
890 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009

[9] H. Lin and L. Li, “Large-margin thresholded ensembles for ordinal re-
gression: Theory and practice,” in Proc. 17th Int. Conf. Algorithmic
Learn. Theory, 2006, pp. 319–333.

[10] S. Kramer, G. Widmer, B. Pfahringer, and M. DeGroeve, “Prediction
of ordinal classes using regression trees,” Fundamenta Informaticae,
vol. 47, pp. 1–13, 2001.

[11] S. Har-Peled, D. Roth, and D. Zimak, “Constraint classification: A new
approach to multiclass classification and ranking,” Neural Inf. Process.
Syst., vol. 15, pp. 785–792, 2002.

[12] R. Herbrich, T. Graepel, and K. Obermayer, “Lrage margin rank
boundaries for ordinal regression,” in Advances in Large Margin
Classifiers. Cambridge, MA: MIT Press, 2000, pp. 115–132.

[13] P. McCullagh and J. A. Nelder, Generalized Linear Models. London,
U.K.: Chapman & Hall, 1983.

[14] P. McCullagh, “Regression models for ordinal data,” J. Roy. Statist.
Soc. B, vol. 42, no. 2, pp. 109–142, 1980.

[15] V. E. Johnson and J. H. Albert, Ordinal Data Modeling (Statistics for
Social Science and Public Policy). New York: Springer-Verlag, 1999.

[16] A. Shashua and A. Levin, “Ranking with large margin principle: Two
approaches,” Neural Inf. Process. Syst., vol. 15, pp. 937–944, 2002.

[17] H. Yu, J. Yang, and J. Han, “Classifying large data sets using SVMs
with hierarchical clusters,” in Proc. 9th ACM SIGKDD Int. Conf.
Knowl. Disc. Data Mining, 2003, pp. 306–315.

[18] D. Boley and D. Cao, “Training support vector machine using adap-
tive clustering,” in Proc. 4th SIAM Int. Conf. Data Mining, 2004, pp.
126–137.

[19] J. Wang, X. Wu, and C. Zhang, “Support vector machines based on
�-means clustering for real-time business intelligence systems,” Int. J.
Business Intell. Data Mining, vol. 1, no. 1, pp. 54–64, 2005.

[20] J. Yuan, J. Li, and B. Zhang, “Learning concepts from large scale im-
balanced data sets using support cluster machines,” in Proc. 14th Annu.
ACM Int. Conf. Multimedia, 2006, pp. 441–450.

[21] M. Almeida, A. Braga, and J. Braga, “SVM-KM: Speeding SVMs
learning with a priori cluster selection and �-means,” in Proc. 6th
Brazilian Symp. Neural Netw., 2000, pp. 162–167.

[22] H. Yu, J. Yang, J. Han, and X. Li, “Making svms scalable to large data
sets using hierarchical cluster indexing,” Data Mining Knowl. Disc.,
vol. 11, no. 3, pp. 295–321, 2005.

[23] Z. Xu, K. Yu, V. Tresp, X. Xu, and J. Wang, “Representative sampling
for text classification using support vector machines,” in Proc. 25th
Eur. Conf. Inf. Retrieval Res., 2003, pp. 393–407.

[24] K. Zhang and J. T. Kwok, “Block-quantized kernel matrix for fast spec-
tral embedding,” in Proc. 23rd Int. Conf. Mach. Learn., 2006, vol. 23,
pp. 1097–1104.

[25] R. Bellman, Introduction to Matrix Analysis, 2nd ed. Philadelphia,
PA: SIAM, 1997.

[26] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Sil-
verman, and A. Y. Wu, “An efficient �-means clustering algorithm:
Analysis and implementation,” IEEE Trans. Pattern Anal. Mach. In-
tell., vol. 24, no. 7, pp. 881–892, Jul. 2002.

[27] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts without
eigenvectors: A multilevel approach,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 29, no. 11, pp. 1944–1957, Nov. 2007.

[28] W. Waegeman, B. Baets, and L. Boullart, “Roc analysis in ordinal re-
gression learning,” Pattern Recognit. Lett., vol. 29, pp. 1–9, 2008.

