Mach Learn (2009) 74: 39-74
DOI 10.1007/s10994-008-5083-5

Discretization for naive-Bayes learning:
managing discretization bias and variance

Ying Yang - Geoffrey I. Webb

Received: 4 July 2005 / Revised: 28 February 2008 / Accepted: 7 August 2008 /
Published online: 4 September 2008
Springer Science+Business Media, LLC 2008

Abstract Quantitative attributes are usually discretized in Naive-Bayes learning. We estab-
lish simple conditions under which discretization is equivalent to use of the true probability
density function during naive-Bayes learning. The use of different discretization techniques
can be expected to affect the classification bias and variance of generated naive-Bayes classi-
fiers, effects we name discretization bias and variance. We argue that by properly managing
discretization bias and variance, we can effectively reduce naive-Bayes classification error.
In particular, we supply insights into managing discretization bias and variance by adjusting
the number of intervals and the number of training instances contained in each interval. We
accordingly propose proportional discretization and fixed frequency discretization, two effi-
cient unsupervised discretization methods that are able to effectively manage discretization
bias and variance. We evaluate our new techniques against four key discretization meth-
ods for naive-Bayes classifiers. The experimental results support our theoretical analyses
by showing that with statistically significant frequency, naive-Bayes classifiers trained on
data discretized by our new methods are able to achieve lower classification error than those
trained on data discretized by current established discretization methods.

Keywords Discretization - Naive-Bayes Learning - Bias - Variance

1 Introduction

When classifying an instance, naive-Bayes classifiers assume attributes conditionally in-
dependent of one another given the class; and then apply Bayes theorem to estimate
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the probability of each class given the instance. The class with the highest probability
estimate is chosen as the class for the instance. Naive-Bayes classifiers are simple, ef-
fective, efficient and robust, as well as support incremental training. These merits have
seen them deployed in numerous classification tasks. They have long been a core tech-
nique in information retrieval (Maron and Kuhns 1960; Mitchell 1997; Lewis 1998).
They were first introduced into machine learning as a straw man, against which new
algorithms were compared and evaluated (Cestnik et al. 1987; Clark and Niblett 1989;
Cestnik 1990). But it was soon realized that their classification performance was surprisingly
good compared with other more complex classification algorithms (Kononenko, Langley et
al. 1990, 1992; Domingos and Pazzani 1996, 1997). In consequence, naive-Bayes classifiers
have widespread deployment in applications including medical diagnosis (Lavrac 1998;
Lavrac et al. 2000; Kononenko 2001), email filtering (Androutsopoulos et al. 2000;
Crawford et al. 2002), and recommender systems (Starr et al. 1996; Miyahara and Paz-
zani 2000; Mooney and Roy 2000). There has also been considerable interest in devel-
oping variants of naive-Bayes learning that weaken the attribute independence assump-
tion (Langley and Sage 1994; Sahami 1996; Singh and Provan 1996; Friedman et al. 1997;
Keogh and Pazzani 1999; Zheng and Webb 2000; Webb et al. 2005; Acid et al. 2005;
Cerquides and Mantaras 2005) .

Classification tasks often involve quantitative attributes. For naive-Bayes classifiers,
quantitative attributes are usually processed by discretization. This is because experience
has shown that classification performance tends to be better when quantitative attributes
are discretized than when their probabilities are estimated by making unsafe assumptions
about the forms of the underlying probability density functions from which the quantita-
tive attribute values are drawn. For instance, a conventional approach is to assume that a
quantitative attribute’s probability within a class has a normal distribution (Langley 1993;
Langley and Sage 1994; Pazzani et al. 1994; Mitchell 1997). However, Pazzani (1995) ar-
gued that in many real-world applications the attribute data did not follow a normal distri-
bution; and as a result, the probability estimation of naive-Bayes classifiers was not reli-
able and could lead to inferior classification performance. This argument was supported by
Dougherty et al. (1995) who presented experimental results showing that naive-Bayes with
discretization attained a large average increase in accuracy compared with naive-Bayes with
normal distribution assumption. In contrast, discretization creates a qualitative attribute X
from a quantitative attribute X;. Each value of X corresponds to an interval of values of
X;. X} is used instead of X; for training a classifier. In contrast to parametric techniques
for inference from quantitative attributes, such as probability density estimation, discretiza-
tion avoids the need to assume the form of an attribute’s underlying distribution. However,
because qualitative data have a lower level of measurement than quantitative data (Samuels
and Witmer 1999), discretization might suffer information loss. This information loss will
affect the classification bias and variance of generated naive-Bayes classifiers. Such effects
are hereafter named discretization bias and variance. We believe that study of discretization
bias and variance is illuminating. We investigate the impact of discretization bias and vari-
ance on the classification performance of naive-Bayes classifiers. We analyze the factors that
can affect discretization bias and variance. The resulting insights motivate the development
of two new heuristic discretization methods, proportional discretization and fixed frequency
discretization. Our goals are to improve both the classification efficacy and efficiency of
naive-Bayes classifiers. These dual goals are of particular significance given naive-Bayes
classifiers’ widespread deployment, and in particular their deployment in time-sensitive in-
teractive applications.

In the rest of this paper, Sect. 2 prepares necessary background knowledge including ter-
minology and naive Bayes learning. Section 3 defines discretization in naive-Bayes learning.

@ Springer



Mach Learn (2009) 74: 39-74 41

Section 4 discusses why discretization can be effective for naive-Bayes learning. In partic-
ular, it establishes specific conditions under which discretization will result in naive-Bayes
classifiers delivering the same probability estimates as would be obtained if the true prob-
ability density function for each quantitative attribute were employed. Section 5 presents
an analysis of the factors that can affect the effectiveness of discretization when learning
from multiple attributes. It also introduces the bias-variance analysis of discretization out-
comes. Much of this material has previously been covered in an earlier paper (Yang and
Webb 2003), but it is included for completeness and ease of reference. Section 6 provides
a review of previous key discretization methods for naive-Bayes learning with a focus on
their discretization bias and variance profiles. To our knowledge, this is the first compre-
hensive review of this specialized field of research. Section 7 proposes our new heuristic
discretization techniques, designed to manage discretization bias and variance. While much
of the material in Sect. 7.1 has previously been covered in Yang and Webb (2001), it also is
included here for completeness and ease of reference. Section § describes experimental eval-
uation. To our knowledge, this is the first extensive experimental comparison of techniques
for this purpose. Section 9 presents conclusions.

2 Background knowledge
2.1 Terminology

There is an extensive literature addressing discretization, within which there is considerable
variation in the terminology used to describe which type of data is transformed to which type
of data by discretization, including ‘quantitative’ vs. ‘qualitative’, ‘continuous’ vs. ‘discrete’,
‘ordinal’ vs. ‘nominal’, or ‘numeric’ vs. ‘categorical’. Turning to the authority of introduc-
tory statistical textbooks (Bluman 1992; Samuels and Witmer 1999), we believe that the
‘quantitative’ vs. ‘qualitative’ distinction is most applicable in the context of discretization,
and hence choose them for use hereafter.

Qualitative attributes, also often called categorical attributes, are attributes that can be
placed into distinct categories, according to some characteristics. Some can be arrayed in a
meaningful rank order. But no arithmetic operations can be applied to them. Examples are
blood type of a person: A, B, AB, O; and tenderness of beef: very tender, tender, slightly
tough, tough. Quantitative attributes are numerical in nature. They can be ranked in order.
They also can be subjected to meaningful arithmetic operations. Quantitative attributes can
be further classified into two groups, discrete or continuous. A discrete quantitative attribute
assumes values that can be counted. The attribute cannot assume all values on the number
line within its value range. An example is number of children in a family. A continuous
quantitative attribute can assume all values on the number line within the value range. The
values are obtained by measuring rather than counting. An example is the Fahrenheit tem-
perature scale.

2.2 Naive-Bayes classifiers

In naive-Bayes learning, we define:

e (C as arandom variable denoting the class of an instance,

e X (X, X5, ..., Xk) as a vector of random variables denoting the observed attribute values
(an instance),

e c as a particular class label,
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e X(x1,Xx2,...,X;) as a particular observed attribute value vector (a particular instance),
e X =x as shorthand for X;=x; A Xo=x, A -+ A Xj=x;.

