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Abstract—When symbolic AI approaches are applied to handle continuous valued attributes, there is a requirement to transform the

continuous attribute values to symbolic data. In this paper, a novel distribution-index-based discretizer is proposed for such a

transformation. Based on definitions of dichotomic entropy and a compound distributional index, a simple criterion is applied to

discretize continuous attributes adaptively. The dichotomic entropy indicates the homogeneity degree of the decision value distribution,

and is applied to determine the best splitting point. The compound distributional index combines both the homogeneity degrees of

attribute value distributions and the decision value distribution, and is applied to determine which interval should be split further; thus, a

potentially improved solution of the discretization problem can be found efficiently. Based on multiple reducts in rough set theory, a

multiknowledge approach can attain high decision accuracy for information systems with a large number of attributes and missing

values. In this paper, our discretizer is combined with the multiknowledge approach to further improve decision accuracy for

information systems with continuous attributes. Experimental results on benchmark data sets show that the new discretizer can

improve not only the multiknowledge approach, but also the naı̈ve Bayes classifier and the C5.0 tree.

Index Terms—Data mining, machine learning, information theory, decision support.
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1 INTRODUCTION

IN general, machine learning or data mining can be
regarded as a search for a good mapping from an input

space (or condition space) to an output space (or decision
space). The input and output spaces can be represented by
variables with continuous numeric values or sets with
symbolic data or nominal data. Particular machine learning
approaches often prefer particular data types. For example,
decision tree learning, rough set theory, evidence theory,
and the Bayesian classifier are good at dealing with
symbolic data. Neural networks, fuzzy set theory, support
vector machines, and the kNN (k-Nearest-Neighbor)
approaches are more suited to numeric data. In the real
world, mixed data types are found. For machine learning or
knowledge discovery in multiple databases [1], mixed data
types cannot be avoided. If a machine learning approach
with a numeric data preference is applied, the data must be
transformed to a numeric type. If a machine learning
approach with a symbolic data preference is applied, the
data should be transformed to symbolic data or discretized
values. These transformations may seriously affect the
decision accuracy and the quality of the extracted knowl-
edge. In addition, most data preprocessing approaches also
have their own preferences for data types. Data type
transformation is therefore one of the most critical aspects
in data preparation for machine learning. This paper

focuses only on the transformation from continuous
numeric data to symbolic data by means of a continuous
attribute discretizer. Since finding the best solution for
discretization of continuous attributes is an NP-hard
problem, many approaches have been proposed to obtain
a good solution for application to real-world data sets. The
approaches are always classified into two classes i.e.,
unsupervised and supervised discretizers. If a discretizer
uses only condition attributes without the decision attri-
bute, it is called an unsupervised discretizer. Examples are
the equal interval discretizer and the equal frequency
discretizer. If a discretizer uses both condition attributes
and the decision attribute, it is called a supervised
discretizer. In order to avoid searching all permutations
and combinations of possible partitions, different heuristic
approaches have been proposed, for example, approaches
based on information entropy [2], [3], [4], the statistical
�2 test [5], [6], and probability [7]. Two alternative
strategies (bottom-up and top-down) are available to split
a continuous attribute into several intervals. The Chimerge
method [6] is a typical example of using a bottom-up
strategy. This algorithm places the real values to its own
intervals and then merges adjacent intervals by a measure
of the expected independence based on the �2 test. The
approach presented in [7] is a typical example of using a
top-down strategy. In this algorithm, a continuous attribute
is split into two intervals using Bayesian probability, and
then the two intervals can be split again by analogy until a
specific criterion is satisfied. The criterion or evaluation of
such partitioning is a critical issue to obtain a good solution
for discretization of continuous attributes. Traditionally,
information entropy, the �2 test or probability are used to
construct the criterion. For example, in [4], the entropy gain
criterion was used as heuristic information, and the
Minimal Description Length Principle (MDLP) was applied
to determine a stopping criterion for the recursive
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discretization strategy. Dougherty et al. [2] have presented
a very good survey and references for most approaches
proposed before 1995. These approaches have been widely
applied in the symbolic AI and data mining domains.
However, many problems have not yet been satisfactorily
solved. In order to avoid very thin partitioning in
Chimerge, the FUSINTER method [5] used a bottom-up
strategy to find the optimal partition based on a measure
sensitive to the sample size. The results of �2-based
approaches have ignored conflicting cases existing in the
data set, and a significant value for the threshold was not
initially available for different data sets. The threshold was
always given after some tests were performed on the
training data set. A modified Chimerge algorithm [8] was
proposed as a completely automated discretization method.
However, compared with the C4.5 and MDLP-based
discretization algorithm [4], the modified Chimerge algo-
rithm has no significant performance difference in terms of
predictive accuracy. Furthermore, for a large data set, it
generates a large tree compared with those generated with
C4.5. Recently, the CAIM algorithm [3], which is based on
class attribute interdependence, was proposed to obtain a
continuous attribute discretization with the smallest num-
ber of intervals. This is one aspect of evaluating a set of
intervals. It is worthwhile to further consider how a good
evaluation can be made. For example, in [9], the stability of
the continuous value discretization was proposed to
evaluate a set of discretized intervals and extracted rules.
Measures of the stability are based on a probability density
function for each interval. These measures of stability have
been applied to evaluate the results of current discretizers
and rules extracted using rough set theory, but they have
not yet been applied to develop a discretizer.