[29] J. Rennie and N. Srebro, “Loss functions for preference levels: Regres-
sion with discrete, ordered labels,” in Proc. IJCAI Multidisciplinary
Workshop Adv. Preference Handling, 2005, pp. 180–186.

A Novel Template Reduction Approach for
the -Nearest Neighbor Method

Hatem A. Fayed and Amir F. Atiya

Abstract—The�-nearest neighbor (KNN) rule is one of the most widely
used pattern classification algorithms. For large data sets, the computa-
tional demands for classifying patterns using KNN can be prohibitive. A
way to alleviate this problem is through the condensing approach. This
means we remove patterns that are more of a computational burden but
do not contribute to better classification accuracy. In this brief, we propose
a new condensing algorithm. The proposed idea is based on defining the
so-called chain. This is a sequence of nearest neighbors from alternating
classes. We make the point that patterns further down the chain are close
to the classification boundary and based on that we set a cutoff for the pat-
terns we keep in the training set. Experiments show that the proposed ap-
proach effectively reduces the number of prototypes while maintaining the
same level of classification accuracy as the traditional KNN. Moreover, it is
a simple and a fast condensing algorithm.

Index Terms—Condensing, cross validation, editing,�-nearest neighbor
(KNN), template reduction.

I. INTRODUCTION

The �-nearest neighbor (KNN) classification rule is one of the
most well-known and widely used nonparametric pattern classification
methods. Its simplicity and effectiveness have led it to be widely used
in a large number of classification problems, including handwritten
digits, satellite image scenes, and medical diagnosis [1]–[5]. For KNN,
however, two major outstanding problems are yet to be resolved by
the research community. The first issue is the selection of the best �
(number of neighbors to consider), as this problem is greatly affected
by the finite sample nature of the problem. The second issue is the
computational and the storage issue. The traditional KNN rule requires
the storage of the whole training set which may be an excessive amount
of storage for large data sets and leads to a large computation time
in the classification stage. There are two well-known procedures for
reducing the number of prototypes (sometimes referred to as template
reduction techniques). The first approach, called “editing,” processes
the training set with the aim of increasing generalization capabilities.
This is accomplished by removing prototypes that contribute to the
misclassification rate, for example, removing “outlier” patterns or
removing patterns that are surrounded mostly by others of different
classes [6]–[8]. The second approach is called “condensing.” The aim
of this approach is to obtain a small template that is a subset of the
training set without changing the nearest neighbor decision boundary
substantially. The idea is that the patterns near the decision boundary
are crucial to the KNN decision, but those far from the boundary
do not affect the decision. Therefore, a systematic removal of these
ineffective patterns helps to reduce the computation time. This can be
established by reducing the number of prototypes that are centered in
dense areas of the same class [9]–[20]. In this brief, we consider only

Manuscript received August 24, 2007; revised December 21, 2008; accepted
March 11, 2009. First published April 21, 2009; current version published May
01, 2009.

H. A. Fayed is with the Department of Engineering Mathematics and Physics,
Cairo University, Cairo 12613, Egypt (e-mail: h_fayed@eng.cu.edu.eg).

A. F. Atiya is with the Department of Computer Engineering, Cairo Univer-
sity, Cairo 12613, Egypt (e-mail: amir@alumni.caltech.edu).

Color versions of one or more of the figures in this brief are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2009.2018547

1045-9227/$25.00 © 2009 IEEE

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009 891

the condensing approach. Below is a short summary of some existing
algorithms for the condensing approach.