The learner is asked to predict a test instance x’s class according to the evidence pro-
vided by the training data. Expected classification error can be minimized by choosing
argmax.(p(C=c|X=x)) for each x (Duda and Hart 1973). Bayes theorem can be used
to calculate:
p(C=0)p(X=x|C=c)
p(C=c|X=x) = . ()]
p(X=x)

Since the denominator in (1) is invariant across classes, it does not affect the final choice
and can be dropped:

p(C=c|X=x) x p(C=c) p(X=x| C=c). @

Probabilities p(C=c) and p(X=x|C=c) need to be estimated from the training data. Un-
fortunately, since x is usually a previously unseen instance that does not appear in the train-
ing data, it may not be possible to directly estimate p(X=x|C=c). So a simplification is
made: if attributes X, X5, ..., X; are conditionally independent of each other given the
class, then:

p(X=x| C=c) = p(AL_, X;=x;| C=c)
k
=[] p(Xi=x; | C=0). 3)
i=1

Combining (2) and (3), one can further estimate the most probable class by using:

k
p(C=c|X=x) o p(C=c) [ | p(Xi=x; | C=0). “

i=1

Classifiers using (4) are naive-Bayes classifiers. The assumption embodied in (3) is the
attribute independence assumption. The probability p(C=c | X=x) denotes the conditional
probability of a class ¢ given an instance x. The probability p(C=c) denotes the prior prob-
ability of a particular class c. The probability p(X;=x; | C=c) denotes the conditional prob-
ability that an attribute X; takes a particular value x; given the class c.

3 The nature of discretization

For naive-Bayes learning, the class C is qualitative, and an attribute X; can be either qual-
itative or quantitative. Since quantitative data have characteristics different from qualitative
data, the practice of estimating probabilities in (4) when involving qualitative data is differ-
ent from that when involving quantitative data.

Qualitative attributes, including the class, usually take a small number of values (Bluman
1992; Samuels and Witmer 1999). Thus there are usually many instances of each value in
the training data. The probability p(C=c) can be estimated from the frequency of instances
with C=c. The probability p(X;=x; | C=c), when X; is qualitative, can be estimated from
the frequency of instances with C=c and the frequency of instances with X;=x; A C=c.
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These estimates are strong consistent estimates according to the strong law of large num-
bers (Casella and Berger 1990; John and Langley 1995).

When it is quantitative, X; often has a large or even an infinite number of values (Bluman
1992; Samuels and Witmer 1999). Thus the probability of a particular value x; given
the class ¢, p(X;=x; | C=c) can be infinitely small. Accordingly, there usually are very
few training instances for any one value. Hence it is unlikely that reliable estimation of
p(X;=x; | C=c) can be derived from the observed frequency. Discretization can circumvent
this problem. Under discretization, a qualitative attribute X" is formed for X;. Each value x;
of X} corresponds to an interval (a;, b;] of X;. Any original quantitative value x; € (a;, b;]
is replaced by x;. All relevant probabilities are estimated with respect to x. So long as
there are sufficient training instances, probabilities of X can be reliably estimated from
corresponding frequencies. However, because discretization loses the ability to differentiate
between values within each interval, it might suffer information loss.

Two important concepts involved in our study of discretization are interval frequency
and interval number. Interval frequency is the frequency of training instances in an in-
terval formed by discretization. Interval number is the total number of intervals formed by
discretization.

4 Why discretization can be effective

Dougherty et al. (1995) found empirical evidence that naive-Bayes classifiers using dis-
cretization achieved lower classification error than those using unsafe probability density
assumptions. They suggested that discretization could be effective because it did not make
assumptions about the form of the probability distribution from which the quantitative at-
tribute values were drawn. Hsu et al. (2000, 2003) proposed a further analysis of this issue,
based on an assumption that each X has a Dirichlet prior. Their analysis focused on the
density function f, and suggested that discretization would achieve optimal effectiveness
by forming x; for x; such that p(X;=x/| C=c) simulated the role of f(X;=x;|C=c) by
distinguishing the class that gives x; high density from the class that gives x; low density. In
contrast, as we will prove in Theorem 1, we believe that discretization for naive-Bayes learn-
ing should focus on the accuracy of p(C=c|X}=x]) as an estimate of p(C=c|X;=x;);
and that discretization can be effective to the degree that p(C=c | X*=x*) is an accurate es-
timate of p(C=c | X=x), where instance x* is the discretized version of instance x. Such an
analysis was first proposed by Kononenko (1992). However, Kononenko’s analysis required
that the attributes be assumed unconditionally independent of each other, which entitles
]_[f;l p(Xi=x;) = p(X=x). This assumption is much stronger than the naive-Bayes condi-
tional attribute independence assumption embodied in (3). Thus we present the following
theorem that we suggest more accurately captures the mechanism by which discretization
works in naive-Bayes learning than do previous theoretical analyses.

Theorem 1 Assume the first | of k attributes are quantitative and the remaining attributes
are qualitative." Suppose instance X*=x* is the discretized version of instance X=x, re-
sulting from substituting qualitative attribute X for quantitative attribute X; (1<i<l). If
Vﬁzl (p(C=c| X;=x;) = p(C=c| X}=x})), and the naive-Bayes attribute independence as-
sumption (3) holds, we have p(C=c|X=x) = p(C=c | X*=x*).

n naive-Bayes learning, the order of attributes does not matter. We make this assumption only to simplify
the expression of our proof. This does not at all affect the theoretical analysis.
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Proof According to Bayes theorem, we have:

p(X=x|C=c)

P(C=c|X=x) = p(C=0) o~ ==

since the naive-Bayes attribute independence assumption (3) holds, we continue:

_pC=
- p(X=x)

]_[ (Xi=x; | C=¢);
using Bayes theorem:

_ p(C=0) ﬁ p(Xi=x)p(C=c| X,;=x))
pX=x) p(C=0)

_ p(C=0) [Tiy pXi=x))
p(C=0f  p(X=x)

k
[[p(C=clXi=x):
i=1

Hll’(: Xi) .

since the factor X

is invariant across classes:

k

o p(C=0)"* [T p(C=c| Xi=x))
i=1

1 k
= p(C=c)"*[ [ p(C=c|Xi=x)) [ | p(C=c|X;=x));
i=1 j=l+1

since szl(p(C:c | Xi=x))=p(C=c| X}=x])):

! k
:p(C:c)l_kl_[p(C:C|X;k:xi*) 1_[ p(C:C|Xj:)Cj);

i=1 Jj=I+1

using Bayes theorem again:

e = =i C=0 [ PC=0rti=y1c=0

* L— .
p(Xf=x; A p(X,;=x;)

[Tie) p(X;=x;|C=c) n§:,+1 p(X;=x;|C=c)

= p(C=c)
[T PX=X) T POX=))

3

. . 1 k .. .
since the denominator [[;_, p(X;=x) l_[/:1+1 p(Xj=x;) is invariant across classes:

1 k
o p(C=c) [ [ p(X;=x]1C=0) ] p(X;=x;|C=c);
i=1 j=I+1

since the naive-Bayes attribute independence assumption (3) holds:
= p(C=c)p(X*=x"|C=c)
= p(C=c|X*'=x") p(X*=x");
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since p(X*=x*) is invariant across classes:
x p(C=c | X*=x*);

because we are talking about probability distributions, we can normalize p(C | X*=x*) and
obtain:

= p(C=c| X*=x%). O

Theorem 1 assures us that so long as the attribute independence assumption holds, and
discretization forms a qualitative X for each quantitative X; such that p(C=c | X/=x}) =
p(C=c| X;=x;), discretization will result in naive-Bayes classifiers delivering the same
probability estimates as would be obtained if the correct probability density function were
employed. Theorem 1 suggests that the most important factor to influence the accuracy of
the probability estimates will be the accuracy with which p(C=c|X}=x]) serves as an
estimate of p(C=c | X;=x;). This leads us to the following section.

5 What affects discretization effectiveness

When we talk about the effectiveness of a discretization method in naive-Bayes learning, we
mean the classification performance of naive-Bayes classifiers that are trained on data pre-
processed by this discretization method. There are numerous metrics on which classification
performance might be assessed. In the current paper we focus on zero-one loss classification
error.

Two influential factors with respect to performing discretization so as to minimize clas-
sification error are decision boundaries and the error tolerance of probability estimation.
How discretization deals with these factors can affect the classification bias and variance of
generated classifiers, effects we name discretization bias and discretization variance. Ac-
cording to (4), the prior probability of each class p(C=c) also affects the final choice of the
class. To simplify our analysis, here we assume that each class has the same prior probability.
Thus we can cancel the effect of p(C=c). However, our analysis extends straightforwardly
to non-uniform cases.

