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Abstract  Accuracy of machine learners is affected by quality of the data the learners are induced on. In this paper,
quality of the training dataset is improved by removing instances detected as noisy by the Partitioning Filter. The fit dataset
is first split into subsets, and different base learners are induced on each of these splits. The predictions are combined in
such a way that an instance is identified as noisy if it is misclassified by a certain number of base learners. Two versions
of the Partitioning Filter are used: Multiple-Partitioning Filter and Iterative-Partitioning Filter. The number of instances
removed by the filters is tuned by the voting scheme of the filter and the number of iterations. The primary aim of this
study is to compare the predictive performances of the final models built on the filtered and the un-filtered training datasets.
A case study of software measurement data of a high assurance software project is performed. It is shown that predictive
performances of models built on the filtered fit datasets and evaluated on a noisy test dataset are generally better than those
built on the noisy (un-filtered) fit dataset. However, predictive performance based on certain aggressive filters is affected by

presence of noise in the evaluation dataset.

Keywords
1 Introduction

The need for reliable and high quality products
leads software managers to use software quality clas-
sification models which allow them to direct improve-
ment efforts to software modules with higher risk. Such
models are designed to identify, prior to deployment,
software modules that are likely to be fault-prone (fp)
during operations!!!. Hence, a cost-effective utiliza-
tion of resources can be implemented for software test-
ing, inspection, and quality enhancement of these mod-
ules. The models are often based on inductive learn-
ing algorithms®l which generalize the concepts learnt
from a set of training instances (i.e., software modules
in our case) and apply these concepts to the new in-
stances. Different data mining algorithms have been
used to build software quality models, such as case-based
reasoningl®!, and logistic regression®l.

The predictive accuracy of such a machine learning
algorithm mostly depends on the inductive bias of the
learner and quality of the data on which the learner is
induced®. Noise can affect dependent variables (ie.,
class noise: fault-prone or not fault-prone in our case)
as well as independent variables (i.e., attribute noise).
Poor-quality data leads to a training dataset with in-
consistencies in terms of expected syntax, semantics,
or values. Hence, inducing learners on noisy training
data can produce inaccurate predictions because deci-
sions are based on incorrect information!®”). Therefore,
using appropriate noise handling procedures should be
used before undertaking any data mining task.

The problem of effectively dealing with noise can be
approached primarily in three different ways. The prac-
titioner can use noise-tolerant (i.e., robust) algorithms,
filter out noisy instances from the training dataset, or
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try to correct such noisy instances (i.e., polishing). A ro-
bust learning algorithm is employed in such a way that
the classifier built will not be overfitted to the likely
noisy instances?!. Filtering is a rather direct attempt
to improve the quality of input data by removing poten-
tially noisy instances!®l. Hence, noise will not influence
the final hypotheses constructed®l. Polishing corrects
one or more features of the instances suspected of being
noisy1. Typically, final learnersl] are built after pro-
cessing the training dataset with a given noise handling
scheme. This paper focuses on the filtering approach to
handle noisy datasets.

Filtering noisy instances has been an important issue
in the machine learning community. Gamberger et al.l!
propose a simple noise filtering scheme, called the Clas-
sification Filter. For a given dataset, predictions of the
learner are obtained preferably by cross-validation!?!.
The learner is called the base learner of the filtering
scheme. The misclassified instances are then identified
as noisy and removed from the training dataset. How-
ever, using only one base learner may be risky, because
the given classifier may not have the appropriate bias to
learn the concepts of the given domain problem!'").

Brodley and Friedl'!) investigate the efficiency of the
Ensemble Filter, a filtering scheme which unifies the pre-
dictions of m different base learners. By using three or
five base classifiers, they find that filtering an artificially
noisy training dataset allows maintaining a good perfor-
mance accuracy of the final learners on the test dataset.
In our recent work!!l, we investigate a very large Ensem-
ble Filter, i.e., consisting of twenty-five different classi-
fiers. Using a large number of base learners allows the
analyst the freedom of choosing from several filtering
levels (i.e., level of conservativeness).