In 1968, Hart [9] was the first to propose an algorithm for reducing
the size of the stored data for the nearest neighbor decision (the algo-
rithm is called CNN). Hart defined a consistent subset of the data as one
that classifies the remaining data correctly with the nearest neighbor
rule. He built this consistent set by sequentially adding to it data points
from the training set as long as the added data point is misclassified
(using the 1-NN rule). By construction, the resulting reduced subset
classifies all the training data correctly. Empirical results have shown
that Hart’s CNN rule considerably reduces the size of the training set
at the expense of minimal or even no degradation in classification per-
formance. The drawback of CNN is that frequently it may keep some
points that are far from the decision boundary. To combat this, in 1972,
Gates [10] proposed what he called the reduced nearest neighbor rule
(RNN). This method is based on first applying CNN and then per-
forming a postprocessing step. In this postprocessing step, the data
points in the consistent set are revisited and removed if their deletion
does not result in misclassifying any point in the training set. Exper-
imental results confirmed that RNN yields a slightly smaller training
subset than that obtained with CNN. In [11], Bhattacharya et al. (1992)
proposed two methods, one based on the Voronoi graph and the other
based on the Gabriel graph. The methods have the merit that they are
exact and yield sets independent of the order in which the data are pro-
cessed. The method based on a Voronoi graph yields a condensed set
which is both training-set consistent (i.e., it classifies all the training
data correctly) and decision-boundary consistent (i.e., it determines ex-
actly the same decision boundary as that of the entire training set).
However, it suffers from a large complexity due to the need to con-
struct the Voronoi diagram. On the other hand, the method based on
the Gabriel diagram is faster but it is neither decision-boundary con-
sistent nor training-set consistent. In [12], Wilson and Martinez (2000)
presented five algorithms for reducing the size of case bases: DROP1,
DROP2, � � �, DROP5. Decremental reduction optimization procedure 1
(DROP1) is the basic removal scheme based on so-called associate pat-
terns. The associate patterns for some pattern � are the patterns which
have � as one of their �-nearest neighbors. The removal of � is deter-
mined based on its effect on the classification of its associates. DROP2
is a modification whereby the order of the patterns to be removed is
selected according to a certain distance criterion in a way to remove
patterns furthest from the decision boundary first. DROP2 also dif-
fers from DROP1 in that deletion decisions still rely on the original
set of associates. DROP3, DROP4, and DROP5 are versions whereby
noise-filtering pass is performed prior to applying the DROP2 proce-
dure. In [13], Mollineda et al. (2002) obtained a condensed 1-NN clas-
sifier by merging the same class nearest clusters as long as the set of
new representatives correctly classify all the original patterns. In [14],
Wu et al. (2002) proposed an efficient method to reduce the training set
required for KNN while maintaining the same level of classification ac-
curacy, namely, the improved KNN (IKNN). This is implemented by
iteratively eliminating patterns, which exhibit high attractive capacities
(the attractive capacity �� of a pattern � is defined as the number of pat-
terns from class ����, which are closer to pattern � than other patterns
belonging to other classes). The algorithm filters out a large portion
of prototypes that are unlikely to match against the unknown pattern.
This accelerates the classification procedure considerably, especially in
cases where the dimensionality of the feature space is high. Other ap-
proaches for condensing are based on: 1) evolutionary algorithms and
decision trees [15], 2) space partitioning [16], 3) decision boundary
preservation [17], 4) estimation of the distribution of representatives
according to the information they convey [18], 5) a gradient-descent
technique for learning prototype positions and local metric weights

[19], and 6) incorporation of both the proximity between patterns and
geometrical distribution around the given pattern [20]. There are other
methods that combine both editing and condensing techniques forming
a hybrid model [21].

In this brief, we introduce a new condensing algorithm, namely, the
template reduction for KNN (TRKNN). The basic idea is to define a
“chain” of nearest neighbors. By setting a cutoff value for the distances
among the chain, we effectively separate the patterns into the selected
“condensed set” (probably consisting of patterns near the decision
boundary) and the removed set (probably interior patterns). The paper
is organized as follows. The proposed TRKNN method is described
in Section II. Some analytical insights are introduced in Section III.
Then the proposed method is validated experimentally in Section IV.
Results are discussed in Section V. Finally, conclusions are drawn in
Section VI.

II. TEMPLATE REDUCTION FOR KNN

The goal of the proposed approach is to discard prototypes that are
far from the boundaries and have little influence on the KNN clas-
sification. To establish this, we first introduce the so-called nearest
neighbor chain. This is simply a sequence of the nearest neighbors
from alternating classes. Consider first the following definitions. Con-
sider a pattern �� (also call it ��� and let it be from class ��). Let
��� � ������� denote the nearest neighbor to ��� that is from a dif-
ferent class. Similarly, let ��� � ������� denote the nearest neighbor
to ��� that is from the starting class ����. We continue in this manner,
with ������ � �������. This sequence of ��� ’s (whose class mem-
berships alternates between class �� and the other classes) constitutes
the nearest neighbor chain. Below is the precise definition.