5.1 Classification bias and variance

The performance of naive-Bayes classifiers discussed in our study is measured by their
classification error. The error can be decomposed into a bias term, a variance term and
an irreducible term (Kong and Dietterich 1995; Breiman 1996; Kohavi and Wolpert 1996;
Friedman 1997; Webb 2000). Bias describes the component of error that results from sys-
tematic error of the learning algorithm. Variance describes the component of error that re-
sults from random variation in the training data and from random behavior in the learning
algorithm, and thus measures how sensitive an algorithm is to changes in the training data.
As the algorithm becomes more sensitive, the variance increases. Irreducible error describes
the error of an optimal algorithm (the level of noise in the data). Consider a classifica-
tion learning algorithm A applied to a set S of training instances to produce a classifier to
classify an instance x. Suppose we could draw a sequence of training sets Sj, S2, ..., S,
each of size m, and apply A to construct classifiers. The error of A at x can be defined as:
Error(A, m,x) = Bias(A, m, X) + Variance(A, m, X) + Irreducible(A, m, X). There is often
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(a) High bias, (b) Low bias, (C) High bias, high Low bias,

low variance high variance variance low variance

Fig. 1 Bias and variance in shooting arrows at a target. Bias means that the archer systematically misses in
the same direction. Variance means that the arrows are scattered (Moore and McCabe 2002)

a ‘bias and variance trade-off’ (Kohavi and Wolpert 1996). All other things being equal, as
one modifies some aspect of the learning algorithm, it will have opposite effects on bias and
variance.

Moore and McCabe (2002) illustrated bias and variance through shooting arrows at a
target, as reproduced in Fig. 1. We can think of the perfect model as the bull’s-eye on a
target, and the algorithm learning from some set of training data as an arrow fired at the
bull’s-eye. Bias and variance describe what happens when an archer fires many arrows at the
target. Bias means that the aim is off and the arrows land consistently off the bull’s-eye in
the same direction. The learned model does not center on the perfect model. Large variance
means that repeated shots are widely scattered on the target. They do not give similar results
but differ widely among themselves. A good learning scheme, like a good archer, must have
both low bias and low variance.

The use of different discretization techniques can be expected to affect the classification
bias and variance of generated naive-Bayes classifiers. We name the effects discretization
bias and variance.

5.2 Decision boundaries

Hsu et al. (2000, 2003) provided an interesting analysis of the discretization problem utiliz-
ing the notion of a decision boundary, relative to a probability density function f(X; |C=c)
of a quantitative attribute X; given each class c¢. They defined decision boundaries of X;
as intersection points of the curves of f(X;|C), where ties occurred among the largest
conditional densities. They suggested that the optimal classification for an instance with
X;=x; was to pick the class ¢ such that f(X;=x; | C=c) was the largest, and observed that
this class was different when x; was on different sides of a decision boundary. Hsu et al.’s
analysis only addressed one-attribute classification problems, and only suggested that the
analysis could be extended to multi-attribute applications without indicating how this might
be so.

In our analysis we employ a different definition of a decision boundary to that of Hsu et
al.’s because:

1. Given Theorem 1, we believe that better insights are obtained by focusing on the values
of X; at which the class that maximizes p(C=c | X;=x;) changes rather than those that
maximize f(X;=x; |C=c).

2. The condition that ties occur among the largest conditional probabilities is neither nec-
essary nor sufficient for a decision boundary to occur. For example, suppose that we
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Fig. 2 A tie in conditional
probabilities is not a necessary
condition for a decision boundary
to exist

p(CIXy)

negative positive

positive negative

Fig. 3 A tie in conditional
probabilities is not a sufficient p(CIXy)
condition for a decision boundary
to exist

G

]

o 4--

have probability distributions as plotted in Fig. 2 that depicts a domain with two classes
(positive vs. negative) and one attribute X;. We have p(positive | X1)=1.0 (if X, > d);
or 0.0 otherwise. X;=d should be a decision boundary since the most probable class
changes from negative to positive when X; crosses the value d. However, there is no
value of X at which the probabilities of the two classes are equal. Thus the condition
requiring ties is not necessary. Consider a second example as plotted in Fig. 3. The condi-
tional probabilities for ¢; and ¢, are equal at X;=d. However, d is not a decision bound-
ary because ¢, is the most probable class on both sides of X;=d. Thus the condition is
not sufficient either.

3. It is possible that a decision boundary is not a single value, but a region of values. For
example as plotted in Fig. 4, the two classes c¢; and ¢, are both most probable through
the region [d, e]. In addition, the region’s width can be zero, as illustrated in Fig. 2.

4. To extend the notion of decision boundaries to the case of multiple attributes, it is nec-
essary to allow the decision boundaries of a given attribute X; to vary from test instance
to test instance, depending on the precise values of other attributes presented in the test
instance, as we will explain later in this section. However, Hsu et al. defined the decision
boundaries of a quantitative attribute in such a way that they were independent of other
attributes.

In view of these issues we propose a new definition for decision boundaries. This new de-
finition is central to our study of discretization effectiveness in naive-Bayes learning. As we
have explained, motivated by Theorem 1, we focus on the probability p(C=c| X;) of each
class ¢ given a quantitative attribute X; rather than on the density function f(X,;=x; | C=c).

To define a decision boundary of a quantitative attribute X;, we first define a most prob-
able class. When classifying an instance x, a most probable class c,, given X is the class that
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Fig. 4 Decision boundaries may

be regions rather than points p(CIX )

<

<

satisfies Yc € C, P(c|x) < P(cu | X). Note that there may be multiple most probable classes
for a single x if the probabilities of those classes are equally the largest. In consequence,
we define a set of most probable classes, mpc(x), whose elements are all the most probable
classes for a given instance X. As a matter of notational convenience we define x\ X;=v to
represent an instance X’ that is identical to x except that X;=v for x'.

A decision boundary of a quantitative attribute X; given an instance X in our analysis is
an interval (/, r) of X; (that may be of zero width) such that

Ywell,r),ue(,rl]), ~(w=l Au=r) = mpcx\X;=w) Nmpc(x\X;=u) #0
VAN

mpc(x\X;=l) Nmpc(x\X;=r) =0.

That is, a decision boundary is a range of values of an attribute throughout which the sets
of most probable classes for every pair of values has one or more values in common and on
either side of which the sets of most probable classes share no values in common.

5.3 How decision boundaries affect discretization bias and variance

When analyzing how decision boundaries affect discretization effectiveness, we suggest that
the analysis involving only one attribute differs from that involving multiple attributes, since
the final choice of the class is decided by the product of each attribute’s probability in the
later situation. Consider a simple learning task with one quantitative attribute X; and two
classes ¢ and c;. Suppose X € [0, 2], and suppose that the probability distribution function
for each class is p(C=c; | X;) =1 — (X; — 1)?> and p(C=c; | X;) = (X; — 1)? respectively
as plotted in Fig. 5.

The consequent decision boundaries are labeled DB, and D B, respectively in Fig. 5.
The most probable class for an instance x=(x;) changes each time x,’s location crosses a
decision boundary. Assume a discretization method to create intervals /; (i=1,...,5) as in
Fig. 5. I, and I4 contain decision boundaries while the remaining intervals do not. For any
two values in I, (or I;) but on different sides of a decision boundary, the optimal naive-
Bayes learner under zero-one loss should select a different class for each value.> But under
discretization, all the values in the same interval cannot be differentiated and we will have

2Please note that some instances may be misclassified even when optimal classification is performed. An
optimal classifier minimizes classification error under zero-one loss. Hence even though it is optimal, it may
still misclassify instances on both sides of a decision boundary.
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Fig. 5 Probability distribution in
one-attribute problem

PC| X)

the same class probability estimate for all of them. Consequently, naive-Bayes classifiers
with discretization will assign the same class to all of them, and thus values at one of the two
sides of the decision boundary will be misclassified. The larger the interval frequency, the
more likely that the value range of the interval is larger, thus the more likely that the interval
contains a decision boundary. The larger the interval containing a decision boundary, the
more instances to be misclassified, thus the higher the discretization bias.

In one-attribute problems, the locations of decision boundaries of the attribute X; de-
pend on the distribution of p(C | X;) for each class. However, for a multi-attribute appli-
cation, the decision boundaries of an attribute X; are not only decided by the distribution
of p(C|X;), but also vary from test instance to test instance depending upon the precise
values of other attributes. Consider another learning task with two quantitative attributes X
and X5, and two classes ¢; and c,. The probability distribution of each class given each
attribute is depicted in Fig. 6, of which the probability distribution of each class given X,
is identical with that in the above one-attribute context. We assume that the attribute in-
dependence assumption holds. We analyze the decision boundaries of X; for an example.
If X, does not exist, X; has decision boundaries as depicted in Fig. 5. However, because
of the existence of X,, those might not be decision boundaries any more. Consider a test
instance x with X, = 0.2. Since p(C=c;|X,=0.2)=0.8 > p(C=c,| X,=0.2)=0.2, and
p(C=c|x) x ]_[1.2:1 p(C=c| X;=x;) for each class ¢ according to Theorem 1, p(C=c; | x)
does not equal p(C=c,|x) when X, falls on any of the single attribute decision bound-
aries as presented in Fig. 5. Instead X;’s decision boundaries change to be DB, and DB,
as in Fig. 6. Now suppose another test instance with X, = 0.7. By the same reasoning X’s
decision boundaries change to be DB, and DBj as in Fig. 6.