Regular Paper



388

Zhu et al.l® argue that the Classification Filter and
the Ensemble Filter are sometimes inadequate with
large and/or distributed datasets. In order to over-
come the data size limitation of the Classification and
Ensemble Filters, Zhu et al. introduce a scheme that
partitions the training dataset into equal subsets be-
fore filtering. This partitioning approach also defines
the concept of good rules to distinguish exceptions from
noise. Our recent study!'?! investigates two modifica-
tions of the partitioning approach. The training dataset
is first split into n subsets, and m base learners are in-
duced on each of these subsets. Subsequently, an in-
stance is identified as noisy if it is misclassified by a
certain number of base learners. Two specialized filters
are implemented based on the partitioning scheme. The
Multiple-Partitioning Filter combines several classifiers
induced on each split. The Iterative-Partitioning Filter
uses only one base learner, but performs multiple itera-
tions. The amount of noise removed is varied by tuning
either the filtering level or the number of iterations(®12.

All the above filtering techniques are built on the
same basic assumption: if a large number of models mis-
classify a software module, then the module is likely to
contain noise. More specifically, the software measure-
ments and quality data of such a program module do
not adhere to the underlying characteristics of the soft-
ware system. Since the data collection process is usually
similar for both the training (fit) and evaluation (test)
datasets, it is likely that the test dataset has noise. A
key issue is to determine whether filtering the fit dataset
improves prediction on the evaluation dataset. This
study analyzes the predictive performances of different
learners induced on both filtered and un-filtered training
datasets.

The training dataset is processed by the Multiple-
Partitioning Filter and the Iterative-Partitioning Filter
at different levels of conservativeness and/or at differ-
ent numbers of iterations. Since most noise elimination
methods involve supervised learning schemes, we can re-
move noisy data from the training dataset in which the
dependent variables (i.e., fp or nfp) are available. How-
ever, we cannot control the quality of the test dataset
since software quality data is not available. In this
study, we demonstrate that the predictive performances
(i.e., performances on the test dataset) of the final mod-
els built on the fit datasets processed by our filters, un-
der certain conditions, are better than those built on the
noisy (i.e., un-filtered) fit dataset.

More specifically, we demonstrate the effectiveness
of some of the filtering methods. A conservative filter
(i.e., that removes fewer instances) tends to improve the
prediction accuracy of the learners. In contrast, an ag-
gressive filter (i.e., that removes more instances) tends
not to improve prediction accuracy. The improvement
in prediction may not always be significant. Improv-
ing the data collection process of the given project may
reduce the level of noise in the measurement data.

The rest of the paper is organized as follows. In
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Section 2, we summarize the implementation of the two
filters, namely the Multiple-Partitioning Filter and the
Iterative-Partitioning Filter. We also describe the mod-
eling methodology involved in our empirical investiga-
tion. In Section 3, empirical studies on a high assur-
ance software project analyze the performances of final
learners induced on the filtered and un-filtered training
datasets and applied on a potentially noisy test dataset.
Finally, Section 4 concludes our work.

2 Methodology

2.1 Partitioning Filters

The Multiple-Partitioning Filter combines m dif-
ferent base classifiers induced on each of the n splits
of the training dataset. If an instance is part of the
training subset of a base learner, the classification pre-
dicted by the learner is based on cross-validation?!. The
Multiple-Partitioning Filter without the cross-validation
constraint identifies an instance as noisy if it is mis-
classified by at least A models, where A is the filter-
ing level(112]. The Multiple-Partitioning Filter with the
cross-validation constraint removes an instance if it is
misclassified by at least A models and mislabeled by all
m models induced on the training subset that contains
that instance. Generally, a classifier often has a higher
prediction accuracy for instances in the training set/5l. X
can range from floor(nxm/2)+1 (i.e., majority scheme)
to m x n (i.e., consensus scheme). The higher the filter-
ing level, the more conservative the filter.

The Iterative- Partitioning Filter is our second spe-
cialization of the Partitioning Filter. The training
dataset is first partitioned into n subsets, and a model
is built on each of these subsets. In this study, two vot-
ing schemes are used: consensus and majority schemes.
When the Iterative-Partitioning Filter uses the majority
scheme, an instance is labeled as noise if it is misclas-
sified by more than 50% of the models. The Iterative-
Partitioning Filter with the consensus scheme removes
an instance if the prediction of all n models are differ-
ent from the actual class label of the instance. Addi-
tionally, in order to identify an instance as noisy, the
instance should be misclassified at least by the model
which was induced on the subset containing that in-
stance. Noisy instances are eliminated in multiple it-
erations until the stopping criterion (discussed later) is
reached®!. By varying the required number of filtering
iterations, the level of conservativeness of the filter can
be varied.