Current approaches are thus based on a single property
(information entropy, �2 test or probability) of an instance
information system. The improvements obtained in deci-
sion-making accuracy with these approaches are therefore
limited. Additionally, complicated evaluation criteria may
result in high computational complexities. Therefore, we
propose a Distribution-Index-Based Discretizer (DIBD) to
solve the discretization problem. In the DIBD, we take
account of the natural distribution of data values. Based on
a combination of entropy and homogeneity degrees of the
value distribution and the decision value distribution, a
dichotomic entropy is defined and applied to the DIBD to
determine the best splitting point within an interval. A value
distribution index and a decision distribution index are defined
to create a compound distributional index. The compound
distributional index for an interval always decreases when a
large interval is split into two small intervals. Based on a
compound decrement of the compound distributional index, our
Top-Down Optimal Strategy (TDOS) is proposed to find a
set of optimal intervals. The compound decrement is regarded
as good for evaluating a splitting operation instead of
evaluating intervals as in traditional approaches. This makes
TDOS very different from a traditional top-down strategy
based on binary entropy [4], [13]. The DIBD can adaptively
discretize any continuous attribute according to simple
adaptive rules based on minimal dichotomic entropy and
maximal compound decrement. Based on this approach, a
value area with high occurrence and high homogeneity
degree is split into small intervals; a value area with low
occurrence and low homogeneity degree is split into large
intervals. The DIBD is also combined with the multi-
knowledge approach [10] so that a higher decision making

accuracy can be reached. The experiments show that the
DIBD works very efficiently, and can share statistical
information with the multiknowledge approach and the
well-known naı̈ve Bayes classifier. Additionally, the dis-
cretizer can also be applied for use in other symbolic
AI approaches to discretize continuous attributes.

The remainder of the paper is organized as follows: A
representation of value distribution is introduced in
Section 2. In Section 3, dichotomic entropy, compound
distributional index, and adaptive rules are defined, and an
example is presented to illustrate the algorithm in the DIBD.
Experimental results and analysis, and details of the
integration of the DIBD with the multiknowledge approach
are given in Section 4. Section 5 concludes the paper.

2 REPRESENTATION OF VALUE DISTRIBUTION

Following notations in [10], [11], [12], let H ¼< U;A >
represent an information system, where

U ¼ fo1; o2; . . . ; oi; . . . ; ong

is a finite nonempty set, called an object space or
universe, and oi is called an object. Each object has a
finite nonempty set of attributes A ¼ fa1; a2; . . . ai . . . ; amg,
where m is the number of attributes. An instance
information system is defined to distinguish an information
system with decision attributes from a general informa-
tion system. An instance is defined to distinguish an
object with decision attributes from general objects. Let
I ¼< U;A [D > represent an instance information system,
where U ¼ fu1; u2; . . . ; ui; . . . ; ung is a finite nonempty set,
called an instance space or universe, where ui is called an
instance in U , and n is the number of instances. Each
instance has a set of attributes A and decision attributes
D. D is a nonempty set of decision attributes or class
attributes, and A \D ¼ �.

Let a 2 A and Va represent a domain of attribute a. There
is a mapping aðuÞ : U ! Va from U into the domain Va. The
mapping aðuÞ represents the value of attribute a of
instance u. For a given instance space U , domain Va of
attribute a is represented by the following expression:

Va ¼ fdðuÞ : u 2 Ug for a 2 A: ð1Þ

The domain of a decision attribute is denoted by

Va ¼ fdðuÞ : u 2 Ug for d 2 D: ð2Þ

The condition vector space, which is generated from
attribute domain Va, is denoted by

V�A ¼ �
a2A

Va ¼ Va1 � Va2 � . . .� VajAj;

jV�Aj ¼
YjAj
i¼1

jVai j;
ð3Þ

where jV�Aj is the size of the condition vector space.
The decision vector space, which is generated from the

decision domain Vd, is denoted by

V�D ¼ �
d2D

Vd ¼ Vd1 � Vd2 � . . .� VdjDj;

jV�Dj ¼
YjDj
i¼1

jVdi j;
ð4Þ
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where jV�Dj is the size of the decision vector space. A

conjunction of the values of condition attributes for an

instance corresponding to a condition vector in the condition

vector space is denoted by

~AðuÞ ¼ ða1ðuÞ; a2ðuÞ; . . . ; ajAjðuÞÞ : ð5Þ

Let AU represent a set of condition vectors which exist in the

instance information system.

AU ¼ f~AðuÞ : u 2 Ug; ð6Þ

where AU is a set of condition vectors without duplicated

vectors. If jAU j ¼ jV�Aj, the system is called a complete

instance system.
In the real world, training sets for decision making or in a

classification task are rarely complete instance systems. In

order to illustrate algorithms in this paper, Table 1 is taken

as an example of an instance information system. In this

instance information system, there are four attributes

A ¼ fa1; a2; a3; a4g, 12 instances U ¼ fu1; u2; . . . ; u12g, and

one decision attribute with two values Vd ¼ fþ;�g. The

value domains for each attribute are as follows:

Va1
¼ f1; 2; 3; 4; 5; 6; 7g; jVa1

j ¼ 7:

Va2
¼ f1; 2; 3; 4g; jVa2

j ¼ 4:

Va3
¼ f1; 2; 3g; jVa3

j ¼ 3:

Va4
¼ f1; 2; 3; 4g; jVa4

j ¼ 4:

The size of the condition vector space:

jV�Aj ¼ 7� 4� 3� 4 ¼ 336:

The number of condition vectors appearing in the table:

jAUj ¼ 12. So, 324 possible condition vectors (or conjunc-

tions of attribute values) did not appear in Table 1. Thus,

Table 1 is not a complete instance information system, as

there are 324 unseen instances. Machine learning or data

mining approaches can be applied to extract knowledge

from such an incomplete training set and make decisions

for all instances, including the 324 unseen instances. The

multiknowledge approach [10] was proposed to make

decisions with high accuracy for unseen instances.