When there are more than two attributes, each combination of values of the attributes
other than X will result in corresponding decision boundaries of X;. Thus in multi-attribute
applications, the decision boundaries of one attribute can only be identified with respect to
each specific combination of values of the other attributes. Increasing either the number of
attributes or the number of values of an attribute will increase the number of combinations
of attribute values, and thus the number of decision boundaries. In consequence, each at-
tribute may have a very large number of potential decision boundaries. Nevertheless, for the
same reason as we have discussed in the one-attribute context, intervals containing decision
boundaries have potential negative impact on discretization bias.

The above expectation has been verified on real-world data, taking the benchmark data
set ‘Balance-Scale’ from the UCI machine learning repository (Blake and Merz 1998) as an
example. We chose ‘Balance-Scale’ because it is a relatively large data set with the class and
quantitative attributes both having relatively few values. This is important in order to derive
clear plots of the probability density functions (pdf). The data have four attributes, ‘left
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Fig. 6 Probability distribution in
two-attribute problem

P(C= %‘Xz)
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weight’, ‘left distance’, ‘right weight’, and ‘right distance’. If (left-distance x left-weight
> right-distance x right-weight), the class is ‘left’; if (left-distance x left-weight < right-
distance x right-weight), the class is ‘right’; otherwise the class is ‘balanced’. Hence given
a class label, there is strong interdependency among attributes. For example, Figs. 7a to 7c
illustrate how the decision boundaries of ‘left weight’ move depending on the values of ‘right
weight’. Figure 7a depicts the pdf of each class® for the attribute ‘left weight” according to
the whole data set. We then increasingly sort all instances by the attribute ‘right weight’,
and partition them into two equal-size sets. Figure 7b depicts the class pdf curves on the
attribute ‘left weight’ in the first half instances while Fig. 7c in the second half. It is clearly
shown that the decision boundary of ‘left weight’ changes its location among those three
figures.

According to the above understandings, discretization bias can be reduced by identifying
the decision boundaries and setting the interval boundaries close to them. However, identify-
ing the correct decision boundaries depends on finding the true form of p(C | X). Ironically,
if we have already found p(C | X), we can resolve the classification task directly; thus there
is no need to consider discretization at all. Without knowing p(C | X), an extreme solution
is to set each value as an interval. Although this most likely guarantees that no interval con-
tains a decision boundary, it usually results in very few instances per interval. As a result,
the estimation of p(C | X) might be so unreliable that we cannot identify the truly most
probable class even if there is no decision boundary in the interval. The smaller the interval
frequency, the less training instances per interval for probability estimation, thus the more
likely that the variance of the generated classifiers increases since even a small change of
the training data might totally change the probability estimation.

A possible solution to this problem is to require that the interval frequency should be
sufficient to ensure stability in the probability estimated therefrom. This raises the ques-
tion, how reliable must the probability be? That is, when estimating p(C=c|X=x) by

3Strictly speaking, the curves depict frequencies of classes from which the pdf can be derived.
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instances sorted by the attribute ‘right weight’

Fig. 7 Decision boundary of the attribute ‘left weight’ moves according to values of the attribute ‘right
weight’ in the UCI benchmark data set ‘Balance-Scale’
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p(C=c| X*=x*), how much error can be tolerated without altering the classification. This
motivates our following analysis.

5.4 Error tolerance of probability estimation

To investigate this factor, we return to our example depicted in Fig. 5. We suggest that dif-
ferent values have different error tolerance with respect to their probability estimation. For
example, for a test instance x(X;=0.1) and thus of class ¢, its true class probability distri-
bution is p(C=c |X)=p(C=c; | X1=0.1) =0.19 and p(C=c; |X)=p(C=c, | X;=0.1) =
0.81. According to naive-Bayes learning, so long as p(C=c; | X;=0.1) > 0.50, ¢, will be
correctly assigned as the class and the classification is optimal under zero-one loss. This
means, the error tolerance of estimating p(C | X;=0.1) can be as large as 0.81 — 0.50 =
0.31. However, for another test instance x(X;=0.3) and thus of class ¢, its probability distri-
bution is p(C=c |x)=p(C=c; | X1=0.3) = 0.51 and p(C=c; |X)=p(C=c, | X;=0.3) =
0.49. The error tolerance of estimating p(C | X1=0.3) is only 0.51 — 0.50 = 0.01. In the
learning context of multi-attribute applications, the analysis of the tolerance of probabil-
ity estimation error is even more complicated. The error tolerance of a value of an at-
tribute affects as well as is affected by those of the values of other attributes since it is
the multiplication of p(C=c| X;=x;) of each x; that decides the final probability of each
class.

The larger an interval’s frequency, the lower the expected error of probability estimates
pertaining to that interval. Hence, the lower the error tolerance for a value, the larger the
ideal frequency for the interval from which its probabilities are estimated. Since all fac-
tors affecting error tolerance vary from case to case, there cannot be a universal, or even a
domain-wide constant that represents the ideal interval frequency, which thus will vary from
case to case. Further, the error tolerance can only be calculated if the true probability distri-
bution of the training data is known. If it is unknown, the best we can hope for is heuristic
approaches to managing error tolerance that work well in practice.

5.5 Summary

By this line of reasoning, optimal discretization can only be performed if the probability
distribution of p(C=c | X;=x;) for each pair {c, x;) given each particular test instance is
known; and thus the decision boundaries are known. If the decision boundaries are unknown,
which is often the case for real-world data, we want to have as many intervals as possible so
as to minimize the risk that an instance is classified using an interval containing a decision
boundary. Further, if we want to have a single discretization of an attribute that applies
to every instance to be classified, as the decision boundaries may move from instance to
instance, it is desirable to minimize the size of each interval so as to minimize the total extent
of the number range falling within an interval on the wrong size of a decision boundary.
By this means we expect to reduce the discretization bias. On the other hand, we want to
ensure that each interval frequency is sufficiently large to minimize the risk that the error
of estimating p(C=c | X/=x]") will exceed the current error tolerance. By this means we
expect to reduce the discretization variance.

However, when the number of the training instances is fixed, there is a trade-off between
interval frequency and interval number. That is, the larger the interval frequency, the smaller
the interval number, and vice versa. Low learning error can be achieved by tuning inter-
val frequency and interval number to find a good trade-off between discretization bias and
variance. We have argued that there is no universal solution to this problem, that the optimal
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trade-off between interval frequency and interval number will vary greatly from test instance
to test instance.

These insights reveal that, while discretization is desirable when the true underlying prob-
ability density function is not available, practical discretization techniques are necessarily
heuristic in nature. The holy grail of an optimal universal discretization strategy for naive-
Bayes learning is unobtainable.

6 Existing discretization methods

Here we review four key discretization methods, each of which was either designed es-
pecially for naive-Bayes classifiers or is in practice often used for naive-Bayes classifiers.
We are particularly interested in analyzing each method’s discretization bias and variance,
which we believe illuminating.

6.1 Equal width discretization and equal frequency discretization

Equal width discretization (EWD) (Catlett 1991; Kerber 1992; Dougherty et al. 1995) di-
vides the number line between v,,;, and v,,,, into k intervals of equal width, where k is a
user predefined parameter. Thus the intervals have width w=(v,,.x — Umin)/k and the cut
points are at v, + W, Vymin + 2W, ..., Upin + (kK — Dw.

Equal frequency discretization (EFD) (Catlett 1991; Kerber 1992; Dougherty et al. 1995)
divides the sorted values into k intervals so that each interval contains approximately the
same number of training instances, where k is a user predefined parameter. Thus each in-
terval contains n/k training instances with adjacent (possibly identical) values. Note that
training instances with identical values must be placed in the same interval. In consequence
it is not always possible to generate k equal frequency intervals.

Both EWD and EFD are often used for naive-Bayes classifiers because of their simplic-
ity and reasonably good performance (Hsu et al. 2000, 2003). However both EWD and EFD
fix the number of intervals to be produced (decided by the parameter k). When the training
data size is very small, intervals will have small frequency and thus tend to incur high vari-
ance. When the training data size becomes large, more and more instances are added into
each interval. This can reduce variance. However successive increases to an interval’s size
have decreasing effect on reducing variance and hence have decreasing effect on reducing
classification error. Our study suggests it might be more effective to use additional data to
increase interval numbers so as to further decrease bias, as reasoned in Sect. 5.