2.2 Model-Selection Strategy

Our empirical study is a two-group software qual-
ity classification problem. Software modules are typi-
cally labeled as either fault-prone (fp) or not fault-prone
(nfp). Hence, two types of misclassification errors can
occur: Type I error (or false positive) and Type II error
(or false negative). The Type I and Type II errors are
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generally inversely proportional. Moreover, the cost of
misclassifying an fp module is invariably greater than
the cost of misclassifying an nfp module. Hence, soft-
ware quality engineers often recommend selecting a clas-
sification model that has a preferred balance between
the two error rates(®l.

The system in this paper is the same high assurance
system that was studied in our recent works!"'?! there-
fore, we use the same model selection strategy whenever
a final classification model needs to be selected. More
specifically, we select a preferred balance of equality be-
tween the Type I and Type II errors, with Type II be-
ing as low as possible. Having both Type I and Type II
low ensures detection of significantly large number of fp
modules, and at the same time, keeps the number of nfp
modules predicted to be fp (i.e., ineffective testing and
inspection) low. The above mentioned model-selection
strategy is followed when building the base learners of
the filters.

2.3 Performance Evaluation

Comparing the performance of different classification
methods based on the two misclassification rates (Type
I and Type II) can be a difficult task, especially when
the performance of the base classifiers is being evalu-
ated across a range of datasets (with different levels of
noise, in our case). In practice, since there is likely to
be a vast disparity between the prior probabilities of the
two classes and among the costs of the two error types,
the Expected Cost of Misclassification (EFCM) is more
appropriate as a practical measure for comparison!13):

ECM = CiPr (fp | nfp)mnp + CuPr(nfp | fo)rg (1)

where Ct and Cyy are costs of Type I and Type II mis-
classification errors, respectively; s, and m,, are prior
probabilities of fp modules and nfp modules; Pr(fp|nfp)
is the probability that an nfp module would be misclas-
sified as fp; and Pr(nfp | fp) is the probability that an
fp module would be misclassified as nfp.

It is difficult to quantify the actual costs of misclassi-
fication at the time of modeling and analysis. Hence, the
Normalized Expected Cost of Misclassification (NECM)
is defined:

ECM
NECM = TI = Pr(fp | nfp)mnsp
Cn
+ aPr(nfp | fo)msp. (2)

NECM facilitates the use of cost ratio Ci1/Ci, which
can be more readily estimated using software engineer-
ing heuristics for a given application!'3!.

2.4 Two-Factor Full Factorial Design Without
Replications

A two-factor factorial without

replications!*4

full design
is used to analyze the performance of
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different learning algorithms induced on the filtered and
un-filtered training datasets. The filtered datasets are
obtained by applying the Multiple-Partitioning Filter
at different filtering levels, or by applying the Iterative-
Partitioning Filter at different numbers of iterations.
One of the goals of such an analysis is to observe if
the filtering levels (A) or the different numbers of iter-
ations are significantly different from their respective
counterparts.

A full factorial design with two factors, A and
B respectively having a and b levels, requires ab
experiments'¥. In our study, factor A is the filtering
level or the number of iterations, while factor B rep-
resents the different final learners. The NECM value,
at a given cost ratio (Crr/Ch), is used as the response
variable. The design model is defined by the following
equation!'4):

Yij = 1+ a; + Bi + ey (3)

where y;; is the observation in the experiment with fac-
tor A at level 5 and factor B at level ¢. p is the mean
response, a; is the effect of factor A at level j, 3; is
the effect of factor B at level i, and e;; is the error
value. An ANOVA model is computed for each of the
four filtering techniques, i.e., the Multiple-Partitioning
Filter with and without the cross-validation constraint
and the Iterative-Partitioning Filter with the consensus
and majority voting schemes.

HSD Test
F-Test Yes Hp: a; = aj
Ho: aj=:- -=aq—<Ho False
LSD Test
Yes
No H(): [’no/‘ vs. I‘est:0

End of the Analysis
Fig.1. Two-factor full factorial analysis.

