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Abstract

Many image processing applications involve a pattern classification stage. In this paper we propose a classifier based on fuzzy
if–then rules that allows the incorporation of weighted training patterns which can be used to adjust the sensitivity of the classification
with respect to certain classes. The antecedent part of fuzzy if–then rules are specified by partitioning each attributes into fuzzy sets
while the consequent class and the degree of certainty are determined from the compatibility and weights of training patterns. We
also introduce a learning method which adjusts the degree of certainty in order to provide improved classification performance and
reduced costs. Experimental results on several image processing tasks demonstrate the efficacy of the proposed method.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

While in the past fuzzy rule-based systems have been mainly applied to control problems [12,9], recently they have
also been used in pattern classification tasks. Various methods have been proposed for the automatic generation of
fuzzy if–then rules from numerical data for pattern classification [1–6,8,10].

Many image processing applications involve, after some pre-processing and feature selection and extraction, a
pattern classification stage. Typical examples include face recognition where each image is assigned to one person, or
the medical diagnosis of patient imagery. In some of these certain classes can be judged as bearing higher importance
than others. In such cases the misclassification/rejection of a particular input pattern will cause extra costs. For example,
in medical diagnosis of cancer, diagnosing people with cancer as not having the disease could be penalised more than
diagnosing healthy individuals as cancer candidates.

In this paper we introduce a pattern classification algorithm based on fuzzy if–then rules that allows more emphasis to
be put on one or more classes. We regard pattern classification as a cost minimisation problem and employ the concept
of weights for training patterns. The weight of an input pattern can be viewed as the cost of misclassification/rejection
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of it. Fuzzy if–then rules are generated by considering the weights as well as the compatibility of training patterns.
We also propose a learning method, based on incremental learning principles, for the generated rules which adjusts the
grades of certainty in order to improve the classification performance and reduce the overall cost.

We apply our classification algorithm to several image processing applications such as the diagnosis of breast cancer
from images of fine needle aspirates of breast mass, and the classification of satellite images. The experimental results
confirm the efficacy of our proposed method as compared to standard fuzzy classification approaches.

The rest of the paper is organised as follows. Section 2 describes the concept of pattern classifiers based on fuzzy
if–then rules. Section 3 introduces our fuzzy classifier that employs weighted training patterns. Section 4 then details
our proposed learning algorithm while Sections 5 and 6 provide experimental results on several imaging data sets.
Section 7 concludes the paper.

2. Fuzzy classification

Let us assume that our pattern classification problem is an n-dimensional problem with M classes and m given
training patterns xp = (xp1, xp2, . . . , xpn), p = 1, 2, . . . , m. Without loss of generality, we assume each attribute of
the given training patterns to be normalised into the unit interval [0, 1]; that is, the pattern space is an n-dimensional
unit hypercube [0, 1]n. In this study we use fuzzy if–then rules of the following type as a base of our fuzzy rule-based
classification systems:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class Cj with CFj , j = 1, 2, . . . , N,
(1)

where Rj is the label of the jth rule, Aj1, . . . , Ajn are antecedent fuzzy sets on the unit interval [0, 1], Cj is the
consequent class (i.e. one of the M given classes), and CFj is the grade of certainty of the fuzzy if–then rule Rj . As
antecedent fuzzy sets we use triangular fuzzy sets as in Fig. 1 where we show a partition of the unit interval into three
fuzzy sets.

Our fuzzy rule-based classification system consists of N fuzzy if–then rules each of which has a form as in Eq. (1).
There are two steps in the generation of fuzzy if–then rules: specification of antecedent part, and determination of
consequent class Cj and grade of certainty CFj . The antecedent part of the rules is initialised manually. Then the
consequent part (i.e. consequent class and grade of certainty) is determined from the given training patterns [4]. In [7] it
is shown that the use of the grade of certainty in fuzzy if–then rules allows us to generate comprehensible classification
systems with high classification performance.

