
ARTICLE IN PRESS

Neurocomputing ] (]]]]) ]]]– ]]]
Contents lists available at ScienceDirect
Neurocomputing
0925-23

doi:10.1

� Corr

E-m

Pleas
doi:1
journal homepage: www.elsevier.com/locate/neucom
Particle swarm optimization for prototype reduction
Loris Nanni �, Alessandra Lumini

DEIS, IEIIT—CNR, Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
a r t i c l e i n f o

Article history:

Received 28 June 2007

Received in revised form

29 February 2008

Accepted 11 March 2008
Communicated by T. Heskes
the training set. To improve the classification performance, during the training phase the prototype
Keywords:

Particle swarm optimization

Prototype reduction

Nearest neighbor
12/$ - see front matter & 2008 Elsevier B.V. A

016/j.neucom.2008.03.008

esponding author.

ail address: lnanni@deis.unibo.it (L. Nanni).

e cite this article as: L. Nanni, A.
0.1016/j.neucom.2008.03.008
a b s t r a c t

The problem addressed in this paper concerns the prototype reduction for a nearest-neighbor classifier.

An efficient method based on particle swarm optimization is proposed here for finding a good set of

prototypes. Starting from an initial random selection of a small number of training patterns, we

generate a set of prototypes, using the particle swarm optimization, which minimizes the error rate on

generation is repeated N times, then each of the resulting N sets of prototypes is used to classify each

test pattern, and finally these N classification results are combined by the ‘‘vote rule’’.

The performance improvement with respect to the state-of-the-art approaches is validated through

experiments with several benchmark datasets.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Prototype reduction techniques are concerned with reducing
the number of training vectors (prototypes) to be used, typically in
conjunction with a nearest-neighbor (NN) classifier, for classifica-
tion purpose. The aim of these approaches is to find out a minimal
set of objects or prototypes to represent a training set such that
the performance of a classifier built on the reduced design set is
approximately as well as (or better than) that of a classifier built
on the original dataset. Prototype reduction has been explored for
various purposes, and has resulted in the development of many
algorithms, which are usually divided into two categories:
prototype selection (or extraction) and prototype generation. The
first class concerns the identification of an optimal subset of
representative objects from the original data, while the latter
involves the creation of an entirely new set of objects. The
interested reader can see [1] for a comprehensive overview of
supervised reduction approaches.

A recent and very performing approach for prototype reduc-
tion, called learning prototypes and distances (LPD) [10], is based on
the simultaneous search of a reduced set of prototypes and a
suitable local metric for these prototypes. In fact, the use of an
appropriately trained distance measure or metric that can be
global (the same for the whole feature space), class dependent

(a different metric for each class) or local (a different metric
measure for each prototype), is another common technique for
improving the performance of a NN classifier [10,11]. LDP starts
ll rights reserved.

Lumini, Particle swarm o
with an initial random selection of a small number of prototypes
and iteratively adjusts their position and their local metric
according to a rule that minimizes a suitable estimation of the
classification error probability. In [10] the authors show that LPD
outperforms several state-of-the-art approaches based on learn-
ing vector quantization [8].

In [13] the authors have carried out an empirical study of the
performance of four representative evolutionary algorithms
models [12] for prototype selection. Moreover, they included a
comparison between evolutionary algorithms and non-evolution-
ary pattern selection algorithms, reporting that the evolutionary
methods outperform the non-evolutionary ones.

In this work, we investigate how a relatively novel evolutionary
computation algorithm, particle swarm optimization (PSO) [5,6],
can be applied to generate (not to select) an optimal set of
prototypes. The social behavior of biological organisms, the
movement of bird flocking, motivates the PSO algorithm. Each
potential solution of an optimization problem is a bird
(or ‘‘particle’’) with a given velocity flying trough the solution
space. Each bird adjusts its flight according to its own flying
experience and its companions’ flying experience [16]. In [7]
it is reported that often PSO outperforms genetic algorithms
(GAs); moreover, the computation time of PSO is lower than that
of GA.