6.2 Entropy minimization discretization

EWD and EFD are unsupervised discretization techniques. That is, they take no account of
the class information when selecting cut points. In contrast, entropy minimization discretiza-
tion (EMD) (Fayyad and Irani 1993) is a supervised technique. It evaluates as a candidate
cut point the midpoint between each successive pair of the sorted values. For evaluating
each candidate cut point, the data are discretized into two intervals and the resulting class
information entropy is calculated. A binary discretization is determined by selecting the cut
point for which the entropy is minimal amongst all candidates. The binary discretization
is applied recursively, always selecting the best cut point. A minimum description length
criterion (MDL) is applied to decide when to stop discretization.
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Although EMD has demonstrated strong performance for naive-Bayes (Dougherty et al.
1995; Perner and Trautzsch 1998), it was developed in the context of top-down induction
of decision trees. It uses MDL as the termination condition. According to An and Cercone
(1999), this has an effect that tends to form qualitative attributes with few values so as to
help avoid the fragmentation problem in decision tree learning. For the same reasoning as
employed with respect to EWD and EFD, we thus anticipate that EMD will fail to fully
utilize available data to reduce bias when the data are large. Further, since EMD discretizes
a quantitative attribute by calculating the class information entropy as if the naive-Bayes
classifiers only use that single attribute after discretization, EMD might be effective at iden-
tifying decision boundaries in the one-attribute learning context. But in the multi-attribute
learning context, the resulting cut points can easily diverge from the true ones when the
values of other attributes change, as we have explained in Sect. 5.

6.3 Lazy discretization

Lazy discretization (LD) (Hsu et al. 2000, 2003) defers discretization until classification
time. It waits until a test instance is presented to determine the cut points and then estimates
probabilities for each quantitative attribute of the test instance. For each quantitative value
from the test instance, it selects a pair of cut points such that the value is in the middle of
its corresponding interval and the interval width is equal to that produced by some other
algorithm chosen by the user, such as EWD or EMD. In Hsu et al.’s implementation, the
interval frequency is the same as created by EWD with k=10. However, as already noted,
10 is an arbitrary value.

LD tends to have high memory and computational requirements because of its lazy
methodology. Eager approaches carry out discretization at training time. Thus the train-
ing instances can be discarded before classification time. In contrast, LD needs to keep all
training instances for use during classification time. This demands high memory when the
training data size is large. Further, where a large number of instances need to be classified,
LD will incur large computational overheads since it must estimate probabilities from the
training data for each instance individually. Although LD achieves comparable accuracy to
EWD and EMD (Hsu et al. 2000, 2003), the high memory and computational overheads
have a potential to damage naive-Bayes classifiers’ classification efficiency. We anticipate
LD will attain low discretization variance because it always puts the value in question at the
middle of an interval. We also anticipate that its behavior on controlling bias will be affected
by its adopted interval frequency strategy.

7 New discretization techniques that manage discretization bias and variance

We have argued that the interval frequency and interval number formed by a discretiza-
tion method can affect its discretization bias and variance. Such a relationship has been
hypothesized also by a number of previous authors ((Pazzani 1995; Torgo and Gama 1997;
Gama et al. 1998; Hussain et al. 1999; Mora et al. 2000); Hsu et al. 2000, 2003). Thus
we anticipate that one way to manage discretization bias and variance is to adjust interval
frequency and interval number. Consequently, we propose two new heuristic discretization
techniques, proportional discretization and fixed frequency discretization. To the best of our
knowledge, these are the first techniques that explicitly manage discretization bias and vari-
ance by tuning interval frequency and interval number.
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7.1 Proportional discretization

Since a good learning scheme should have both low bias and low variance (Moore and
McCabe 2002), it would be advisable to equally weigh discretization bias reduction and
variance reduction. As we have analyzed in Sect. 5, discretization resulting in large interval
frequency tends to have low variance; conversely, discretization resulting in large interval
number tends to have low bias. To achieve this, as the amount of training data increases
we should increase both the interval frequency and number and as it decreases we should
reduce both. One credible manner to achieve this is to set interval frequency and interval
number equally proportional to the amount of training data. This leads to a new discretiza-
tion method, proportional discretization (PD).

When discretizing a quantitative attribute for which there are n training instances with
known values, supposing that the desired interval frequency is s and the desired interval
number is #, PD employs (5) to calculate s and ¢. It then sorts the quantitative values in as-
cending order and discretizes them into intervals of frequency s. Thus each interval contains
approximately s training instances with adjacent (possibly identical) values.

s Xt=n,

s ="1. 5)

By setting interval frequency and interval number equal, PD can use any increase in train-
ing data to lower both discretization bias and variance. Bias can decrease because the interval
number increases, thus any given interval is less likely to include a decision boundary of the
original quantitative value. Variance can decrease because the interval frequency increases,
thus the naive-Bayes probability estimation is more stable and reliable. This means that
PD has greater potential to take advantage of the additional information inherent in large
volumes of training data than previous methods.

7.2 Fixed frequency discretization

An alternative approach to managing discretization bias and variance is fixed frequency dis-
cretization (FFD). As we have explained in Sect. 5, ideal discretization for naive-Bayes
learning should first ensure that the interval frequency is sufficiently large so that the error
of the probability estimate falls within the quantitative data’s error tolerance of probability
estimation. In addition, ideal discretization should maximize the interval number so that the
formed intervals are less likely to contain decision boundaries. This understanding leads to
the development of FFD.

To discretize a quantitative attribute, FFD sets a sufficient interval frequency, m. Then it
discretizes the ascendingly sorted values into intervals of frequency m. Thus each interval
has approximately the same number m of training instances with adjacent (possibly identi-
cal) values.

By introducing m, FFD aims to ensure that in general the interval frequency is sufficient
so that there are enough training instances in each interval to reliably estimate the naive-
Bayes probabilities. Thus FFD can control discretization variance by preventing it from
being very high. As we have explained in Sect. 5, the optimal interval frequency varies from
instance to instance and from domain to domain. Nonetheless, we have to choose a fre-
quency so that we can implement and evaluate FFD. In our study, we choose the frequency
as 30 since it is commonly held to be the minimum sample size from which one should draw
statistical inferences (Weiss 2002).

@ Springer



56 Mach Learn (2009) 74: 39-74

By not limiting the number of intervals, more intervals can be formed as the training data
increase. This means that FFD can make use of extra data to reduce discretization bias. In
this way, where there are sufficient data, FFD can prevent both high bias and high variance.

It is important to distinguish our new method, fixed frequency discretization (FFD) from
equal frequency discretization (EFD) (Catlett 1991; Kerber 1992; Dougherty et al. 1995),
both of which form intervals of equal frequency. EFD fixes the interval number. It arbitrarily
chooses the interval number k and then discretizes a quantitative attribute into k intervals
such that each interval has the same number of training instances. Since it does not control
the interval frequency, EFD is not good at managing discretization bias and variance. In
contrast, FFD fixes the interval frequency. It sets an interval frequency m that is sufficient for
the naive-Bayes probability estimation. It then sets cut points so that each interval contains
m training instances. By setting m, FFD can control discretization variance. On top of that,
FFD forms as many intervals as constraints on adequate probability estimation accuracy
allow, which is advisable for reducing discretization bias.

7.3 Time complexity analysis

We have proposed two new discretization methods as well as reviewed four previous key
ones. We here analyze the computational time complexity of each method. Naive-Bayes
classifiers are very attractive to applications with large data because of their computational
efficiency. Thus it will often be important that the discretization methods are efficient so that
they can scale to large data. For each method to discretize a quantitative attribute, supposing
the number of training instances,” test instances, attributes and classes are n, [, v and m
respectively, its time complexity is analyzed as follows.

e EWD, EFD, PD and FFD are dominated by sorting. Their complexities are of order
O(nlogn).

o EMD does sorting first, an operation of complexity O(nlogn). It then goes through all
the training instances a maximum of logn times, recursively applying ‘binary division’ to
find out at most n — 1 cut points. Each time, it will estimate » — 1 candidate cut points.
For each candidate point, probabilities of each of m classes are estimated. The complexity
of that operation is O (mn logn), which dominates the complexity of the sorting, resulting
in complexity of order O (mnlogn).

e LD sorts the attribute values once and performs discretization separately for each test
instance and hence its complexity is O (nlogn) 4+ O (nl).

Thus EWD, EFD, PD and FFD have complexity lower than EMD. LD tends to have high
complexity when the training or testing data size is large.