Definition: A nearest neighbor chain �� of a pattern �� (of Class
��) is defined as the sequence ������������ � � � ���� and the sequence
���� ���� � � � � ������ where the root pattern ��� � ��, and ��� is the
closest pattern to ������ (of a class different from �� if 	 is odd and
of Class �� if 	 is even). Moreover, ��� � ������� � ��� ��� is the Eu-
clidean distance between patterns ������ and ��� . The chain is stopped
at ��� if ������ � ������. Note that the distance sequence is a nonin-
creasing sequence (i.e., ��� � ������).

Fig. 1 shows some examples of constructed chains for a two-class
problem. In summary, a chain is constructed as follows. Start from
a pattern ��. Find the nearest neighbor from a different class. Then,
from that pattern find the nearest neighbor from the starting class. Con-
tinue in this manner until we end up with two patterns that are nearest
neighbor to each other. Note that by construction the distances between
the patterns in the chain form a nonincreasing sequence. Note also that
patterns downstream the chain will probably be close to the classifica-
tion boundary, because they will have smaller distances from the pat-
terns of different classes. This provides the basis of the proposed con-
densing procedure.

The basic idea of the proposed condensing approach is as follows.
For each pattern �� in the training set, we construct its corresponding
chain ��. The pattern ��� in the chain is dropped (from the selected
condensed set) if ���
 � � ������ where � is a threshold
�, and
	 � �� �� 	� � � � up to the size of the chain. Note that we allow only
patterns from the same class as that of �� to be eliminated (i.e., we
consider only the even patterns in the chain). This is important when
dealing with a multiclass problem as the chain is constructed using the
one-against-all concept as has been illustrated earlier. Typically, when
starting the chain with an interior point, the distance to the next point
in the chain will be large. As the chain converges onto the boundary
points, the distances decrease in value and will more or less level off.
This gives a rationale for the proposed cutoff procedure. Because there
is a significant decrease in distances, the considered pattern is deemed
to be probably an interior point and can be discarded, whereas if the

892 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009

Fig. 1. Illustrative example of the chains.

distances do not decrease too much, then we are probably oscillating
around the classification boundary, and the pattern is kept. Below are
the precise steps of the condensing method.

Algorithm: TRKNN

Inputs:
• Training set �.
• Distance ratio threshold �.

Output:
• Reduced training set �.

Method:

For each pattern �� in �

Find its corresponding chain ��

End For

For each chain ��

For � � �� �� �� � � � up to the size of ��

If ��� � � � ������ then mark the pattern ���

End For

End For

Drop all marked patterns from �.

Fig. 1 shows an example that illustrates the working of the algorithm.
The closest pattern of different class to pattern �� is ��� and the dis-
tance between them is ���. Similarly, the closest pattern of different
class to pattern ��� is ��� and the distance between them is ���. Now
�� is dropped if ��� � � � ���.

Note that some computational savings can be achieved by observing
that some chains encompass some other smaller chains. By operating
on the larger chains first, we automatically get the condensing results
of the smaller chains contained in them, leading to some computational

TABLE I
SUMMARY OF DATA SETS

shortcut. Note also that the condensed set does not depend on some pat-
tern presentation order, like many condensing algorithms. The reason is
that at each step the full training set is considered as a whole. Another
comment that applies also to most condensing methods is that after
condensing it is imperative to have the number of neighbors � (for the
KNN classification) a little reduced than � used with the whole data
set. This is due to the somewhat redundant patterns being removed.
This reduction will be bigger if more data is removed.

III. ANALYTICAL INSIGHTS

The proposed algorithm relies on the concept that a pattern near the
classification boundary will tend to have a nearest neighbor (from an-
other class) that is fairly close. On the other hand for an interior pattern
that distance will tend to be larger. Based on this concept, we discard
the latter patterns. While this concept is fairly intuitive, it would be
beneficial to provide some analytical analysis in order to gain insight
and to understand the degree and the factors affecting that relationship.
Below we develop some approximate analysis.