The basic idea for applying PSO to prototype reduction is the
following: a random small set of K training patterns is selected as
initial solution. In this paper we propose to select K ¼ 5% of the
training set in order to obtain a substantial reduction. Then the
position of these patterns, the ‘‘particles’’ of the optimization
problem, is adjusted using PSO so that the classification error rate
on the training set is minimized.
ptimization for prototype reduction, Neurocomputing (2008),

www.sciencedirect.com/science/journal/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2008.03.008
mailto:lnanni@deis.unibo.it
dx.doi.org/10.1016/j.neucom.2008.03.008


ARTICLE IN PRESS

L. Nanni, A. Lumini / Neurocomputing ] (]]]]) ]]]–]]]2
PSO is particularly attractive for prototype reduction in that
particle swarms will discover the prototype positions as they fly
within the solution space. The performance of the proposed
algorithm is evaluated using several UCI datasets and compared
with some state-of-the-art approaches for prototype reduction
and classification based on the NN rule. Our experiments
demonstrate that PSO has a strong search capability in the
solution space and can discover optimal solutions quickly.

The paper is organized as follows: in Section 2 the new
technique for prototype generation is reported, in Section 3
experimental results are presented. Finally, in Section 4 some
concluding remarks are given.
2. PSO for prototype reduction

2.1. An introduction to PSO

PSO1 is initialized with a population of P random solutions (P is
the swarm size) as a GA, but instead of chromosomes they are
called ‘‘particles’’. A particle i is represented by its position, a
vector xi ¼ (xi1, xi2, y, xis) in a S-dimensional space, and it can
move in the solution space according to a velocity equation (see
Eq. (1)). The best previous position of each particle according to
the PSO fitness rule is recorded as pi ¼ (pi1, pi2, y, pis); moreover, g

records the index of the best particle position among all the pi,
i ¼ 1, y, P. The velocity for particle i is a vector vi ¼ (vi1, vi2,y,viS),
of the same dimension of the vector that describe the particle’s
position; the position and the velocity of each particle change at
each iteration of PSO according to the following update proce-
dure:

vi ¼ wvi þ c1RandðÞðpi � xiÞ þ c2RandðÞðpg � xiÞ (1)

xi ¼ xi þ vi (2)

where i varies from 1 to P ; c1 and c2 (named acceleration

constants) represent the weighting of the stochastic acceleration
terms that pull each particle toward the local (pi) and global (pg)
best positions; Rand() is a random function in the range [0, 1]; w

(named inertia weight) is a linear function of the number of
iterations, which decreases along with the iterations, thus
providing a balance between global and local exploration. The
inertia weight varies from wstart to wend according to the following
equation:

w ¼
ðwstart �wendÞðMAXITER� IterÞ

MAXITERþwend
(3)

where MAXITER is the maximum number of PSO iterations and Iter

is the current iteration.
Moreover, the particles’ velocities in each dimension are

limited to a maximum velocity vmax, which determines the
maximum dimension of the steps through the solution space;
vmax is a parameter of the optimization procedure that allows to
setting of the maximum extent allowed for movements inside the
solution space.

Eq. (1) is divided into three parts: the first part provides each
particle with a ‘‘memory’’ of its last velocity, which decreases at
each iteration (according to Eq. (3)), the second part is the
‘‘cognition’’ part, which represents the optimization of a given
particle according to its own flying experience, the third part is
the ‘‘social’’ part, which represents the optimization of a given
particle according to the companions’ flying experience.
1 It is implemented as in PSO MATLAB TOOLBOX; it is available at /http://

psotoolbox.sourceforge.netS.

Please cite this article as: L. Nanni, A. Lumini, Particle swarm
doi:10.1016/j.neucom.2008.03.008
The algorithm for PSO optimization consists of an iterative
updating of the swarm positions according to Eqs (1) and (2) on
the basis of the best particle positions pi calculated with respect to
the fitness function. The search stops after MAXITER iterations or if
no improvement is reached in the last iteration.