As the multiknowledge approach is good at dealing with
symbolic data, it has the potential to further improve
decision-making accuracy when combined with a contin-
uous attribute discretizer. When the multiknowledge
approach or the naı̈ve Bayes classifier are combined for
decision making, a high decision accuracy for instances
with missing values can be obtained [10]. A statistical
distribution is already used in the multiknowledge ap-
proach. In order to avoid increasing computational cost, it is
proposed that the DIBD shares this statistical distribution.
The statistical distribution is represented by a value
statistical distribution table. In order to obtain the statistical
table, different numeric summary variables are defined as
follows.

Suppose that there is an instance information system
I ¼< U;A [D > . Let Ndk represent the number of in-
stances with decision value dk

Ndk ¼ jfu : dðuÞ ¼ dk for all u 2 U gj : ð7Þ

Let Ndk;ai;vx represent the number of instances with
decision value dk and attribute value vx 2 Vai .

Ndk;ai;vx ¼ jfu : dðuÞ ¼ dk and aiðuÞ ¼ vx for all u 2 U gj:
ð8Þ

Let Nai;vx represent the number of instances for all
decisions dx 2 Vd and attribute value vx 2 Vai .

Nai;vx ¼ jfu : aiðuÞ ¼ vx for all u 2 U gj: ð9Þ

We call a table showing such summary variables a value
statistical distribution. For example, the value statistical
distribution for Table 1 is shown in Table 2. The number
Ndk;ai;vx is a basic value distribution number. Based on the
number Ndk;ai;vx , the numbers Ndk and Nai;vx can be
calculated by the following expressions:

Ndk ¼
X
vx2Vai

Ndk;ai;vx for any ai: ð10Þ

Nai;vx ¼
X
dk2Vd

Ndk;ai;vx : ð11Þ

Each value distribution number defined here is similar in
concept to a histogram and a binning transformation is
applied. A histogram is usually based on bins with equal
sizes of intervals, whereas the value distribution number is
based on the sampled values. The value interval is regarded
as a range from (the value—lower neighbor value)/2 to (the
upper neighbor value—the value)/2 (see reference [7]), for
example, value range of bin v4 is ½ðv4 � v3Þ=2; ðv5 � v4Þ=2�.
So, different values correspond to bins with different sizes
of value interval. The statistical distribution in Table 2 can
be shared with the naı̈ve Bayes classifier. Based on the
numbers in the table, the modified naı̈ve Bayes classifier
[10] can be written as follows:

dmp ¼ arg max
dk2Vd

Ndk

jUj
Y
i

Ndk;ai;aiðuÞ þ � � jU j
Ndk þ � � jUj � jVaj

; ð12Þ

where � is a small constant number [10] (a typical value of
� ¼ 0:02 is chosen for our experiments).
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3 DISTRIBUTIONAL-INDEX-BASED DISCRETIZER

In order to discretize a continuous attribute, the number of

intervals and the borders of intervals have to be deter-

mined. If all numbers and borders of intervals are searched

to get the “best” discretization solution, the computational

complexity is excessive, so a Top-Down Optimal Strategy

(TDOS) is applied to split an attribute into several

nonidentical intervals with different splitting points or

borders. The TDOS is similar to that in [7], but distributional

index concepts are applied here instead of Bayesian

probability. A compound decrement is applied to evaluate a

splitting operation instead of a set of intervals.

3.1 Definition of Dichotomic Entropy

Our approach for DIBD suggests that an interval is split by

a border value (or splitting point) and then the border is

adjusted to reach a minimum of the dichotomic entropy. Let

vx 2 Vai be a value of continuous attribute ai and let Ndk;ai;vx

represent the number of instances with decision value dk 2
Vd and value vx for attribute ai. Suppose that ai is split by

border value vbd (i.e., a splitting point). The number of

instances with decision dk and value aiðuÞ � vbd is repre-

sented by Ndk;vbd;left.

Ndk;vbd;left ¼
X
vx�vbd

Ndk;ai;vx : ð13Þ

The number of instances with value aiðuÞ � vbd for all

decisions dk 2 Vd is represented by Nai;vbd;left.

Nai;vbd;left ¼
X
dk2Vd

Ndk;vbd;left: ð14Þ

The number of instances with decision dk and value

aiðuÞ > vbd is represented by Ndk;vbd;right.

Ndk;vbd;right ¼
X
vx>vbd

Ndk;ai;vx : ð15Þ

The number of instances with value aiðuÞ > vbd for all

decision dk 2 Vd is represented by Nai;vbd;right.

Nai;vbd;right ¼
X
dk2Vd

Ndk;vbd;right: ð16Þ

In order to indicate instance number and homogeneity
degree over a decision space within an attribute value
interval, a decision distributional index is defined as follows:

Edðvstart ! vendÞ ¼
X
dk2Vd

�Ndk;vstart!vend log2

Ndk;vstart!vend
Nai;vstart!vend

� �
:

ð17Þ

Here, Ndk;vstart!vend represents the number of instances
with decision value dk and attribute value between vstart
and vend, and Nai;vstart!vend represents the number of instances
with attribute value from vstart to vend for all decision values.