2.1. Fuzzy rule generation

Let us assume that m training patterns xp = (xp1, . . . , xpn), p = 1, . . . , m, are given for an n-dimensional C-class
pattern classification problem. The consequent class Cj and the grade of certainty CFj of a fuzzy if–then rule are
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Fig. 1. Triangular fuzzy membership function.
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determined in the following two steps:

1. Calculate �Class h(j) for Class h as

�Class h(j) =
∑

xp∈Class h

�j (xp), (2)

where

�j (xp) = �j1(xp1) · . . . · �jn(xpn), (3)

and �jn(·) is the membership function of the fuzzy set Ajn. In this paper we use triangular fuzzy sets as in Fig. 1.

2. Find Class ĥ that has the maximum value of �Class h(j):

�Class ĥ
(j) = max

1�k �C
{�Class k(j)}. (4)

If two or more classes take the maximum value, the consequent class Cj of the rule Rj cannot be determined uniquely.
In this case, Cj is specified as Cj = �. Thus each fuzzy if–then rule has only a single consequent class and cannot
have multiple consequent classes. If a single class ĥ takes the maximum value, let Cj be Class ĥ. The grade of certainty
CFj is determined as

CFj = �Class ĥ
(j) − �̄

∑
h �Class h(j)

(5)

with

�̄ =
∑

h�=ĥ
�Class h(j)

c − 1
. (6)

2.2. Fuzzy reasoning

Using the rule generation procedure outlined above we can generate N fuzzy if–then rules as in Eq. (1). After both
the consequent class Cj and the grade of certainty CFj are determined for all N rules, a new pattern x = (x1, . . . , xn)

can be classified by the following procedure:

1. Calculate �Class h(x) for Class h, j = 1, . . . , C, as

�Class h(x) = max{�j (x) · CFj |Cj = h}. (7)

2. Find Class h′ that has the maximum value of �Class h(x):

�Class h′(x) = max
1�k �C

{�Class k(x)}. (8)

If two or more classes take the maximum value, then the classification of x is rejected (i.e. x is left as an unclassifiable
pattern), otherwise x is assigned to Class h′.

2.3. A numerical example (1)

In this subsection we show a simple numerical example of the fuzzy classification system. Let us suppose that 20
training patterns are given in a two-dimensional pattern space as shown in Fig. 2. Ten of these are of Class 1 and the
other 10 of Class 2.

Based on these given training patterns, we generate fuzzy if–then rules following the procedure described in
Section 2.1. Nine fuzzy if–then rules are generated to form the classification system as each attribute is partitioned into
three fuzzy sets (see Fig. 1); the generated rules are depicted in Fig. 3. The classification boundary generated by the
classifier is shown in Fig. 4 from where we can see that two training patterns are misclassified by the system.
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Fig. 2. A two-dimensional example.

Fig. 3. Fuzzy if–then rules generated from 20 training patterns. Fig. 4. Classification boundary by a fuzzy classification system.

3. Weighted fuzzy classification

In this paper we extend the principle of fuzzy classification to accommodate weighted training patterns. The idea is
based on an understanding that in certain cases misclassification of a particular input pattern will cause extra costs. For
example in diagnosis of cancer, diagnosing people with cancer as not having the disease could be penalised more than
diagnosing healthy individuals as cancer candidates.

The pattern classification problem is re-formulated as a cost minimisation problem. The concept of weight is intro-
duced for each training pattern in order to handle this situation. The weight of an input pattern can be viewed as the
cost of misclassification/rejection of it. Fuzzy if–then rules are generated by considering the weights as well as the
compatibility of training patterns.

In order to incorporate the concept of weight, Eq. (2) of the fuzzy rule generation is modified to

�Class h(j) =
∑

xp∈Class h

�j (xp) · �p, (9)

where �p is the weight associated with training pattern p.
We note that this fuzzy rule generation method can also be applied to the standard pattern classification problem

where there are no pattern weights. In this case, the class and the grade of certainty are determined from training
patterns by specifying a pattern weight as �p = 1 for p = 1, . . . , m.
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Fig. 5. Weighted training patterns.