2.2. System overview

Given a training set containing T samples, where a generic
training vector is y 2 RM , our aim is to find an optimal reduced set
of prototypes of a prefixed cardinality K.

In order to obtain an optimal prototype reduction by PSO, we
represent each particle as a set of K prototypes. A particle is a
vector of length S ¼ KM given by the concatenation of K

prototypes. The K prototypes used to initialize each particle are
randomly extracted among the training patterns; in this work, we
run PSO with P ¼ 20 particles. The fitness function of PSO is
simply the minimization of the classification error on the training
set. The training phase ends after MAXITER ¼ 250 iteration and the
best position pg is the concatenation of the K searched prototypes.

Since this prototype generation method is based on a random
selection we repeat the generation step N times and we train N

different classifiers to be combined by ‘‘vote rule’’. In this way the
number of prototypes to be stored is KN, which is anyway lower
than the cardinality T of the original training set. During the test
phase the unknown pattern is compared with all the N set of
prototypes according to the NN rule; then the final decision is
obtained by selecting the most voted class (vote rule). The
pseudo-code of the method, divided in training and test phases,
is reported in Fig. 1 and a scheme of our approach is depicted in
Fig. 2. In the psudo-code, in Fig. 1, we suppose that we receive in
input for the training phase a training set TR containing T labeled
samples yi and for the test phase a set TE of E samples xi. During
the training, the T samples are processed N times by means of the
function PROTOPSO() in order to obtain a set PR of K labeled
prototypes. During the test the unknown samples from the test set
are assigned to a class according to a given set of prototypes by
means of the function CLASSIFY(); then the final decision is obtained
by applying the function VOTERULE() to the set of labels K predicted
by the N classifiers.
3. Experiments

We perform experiments in order to (i) evaluate the choice of
some critical parameters for our PSO-based approach, (ii) compare
Fig. 1. Pseudo-code of the proposed method.

optimization for prototype reduction, Neurocomputing (2008),

http://psotoolbox.sourceforge.net
http://psotoolbox.sourceforge.net
dx.doi.org/10.1016/j.neucom.2008.03.008


ARTICLE IN PRESS

Fig. 2. Training and test phases of the proposed system.

Table 1
Characteristics of the datasets used in the experimentation: number of attributes

(M), number of samples (T), and number of classes (C)

Dataset M T C

IO 34 351 2

HEART 13 150 2

PIMA 8 768 2

BR 9 699 2

WINE 13 178 3

HIV 50 362 2

SPECTF 44 267 2

Table 2
Tested configurations of the parameters of PSO

Parameter Configuration

First Second Third

vmax 0.25 0.05 0.1

C1 1 1 3

C2 3 3 1

wstart 1.5 0.5 2.5

wend 0.5 0.15 1

L. Nanni, A. Lumini / Neurocomputing ] (]]]]) ]]]–]]] 3
the novel approach with another state-of-the-art method for
prototype reduction (LPD), and (iii) compare the classification
performance of our method with other NN-based classifiers. All
the experiments have been conducted on six benchmark datasets
from the UCI Repository2 (Ionosphere (IO), Heart (HE), Pima
Indians Diabetes (PI), Wisconsin Breast Cancer Databases (BR),
Cardiac Single Proton Emission Computed Tomography (SPECTF),
and Wine (WI)), and on the HIV protease dataset3 (HIV) [14].
A summary of the characteristics of these datasets (number of
attributes, number of samples, number of classes) is reported in
Table 1. As suggested by many classification approaches, all the
datasets have been normalized between 0 and 1. To minimize
possible misleading caused by training data, results have been
obtained using a twofold cross-validation on each dataset and
averaged over 10 experiments.

3.1. Internal evaluation

Due to computational issues it was unfeasible to carry out a
grid optimization of the PSO parameters; therefore we performed
an heuristic setting, reporting the results for three different
configuration of the PSO parameters (Table 2), which gained good
performance.
2 /http://www.ics.uci.edu/mlearn/MLRepository.htmlS.
3 /http://idelnx81.hh.se/bioinf/data.htmlS.

