called reachability set is smaller than the coverage

one are deleted. The reachability of a point a consists of the points
inside the largest hypersphere containing only points of the same
class as a. The coverage of a is defined as the set of points that
contains a in their reachability set.

DROP3 belongs to the family of Decremental Reduction
Optimization (DROP) algorithms. First, DROP3 applies a preproces-
sing step that discards points of A misclassified by their K nearest
neighbors. Next, it removes a point a from A if the accuracy of the
KNN rule on the set of its associates does not decrease. Each point
has a list of K nearest neighbors and a list of associates, which are
updated each time a point is removed from A. A point a1 is an
associate of a if a belongs to the set of K nearest neighbors of a1. If a
is removed, then the list of K nearest neighbors of each of its
associates a1 is updated by adding a new neighbor point a2, and a1

is added to the list of associates of a2. The removal rule is applied
to the points sorted in decreasing order of distance from their
nearest neighbor of the other classes (nearest enemy). In this way,
points farthest from their nearest enemy are selected first.

DROP3 achieves the best mix of storage reduction and general-
ization accuracy of the DROP methods [46]. Moreover, results of
experiments conducted in [45], [46] show that DROP3 achieves
higher accuracy and smaller storage requirements than several
other methods, such as CNN [23], SNN [35], E-NN [44], the All KNN
method [39], IB2, IB3 [1], and the Explore method [9].
Therefore, we use DROP3 and ICF as representatives of the state
of the art.

We consider the artificial and real-life data sets with different
characteristics reported in Table 1.

4.2 Artificial Data Sets

The Banana data set from Raetsch’s benchmark repository consists
of 100 partitions of the data set into training and test sets. The two
other data sets are from Chapelle’s benchmark data [10]: g50c
and g10n, generated from two standard normal multivariate
Gaussians. In g50c, the labels correspond to the Gaussians, and
the means are located in 50-dimensional space such that the
Bayes’ error is 5 percent. In contrast, g10n is a deterministic
problem in 10 dimensions, where the decision function traverses
the centers of the Gaussians and depends on only two of the input
dimensions. The original 10 partitions of each data set into
training and test sets from Chapelle’s repository are used.

4.3 Real-Life Data Sets

The following 19 publicly available real-life data sets are used:

. Twelve data sets from Raetsch’s repository, already used
in [34], collected from the UCI, DELVE, and STATLOG
benchmark repositories. For each experiment, the 100 (20
for Splice and Image) partitions of each data set into
training and test sets contained in the repository are used.

. Three data sets from Chapelle’s repository previously used
in [10]: Coil20, consisting of gray-scale images of
20 different objects taken from different angles, in steps
of 5 degrees; Uspst, the test data part of the USPS data on
handwritten digit recognition; and Text consisting of the
classes “mac” and “mswindows” of the Newsgroup20 data
set. For each experiment, the 10 partitions of each data set
into training and test sets from the repository are used.

. Four standard benchmark data sets from the UCI Machine
Learning repository: Iris, Bupa, Pima, and Breast-W.
For each experiment, 100 random partitions of each data
set into training (80 percent of the data) and test (20 percent
of the data) sets are used.

4.4 Results

Cross validation is applied to each data set. For each partition of

the data set, the instance selection algorithm is applied to the

training set from which a subset S is returned. 1NN that uses only

points of S is applied to the test set.
In order to assess whether differences in accuracy and storage

reduction on all runs of the entire group of data sets are significant,

a nonparametric paired test, the Wilcoxon signed rank test, for zero

median is applied to compare CC with 1NN and KNN (see Table 2)

and CCIS with ICF and DROP3 (see Table 3). As shown, for

instance, in [17], comparison of the performance of two algorithms

based on the t-test is only indicative because the assumptions of

the test are not satisfied, and the Wilcoxon test is shown to provide

more reliable estimates. The value in the row labeled “Wilcoxon p”

of the tables indicates the resulting p-value.
Results are reported in Tables 2 and 3. All instance selection

algorithms are tested using one neighbor. The average accuracy on

the test set over the given partitions is reported for each algorithm.

The average percentage of instances that are excluded from S is

also reported under the column with label R.
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Fig. 4. Pseudocode of THIN. Input: the output S of CC. Output: subset Sf of S.

TABLE 1
Characteristics of Data Sets

CL = number of classes, TR = training set, TE = test set, VA = number of variables,
Cl.Inst. = number of instances in each class.
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Results of Table 2 show that CC outperforms 1NN and achieves

accuracy performance similar to that of KNN with number K of

neighbors selected by leave-one-out cross validation. Moreover, CC

significantly reduces the size of the training set. The test accuracy

of CC is significantly better than the one of CCIS, ICF, and DROP3

(application of the Wilcoxon test gives 0 p-value). This may be due

to the more aggressive storage reduction performed by these

algorithms.
Table 3 reports results of CCIS, ICF, and DROP3. CCIS

outperforms ICF and achieves accuracy performance similar to

that of DROP3. Storage reduction of the three algorithms does not

differ significantly.
Finally, we briefly address the stability issue, that is, whether

removing a small fraction of the data affects the resulting instance

set significantly. Results of experiments on the considered data sets

show stability of the method. This can be due to the fact that when

the data set is not too small, then removing a small fraction of the

data does not affect significantly the in-degree of the remaining

points in Gbc and Gwc.
Given the diversity of the characteristics of the data sets

considered in the experiments, the results provide experimental

evidence of the effectiveness of the proposed large margin instance

selection algorithm based on ccnn for improving the performance

of the 1NN rule.

5 CONCLUSION

This paper proposed ccnn, a combined proximity-label-based

relation over pairs of instances. A graph-based framework was

used for analyzing its relation with the popular nearest neighbor

and nearest unlike neighbor concepts and developing a large

margin-based algorithm for instance selection. The proposed

instance selection method can be interpreted as a novel large-

margin-based procedure for training Voronoi networks [26].
An extensive comparative experimental analysis with state-of-

the art instance selection methods provided empirical evidence of

the effectiveness of the proposed technique for enhancing the

performance of the 1NN rule.

In general, the results of this paper show that ccnn provides a

useful tool for defining and analyzing properties of a training set

related to the performance of the 1NN rule.
In future work, we intend to investigate the application of the

proposed graph-based framework for developing novel machine

learning algorithms: for instance, for feature selection, by seeking a

set of features that maximizes a merit criterion based on CC, and

for distance learning, in the style of [18], [32].
Furthermore, it would be interesting to investigate whether the

proposed scoring function could be used to define a data-driven

measure of training set difficulty [36].
Finally, note that the analysis conducted in the present paper

uses only the in-degree of nodes. It remains to be investigated

whether other graph-theoretic properties, such as path distance,

clustering coefficient, and diameter, correspond to interesting

properties of the training set related to the performance of 1NN-

based classifiers.
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