Fig. 6. Generated fuzzy if–then rules from the weighted training
patterns.

Fig. 7. Classification boundary by the weighted fuzzy classification
system.

3.1. A numerical example (2)

Let us consider again the two-dimensional numerical example from Fig. 2 but in contrast we now assume that each
training pattern has a weight assigned to it. We illustrate this situation in Fig. 5 where the size of the circles indicates
the assigned weights (the assigned weights are 3 and 1, respectively, for the large and small circles).

We generate a weighted fuzzy classification system as described above from these weighted training patterns. The
generated fuzzy if–then rules are shown in Fig. 6 and the resulting classification boundary is given in Fig. 7. We can
see that although one training pattern is misclassified those important patterns with a larger weight (i.e. 3) are correctly
classified while they were misclassified by the conventional fuzzy classification system in Section 2.3. The total cost
(i.e. the sum of weights from misclassified patterns) by the weighted fuzzy classification is 2.0 (= 1.0 × 2) which is
significantly smaller than the 6.0 (= 3.0 × 2) achieved by the conventional fuzzy classification system.

4. Learning fuzzy if–then rules for weighted training patterns

A learning method that adjusts the grades of certainty CFj can be employed to achieve improved classification
performance. It is based on an incremental learning approach where the adjustment occurs whenever classification of
training patterns is performed. When a training pattern is correctly classified we reinforce the grade of certainty of the
fuzzy if–then rule that is used for the classification. On the other hand, we decrease the grade of certainty of a fuzzy
if–then rule if a training pattern is not successfully classified.

Let us assume that we have generated fuzzy if–then rules by the rule-generation procedure detailed in Section 2.1.
We also assume that a fuzzy if–then rule Rj is used for the classification of a training pattern xp. That is, Rj has the
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Fig. 8. Fuzzy if–then rules after the learning. Fig. 9. Classification boundary after the learning of fuzzy if–then rules.

maximum product of the compatibility and the grade of certainty (see Eq. (7)). The proposed learning method adjusts
the grades of certainty of Rj as follows:

CFnew
j = CFold

j − � · �p · CFold
j if xp is misclassified (10)

and

CFnew
j = CFold

j + � · �p · (1 − CFold
j ) if xp is correctly classified, (11)

where �p is the weight of the training pattern xp, and � (the learning rate) is a positive constant value in the interval
[0; 1].

One epoch of the proposed learning method involves examining all given training patterns. Thus, there will be m
adjustments of fuzzy if–then rules after all m training patterns are examined. The learning process is summarised as
follows:

1. Generate fuzzy if–then rules from m given training patterns by the procedure in Section 2.1.
2. Set K as K = 1.
3. Set p as p = 1.
4. Classify xp by using the fuzzy if–then rules generated in Step 1.
5. After xp is classified, adjust the grades of certainty using Eqs. (10) or (11).
6. If p < m let p := p + 1 and go to Step 4. Otherwise go to Step 7.
7. If K reaches a pre-specified value, stop the learning procedure. Otherwise let K := K + 1 and go to Step 3.

Note that K in the above learning procedure corresponds to the number of epochs.

4.1. A numerical example (3)

We return to the numerical example of 20 training patters from above and apply the learning procedure with � = 0.02
for 100 epochs. The rules generated by the weighted fuzzy classification system after learning are shown in Fig. 8. The
resulting classification boundary is given in Fig. 9 from where we can see that now all 20 training samples are correctly
classified and hence the total misclassification cost is reduced to 0.0.