Please cite this article as: L. Nanni, A. Lumini, Particle swarm o
doi:10.1016/j.neucom.2008.03.008
In Table 3 the performance of our method (PSO(N)) using the
configurations of Table 2 is reported; N denotes the number of
classifiers combined by vote rule.

Since the third configuration allows us to obtain the best
average results the following experiments have been performed
fixing such parameter values.

As further experiment, we test the importance of the
parameter MAXITER representing the number of iterations of
PSO. In Fig. 3 we plot the error rate on the PIMA dataset (left) and
on the IONO dataset (right) obtained by our method PSO(5),
varying the number of iterations used in the PSO optimization
algorithm. It is interesting to note that in both the datasets the
performance reaches its maximum and becomes quite stable with
a number of iterations between 100 and 250, over 250 iterations
the performance decreases again, probably due to the overfitting
on the training set.

In Table 4, the performance (in terms of error rate) for different
values of the number N of combined classifiers is reported: since
PSO(11) and PSO(15) only slightly outperform PSO(5), while the
performance of PSO(5) is undoubtedly better than PSO(1) and due
to computational issues N will be fixed to five in all the following
comparisons.

The results reported in Fig. 3 and in Tables 3 and 4 prove that
our prototype generation method permits us to find a good
discriminative set of prototypes and it is quite easy to find a
parameter configuration that allows us to obtain good perfor-
mance in several different classification problems.
ptimization for prototype reduction, Neurocomputing (2008),

http://www.ics.uci.edu/mlearn/MLRepository.html
http://idelnx81.hh.se/bioinf/data.html
dx.doi.org/10.1016/j.neucom.2008.03.008


ARTICLE IN PRESS

Table 3
Classification error (standard deviation) obtained by our approach varying the

parameter configuration

Dataset Configuration

First Second Third

PSO(1) PSO(5) PSO(1) PSO(5) PSO(1) PSO(5)

IO 13.0 (2.5) 10.7 (2) 14.0 (2.3) 11.9 (2.1) 11.1 (1.5) 10.6 (2.0)

HEART 18.0 (2.3) 15.0 (1.6) 16.0 (2) 15.7 (1.7) 21.0 (2.7) 16.0 (1.7)

PIMA 25.8 (2.4) 25.3 (1) 27.5 (2.2) 25.6 (0.8) 25.7 (2.4) 24.9 (0.6)

BR 4.3 (1.5) 4.0 (1.4) 4.0 (1.4) 3.5 (0.8) 4.0 (1.4) 3.4 (0.6)

WINE 9.0 (2.5) 4.0 (1) 6.0 (2.2) 4.6 (1.2) 4.5 (2.2) 4.0 (0.8)

HIV 20.0 (3.8) 16.1 (3.1) 17.0 (3.5) 14.4 (3.1) 16.0 (3.1) 13.1 (3.0)

SPECTF 22.9 (2) 20.3 (1.3) 21.0 (1.5) 18.8 (1.2) 23.8 (1.8) 20.6 (1.4)

Bold results are the best results for each dataset.

23.5
24

24.5
25

25.5
26

26.5
27

25 50 100 250 500

10
10.5
11

11.5
12

12.5
13

13.5

25 50 100 250 500

Fig. 3. Error rate obtained in the PIMA (left) and IONO (right) datasets by PSO(5) as

a function of MAXITER, the number of iterations in the PSO optimization.

Table 4
Classification error (standard deviation) obtained by PSO(N), varying the value of N

Dataset PSO(1) PSO(5) PSO(11) PSO(15)

IO 11.1 (1.5) 10.6 (2.0) 10.0 (1.5) 10.0 (1.5)
HEART 21.0 (2.7) 16.0 (1.7) 15.4 (1.7) 14.9 (1.6)
PIMA 25.7 (2.4) 24.9 (0.6) 24.9 (0.6) 25.0 (0.6)

BR 4.0 (1.4) 3.4 (0.6) 3.2 (0.5) 3.3 (0.5)

WINE 4.5 (2.2) 4.0 (0.8) 4.0 (0.9) 4.0 (0.8)
HIV 16.0 (3.1) 13.1 (3.0) 11.4 (2.8) 11.4 (2.9)
SPECTF 23.8 (1.8) 20.6 (1.4) 20.3 (1.4) 20.4 (1.4)

Bold results are the best results for each dataset.