8 Experimental evaluation

We evaluate whether PD and FFD can better reduce naive-Bayes classification error by better
managing discretization bias and variance, compared with previous discretization methods,
EWD, EFD, EMD and LD. EWD and EFD are implemented with the parameter k=10. The
original LD in Hsu et al.’s implementation (2000, 2003) chose EWD with k=10 to decide
its interval. That is, it formed interval width equal to that produced by EWD with k=10.

We only consider instances with known value of the quantitative attribute.
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Table 1 Experimental data sets

Data set Size Qn. Ql. C. Data set Size Qn. QL C.
LaborNegotiations 57 8 8 2 Annealing 898 6 32 6
Echocardiogram 74 5 2 German 1000 7 13 2
Iris 150 4 0o 3 MultipleFeatures 2000 3 3 10
Hepatitis 155 6 13 2 Hypothyroid 3163 7 18 2
WineRecognition 178 13 0o 3 Satimage 6435 36 0 6
Sonar 208 60 0o 2 Musk 6598 166 0 2
Glass 214 9 0 6 PioneerMobileRobot 9150 29 7 57
HeartCleveland 270 6 2 HandwrittenDigits 10992 16 0 10
LiverDisorders 345 6 0o 2 SignLanguage 12546 8 0 3
Ionosphere 351 34 0 2 LetterRecognition 20000 16 0 26
HorseColic 368 7 14 2 Adult 48842 6 8 2
CreditScreening 690 9 2 IpumsLa99 88443 20 40 13
BreastCancer 699 0 2 CensusIncome 299285 8 33
PimalndiansDiabetes 768 0 2 ForestCovertype 581012 10 44 7
Vehicle 846 18 0 4

Since we manage discretization bias and variance through interval frequency (and interval
number), which is relevant but not identical to interval width, we implement LD with EFD
being its interval frequency strategy. That is, LD forms interval frequency equal to that
produced by EFD with k=10. We clarify again that training instances with identical values
must be placed in the same interval under each and every discretization scheme.

8.1 Data

We run our experiments on 29 benchmark data sets from UCI machine learning reposi-
tory (Blake and Merz 1998) and KDD archive (Bay 1999). This experimental suite com-
prises 3 parts. The first part is composed of all the UCI data sets used by Fayyad and Irani
when publishing the entropy minimization heuristic for discretization. The second part is
composed of all the UCI data sets with quantitative attributes used by Domingos and Paz-
zani for studying naive-Bayes classification. In addition, as discretization bias and variance
responds to the training data size and the first two parts are mainly confined to small size,
we further augment this collection with data sets that we can identify containing numeric
attributes, with emphasis on those having more than 5000 instances. Table 1 describes each
data set, including the number of instances (Size), quantitative attributes (Qn.), qualitative
attributes (Ql.) and classes (C.). The data sets are increasingly ordered by the size.

8.2 Design

To evaluate a discretization method, for each data set, we implement naive-Bayes learning
by conducting a 10-trial, 3-fold cross validation. For each fold, the training data are dis-
cretized by this method. The intervals so formed are applied to the test data. The following
experimental results are recorded.

e Classification error. Listed in Table 3 in Appendix is the percentage of incorrect classi-
fications of naive-Bayes classifiers in the test averaged across all folds of the cross vali-
dation.
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Fig. 8 Comparing alternative discretization methods

e Classification bias and variance. Listed respectively in Table 4 and Table 5 in Appendix
are bias and variance estimated by the method described by Webb (2000). They equate
to the bias and variance defined by Breiman (1996), except that irreducible error is ag-
gregated into bias and variance. An instance is classified once in each trial and hence ten
times in all. The central tendency of the learning algorithm is the most frequent classifi-
cation of an instance. Total error is the proportional of classifications across the 10 trials
that are incorrect. Bias is that portion of the total error that is due to errors committed by
the central tendency of the learning algorithm. This is the portion of classifications that
are both incorrect and equal to the central tendency. Variance is that portion of the total
error that is due to errors that are deviations from the central tendency of the learning
algorithm. This is the portion of classifications that are both incorrect and unequal to the
central tendency. Bias and variance sum to the total error.

e Number of discrete values. Each discretization method discretizes a quantitative at-
tribute into a set of discrete values (intervals), the number of which as we have sug-
gested relates to discretization bias and variance. The number of intervals formed by each
discretization method, averaged across all quantitative attributes is also recorded and il-
lustrated in Fig. 8b.

8.3 Statistics

Various statistics are employed to evaluate the experimental results.

e Mean error. This is the arithmetic mean of a discretization’s errors across all data sets.
It provides a gross indication of the relative performance of competing methods. It is
debatable whether errors in different data sets are commensurable, and hence whether
averaging errors across data sets is very meaningful. Nonetheless, a low average error is
indicative of a tendency towards low errors for individual data sets.

e Win/lose/tie record (w/l/t). Each record comprises three values that are respectively the
number of data sets for which the naive-Bayes classifier trained with one discretization
method obtains lower, higher or equal classification error, compared with the naive-Bayes
classifier trained with another discretization method.

e Mean rank. Following the practice of the Friedman test (Friedman 1937, 1940), for each
data set, we rank competing algorithms. The one that leads to the best naive Bayes clas-
sification accuracy is ranked 1, the second best ranked 2, so on and so forth. A method’s
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mean rank is obtained by averaging its ranks across all data sets. The mean rank is less
susceptible to distortion by outliers than is the mean error.

e Nemenyi test. As recommended by Demsar (2006), to compare multiple algorithms
across multiple data sets, the Nemenyi test can be applied to mean ranks of competing
algorithms and indicates the absolute difference in mean ranks that is required for the
performance of two alternative algorithms to be assessed as significantly different (here
we use the 0.05 critical level).

8.4 Observations and analyses
Experimental results are presented and analyzed in this section.
8.4.1 Mean error and average number of formed intervals

Figure 8a depicts the mean error of each discretization method across all data sets, which is
further decomposed into bias and variance. It is observed that both PD and FFD achieve the
lowest mean error among alternative methods. PD attains the lowest mean bias and FFD the
second lowest. LD acquires the lowest mean variance.

Figure 8b depicts the average number of discrete values formed by each discretization
method across all data sets. It reveals that on average, EMD forms the least number of dis-
crete values while FFD forms the most. This partially explains why FFD achieves lower bias
than EMD in general. The same reasoning applies to PD against EMD. Note that training
instances with identical values are always placed in the same interval. In consequence EFD
is not always possible to generate 10 equal frequency intervals.

8.4.2 Win/lose/tie records on error, bias and variance

The win/lose/tie records, which compare each pair of competing methods on classification
error, bias and variance respectively, are listed in Table 2. It shows that in terms of reduc-
ing bias, both PD and FFD win more often than not compared with every single previous
discretization method. PD and FFD do not dominate other methods in reducing variance.
Nonetheless, very frequently their gains in bias reductions overwhelm their losses in vari-
ance reduction. The end effect is that both PD and FFD win more often than not compared
with every single alternative method.

8.4.3 Mean rank and Nemenyi test

Figure 9 illustrates the mean rank of each discretization method as well as applying Nemenyi
test to mean ranks. In each subgraph, the mean rank of a method is depicted by a circle. The
horizontal bar across each circle indicates the ‘critical difference’. The performance of two
methods is significantly different if their corresponding mean ranks differ by at least the
critical difference. That is, two methods are significantly different if their horizontal bars are
not overlapping. Accordingly, it is observed in Fig. 9b that in terms of reducing bias, PD is
ranked the best and FFD the second best. Furthermore, PD is statistically significantly better
than EWD, EFD and LD. It also wins (although not significantly) against EMD (w/l/t record
being 22/4/3 as in Table 2a). FFD is statistically significantly better than LD and EFD. It
also wins (although not significantly) against EWD and EMD (w/l/t records being 19/8/2
and 16/11/2 respectively as in Table 2a). Figure 9c suggests that as for variance reduction,
there is no significant difference between PD, FFD and alternative methods, except for LD
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Fig. 9 Friedman test and Nemenyi test

Table 2 Win/lose/tie records on
error, bias and variance for each
pair of competing methods

w/l/t EWD EFD EMD LD PD

(a) error
EFD 11/16/2
EMD 17/12/0 13/15/1

LD 17/10/2 19/8/2 15/14/0

PD 22/7/0 22/6/1 21/5/3 20/8/1

FFD 20/8/1 19/8/2 20/9/0 19/8/2 12/15/2
(b) bias

EFD 12/16/1
EMD 18/10/1 19/9/1

LD 10/14/5 14/12/3 6/16/7
PD 24/5/0 23/3/3 22/4/3 27/1/1
FFD 19/8/2 19/10/0 16/11/2 22/7/0 14/14/1

(c) variance

EFD 13/12/4

EMD 9/15/5 9/15/5

LD 21/5/3 23/3/3 22/5/2

PD 12/14/3 6/17/6 12/12/5 5/20/4

FFD 17/10/2 11/14/4 15/13/1 11/17/1 13/14/2

which is the most effective method. However, LD’s bias reduction is adversely affected by
employing EFD to decide its interval frequency. Hence it does not achieve good classifica-
tion accuracy overall. In contrast, PD and FFD reduce bias as well as control variance. In
consequence, as shown in Fig. 9a, they are ranked the best for reducing error, where from
the most effective to the least are PD, FFD, LD, EMD, EWD and EFD.