Now, clearly Edðvstart ! vendÞ=Nai;vstart!vend is Shannon’s
entropy in the interval for the decision space. Actually,
Ndk;vstart!vend=Nai;vstart!vend can be regarded as a probability.
The decision distributional index is equal to the product of
Nai;vstart!vend and the Shannon’s entropy. The decision dis-
tributional index thus depends not only on the entropy but
also on the number of instances falling in the interval. If
there are two intervals with the same distribution and a
different number of instances, entropy and probability
cannot identify them. In addition, applying the numbers
Nai;vstart!vend and Ndk;vstart!vend instead of probabilities as
variables for the equation, Edðvstart ! vendÞ can be imple-
mented easily in online learning paradigms for dynamic
environments, i.e., the numbers can be incremented accord-
ing to a single value of a new instance. Suppose that the
new instance u13 ¼ ða1 ¼ 7; a2 ¼ 3; a3 ¼ 3; a4 ¼ 1; d ¼ 0�0Þ is
added to the instance information system in Table 1. Only
five numbers in Table 2 need to be updated as follows:

Nd�;a1;vx7
¼ Nd�;a1;vx7

þ 1 ¼ 2þ 1 ¼ 3:

Nd�;a2;vx3
¼ Nd�;a2;vx3

þ 1 ¼ 2þ 1 ¼ 3:

Nd�;a3;vx3
¼ Nd�;a3;vx3

þ 1 ¼ 4þ 1 ¼ 5:

Nd�;a4;vx1
¼ Nd�;a4;vx1

þ 1 ¼ 2þ 1 ¼ 3:

Nd� ¼ Nd� þ 1 ¼ 6þ 1 ¼ 7:

If the probabilities instead of the numbers are stored, an
update of the probabilities requires all existing instances
and the new instance. We have called Edðvstart ! vendÞ the
decision distributional index in order to indicate the difference
from the Shannon entropy. Note that

Nai;vstart!vend ¼
X
dk2Vd

Ndk;vstart!vend :
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Therefore, the larger the number Nai;vstart!vend of instances

within the interval, the larger the index. For example,

1. Consider a homogeneous distribution. Nai;vstart!vend ¼
2 ; Nd�;vstart!vend ¼ 1; Ndþ;vstart!vend ¼ 1. We have

Edðvstart ! vendÞ ¼ �1� log2ð1=2Þ � 1� log2ð1=2Þ ¼ 2:

2. Consider the same homogeneous distribution with a
larger number of occurrence instances

Nai;vstart!vend ¼ 4; Nd�;vstart!vend ¼ 2;

and Ndþ;vstart!vend ¼ 2. We have

Edðvstart ! vendÞ ¼ �2� log2ð2=4Þ � 2� log2ð2=4Þ ¼ 4:

Note that cases 1 and 2 are the same homo-

geneous distribution, but the decision distributional

index for the two cases is different. Case 2 has a high

decision distributional index because there are more

instances in the interval. Shannon’s entropy or

probability cannot identify two different cases.
3. Consider a low homogeneous distribution with the

same number of occurrence as that in case 2, i.e.,
Nai;vstart!vend ¼ 4. Suppose that the distribution is
represented by Nd�;vstart!vend ¼ 1 and Ndþ;vstart!vend ¼ 3.

Edðvstart ! vendÞ ¼ �1� log2ð1=4Þ � 3� log2ð3=4Þ
¼ 3:25:

Cases 2 and 3 have the same occurrence number

within their interval, but the index values are

different. The index for case 3 is less than that in

case 2 because case 3 has low homogeneous

distribution. The more homogeneous the instance

distribution over decision space, the larger the index.
4. Consider the same low homogeneous distribution

with a larger occurrence number than that in case 3,
i.e.,

Nai;vstart!vend ¼ 8; Nd�;vstart!vend ¼ 2;Ndþ;vstart!vend ¼ 6;

Edðvstart ! vendÞ ¼ �2� log2ð2=8Þ � 6� log2ð6=8Þ
¼ 6:49:

Cases 3 and 4 have the same distribution, but the

Edðvstart ! vendÞ for case 4 is larger than that for case 3. If

there are two intervals corresponding to cases 3 and 4,

respectively, it is reasonable to select the interval corre-

sponding to case 4 to further splitting. Shannon’s entropy

and probability cannot differentiate between two cases.
Based on the definition of decision distributional index, two

decision distributional indexes can be obtained when an

interval is split. A left decision distributional index can be

represented by the following expression.

Eleftðvx � vbdÞ ¼
X
dk2Vd

�Ndk;vbd;left log2

Ndk;vbd;left

Nai;vbd;left

� �
: ð18Þ

A right decision distributional index can be represented

by the following expression:

Erightðvx > vbdÞ ¼
X
dk2Vd
�Ndk;vbd;right log2

Ndk;vbd;right

Nai;vbd;right

� �
: ð19Þ

A dichotomic entropy for splitting point vbd is defined as

EðvbdÞ ¼
Eleftðvx � vbdÞ
Nai;vstart!vend

þ Erightðvx > vbdÞ
Nai;vstart!vend

; ð20Þ

where Nai;vstart!vend is the total number of instances in the
interval. According to the machine learning theory [2], [3],
[4], [13], [14], the smaller the entropy, the better the attribute
discretization. Applying (20), a border value vborder can be
obtained by minimizing dichotomic entropy.

vborder ¼ arg min
vbd2Vai

EðvbdÞ

¼ arg min
vbd2Vai

Eleftðvx � vbdÞ
Nai;vstart!vend

þErightðvx > vbdÞ
Nai;vstart!vend

� �
:
ð21Þ

In other words, the minimal entropy can be obtained if
the value vborder is applied to split the attribute into two
intervals.