Table 5
Average Q-statistic among the classifiers in PSO3(5)

Dataset Q-statistic

IO 0.86

HEART 0.94

PIMA 0.88

BR 0.98

WINE 0.87

HIV 0.82

SPECTF 0.90

Table 6
Classification error (standard deviation): comparison between PSO and LPD

Dataset LPD(1) LPD(5) PSO(1) PSO(5)

IO 15.1 (3.7) 10.8 (2.0) 11.1 (1.5) 10.6 (2.0)

HEART 16.8 (3.2) 17.0 (3.1) 21.0 (2.7) 16.0 (1.7)
PIMA 28.5 (1.5) 26.4 (1.0) 25.7 (2.4) 24.9 (0.6)
BR 3.7 (0.9) 3.5 (0.9) 4.0 (1.4) 3.4 (0.6)
WINE 4.1 (1.2) 4.5 (1.5) 4.5 (2.2) 4.0 (0.8)
HIV 16.7 (2.7) 18.3 (2.1) 16.0 (3.1) 13.1 (3.0)

SPECTF 21.7 (2.5) 21.0 (3.5) 23.8 (1.8) 20.6 (1.4)

Bold results are the best results for each dataset.

L. Nanni, A. Lumini / Neurocomputing ] (]]]]) ]]]–]]]4
As a further experiment we investigated the relationship
(i.e. the error independence) among the classifiers obtained using
the ensemble PSO(5). It is well known in the literature [9] that
combining ‘‘independent’’ classifiers permits dramatic reduction
of error rate obtained by a ‘‘stand-alone’’ classifier. Error
independence is an important property in combining classifiers;
therefore an evaluation of the independence of the classifiers
trained varying the prototype set is calculated using Yule’s
Please cite this article as: L. Nanni, A. Lumini, Particle swarm
doi:10.1016/j.neucom.2008.03.008
Q-statistic [9]. For two classifier Di and Dj the Q-statistic a
posteriori measure is defined as

Qi;k ¼
N11N00

� N01N10

N11N00
þ N01N10

where Nab is the number of instances in the test set, classified
correctly (a ¼ 1) or incorrectly (a ¼ 0) by the classifier Di, and
correctly (b ¼ 1) or incorrectly (b ¼ 0) by the classifier Dj. Q varies
between –1 and 1; Qi,j ¼ 0 for statistically independent classifiers.
Classifiers that tend to recognize the same patterns correctly will
have Q40, and those that commit errors on different patterns will
have Qo0. In Table 5 the average Q-statistic among the classifiers
in PSO(5) is reported: these tests show that where PSO(5) permits
obtaining a pool of ‘‘enough independent’’ classifiers (e.g. in HIV,
IO) there is a higher performance improvement with respect to
the stand-alone approach (PSO(1), see Table 3).
3.2. Comparison with LPD

In this section a comparison between our PSO approach and
LPD [10], one of the most recent state-of-the-art method for
prototype reduction, is performed. Where not explicitly stated the
number of the training patterns selected as starting prototypes for
LPD is set to K ¼ 5% of the dimensionality T of the training set (as
in [10]). Please note that LPD is based on the simultaneous search
of a reduced set of prototypes and a suitable local metric for these
prototypes, while our method does not search a local metric since
it is based on the simple Euclidean distance.

In order to make the comparison fair also for PSO(5), which is
an ensemble, a modified version of LPD is also evaluated. The
ensemble, named LPD(N), is obtained by combining the N vote
rule LPD classifiers, each trained on a different prototype set (from
different executions of LPD with new random initializations). In
Table 6 the results of the comparison in terms of classification
error are reported, showing that for all the tested problems PSO(5)
outperforms the other classifiers. Moreover it is clear that the use
of an ensemble allows both methods to improve the performance.