8.4.4 PD and FFD’s performance relative to EFD and EMD

We now focus on analyzing PD and FFD’s performance relative to EFD and EMD because
the latter two are currently the most frequently used discretization methods in machine learn-
ing community. Among papers published in 2005 and so far in 2006 by the journal “Ma-
chine Learning” and the proceedings of “International Conference on Machine Learning”,
there are no less than 15 papers on Bayesian classifiers, among which 2 papers assume all
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Fig. 11 FFD’s performance relative to EFD and EMD

variables being discrete, 6 papers use EFD with k =5 or 10, and 7 papers use EMD. The
comparison results are illustrated in Figs. 10, 11 and 12. In each subgraph of Fig. 10, the
values on the Y axis are the outcome for EFD divided by that for PD. The values of the X
axis are the outcome for EMD divided by that for PD. Each point on the graph represents
one of the 29 data sets. Points on the right of the vertical line at X = 1 in each subgraph
are those for which PD outperforms EMD. Points above the horizontal line at ¥ = 1 indi-
cate that PD outperforms EFD. Points above the diagonal line ¥ = X represent that EMD
outperforms EFD. It is observed that PD is more effective in reducing bias compared with
EFD and EMD as the majority of points fall beyond the boundaries X =1 and Y =1 in
Fig. 10b. On the other hand, PD is less effective in reducing variance than EFD and EMD
as more points fall within the boundaries X = 1 and ¥ =1 in Fig. 10c. Nonetheless, PD’s
gain in bias reduction dominates. The end effect is that PD outperforms both EFD and EMD
in reducing error as the majority of points fall beyond the boundaries X =1 and Y =1 in
Fig. 10a. The same lines of reasoning apply to FFD in Fig. 11 as well.

8.4.5 Rival algorithms’ performance relative to data set size

Figure 12 depicts PD, FFD, EFD and EMD’s classification error, bias and variance respec-
tively with regard to the increase of data set size. The horizontal axis corresponds to data
sets whose sizes are increasingly ordered as in Table 1, where the size values are treated as
‘nominal’ instead of ‘numeric’. Please be noted that although it is not justified to connect
points with lines since data sets are independent of each other, we do it because we need
differentiate among alternative discretization methods. The Y axis represents the classifica-
tion error obtained by a discretization method on a data set that is normalized by the mean
error of all methods on this data set. It is observed that when the data set size becomes large,
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Fig. 12 Classification errors, bias and variance along data set size change

PD and FFD can consistently reduce classification error relative to EFD and EMD. This is
very welcome because modern classification applications very often involve large amounts
of data. This empirical observation also confirms our theoretical analysis that with training
data increasing, in order to reduce classification error, contributing extra data to reducing
bias is more effective than to reducing variance.

8.4.6 FFD’s bias and variance relative to m

FFD involves a parameter m, the sufficient interval frequency. In this particular paper, we
set m as 30 since it is commonly held to be the minimum sample size from which one
should draw statistical inferences (Weiss 2002). The statistical inference here is to estimate
p(C=c| X;=x;) from p(C=c|X’=x]) where the attribute X7 is the discretized version
of the original quantitative attribute X;. We have argued that by using m FFD can control
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variance while use additional data to decrease bias. It is interesting to explore the effect of
different m values on bias and variance. Figure 13 in the Appendix illustrates for each data
set NB’s classification bias when using FFD with alternative m values (varying from 10 to
100). It is observed that bias monotonically increases with m increasing in many data sets
such as Hepatitis, Glass, Satimage, Musk, PioneerMobileRobot, [pumsLa99, CensusIncome
and ForestCovertype; and bias zigzags in other data sets such as HeartCleveland, LiverDis-
orders, CreditScreening and SignLanguage. Nonetheless, the general trend is that bias in-
creases while m increases. The bias when m = 100 is higher than the bias when m = 101in 27
data sets out of all 29 data sets. This frequency is statistically significant at the 0.05 critical
level according to the one-tailed binomial sign test. Note that for very small data sets such
as LaborNegotiations and Echocardiogram, the curves reach a plateau very early. This is be-
cause if the number of training instances n is less than or equal to 2m, FFD simply forms two
intervals, each containing approximately 5 instances. For example, LaborNegotiations has
57 instances and thus 38 training instances under 3-fold cross validation. When m becomes
equal to or larger than 20, FFD always conducts the same binary discretization. Hence the
bias becomes a constant and is no longer dependent on the m value. This limitation is more
and more relieved in the succeeding data sets whose sizes become bigger and bigger.

Figure 14 in the Appendix illustrates for each data set NB’s classification variance when
using FFD with alternative m values (varying from 10 to 100). It is observed that vari-
ance monotonically decreases with m increasing in some data sets such as Echocardio-
gram, Hepatitis, HandwrittenDigits, Adult, CensusIncome and ForestCovertype; and vari-
ance zigzags in other data sets such as WineRecognition, Tonosphere, BreastCancer and
Annealing. Nonetheless, the general trend is that variance decreases while m increases. The
variance when m = 100 is lower than the variance when m = 10 in 22 data sets out of all 29
data sets. This frequency is statistically significant at the 0.05 critical level according to the
one-tailed binomial sign test. Again, small data sets reach a plateau early as explained for
bias in the above paragraph.

Because NB’s final classification error is a combination of bias and variance, and be-
cause bias and variance often present opposite trends with m increasing, how to dynamically
choose m to achieve the best trade-off between bias and variance is a domain-dependent
problem and is a topic for future research.

8.4.7 Summary

The above observations suggest that

e PD and FFD enjoy an advantage in terms of classification error reduction over the suite
of data sets studied in this research.

e PD and FFD better reduce classification bias than alternative methods. Their advantage in
bias reduction grows more apparent with the training data size increasing. This supports
our expectation that PD and FFD can use additional data to decrease discretization bias,
and thus high bias is less likely to attach to large training data any more.

e Although not able to minimize variance, PD and FFD control variance in a way compet-
itive to most existent methods. However, PD tends to have higher variance especially in
small data sets. This indicates that among smaller data sets where naive-Bayes probabil-
ity estimation has a higher risk to suffer insufficient training data, controlling variance by
ensuring sufficient interval frequency should have a higher weight than controlling bias.
That is why FFD is often more successful at preventing discretization variance from be-
ing very high among smaller data sets. Meanwhile, we have also observed that FFD does
have higher variance especially in some very large data sets. We suggest the reason is that
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m=30 might not be the optimal frequency for those data sets. Nonetheless, the loss is
often compensated by their outstanding capability of reducing bias. Hence PD and FFD
still achieve lower naive-Bayes classification error more often than not compared with
previous discretization methods.

e Although PD and FFD manage discretization bias and variance from two different per-
spectives, they attain classification accuracy competitive with each other. The win/lose/tie
record of PD compared with FFD is 15/12/2.

9 Conclusion

We have proved a theorem that provides a new explanation of why discretization can be
effective for naive-Bayes learning. Theorem 1 states that so long as discretization preserves
the conditional probability of each class given each quantitative attribute value for each test
instance, discretization will result in naive-Bayes classifiers delivering the same probability
estimates as would be obtained if the correct probability density functions were employed.
We have analyzed two factors, decision boundaries and the error tolerance of probability
estimation for each quantitative attribute, which can affect discretization’s effectiveness. In
the process, we have presented a new definition of the useful concept of a decision bound-
ary. We have also analyzed the effect of multiple attributes on these factors. Accordingly,
we have proposed the bias-variance analysis of discretization performance. We have demon-
strated that it is unrealistic to expect a single discretization to provide optimal classification
performance for multiple instances. Rather, an ideal discretization scheme would discretize
separately for each instance to be classified. Where this is not feasible, heuristics that man-
age discretization bias and variance should be employed. In particular, we have obtained new
insights into how discretization bias and variance can be manipulated by adjusting interval
frequency and interval number. In short, we want to maximize the number of intervals in
order to minimize discretization bias, but at the same time ensure that each interval contains
sufficient training instances in order to obtain low discretization variance.