For simplicity, consider a two-class case. Consider a pattern �� from
class ��, and let the dimension of the pattern vector be 	. Moreover,
let
������ denote the class conditional density for class ��, and let
there be � training patterns from class ��. Finally, let 		���� denote
the nearest neighbor to pattern �� that is from class ��. Let � be the
distance from �� to 		����. Define the following random variable:

 �
���� � ��

���������

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009 893

TABLE II
SUMMARY OF AVERAGE TRAINING TIME AND TEST TIME IN SECONDS

TABLE III
MEAN NUMBER OF PROTOTYPES (NPROT) AND MEAN TEST ERROR RATES (ERR) OVER THE DIFFERENT FOLDS.

STANDARD DEVIATIONS ARE SHOWN IN BRACKETS

It is well known (see [22] and [23]) that such a variable obeys the fol-
lowing beta density function:

���� � ���� ������ � � � � ��

Assume that the number of training patterns from class �� is suffi-
ciently large such that the ������ is close to ��. Hence, within the
ball centered around �� stretching out to ������, the density �������
can be approximated as almost constant, and hence

� � � � ����������

where the term � � �� represents the volume of a 	-dimensional ball
of radius �, with � �
������� �	�	�. Then, we get

� � �

� � ��������
���

�

The expectation of � is then given by

���� �
�

�

���� �����
�

� � ��������
���

�

which can be evaluated as

���� �
��� � ������ ��	������	�	������

��� � � � ��	�
�������������

The previous relation confirms the fact that the distance to the nearest
neighbor from the other class is small if we are close to the classifica-
tion boundary (where the opposing class-conditional density �������
would be high). Conversely, that distance would be large if �������
was small (signifying that we are in the interior and far away from the
boundary). Moreover, that monotone relationship decays more slowly
for large dimensional problems. One might contemplate the situation
when we are near the boundary but ������� is still small. This situ-
ation arises when the other class conditional density ������� is also
small, that is, we operate in a relatively sparse area in the space. To
compensate for that, the algorithm uses the other distances in the chain

to have a “relative” cutoff point. That is, we discard patterns based on
comparing them according to the successive distances in the chain (i.e.,
when
�� � � �
������.

IV. EXPERIMENTAL RESULTS

To validate the proposed algorithm, we compared it with the tradi-
tional KNN and some of the condensing methods: the DROP2 [12] and
the IKNN [14] for several real-world data sets. Note that, as we focus on
comparing condensing methods, we do not employ DROP3, DROP4,
or DROP5 [12], as these just add preprocessing steps that can be applied
to any method. On the other hand, DROP1’s accuracy is significantly
low compared to KNN and DROP2. Therefore, to attain a fair compar-
ison, DROP2 is included in the comparison. We use the fivefold vali-
dation procedure for the purpose of tuning the key parameters of each
method. In this approach, the training set is partitioned into five equal
parts. Training is performed on four parts and validated on the fifth part.
Then the validation part is rotated and training is performed again. The
process is repeated five times, and the validation classification error
on all five parts is combined. The parameter values that yield the best
validation results will then be chosen for testing the performance. The
tuned parameters are as follows. In all methods, suggested values for�
are odd values from 1 to 9. For IKNN, suggested values for the attrac-
tive capacity threshold ��� are:
����� ����� ���������, where���� is
the minimum number of patterns corresponding to the same class while
suggested values for the portion function are: ���� � � � ���������,
where � 	
���� ��	� (for more details and description of the param-
eters, see [14]). For TRKNN, suggested values for � are 1.2, 1.4, and
1.6. The distance metric used is the Euclidean distance for all methods.
Concerning the DROP2 method, there are no tunable parameters. There
are four main performance measures. The training time represents the
time it takes to condense the training set, including searching for the
optimal parameters, such as � and the others. (However, it is com-
puted as the average time per tested parameter set. This way we avoid
penalizing methods that have a larger number of parameters, such as
the competing IKNN, or have finer parameter grid.) The testing time

894 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009

TABLE IV
COMBINED 5� 2 CROSS-VALIDATION � TEST FOR THE TEST CLASSIFICATION ERROR (ERR) AND THE NUMBER OF PROTOTYPES (NPROT).