3.2 Algorithm Development of
Distributional-Index-Based Discretizier (DIBD)

Applying (21), a continuous attribute can be split into two
intervals. The next step is to determine which interval
should be split further. Although the decision distributional
index can give some information for selecting an interval to
split further, it is not enough to construct a good index for
the top-down optimal strategy. Therefore, a value distribu-
tional index is defined as follows:

Evðvstart ! vendÞ ¼
X

vstart�vx<vend

X
dk2Vd

Ndk;ai;vx log2

Ndk;ai;vx

Nai;vx

� �
:

ð22Þ

Clearly, Evðvstart ! vendÞ is small if the distribution varies
very frequently with value vx. Evðvstart ! vendÞ is large if the
distribution varies very slowly with value vx; in other
words, the distribution over value vx is homogeneous. In
principle, an interval with a high homogeneous decision
distribution, a low homogeneous value distribution, and a
large number of instances should be split. Based on the
difference of Edðvstart ! vendÞ � Evðvstart ! vendÞ, a com-
pound distributional index is defined as follows:

Ecomðvstart ! vendÞ ¼
Edðvstart ! vendÞ �Evðvstart ! vendÞ

jUj ;

ð23Þ

where jUj is the total number of instances in the instance
information system. As jU j is a constant for an instance
information system, dividing by jU j ensures that the value
of Ecom is within [0,1] and makes it possible to get a
threshold that is not highly sensitive to different data sets.
The Ed and Ev for each interval always become small when
an interval is split into two smaller intervals. Therefore, Ecom
for each interval always becomes small when an interval is
split. This makes it possible to calculate new Ecom only for
split intervals and thus makes TDOS run very efficiently.
This is very different from a traditional top-down strategy.
The compound distributional index is related to the difference
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between the decision distribution and the value distribution.

Mathematically, it is easy to prove that the maximal value of

Evðvstart ! vendÞ is equal to the decision distributional index

Edðvstart ! vendÞ for the same interval. According to the

concept of entropy, the maximal value of Evðvstart ! vendÞ
corresponds to the most homogeneous distribution, i.e.,

Ndk;ai;vx

Nai;vx

¼ Ndk;vstart!vend
Nai;vstart!vend

for vx within vstart ! vend:

From (22), the maximal value can be rewritten as follows:

Ev;maxðvstart ! vendÞ ¼
X
dk2Vd

� log2

Ndk;vstart!vend
Nai;vstart!vend

� �
X

vstart�vx<vend
Ndk;ai;vx

) Ev;maxðvstart ! vendÞ ¼
X
dk2Vd

�Ndk;vstart!vend

log2

Ndk;vstart!vend
Nai;vstart!vend

� �
:

Therefore, the minimal compound distributional index is 0.

Ecomðvstart ! vendÞmin ¼ 0: ð24Þ

The value distributional index in (22) is the entropy of the

instance distribution over the value interval and decision

space. The minimum of the value distributional index is

zero (i.e., Evðvstart ! vendÞ ¼ 0), corresponding to the state

with the most inhomogeneous value number distribution

over the interval. Hence, we have the maximum of the

compound distributional index as follows:

Ecommaxðvstart ! vendÞ ¼
1

jU jEdðvstart ! vendÞ

¼ 1

jUj
X
dk2Vd

�Ndk;vstart!vend log2

Ndk;vstart!vend
Nai;vstart!vend

� �
;

ð25Þ

where Nai;vstart!vend ¼
P

dk2Vd Ndk;ai;vstart!vend .
The equation can be rewritten as follows:

Ecommax ¼
Nai;vstart!vend
jU j

X
dk2Vd

�Ndk;vstart!vend
Nai;vstart!vend

log2

Ndk;vstart!vend
Nai;vstart!vend

� �
;

ð26Þ

where
P

dk2Vd �
Ndk;vstart!vend
Nai;vstart!vend

log2
Ndk;vstart!vend
Nai;vstart!vend

� �
is Shannon’s en-

tropy. If jVdj ¼ 2, the maximal value is 1. If the interval

covers the whole value domain of the attribute ai,

Nai;vstart!vend ¼ jU j. Ecommax ¼ 1. If the attribute is split into

several intervals, the Ecom for the split interval is less than 1.

The more intervals are split, the smaller is the value of Ecom

for each interval. The value of Ecom for an interval is a real

number within [0,1]. It is clear that Ecom for an interval is

dependent on the instance number within the interval. If an

interval is small, i.e., Nai;vstart!vend is small, the compound

distributional index Ecom is small. From (23), we have

Ecomðvstart!vendÞ ¼

1

jUj
X
dk2Vd
�Ndk;vstart!vend log2

Ndk;vstart!vend
Nai;vstart!vend

� � 

�
X

vstart�vx<vend

X
dk2Vd
�Ndk;ai;vx log2

Ndk;ai;vx

Nai;vx

� �!
:

Let Cdk ¼ � log2
Ndk;vstart!vend
Nai;vstart!vend

� �
and Cvx ¼ � log2

Ndk;ai;vx

Nai;vx

� �
.

We have

Ecomðvstart ! vendÞ ¼
1

jU j
X
dk2Vd

Ndk;vstart!vendCdk�
 

X
vstart�vx<vend

X
dk2Vd

Ndk;ai;vxCvx

!
:

As Cdk depends only on the decision distribution and
Cvx depends only on the value distribution, and
Ndk;vstart!vend ¼

P
vstartvx<vend

Ndk;ai;vx , we have

Ecomðvstart ! vendÞ ¼
1

jU j
X
dk2Vd

X
vstart�vx<vend

Ndk;ai;vxðCdk � CvxÞ:

Putting the interval instance number Nai;vstart!vend ¼P
dk2Vd

P
vstartvx<vend

Ndk;ai;vx into the expression, we have

Ecomðvstart ! vendÞ ¼
Nai;vstart!vend
jU j

X
dk2Vd

X
vstart�vx<vend

Ndk;ai;vx

Nai;vstart!vend
ðCdk � CvxÞ;