Subsequent to an analysis of variance, if it is de-
termined that a significant treatment effect is present
among the a levels of factor A, there are (;) pos-
sible combinations of pairwise comparisons that can
be analyzed!'®!. Tukey’s honest significant difference
(HSD) method is used to reject the equality of a pair
of means o; and aj:, where j # 4'116] We also want to
know if, for a given filter, there is a significant difference
between the predictive performances obtained by induc-
ing learners on the noise-free training datasets (i.e., pro-
cessed at different filtering levels or different numbers of
iterations) and the un-filtered fit dataset. This contrast
is denoted as L,of vs.rest, Where nof is the abbreviation
for no filter (see Subsection 3.6). Since the contrast to
be studied is selected in advance of any analysis of data,
the Fisher’s least significance difference method (LSD)
is used’®l. Fig.1 summarizes how the statistical tests
are organized.
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3 Empirical Evaluation

3.1 System Description

The software metrics and quality data used in our
study are from a NASA software project written in C,
referred to as JM1. The data is available through the
Metrics Data Program (MDP) at NASA, and includes
software measurement data and associated error (fault)
data collected at the function/subroutine/method level.
The dataset consists of 10883 software modules, of
which 2105 modules have errors (ranging from 1 to 26)
while the remaining 8778 modules are error-free, i.e.,
have no software faults. In this case study, a module is
considered not fault-prone (nfp) if it has no fault, and
fault-prone (fp) otherwise. Note that we interchange-
ably use the terms errors, defects, and faults in this
study 7.

Each module in the JM1 project is characterized
by 21 software measurements!'”: 3 McCabe met-
rics (Cyclomatic_Complexity, Essential Complexity,
and Design Complexity); 8 derived Halstead met-
rics (Halstead Length, Halstead Volume, Halstead -
Level, Halstead Difficulty, Halstead -Content,
Halstead Effort, Halstead Error Est, and Hal-
stead Prog_Time); 5 metrics of Line Count (Loc_Code_-
And_Comment, Loc_Total, Loc_Comment, Loc_Bla-
nk, Loc_Executable); 4 basic Halstead metrics
(Unique_Operators, Unique_Operands, Total Opera-
tors, Total Operands); and one metric for Branch
Count. The types and numbers of software metrics
made available are determined by the NASA Metrics
Data Program. Other types of software metrics, includ-
ing software process measurements are not available for
analysis. The quality of the modules is described by
their Error Rate, i.e., number of defects in the module,
and Defect, whether or not the module has any defects.
The latter is used as the class label. For additional
details regarding software measurements and software
quality metrics, the reader is referred to [17].

Upon removing inconsistent modules (those with
identical software measurements but with different class
labels) and those with missing values, the dataset is re-
duced from 10883 to 8850 modules. We denote this
reduced dataset as JM1-8850, which now had 1687 mod-
ules (19%) with one or more defects and 7163 modules
(81%) with no defects. We only used the 13 base metrics
in our analysis. The 8 derived Halstead metrics are not
used during modeling — the metrics are derived from
the 4 basic Halstead metrics. Classifiers are built using
the 13 software metrics as independent variables and the
module-class as the dependent variable, i.e., fp or nfp.

It is important to note that the software measure-
ments used for the software system are primarily gov-
erned by their availability, internal workings of the
project, and data collection tools. The use of the spe-
cific software metrics in the case study does not advo-
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cate their effectiveness — a different software project
may collect and consider a different set of software mea-
surements for analysis®17].

3.2 Empirical Design

Fig.2 illustrates the overall design of our experi-
ments. The following steps are executed for each fil-
tering technique at different filtering levels (for the
Multiple-Partitioning Filter) or at different filtering it-
erations (for the Iterative-Partitioning Filter):

1) The domain dataset (E = JM1-8850 is randomly
split into two equal parts of 4425 modules each. One
part will uniquely act as the fit dataset (Egt), i.e., JM1-
4425-Fit. The other one will be used as the test dataset
(Flest), 1.e., JM1-4425-Test.

2) Instances in Eg; labeled as noisy by the filter are
removed.

3) The final classifiers are built on the filtered fit
dataset (Ef,) by following our model selection strategy
discussed earlier. Using more than one classifier is more
insightful since the inductive bias introduces some vari-
ability into the final performances.

4) The final models are then applied to the test
dataset (FEiest). Due to the unavailability of the mul-
tiple releases of the software system studied in this pa-
per, Fi is extracted from the initial release in which
noise may exist. Therefore, predictive performance is
assessed on a dataset that is potentially very noisy, and
on which no noise handling technique has been applied.
This reflects a real-world scenario where the class labels
of instances in the test dataset are unknown. Ideally, in
the case of software quality modeling, the test dataset
(E}est ) is made up of program modules being recorded in
the currently under-development release of the software

product.
D Split Egic % %ﬂtéré
b 2 % 33
l 5%
AES;E, l;igal lnﬁ;‘; ];i:éal £ = IM1-8850
‘ : Egy = IM1-4425-Fit
Algorithm Algorithm Eest= IM1-4425-Test

Fig.2. General procedure for building final learners.