REJECTION DECISION OF THE NULL HYPOTHESIS IS SHOWN IN BRACKETS

Fig. 2. Test classification error versus the number of prototypes over the 5 � 2
folds for the Breast Cancer data set.

represents the classification time using the condensed set. It is very
closely tied to the third measure, which is the number of patterns in
the condensed set. The test classification error is the final performance
measure. The main goal of any condensing method is to reduce the
number of patterns as much as possible, with as little sacrifice as pos-
sible to the classification accuracy.

In comparing the classification error and the number of prototypes
of any two methods a challenging issue is to test whether the difference
is statistically significant. We have used the combined 5� 2 cross-val-
idation � test [24] (a study in [25] shows the superiority of this tests
compared to alternative ones). To apply this test, five replications of
twofold cross validation are performed. In each replication, the data
set is divided into two equal-sized sets, one for training and the other
for testing. Let ����� be the difference between the error rates of the
two classifiers on fold � � �� � for replication � � �� � � � � �. Let

Fig. 3. Test classification error versus the number of prototypes over the 5� 2
folds for the Pima Indians data set.

the average on replication � be �� � ��
���
� � �

���
� 	�� and let the es-

timated variance be ��� � ��
���
� � ��	� � ��

���
� � ��	�. The combined

5� 2 cross-validation � test is applied by assuming that the statistic
� � �

���
�
�����

���
� 	��� �

��� �
�
� has approximately an � distri-

bution with ten and five degrees of freedom. The null hypothesis is
rejected with 95% confidence if � is greater than 4.74.

We used five real-world data sets. The first data set was obtained
from cancer1.dt file from Proben1 database [26], which was created
based on the “Breast Cancer Wisconsin” problem data set from the
University of California at Irvine (UCI) Machine Learning Repository
database [27]. The second data set was obtained from diabetes1.dt file
from Proben1 database [26], which was created based on the “Pima
Indians Diabetes” problem data set from the UCI Machine Learning
Repository database [27]. The remaining data sets were obtained from
the UCI repository [27]. Summary of the data sets is shown in Table I.
It shows the names and the details of the data sets, such as the number

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009 895

Fig. 4. Test classification error versus the number of prototypes over the 5� 2
folds for the Balance Scale data set.

of patterns, the number of features, and the number of classes. We per-
formed the implementation using MATLAB 7 on Windows XP with
SP2 running on Pentium IV 2.4-GHz PC with 768-MB RAM.

V. RESULTS

The results of the average training time over all folds and the test
time (in seconds) are shown in Table II while the number of prototypes
and the test classification error rates are shown in Table III. The results
of the 5� 2 significance test applied to the test classification error and
to the number of prototypes are shown in Table IV for the different
data sets. The table shows that for all data sets the � test at the 95%
confidence level does not reject the hypothesis that IKNN and TRKNN
give a similar test error, and also does not reject the hypothesis that
KNN and TRKNN give a similar test error. On the other hand, TRKNN
gives smaller number of prototypes (i.e., higher reduction rate) than
IKNN for two of the data sets (Pima Indians and Balance Scale), also at
the 95% level. For the three other data sets, TRKNN’s outperformance
is not significant at the 95% level. Compared to DROP2, we observe
the following. For the Pima Indians data set, DROP2 gets significantly
lower number of prototypes. But this is at the expense of significantly
worse test error (as if DROP2 dropped too many patterns to an extent
that it affected classification performance). On the other hand, for the
Pendigits data set, TRKNN produces a significantly lower number of
prototypes, while test error is comparable.

We note that there is generally a tradeoff between test error and
number of prototypes (NPROT) selected (or reduction ratio). To clarify
that the proposed TRKNN is winning in the overall NPROT/test error
tradeoff, we performed the following analysis. It is based on the per-
formed 5� 2 test. As mentioned, we perform the test ten times (on the
two folds times the five partitions). Consider a single test (i.e., on one
specific fold and one specific partition) and record NPROT and the test
error. Repeat ten times for the ten tests and get ten pairs of NPROT/test
error numbers. Plot these pairs as points in the 2-D space with the axes
being NPROT and the test error. We will have ten points for TRKNN,
corresponding to the NPROT/test error outcomes of the ten test sets,
ten other points for IKNN, corresponding also to the test outcomes for
IKNN, and ten other points for DROP2. Figs. 2–6 show the plots for
each of the tested UCI data sets. One can see in the plots that for all
problems the test errors for both TRKNN and IKNN are comparable.