Finally, we test the importance of the cardinality K of the set of
prototypes: In Table 7 we compare the performance obtained with
optimization for prototype reduction, Neurocomputing (2008),

dx.doi.org/10.1016/j.neucom.2008.03.008


ARTICLE IN PRESS

Table 7
Classification error (standard deviation) obtained varying the value of K

Dataset PSO(5) W-PSO(5) LPD(5)

K ¼ 0.05T K ¼ 0.025T K ¼ 0.05T K ¼ 0.025T K ¼ 0.05T K ¼ 0.025T

IO 10.6 (2.0) 10.9 (2.2) 8.4 (1.9) 8.4 (1.9) 10.8 (2.0) 12.2 (2.2)

HEART 16.0 (1.7) 14.9 (1.5) 17.0 (2.0) 16.0 (1.9) 17.0 (3.1) 16.0 (3.0)

PIMA 24.9 (0.6) 25.1 (0.6) 25.2 (0.8) 25.0 (0.8) 26.4 (1.0) 25.2 (1.0)

BR 3.4 (0.6) 3.6 (0.7) 3.7 (0.9) 3.6 (0.9) 3.5 (0.9) 3.6 (1.1)

WINE 4.0 (0.8) 4.0 (0.8) 4.4 (1.0) 4.5 (1.0) 4.5 (1.5) 4.0 (1.4)

HIV 13.1 (3.0) 12.4 (2.9) 11.3 (3) 11.0 (2.8) 18.3 (2.1) 20.6 (2.5)

SPECTF 20.6 (1.4) 20.0 (1.3) 20.5 (1.5) 21.0 (1.6) 21.0 (3.5) 21.5 (3.2)

Bold results are the best results for each dataset.

Table 8
Classification error (standard deviation) obtained by several approaches

Dataset PSO(5) LPD(5) NN CNN GA

IO 10.6 (2.0) 10.8 (2.0) 14.1 (1.0) 11.9 (1.1) 15.1 (2.0)

HEART 16.0 (1.7) 17.0 (3.1) 21.6 (2.9) 20.3 (2.6) 22.3 (2.5)

PIMA 24.9 (0.6) 26.4 (1.0) 30.5 (2.9) 31.2 (1.8) 26.2 (0.8)

BR 3.4 (0.6) 3.5 (0.9) 4.4 (0.6) 5.2 (0.6) 4.6 (0.8)

WINE 4.0 (0.8) 4.5 (1.5) 5.3 (1.3) 5.9 (0.5) 4.7 (1.3)

HIV 13.1 (3.0) 18.3 (2.1) 24.5 (3.9) 13.1 (2.2) 17.0 (3.0)

SPECTF 20.6 (1.4) 21.0 (3.5) 30.4 (2.9) 26.5 (3.1) 25.0 (3.0)

WSR test – WIN WIN WIN WIN

Training time, PIMA (s) 15 250 – 2.6 300

Test time, PIMA (s) 0.58�005 0.77�005 1.84�005 2.3�005 0.6�005

In the last three rows: results of the Wilcoxon signed-rank test between PSO(5) and the method reported in column, training and test times in seconds.

Bold results are the best results for each dataset.

L. Nanni, A. Lumini / Neurocomputing ] (]]]]) ]]]–]]] 5
K ¼ 0.05T (default value) and K ¼ 0.025T. In these experiments a
modified version of PSO is also tested, named W-PSO, which,
similarly to LPD, learns a local metric, besides the set of
prototypes. We use exactly the same local metric proposed in
[10]: first the prototype set is learned, then the weights of the
metric are obtained using PSO with objective function the
minimization of the error rate on the training set.

It is interesting to note that using only 2.5% of the training
patterns for generating the reduced set of prototypes, the error
rate obtained by PSO(5) is anyway very low. As W-PSO is
concerned, the low improvement in terms of accuracy does not
justify the augmented complexity of the approach.