5. Experimental results for weighted classifier

In this section we examine the performance of the proposed weighted classifier described in Section 3 (that is without
the learning algorithm introduced in Section 4) in various imaging applications. Under the assumption that a weight is
assigned to each training pattern which can be viewed as the relative importance of the patterns, we use the concept
of classification/rejection cost to construct a weighted fuzzy classification with integrated learning as outlined above.
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We define a cost function Cost(S) of a fuzzy classification system S as follows:

Cost(S) =
m∑

p=1

�p · zp(S), (12)

where m is the number of training patterns, �p is the weight of the training pattern xp, and zp(S) is a binary variable
set according to the classification result of the training pattern xp by S: zp(S) = 0 if xp is correctly classified by S, and
zp(S) = 1 otherwise (i.e. xp is misclassified or rejected). We use this cost function as well as the classification rate as
performance measures.

In order to construct a fuzzy classification system it should be determined how to partition each attribute variable
into fuzzy sets. In this paper we divide each axis into three fuzzy sets as shown in Fig. 1. The number of generated
fuzzy if–then rules in a fuzzy classification system depends on the partition of attributes and the dimensionality of the
pattern classification problem. Since there are three fuzzy sets for each attribute, the possible number of combinations
of antecedent fuzzy sets is N = 3n where n is the number of attributes.

We use two weight assigning methods for determining the weights of patterns. In the first method we assume it is
important to correctly classify a certain class. Thus the weights of training patterns of this focussed class are specified
as �p = 1.0. On the other hand the weights of the other training patterns are specified as �p = 0.5. That is, the cost of
misclassifying/rejecting a training pattern from the focussed class is twice as large as that from the other classes. The
second weight assigning method considers the distribution of classes in a data set. The weight of a class specified by
this method is large if the proportion of the class is small. Thus it is assumed that classification of minor classes with a
small number of patterns is more important than major classes with a large number of training patterns, a situation that
is often the case for e.g. medical data sets. The weight of a training pattern xp from Class c is specified by the inverse
of the proportion of the class over the given training patterns as follows:

�p = �c = 1

Z
· m

Nc

, p = 1, . . . , m, c = 1, . . . , C, (13)

where �p is the weight of the training pattern xp that is from Class c, wc is the weight of Class c patterns, m is the
number of given training patterns, Nc is the number of Class c patterns, and Z is a normalisation factor that makes the
maximum value of Class weights a unit value (i.e. maxc �c = 1).

5.1. Breast cancer diagnosis

The first application we evaluate our proposed classifier on is the diagnosis of breast cancer from digitised images
of fine needle aspirates of breast mass. Fluid samples were extracted using a fine needle from the patient’s breast mass,
placed on a glass slide and stained to highlight the nuclei of constituent cells [11]. From the captured images a number of
features were derived which were then used as the input patterns for classification. First, curve-fitting techniques were
applied to extract the boundaries of the nuclei. For each nucleus 10 features were extracted, namely radius, standard
deviation of grey-scale values, perimeter, area, smoothness (local variation in radius lengths), compactness, concavity,
number of concave parts, symmetry and fractal dimension. The mean, standard deviation and maximum values of these
over all nuclei in the image were then calculated to provide a feature vector with 30 values [11].

In total the data set comprises 569 samples of which 357 are known to constitute benign and the remaining 212
malignant cases. Since there are two classes (i.e. benign and malignant), we examined the performance of fuzzy
classifiers with three weight assignment: benign focussed (1.0 for benign patterns and 0.5 for malignant patterns),
malignant focussed (1.0 for malignant patterns and 0.5 for benign patterns), and class-proportional. Ten-fold cross
validation was performed where the given data set is divided into 10 subsets and each subset is used as test data set
while the other nine data sets are used as training patterns. The experimental results, expressed in terms of classification
rate and total cost are listed in Tables 1 and 2 which also provide results for a conventional fuzzy rule-based classifier
as described in Section 2. We note that the performance of the conventional method is constant as it does not consider
the weight of training patterns. Table 1 shows the performance for the training patterns and Table 2 that of the test data
set. From there we can see that in two of the three cases there is a clear improvement, both in terms of overall cost
(the main aim of the proposed classifier) as well as in classification performance. For both the benign-focussed and
class-proportional cases the cost is more than halved as compared to a standard fuzzy classifier. In turn the classification
rate is improved from 89.98 to 92.97 and 94.38, respectively.
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Table 1
Experimental results for training patterns on breast cancer diagnosis