Fig. 5. Test classification error versus the number of prototypes over the 5� 2
folds for the Landsat data set.

Fig. 6. Test classification error versus the number of prototypes over the 5 � 2
folds for the Pendigits data set.

On the other hand, for three of the problems (Breast Cancer, Pima In-
dians, and Balance Scale) the number of prototypes for TRKNN is
significantly lower than that of IKNN. For one problem (Pendigits),
TRKNN beats in the NPROT aspect (i.e., gives lower NPROT), but by
a small amount. For the remaining problem (Landsat), both methods
are about equal. When we say “significantly beats” it is based on the
fact that the averages are different and the standard deviations do not
lead to overlapping of the points, which can be seen visually in the plot.
For some of the problems (such as Balance Scale), IKNN gives lower
average test error, but there is a large overlap of the points (in the test
error dimension), and that makes the difference not statistically signifi-
cant. Concerning DROP2 versus TRKNN, as observed before, one can
see that DROP2 obtains lower NPROT at the expense of a worse test
error for Pima Indians data set. On the other hand, for both Landsat and
Pendigits, DROP2 produces significantly worse (i.e., higher) NPROT.

896 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009

This happens while the test errors for DROP2 and TRKNN are compa-
rable. One can see the clear separation in the NPROT dimension, while
in the test error dimension the data overlap. It seems that possibly for
larger data sets DROP2 does not prune out enough points (which para-
doxically are the type of problems where we need to drop points the
most).

Concerning the training time (Table II), the time of TRKNN is con-
siderably shorter than that of IKNN, by a factor of around 2 or 3 times.
This is because the training time of TRKNN is dominated by the com-
putation of the distance matrix (the matrix that holds distances between
pairs of all training patterns) whose complexity is �����, where � is
the training set size. This distance matrix is computed only once at
the beginning of the training process. For IKNN, besides the compu-
tation of the distance matrix, there is an extra computation at each it-
eration for the evaluation and sorting of the attractive capacities with
complexity ���� �����, where � is the average attractive capacity.
For large data sets, this attractive capacity� could be rather large. This
computation is repeated for a number of iterations (say �), leading to
the extra complexity of����� ����� (beyond that of TRKNN). Sim-
ilarly, TRKNN is faster (in training speed) than DROP2, by a factor of
around 3 or 4. The reason for the slow training speed for DROP2 is
the need to sort the distances that are computed from each pattern to
its “enemy pattern.” The enemy pattern is defined as the closest pattern
from a different class.

Overall, viewing all performance criteria, such as the test
error/number of prototype tradeoff, and the speed, we feel that
TRKNN has an edge over the competing IKNN and DROP2 methods.

VI. CONCLUSION

In this brief, a new condensing method for KNN is proposed. The
method drops patterns that are far away from the boundary and thus
have little influence on the KNN classification. Experiments show that
the proposed approach reduces the template set size without sacrificing
the accuracy compared to the traditional KNN and two recent con-
densing methods. In addition, this method can be considered simple
in implementation, and is computationally fast.

REFERENCES

[1] K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed.
New York: Academic, 1990.

[2] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd
ed. New York: Wiley, 2001.

[3] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Sta-
tistical Learning: Data Mining Inference, and Prediction, ser. Statis-
tics. Berlin, Germany: Springer-Verlag, 2001.

[4] A. R. Webb, Statistical Pattern Recognition, 2nd ed. London, U.K.:
Wiley, 2002.

[5] W. Duch, “Similarity based methods: A general framework for classi-
fication, approximation and association,” Control Cybern., vol. 29, no.
4, pp. 937–968, 2000.

[6] D. L. Wilson, “Asymptotic properties of nearest neighbor rules using
edited data,” IEEE Trans. Syst. Man Cybern., vol. SMC-2, no. 3, pp.
408–420, Jul. 1972.

[7] P. A. Devijver and J. Kittler, “On the edited nearest neighbor rule,” in
Proc. 5th Int. Conf. Pattern Recognit., Miami, FL, 1980, pp. 72–80.