ð27Þ

where

X
dk2Vd

X
vstartvx<vend

Ndk;ai;vx

Nai;vstart!vend
ðCdk � CvxÞ

is the average difference between the decision distributional
index and value distributional index. From this equation, it
is clear that the compound index is dependent on the
instance number Nai;vstart!vend and the average difference of
the two distributions (decision distributional index and value
distributional index). If the average difference between the
decision distribution and the value distribution is large,
Ecomðvstart ! vendÞ is large, and the interval should be split
further. If there are a many of instances (or sampled values)
within the interval (i.e., Nai;vstart!vend is large), the value of
Ecomðvstart ! vendÞ is large, and then the interval should be
split further. Value Ecomðvstart ! vendÞ is thus a compound
index for identifying an interval that should be split.
Therefore, this compound distributional index is applied as a
criterion to determine whether an interval is to be split
further. Compound distributional indexes are calculated for all
split intervals. When an interval is split into two new
intervals, the maximal compound distributional index in
two intervals will be reduced because the value occurrence
number in the new interval becomes smaller. Let
Ecomðvstart ! vendÞ represent the compound distributional
index for the interval from vstart to vend, Ecomðvstart ! vsplitÞ
and Ecomðvsplit ! vendÞ represent two indexes for two new
intervals. A compound decrement due to this splitting is
defined as
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�Ecomðvstart! vendÞ ¼ Ecomðvstart! vendÞfEcomðvstart! vendÞ
�max½Ecomðvstart ! vsplitÞ; Ecomðvsplit ! vendÞ�g:

ð28Þ

�Ecomðvstart ! vendÞ is a product of the index Ecomðvstart !
vendÞ and its decrement due to splitting this interval. All the
split intervals can be indicated with compound decrement
�Ecom. The interval with the largest �Ecomðvstart ! vendÞ is

selected to split further. In our experiments, the DIBD stops
splitting when �Ecomðvstart ! vendÞ is less than a threshold

(0.001), or intervals reaches a desired number. It was found
in practice that the threshold is not sensitive to different

data sets and a maximum of five intervals are sufficient for
reaching high decision accuracy in most cases. So, the

maximal number of intervals is set to 5 in our experiments.
Generally, the DIBD results in only two, three, or four

intervals, as it is adaptive to data sets under the control of
the threshold. It is thus very different from current

approaches. For example, the discretization of attribute a1

in Table 1 is illustrated in Fig. 1. Note that attribute a1 is

regarded as a continuous attribute. For simplicity, only
seven values are sampled. In order to avoid calculating

log(0), all distribution numbers are increased by a small
number 0.0001, which makes programming easier.

In this case, it can be seen that the compound decrement
�Ecomðvstart ! vendÞ decreases from 0.04 to 0 as the number
of occurrences within an interval becomes smaller in the
splitting procedure. The largest compound decrement
indicates the interval that should be split. The borders at
the end of the procedure of discretization are very reason-
able. vx5 is the same as vx6 fully supporting the decision
d1 ¼ 0þ0 . They have been integrated in a single interval.
Value vx1 does not support a specific decision, and the same
is true for value vx2. They have been integrated in another
single interval. As this discretizer is based on the distribu-
tional indexes, it is called the DIBD (Distributional-Index-
Based Discretizer). The formal algorithm for the DIBD is
summarized as follows.

3.3 The DIBD Algorithm

These are three main steps:

1. Calculate the distribution numbers according to (7)-

(11) and get the distribution numbers over the

sampled values and over the decision space (an

example is shown in Table 2).

2. Calculate dichotomic entropy and determine the
splitting point

2.1. Set initial values.
Interval control number n ¼ 0;
vstart ¼ vmin; vend ¼ vmax;
Splitting point sequence list S list ¼ ½vmin; vmax�.

2.2. Determine the splitting point.

vbd n ¼ arg min
vbd2Vai

EðvbdÞ

¼ arg min
vbd2Vai

Eleftðvx � vbdÞ
Nai;vstart!vend

þ
�

Erightðvx > vbdÞ
Nai;vstart!vend

�
:

2.3. Add the splitting point into the splitting point
sequence list.
S list ¼ ½vmin; vborder n; vmax�.

3. Select an interval for splitting further.

3.1 Calculate compound distributional index and
compound decrement.

Ecomðvstart ! vendÞ ¼
Edðvstart ! vendÞ � Evðvstart ! vendÞ

jU j :

�Ecomðvstart ! vendÞ ¼ Ecomðvstart ! vendÞ
fEcomðvstart ! vendÞ �max½Ecomðvstart ! vsplitÞ;

Ecomðvsplit ! vendÞ�g:

3.2 Record compound decrement for each interval.

Dec list ¼½�Ecomðvmin ! vbd nÞ;
�Ecomðvbd n ! vmaxÞ�:

3.3 Adaptive rule control.
n ¼ nþ 1.
�Ecom max ¼ max �Ecom in Dec_list.
If �Ecom max < 0:001 then end.
If n >¼ Nmax (the maximal number of intervals)

then end.
3.4 Select the interval corresponding to the maximal

�Ecom max for next splitting, i.e.,
vstart ¼ vstart�with�max; vend ¼ vend�with�max:
Goto 2.2.
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Fig. 1. Procedure for discretization.



The DIBD algorithm contains three parts. The first part is

the calculation of the distribution numbers defined in (7)-

(11). Its time complexity is OðjAj�jUjÞ. Here, jUj is the total

number of instances in an instance information systems and

jAj is the number of attributes. Its distribution numbers can

be used with the multiknowledge approach or the naive

Bayes classifier. The second part is the calculation of the

dichotomic entropy according to (20). Its time complexity is

OðjAj�jVajÞ. The third part is the calculation of the

compound distributional index and compound decrement

according to (23) and (28). Its time complexity is OðjAj�jVajÞ.
Here, jVaj is the number of different sampled values for

attribute a. As jVaj 	 jU j, the computational cost increases

very little in applying the DIBD to the multiknowledge

approach or the naive Bayes classifier.