These insights have motivated our new heuristic discretization methods, proportional
discretization (PD) and fixed frequency discretization (FFD). Both are able to manage dis-
cretization bias and variance by tuning interval frequency and interval number. Both are also
able to actively take advantage of increasing information in large data to reduce discretiza-
tion bias as well as control variance. Thus they are expected to outperform previous methods
especially when learning from large data. It is desirable that a machine learning algorithm
maximize the information that it derives from large data sets, since increasing the size of a
data set can provide a domain-independent way of achieving higher accuracy (Freitas and
Lavington 1996; Provost and Aronis 1996). This is especially important since large data sets
with high dimensional attribute spaces and huge numbers of instances are increasingly used
in real-world applications, and naive-Bayes classifiers are particularly attractive to theses
applications because of their space and time efficiency.

Our experimental results have supported our theoretical analysis. The results have
demonstrated that our new methods frequently reduce naive-Bayes classification error
when compared to previous alternatives. Another interesting issue arising from our em-
pirical study is that simple unsupervised discretization methods (PD and FFD) are able
to outperform a commonly-used supervised one (EMD) in our experiments in the context
of naive-Bayes learning. This contradicts the previous understanding that EMD tends to
have an advantage over unsupervised methods (Dougherty et al. 1995; Hsu et al. 2000;
Hsu et al. 2003). Our study suggests it is because EMD was designed for decision tree
learning and can be sub-optimal for naive-Bayes learning.
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Appendix

Table 3 Naive Bayes’ classification error (%) under alternative discretization methods

Data set EWD EFD EMD LD PD FFD
LaborNegotiations 12.3 8.9 9.5 9.6 7.4 9.3
Echocardiogram 29.6 30.0 23.8 29.1 25.7 25.7
Iris 5.7 7.7 6.8 6.7 6.4 7.1
Hepatitis 14.3 14.2 13.9 13.7 14.1 15.7
WineRecognition 33 2.4 2.6 2.9 2.4 2.8
Sonar 25.6 25.1 25.5 25.8 25.7 23.3
Glass 39.3 33.7 34.9 32.0 32.6 39.1
HeartCleveland 18.3 16.9 17.5 17.6 17.4 16.9
LiverDisorders 37.1 36.4 37.4 37.0 38.9 36.5
Tonosphere 9.4 10.3 11.1 10.8 10.4 10.7
HorseColic 20.5 20.8 20.7 20.8 20.3 20.6
CreditScreening 15.6 14.5 14.5 13.9 14.4 14.2
BreastCancer 2.5 2.6 2.7 2.6 2.7 2.6
PimalndiansDiabetes 24.9 25.6 26.0 254 26.0 26.5
Vehicle 38.7 38.8 38.9 38.1 38.1 383
Annealing 3.8 2.4 2.1 2.3 2.1 2.3
German 25.1 25.2 25.0 25.1 24.7 25.4
MultipleFeatures 31.0 31.8 32.9 31.0 31.2 31.7
Hypothyroid 3.6 2.8 1.7 2.4 1.8 1.8
Satimage 18.8 18.8 18.1 18.4 17.8 17.7
Musk 13.7 18.4 9.4 15.4 8.2 6.9
PioneerMobileRobot 13.5 15.0 19.3 15.3 4.6 32
HandwrittenDigits 12.5 13.2 13.5 12.8 12.0 12.5
SignLanguage 38.3 37.7 36.5 36.4 35.8 36.0
LetterRecognition 29.5 29.8 30.4 27.9 25.7 25.5
Adult 18.2 18.6 17.3 18.1 17.1 16.2
IpumsLa99 21.0 21.1 21.3 20.4 20.6 18.4
CensusIncome 24.5 24.5 23.6 24.6 23.3 20.0
ForestCovertype 32.4 33.0 32.1 32.3 31.7 31.9
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Table 4 Naive Bayes’ classification bias (%) under alternative discretization methods

Data set EWD EFD EMD LD PD FFD
LaborNegotiations 7.7 5.4 6.7 6.3 5.1 6.1
Echocardiogram 22.7 22.3 19.9 22.3 22.4 19.7
Iris 4.2 5.6 5.0 4.8 43 6.2
Hepatitis 13.1 12.2 11.7 11.8 11.0 14.5
WineRecognition 2.4 1.7 2.0 2.0 1.7 2.1
Sonar 20.6 19.9 20.0 20.6 19.9 19.5
Glass 24.6 21.1 24.5 21.8 19.8 259
HeartCleveland 15.6 14.9 15.7 16.1 15.5 15.6
LiverDisorders 27.6 27.5 25.7 29.6 28.6 27.7
Ionosphere 8.7 9.6 10.4 10.4 9.3 8.8
HorseColic 18.8 19.6 18.9 19.2 18.5 19.1
CreditScreening 14.0 12.8 12.6 12.6 12.2 12.9
BreastCancer 2.4 2.5 2.5 2.5 2.5 2.4
PimalndiansDiabetes 21.5 22.3 21.2 22.8 21.7 23.0
Vehicle 31.9 31.9 322 324 31.8 322
Annealing 2.9 1.9 1.7 1.7 1.6 1.8
German 21.9 22.1 21.2 223 21.0 21.8
MultipleFeatures 27.6 27.9 28.6 27.9 27.2 27.3
Hypothyroid 2.7 2.5 1.5 2.2 1.5 1.5
Satimage 18.0 18.3 17.0 18.0 17.1 16.9
Musk 13.1 16.9 8.5 14.6 7.6 6.2
PioneerMobileRobot 11.0 11.8 16.1 12.9 2.8 1.6
HandwrittenDigits 12.0 12.3 12.1 12.1 10.7 10.5
SignLanguage 35.8 36.3 34.0 35.4 34.0 34.1
LetterRecognition 23.9 26.5 26.2 24.7 22.5 22.2
Adult 18.0 18.3 16.8 17.9 16.6 15.2
IpumsLa99 16.9 17.2 16.9 16.9 15.9 13.5
CensusIncome 24.4 243 23.3 24.4 23.1 18.9
ForestCovertype 32.0 32.5 31.1 32.0 30.3 29.6
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Table 5 Naive Bayes’ classification variance (%) under alternative discretization methods

Data set EWD EFD EMD LD PD FFD
LaborNegotiations 4.6 3.5 2.8 3.3 2.3 32
Echocardiogram 6.9 7.7 3.9 6.8 3.2 59
Iris 1.5 2.1 1.8 1.9 2.1 0.9
Hepatitis 1.2 2.0 2.2 1.9 3.1 1.2
WineRecognition 1.0 0.7 0.6 0.9 0.7 0.7
Sonar 5.0 52 5.5 5.2 5.8 3.8
Glass 14.7 12.6 10.3 10.2 12.8 13.2
HeartCleveland 2.7 2.0 1.8 1.5 2.0 1.3
LiverDisorders 9.5 8.9 11.7 73 10.3 8.8
Ionosphere 0.7 0.7 0.7 0.5 1.2 1.9
HorseColic 1.7 1.2 1.7 1.6 1.8 1.5
CreditScreening 1.6 1.7 1.9 1.3 2.1 1.3
BreastCancer 0.1 0.1 0.1 0.1 0.1 0.2
PimalndiansDiabetes 34 3.3 4.7 2.6 4.3 35
Vehicle 6.9 7.0 6.7 5.7 6.3 6.1
Annealing 0.8 0.5 0.4 0.6 0.6 0.5
German 3.1 3.1 3.8 2.9 3.7 3.6
MultipleFeatures 34 3.9 4.3 3.1 4.0 4.4
Hypothyroid 0.8 0.3 0.3 0.2 0.3 0.3
Satimage 0.8 0.6 1.1 0.4 0.7 0.8
Musk 0.7 1.5 0.9 0.8 0.7 0.6
PioneerMobileRobot 2.5 3.2 32 2.4 1.9 1.7
HandwrittenDigits 0.5 0.9 1.4 0.6 1.4 2.0
SignLanguage 2.5 1.4 2.5 1.0 1.8 2.0
LetterRecognition 5.5 33 4.2 3.2 3.2 33
Adult 0.2 0.3 0.5 0.2 0.5 1.0
IpumsLa99 4.1 4.0 4.4 35 4.7 4.9
CensusIncome 0.2 0.2 0.2 0.2 0.2 1.1
ForestCovertype 0.4 0.5 1.0 0.3 1.4 2.3
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Fig. 13 NB’s classification bias when using FFD with alternative m values. Note that very small data sets
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Fig. 14 NB’s classification variance when using FFD with alternative m values. Note that very small data sets
reach a plateau very early because FFD simply performs binary discretization when the number of training
instances n is less than or equal to 2m
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