[8] F. J. Ferri and E. Vidal, “Colour image segmentation and labeling
through multiedit-condensing,” Pattern Recognit. Lett., vol. 13, pp.
561–568, 1992.

[9] P. E. Hart, “The condensed nearest neighbor rule,” IEEE Trans. Inf.
Theory, vol. IT-14, no. 3, pp. 515–516, May 1968.

[10] W. Gates, “The reduced nearest neighbor rule,” IEEE Trans. Inf.
Theory, vol. IT-18, no. 3, pp. 431–433, May 1972.

[11] B. K. Bhattacharya, R. S. Poulsen, and G. T. Toussaint, “Application of
proximity graphs to editing nearest neighbor decision rules,” in Proc.
16th Symp. Interface Between Comput. Sci. Statist., 1984, pp. 97–108.

[12] D. R. Wilson and T. R. Martinez, “Reduction techniques for instance-
based learning algorithms,” Mach. Learn., vol. 38, no. 3, pp. 257–286,
2000.

[13] R. A. Mollineda, F. J. Ferri, and E. Vidal, “An efficient prototype
merging strategy for the condensed 1-NN rule through class-con-
ditional hierarchical clustering,” Pattern Recognit., vol. 35, pp.
2771–2782, 2002.

[14] Y. Wu, K. Ianakiev, and V. Govindaraju, “Improved k-nearest neighbor
classification,” Pattern Recognit., vol. 35, pp. 2311–2318, 2002.

[15] J. R. Cano, F. Herrera, and M. Lozano, “Using evolutionary algorithms
as instance selection for data reduction in KDD: An experimental
study,” IEEE Trans. Evol. Comput., vol. 7, no. 6, pp. 561–575, Dec.
2003.

[16] J. S. Sánchez, “High training set size reduction by space partitioning
and prototype abstraction,” Pattern Recognit., vol. 37, no. 7, pp.
1561–1564, 2004.

[17] R. Barandela, F. J. Ferri, and J. S. Sánchez, “Decision boundary pre-
serving prototype selection for nearest neighbor classification,” Int. J.
Pattern Recognit. Artif. Intell., vol. 19, no. 6, pp. 787–806, 2005.

[18] D. Huang and T. W. S. Chow, “Enhancing density-based data reduction
using entropy,” Neural Comput., vol. 18, no. 2, pp. 470–495, 2006.

[19] R. Paredes and E. Vidal, “Learning prototypes and distances: A pro-
totype reduction technique based on nearest neighbor error minimiza-
tion,” Pattern Recognit., vol. 39, no. 2, pp. 171–179, 2006.

[20] J. S. Sánchez and A. I. Marqués, “An LVQ-based adaptive algorithm
for learning from very small codebooks,” Neurocomputing, vol. 69, no.
7–9, pp. 922–927, 2006.

[21] H. Brighton and C. Mellish, “Advances in instance selection for in-
stance-based learning algorithms,” Data Mining Knowl. Disc., vol. 6,
pp. 153–172, 2002.

[22] D. A. Fraser, Nonparametric Methods in Statistics. New York: Wiley,
1957, ch. 4.

[23] R. D. Short and K. Fukunaga, “The optimal distance measure for
nearest neighbor classification,” IEEE Trans. Inf. Theory, vol. IT-27,
no. 5, pp. 622–627, Sep. 1981.

[24] E. Alpaydin, “Combined 5� 2 cv F test for comparing supervised
classification learning algorithms,” Neural Comput., vol. 11, pp.
1885–1892, 1999.

[25] T. G. Dietterch, “Approximate statistical tests for comparing super-
vised classification learning algorithms,” Neural Comput., vol. 10, pp.
1895–1923, 1998.

[26] L. Prechelt, “Proben1, A set of neural-network benchmark problems,”
University of Karlsruhe, Germany, 1994 [Online]. Available: Avail-
able: http://page.mi.fu-berlin.de/prechelt/Biblio/1994-21.pdf

[27] C. L. Blake and C. J. Merz, “UCI Repository of Machine Learning
database,” Dept. Inf. Comput. Sci., Univ. California, Irvine, Irvine, CA,
1998 [Online]. Available: http://www.ics.uci.edu/~mlearn