Classification rate (%) Cost

Proposed Conventional Proposed Conventional

Benign focussed 92.26 89.28 2.74 6.04
Malignant focussed 72.37 89.28 7.89 3.12
Class-proportional 93.86 89.28 2.88 6.05

Table 2
Experimental results for test patterns on breast cancer diagnosis

Classification rate (%) Cost

Proposed Conventional Proposed Conventional

Benign focussed 92.97 89.98 24 57
Malignant focussed 72.58 89.98 78 28.5
Class-proportional 94.38 89.98 26.31 57

Table 3
Weight specification for satellite image classification.

Class

Red Cotton Grey Damp Veg. stubble Very damp

Red focussed 1.0 0.5 0.5 0.5 0.5 0.5
Veg. stubble focussed 0.5 0.5 0.5 0.5 1.0 0.5
Very damp focussed 0.5 0.5 0.5 0.5 0.5 1.0
Class-proportional 0.387 0.866 0.432 1.000 0.883 0.400

5.2. Satellite image classification

The second application is concerned with the classification of satellite image data. A database of a number of satellite
images obtained from the Landsat multi-spectral scanner were obtained [13]. Each image consists of four spectral bands,
two in the visible part of the spectrum (corresponding roughly to green and red sensitivities) and the remaining two
in the infrared. Parts of these images were segmented and, using a moving window of 3 × 3 pixels at each position, a
feature vector of 3 ∗ 3 ∗ 4 = 36 pixel values extracted [13].

The data set comprises 2000 training vectors and 4435 test samples. Each sample is a member of one of the following
six classes: red soil, cotton crop, grey soil, damp grey soil, vegetation stubble, and very damp grey soil. As examples we
designed weighted fuzzy classifiers emphasising the importance of the red soil, vegetable stubble, and very damp grey
soil classes, respectively, as well as a classifier following the class-proportional method from Eq. (13) (the distribution
of weights for these cases is given in Table 3). Tables 4 and 5 show the classification rates and total cost for the training
and test patterns, respectively. We see that in the red soil and vegetable stubble focussed cases our proposed classifier
provides both a lower cost and a better classification performance compared to a conventional classifier. On the other
hand, for the other two cases we get results which are worse than those of a standard fuzzy classification system.
This suggests that the weighted classifier alone, though providing good performance, cannot perfectly adapt and hence
illustrates the need for an adaptive learning process as the one proposed in Section 4.

5.3. Image segmentation

The third data set we investigated is an image segmentation data set provided by the Vision Group at the University
of Massachusetts [13]. Several outdoor images were manually segmented into areas corresponding to seven classes,
namely brickface, sky, foliage, cement, window, path, and grass to provide a ground truth for the data set. The images
were then divided into 3×3 regions and various features extracted to serve as input patterns for the classification stage.
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Table 4
Experimental results for training patterns on satellite image classification

Classification rate (%) Cost

Proposed Conventional Proposed Conventional

Red focussed 60.85 57.65 394.0 582.5
Veg. stubble focussed 59.65 57.65 489.5 542.0
Very damp focussed 51.25 57.65 494.5 459.0
Class-proportional 52.65 57.65 598.79 578.25

Table 5
Experimental results for test patterns on satellite image classification

Classification rate (%) Cost

Proposed Conventional Proposed Conventional

Red focussed 62.66 62.86 837.0 1315.0
Veg. stubble focussed 63.99 62.86 951.5 1058.0
Very damp focussed 55.51 62.86 1072.0 877.0
Class-proportional 55.51 62.86 1214.90 1132.56

Table 6
Experimental results for training patterns on the image segmentation data set

Classification rate (%) Cost

Proposed Conventional Proposed Conventional

Brickface focussed 63.84 63.9 3.89 4.19
Sky focussed 59.12 63.9 4.3 3.8
Cement focussed 65.58 63.9 3.84 5.29
Class proportional 65.52 63.9 6.72 7.06

Table 7
Experimental results for test patterns on the image segmentation data set

Classification rate (%) Cost

Proposed Conventional Proposed Conventional

Brickface focussed 68.57 69.05 33.5 65
Sky focussed 64.29 69.05 37.5 35.5
Cement focussed 72.86 69.05 29.05 33
Class proportional 69.05 69.05 65 65

The extracted features comprise the results of edge and line detection algorithms and colour and intensity information
for each region [13].