The efficiency of the algorithm mainly depends on two

key factors—the number of instances and number of

attributes. In order to show the scalability of the algorithm,

a group of data sets with instance numbers [20, 40, . . . , 140,

160, 178] was created by randomly drawing instances from

the Wine data set in the UCI Machine Learning Repository.

These data sets are applied to test the algorithm imple-

mented using Jbuilder 4.5 on a PC with Pentium 4 (1.6GHz

CPU). Discretization times for the data sets are shown in

Fig. 2. It can been seen that the elapsed time of the

algorithm increases linearly with the increase of instance

number. Another group of data sets with different attribute

numbers [1, 2, 3, . . . , 12, 13] is formed by dropping different

attribute numbers from the Wine data set. By using these

data sets to test the algorithm, the curve for the elapsed time

versus attribute number shown in Fig. 3 is obtained. It can

been seen that the elapsed time of the algorithm again

increases linearly with the increase of attribute number.

4 EXPERIMENTAL RESULTS

4.1 Splitting Points and Statistical Distribution

Discretization results for the well-known Iris data set are

shown in Fig. 4. We can very clearly see the relationship

between the statistical distribution and the splitting inter-

vals. The value statistical distribution is visualized using a

histogram. As there are three decision values in the Iris

data, three decision distributions for each attribute are

shown in three histograms, indicated by Nd1;ai;vx ,Nd2;ai;vx ,

and Nd3;ai;vx , respectively. Splitting points are marked with

asterisks. The numbers beneath the asterisks indicate the

splitting order when the DIBD applies the TDOS (top-down

optimal strategy).

In Fig. 4a, the asterisk with number “1” is at x ¼ 9. This

point is determined by the minimal dichotomic entropy (21)

for first splitting. Then, the compound distributional

indexes and compound decrement for two intervals are

calculated according to (23) and (28).
Compound distributional index: Ecomðv1 ! v9Þ ¼ 0;

Ecomðv10 ! v45Þ ¼ 0:53.
Compound decrement:

�Ecomðv1 ! v9Þ ¼ 0; �Ecomðv10 ! v45Þ ¼ 0:25:

So, the interval v10 ! v45 with the largest �Ecom is

selected to split further and the splitting point is found at

x ¼ 24. Two intervals v10 ! v24 and v25 ! v45 replace the

interval v10 ! v45, and three intervals are obtained. The

interval with the largest �Ecom is selected to be split further.

The operation is repeated until the threshold is met or the

maximal number of intervals is reached. All splitting points

obtained are shown in Fig. 4a. It can be seen that values in

the interval v1 ! v9 fully support decision d1. Values in the

interval v28 ! v45 fully support decision d3. Values in the

interval v10 ! v24 almost fully support decision d2. Values

in the interval v25 ! v27 weakly support decision d2 and

strongly support decision d3. A similar situation occurs in

the discretization of A4 shown in Fig. 4b. The value

statistical distributions for A1 and A2 shown in Fig. 4c

and Fig. 4d are more complicated. More splitting points are

required for separating the complicated distributions and

small intervals are obtained. In this case, although the

maximal number of splitting points is set to 5, only three

splitting points are obtained for A3 and A4 as the DIBD

adapts to the data set below the threshold.
Note that the x-axis represents integer labels for sampled

intervals (or bins) in ascending values. For example, the
integer labels for A4 corresponds to the real values shown
in Table 3. The bin is itself adaptive to the sampled values
instead of using equal intervals specified manually by a
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user. The middle value is applied to transfer the integer
labels to real values. For example, splitting point at x ¼ 6 for
A4 is transferred to value ð0:6þ 1:0Þ=2 ¼ 0:8. Transferred to
real values, the splitting points are shown in Table 4.

4.2 Controlling Maximal Interval Numbers

As the TDOS is applied, the maximal number of intervals is

easier to control by DIBD than other current approaches.

Different approaches were applied to the data set from [5].

The results are shown in Fig. 5. Splitting points marked

with asterisks were found using the DIBD. Splitting points

marked with squares were found using MDLPC. Splitting

points marked with triangles were found using Chimerge

with � ¼ 0:05. Splitting points marked with diamonds were

found using FUSINTER.

As the DIBD finds a splitting point for each running step,

the order number under an asterisk in Fig. 5 is the running

step number for obtaining the splitting point. In the DIBD

algorithm, the running step number can be controlled by

both the maximal number of splitting points and a thresh-

old value for compound distribution index. If the maximal

number is set to 4, the DIBD obtained four splitting points

that are the same as those for MDLPC and FUSINTER in

this case. If there is no control for the maximal number of

splitting points, the DIBD gives a very similar result to

Chimerge with � ¼ 0:05.

4.3 Application of DIBD to Multiple Benchmark
Data Sets

The DIBD was applied to improve the multiknowledge
approach [10], [15]. The multiknowledge approach with the

DIBD and without the DIBD was, respectively, applied to a

set of 16 benchmark data sets from the UCI Machine
Learning Repository. The decision accuracies under the ten-

fold cross validation standard are given in column MK in

Table 5. Subcolumn Org lists decision accuracies for the
multiknowledge approach without the discretizer. Subcol-

umn DIBD lists decision accuracies for the multiknowledge

approach with the adaptive discretizer. In order to compare
these with an unsupervised discretizer, subcolumn D5 lists

decision accuracies for the multiknowledge approach with a

5-identical-interval discretizer. Column Att shows attribute
numbers in the data sets. The string “60c60” indicates that

there are 60 attributes and 60 attributes are continuous

attributes. Column N is for instance numbers in the data
sets. The names with “|” indicate that some attribute

values are missing from the data set. The DIBD uses only
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Fig. 4. Attribute discretization for the Iris data set. (a) Splitting points for

A3 in the Iris data. (b) Splitting points for A4 in the Iris data. (c) Splitting

points for A1 in the Iris data. (d) Splitting points for A2 in the Iris data.