3.3. Comparison with other NN-based classifiers

This subsection reports a comparison ofour new method with
other NN-based classifiers. Table 8 reports the error rate and the
standard deviation (in parentheses) obtained by the following
approaches:
�

P
d

PSO(5), the proposed method;

�
 LPD(5), the learning prototype end distance method [10];

�
 NN, the simple 1-NN classifier [4];

�
 CNN, the center-based NN [3] recent NN-based classifier;

�
 GA, a GA [13] for prototype selection;
4 Non optimized MATLAB 7.4 code running on a 2.4 GHz pentium with 2GB

RAM.
The proposed method always presents the lowest error rate of
the tested approaches; moreover, PSO(5) is also stable as
demonstrated by a quite low standard deviation, in particular if
compared with the one of LPD(5) (the best of the remaining
approaches).

The last but two line of Table 8 reports the result of the
statistical Wilcoxon signed-rank test [2] calculated between
PSO(5) and the method reported in column. The null hypothesis
lease cite this article as: L. Nanni, A. Lumini, Particle swarm o
oi:10.1016/j.neucom.2008.03.008
is that there is no difference between the accuracies of the two
classifiers. We reject the null hypothesis (level of significance
0.05) and accept that the two classifiers have significant different
accuracies. From the analysis of the experimental results is clear
the advantage of the proposed approach with respect to the
considered NN methods evaluated in this work it. The results of
the Wilcoxon signed-rank test, which is considered [2] the best
statistical measure to compare classifiers, demonstrate our thesis:
PSO(5) wins against the other tested approaches.

The last two lines of Table 8 report the training and test times4

of the considered approaches on the PIMA dataset; PSO(5)
requires a training time that is obviously higher than a simple
NN classifier; anyway it is much faster than other methods based
on optimization (LPD(5), GA); moreover its test time is the lowest
among the considered methods.

4. Conclusions

The problem addressed in this paper is the prototype reduction
for a NN classifier. We have proposed a method based on PSO for
the optimization of a good set of prototypes with respect to a
given classification problem.

The NN classification has proved useful in obtaining a good
behavior with unbounded number of prototypes; however, in
many practical applications the presence of outliers and the
requirement of reducing computational requirements of the
classifier suggest the need of a prototype reduction in order to
diminish the effect of outliers and the test time. Several works in
the literature confirm that, with a substantial reduction in the
prototype-set size, significant accuracy improvements over con-
ventional, all-prototype NN approaches can be obtained.
ptimization for prototype reduction, Neurocomputing (2008),

dx.doi.org/10.1016/j.neucom.2008.03.008


ARTICLE IN PRESS

L. Nanni, A. Lumini / Neurocomputing ] (]]]]) ]]]–]]]6
We thought that PSO could be particularly suited for prototype
reduction since particle swarms will discover the prototype
positions as they fly within the solution space. In this work we
have introduced an ad-hoc encoding of particles to solve the
prototype reduction problem by PSO, and we have utilized
advantage from the arbitrariness of the PSO initialization to
design an ensemble of classifiers based on several prototype
reduced sets obtained by different PSO executions.

The performance of the proposed algorithm has been evalu-
ated on several UCI datasets and compared with some state-of-
the-art approaches for prototype reduction and classification
based on the NN rule. The reported experiments demonstrate that
the approach named PSO(5) gains the lowest error rate against all
the tested approaches and discover optimal solutions very quickly.
The superiority of the proposed classifier is also revealed by the
results of Wilcoxon signed-rank test.

As future work, we plan to improve the efficiency of our
approach by implementing a feature weighting method Nanni and
Lumini (i.e. a global metric) and/or a better local metric using an
evolutionary method as in [15]. Another possible research
direction concerns the study of an alternative encoding for PSO
that allows optimization of the number of searched prototypes
(which is fixed in the present method).

References

[1] J.C. Bezdek, L. Kuncheva, Nearest prototype classifier designs: an experi-
mental study, Int. J. Intell. Syst. 16 (2001) 1445–1473.

[2] J. Demsar, Statistical comparisons of classifiers over multiple data sets,
J. Mach. Learn. Res. 7 (2006) 1–30.