The data set contains 210 instances of which 30 patterns are given from each class. Each pattern consists of 19
attributes. Similar to Section 5.2 we designed classifiers focussing on some of the segmentation classes, namely
brickface, sky and cement, respectively, as well as a class-proportional classifier. Ten-fold cross validation was then
performed on the data set. The results for training and test patterns are given in Tables 6 and 7. Compared to a
conventional fuzzy rule-based classifier our proposed method reduces the cost in two of the cases (for the brickface
focussed classifier by about half) while maintaining the same performance for the class-proportional case and giving
slightly higher costs for the sky focussed experiment.

6. Experimental results of classifier with learning

The results shown and discussed in the previous section confirm that the proposed weighted fuzzy classification
system provides, in the majority of cases, reduced overall cost (and often also improved classification). However, in



T. Nakashima et al. / Fuzzy Sets and Systems 158 (2007) 284–294 293

Table 8
Classification results on breast cancer data set after learning

Classification rate (%) Cost

With learning Conventional With learning Conventional

Benign focussed 89.99 89.98 45 57
Malignant focussed 88.06 89.98 37 28.5
Class-proportional 91.74 89.98 39.65 57

Table 9
Classification results on satellite image data set after learning

Classification rate (%) Cost

With learning Conventional With learning Conventional

Red focussed 67.85 62.86 897.5 1315.0
Veg. stubble focussed 61.20 62.86 955.5 1058.0
Very damp focussed 63.47 62.68 852 877.0
Class-proportional 63.00 62.68 910.44 1132.56

Table 10
Classification results on image segmentation data set after learning

Classification rate (%) Cost

With learning Conventional With learning Conventional

Brickface focussed 70.95 69.05 37.5 65
Sky focussed 74.29 69.05 27 35.5
Cement focussed 77.14 69.05 29 33
Class proportional 73.81 69.05 55 65

certain cases it failed to achieve a better solution. In Section 4 we have introduced a learning algorithm for our classifier
which is designed to adjust the grade of certainty so as to provide better classification performance and hence a more
cost effective solution. In this section we discuss the experimental results obtained on the same data sets as in Section 5
but using the weighted classifier with integrated learning.

For each data set and each weight assigning method given in Section 5 we applied the learning algorithm to improve
the performance of the classification system. For the learning rate � and the number of epochs K we experimented with
various parameters (� = 0.1, 0.2, . . . , 0.5 K = 5 . . . 10); we show the best results in the following.

The experimental results are shown in Tables 8, 9, and 10 for the breast cancer diagnosis, satellite image and image
segmentation tasks, respectively, and again compared to a classical fuzzy rule-based classifier. From the tables it is
obvious that after learning much improved results are achieved. Except for the malignant focussed case for the breast
cancer data set the total cost of the weighted classifier with learning is now lower in all cases as compared to the
standard classifier. Also, comparing these results with those presented in Section 5 we see that a significant improved
classification rate is obtained in almost all experiments which demonstrates the efficacy of our approach.

7. Conclusions

In this paper we have introduced a fuzzy classification system that incorporates weighted training patterns. The
proposed classifier has been employed in a number of image processing applications and experimental results have
demonstrated that it provides improved performance compared to conventional fuzzy classification approaches.

We have also introduced a learning algorithm which adjusts the grade of the certainty of the fuzzy rules and shown
that its application greatly improves the performance both in terms of the classification rate and classification cost.
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