TABLE 3
Integer Labels of Attribute A4 Corresponding to Real Values

TABLE 4
Splitting Points for Attributes in the Iris Data



the known values to find a good discretization solution. The
missing values are handled by the multiknowledge
approach [10], decision tree learning, or the Bayes classifier.

The results for the DIBD in Table 5 are obtained under
a maximal number of five intervals. It can be seen that
the decision accuracies for most data sets are improved.
The multiknowledge approach with the DIBD improved
decision accuracies for 14 of the data sets. The DIBD was
also applied to the modified naive Bayes classifier. The
results are shown in the column Bayes. The accuracies are
improved for 15 of the data sets. Although the C5.0 tree
contains a binary discretizer, the decision accuracies are
still improved for 13 of the data sets when the DIBD is
used for data preparation. In order to compare results
with that obtained using 5-identical intervals, the max-
imal number of intervals is set to 5. In fact, different
value distributions require different numbers of intervals

as shown in Section 4.1. This is the reason that the
decision accuracy cannot be improved for some data sets
with complicated distributions for statistical numbers. For
example, the statistical distribution of Attribute 2 in the
Australian data set is shown in Fig. 6. It can be seen that
the value statistical distributions for both Decision 1 and
Decision 2 are very complicated. Therefore, a large
number of intervals is required to improve the decision
accuracy. If the maximal number of intervals is set to 7 in
the DIBD, the accuracies can reach 87.2 percent for the
naive Bayes classifier and 87.9 percent for the MK.

An experiment on different interval numbers has been

performed for the data set Anneal with the modified Bayes

classifier. The results are shown in Table 6. It can be seen

that the decision accuracy increases as the interval number

increases, and reaches maximum at interval number 20. If

the interval number limit is not applied to stop the splitting,

and the splitting is stopped at a compound index threshold

of 0.001, the decision accuracy can reach 95.9 percent. The

decision accuracy for the other data sets can also be

improved by cancelling the interval number limit. For

example, without the interval number limit the accuracy for

the Echocard data set can reach 82.0 percent. As most

symbolic AI approaches will encounter a large number of
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Fig. 5. Comparison of different discretizers.

TABLE 5
Comparable Results for DIBD Discretizer

Fig. 6. Value distribution of attribute 2 in the Australian data set.



rules for an information system with a large number of

intervals, there is a trade-off between the number of

intervals and accuracy. The DIBD algorithm allows a user

to control the maximal number of intervals easily. If one

wants to obtain high accuracy, no limit is placed on the

interval number. If one wants to obtain a compact

information system, a small maximal number of intervals

can be set. Note that the numbers of intervals for the

attributes with simple normal distributions are determined

by the threshold. The maximal number of intervals is only

used for those attributes with informal and complicated

distributions. If one does not want to control the maximal

number of intervals, the following empirical formula can be

used in the algorithm. For a given attribute,

Nmax ¼ roundðN0e
��Þ; ð29Þ

where N0 ¼ 20, and

� ¼ �Ecomðvstart ! vendÞ=Ecomðvstart ! vendÞ:

Each attribute may have its own value of �. The value is
determined by the statistical distribution indexes for the
whole value range of the attribute according to (23) and (28).

Applying (29) to the algorithm in Section 3.2.1, it is not
necessary to specify a limit to the maximal number of
intervals.

4.4 Comparative Evaluation

In order to compare the DIBD with other approaches, the

DIBD results and recently published results are shown in

Table 7. The results for CAIM, and ME (Maximum Entropy)

and IEM (Information Entropy Maximum) were published

in [3]. The results for Chi (Chimerge), MChi (Modified

Chimerge), and MDLPC are published in [8]. The machine

learning approaches used are C4.5, C5.0, CLIP4, naive

Bayes classifier, and MK (Multi-Knowledge). The decision

accuracies are represented by percentages. Based on these

experimental results, it can be seen that a combination of

the DIBD and MK gives the best decision accuracies for the

used data sets. However, many more combinations of

discretizers and machine learning approaches are possible.

An exhaustive comparison is a topic for a further study. As

seen in Table 7, it appears that different data sets prefer

different combinations of discretizer and machine learning

approaches. Applied to the data sets in Table 7, the DIBD

and MK combination is superior to other approaches.

5 CONCLUSION

In this paper, the concept of dichotomic entropy is defined

and it is shown that the minimal dichotomic entropy can be

applied to determine a border value for splitting an interval.

A compound distributional index, which is composed of a

decision distributional index and a value distributional

index, is defined and applied to identify the interval that

should be split during the discretization. Based on these

concepts, a continuous attribute can be split into two

intervals at the border point with minimal dichotomic

entropy, and then the compound decrement is applied to

select an interval to split into further smaller intervals until

the compound decrement meets a general threshold or the

desired maximum number of intervals is reached. The

DIBD was combined with the multiknowledge approach,

the modified naive Bayes classifier, and the C5.0 tree

method. Experimental results on 16 benchmark data sets

show that the average accuracy has been improved at

different rates. The multiknowledge approach and the

modified naive Bayes classifier show greater improvement

than the C5.0 tree. The DIBD can share statistical informa-

tion with the multiknowledge approach and the modified

naive Bayes classifier. Compared to other published results,

the combination of the DIBD and MK gives the best

accuracies for the same data sets. The DIBD is based on

the TDOS strategy and provides a very simple way to allow

a user to control the maximal number of intervals; it

provides a very compact information system for symbolic

AI approaches. The DIBD can also be combined with other

symbolic machine learning approaches.
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TABLE 6
Decision Accuracy versus the Number of Intervals in Data Set

Anneal by Using the Bayes Classifier Combined with DIBD

TABLE 7
Comparison of Different Methods
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