[3] Q.-B. Gao, Z.-Z. Wang, Center-based nearest neighbour classifier, Pattern
Recognition 40 (1) (2006) 346–349.

[4] P. Hart, The condensed NN rule, IEEE Trans. Inf. Theory 14 (3) (1968) 515–516.
[5] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of

the IEEE International Conference on Neural Networks, Perth, 1995,
pp. 1942–1948.

[6] J. Kennedy, R.C. Eberhart, A new optimizer using particle swarm theory, in:
Proceedings of the Sixth International Symposium on Micro Machine and
Human Science, Nagoya, 1995, pp. 39–43.

[7] J. Kennedy, W.M. Spears, 1998. Matching algorithms to problems: an
experimental test of the particle swarm and some genetic algorithms on
the multimodal problem generator, in: Proceedings of the IEEE International
Conference on Evolutionary Computation, pp. 39–43.
Please cite this article as: L. Nanni, A. Lumini, Particle swarm
doi:10.1016/j.neucom.2008.03.008
[8] T. Kohonen, Self-Organizing Maps, third ed., Springer, New York, 2001.
[9] L.I. Kuncheva, C.J. Whitaker, Measures of diversity in classifier ensembles and

their relationship with the ensemble accuracy, Mach. Learn. 51 (2003)
181–207.

[10] R. Parades, E. Vidal, Learning prototypes and distances: a prototype reduction
technique based on nearest neighbor error minimization, Pattern Recognition
39 (2006) 180–188.

[11] C. Pedreira, Learning vector quantization with training data selection, IEEE
Transactions on Pattern Analysis and Machine Intelligence 18 (1) (2006)
157–162.

[12] J. Ramón Cano, F. Herrera, M. Lozano, On the combination of evolutionary
algorithms and stratified strategies for training set selection in data mining,
Appl. Soft Comput. 6 (2006) 323–332.

[13] J. Ramón Cano, F. Herrera, M. Lozano, Using evolutionary algorithms as
instance selection for data reduction in KDD: an experimental study, IEEE
Trans. Evol. Comput. 7 (6) (2003) 561–575.

[14] T. Rögnvaldsson, L. You, Why neural networks should not be used for HIV-1
protease cleavage site prediction, BioInformatics 20 (11) (2004) 1702–1709.

[15] M.A. Tahir, A. Bouridane, F. Kurugollu, Simultaneous feature selection and
feature weighting using Hybrid tabu search/K-nearest neighbor classifier,
Pattern Recognition Lett. 28 (4) (2007) 438–446.

[16] X. Wang, J. Yang, X. Teng, W. Xia, R. Jensen, Feature selection based on rough
sets and particle swarm optimization, Pattern Recognition Lett. 28 (4) (2007)
459–471.

Loris Nanni received his Master Degree cum laude in
2002 from the University of Bologna, and on April 26,
2006 he received his Ph.D. in Computer Engineering at
DEIS, University of Bologna. His research interests
include pattern recognition and biometric systems
(fingerprint classification and recognition, signature
verification, face recognition).
Alessandra Lumini received a degree in Computer
Science from the University of Bologna, Italy, on March
26, 1996. In 1998 she started her Ph.D. studies at DEIS,
University of Bologna and in 2001 she received her
Ph.D. degree for her work on ‘‘Image Databases’’. Now
she is an Associate Researcher at University of Bologna.
She is a member of the BIAS Research Group at the
Department of Computer Science of the University of
Bologna (Cesena). She is interested in biometric
systems (particularly fingerprint classification), multi-
dimensional data structures, digital image watermark-
ing and image generation.
optimization for prototype reduction, Neurocomputing (2008),

dx.doi.org/10.1016/j.neucom.2008.03.008

	Particle swarm optimization for prototype reduction
	Introduction
	PSO for prototype reduction
	An introduction to PSO
	System overview

	Experiments
	Internal evaluation
	Comparison with LPD
	Comparison with other NN-based classifiers

	Conclusions
	References