The performances of the final learners are evaluated
by using NECM with cost ratio (Cr;/Ct) values of 10,
20, 30, and 50. This range of cost ratio values is con-
sidered practical for a high assurance software system,
such as JM1. Similar to our recent works!:12! this study
examines the effects of noise handling techniques on a
real-world dataset, in which no noise has been artificially
injected. However, future work will investigate the two
filtering techniques with simulated noise.
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3.3 Creation of the Filters
3.3.1 Multiple-Partitioning Filter

The dataset is initially split randomly into five equal
subsets (n = 5). Having five splits is considered appro-
priate, because the base learners will have enough data
to learn the underlying concepts of the JM1 software
measurement data. Five base algorithms (m = 5) are
selected: J48[18], OneR™9!, LWLStump!?®!, JRip!?!, and
IBk??l. By selecting different data mining families (i.e.,
rule-based, tree-based, or instance-based classifiers), the
bias of the learners complement one another.

The filtering level (A) could vary from 25 (m X n =
5x5) to 13 — similar to an Ensemble Filter with 25 dis-
tinct classifiers!!]. We focus our investigation on four fil-
tering levels: 23 (an instance is identified as noisy if it is
misclassified by over 92% of the classifiers); 20 (over 80%
of the classifiers); 17 (over 68% of the classifiers); and
13 (majority scheme). Consensus filtering (i.e., A = 25)
is not performed for the Multiple-Partitioning Filter be-
cause it is too stringent in identifying potential noise.

Two types of filters are defined: with and without
the cross-validation constraint. In our study, a ten-fold
cross-validation approach is used. mpfcv-) refers to the
Multiple-Partitioning Filter with the cross-validation
constraint at filtering level A\. On the other hand, mpfA
symbolizes the Multiple-Partitioning Filter without the
cross-validation constraint at filtering level A.

3.3.2 Iterative-Partitioning Filter

The Iterative-Partitioning Filter uses only one base
classifier (m = 1). The dataset is split randomly into
five equal parts (n = 5), and one base classifier is built
on each of the five splits at each iteration. In our case
study, the J48 (C4.5-based decision tree) learner is se-
lected as the base classifier since it generally produces
good results on a large variety of datasets!!'8l. Besides,
J48 is a robust algorithm, making it tolerant to noisy
datal?l. The iterative process ends once the stopping cri-
terion, as defined in [5] is reached. More specifically, for
three consecutive iterations, if the number of identified
noisy examples in each iteration is less than 1% of the
size of the original training dataset (i.e., 4425x0.01 = 45
instances), the iterative process stops.

Two different filtering schemes are used. The
Iterative-Partitioning Filter which combines the predic-
tions of the base models using the majority scheme is ab-
breviated as ipfmaj. Along the same lines, the Iterative-
Partitioning Filter with the consensus scheme is denoted
as ipfcons. An instance is identified as noisy by ipfmaj if
it is misclassified by three (out of five) models, whereas
ipfcons filters instances which are misclassified by all
five models. In order to reach the stopping criterion,
five iterations were required with the majority scheme
for this specific dataset. On the other hand, eight iter-

ations were necessary to satisfy the criterion with the
consensus scheme.

The level of conservativeness of the Iterative-
Partitioning Filter depends on the number of iterations
and on the filtering scheme (i.e., majority or consen-
sus scheme). The first five iterations as well as the last
one, which satisfies the stopping criterion, are selected.
Hence, this paper considers the Iterative-Partitioning
Filter with majority voting (ipfmayj) at iterations 1, 2,
3, 4, and 5 and the Iterative-Partitioning Filter with
consensus voting (ipfcons) at iterations 1, 2, 3, 4, 5, and
8. The ipfcons filter only removes fifty more instances
at the last iteration than it does at its 5th iteration.
Selecting the 6th and 7th iterations did not have a sig-
nificant impact on removing potential noise compared
to the 5th and last iterations.

The ipfcons-i and ipfmaj-i notations refer respec-
tively to the Iterative-Partitioning Filter with consensus
and majority voting schemes at their i-th iterations. For
example, ipfcons-8 symbolizes the Iterative-Partitioning
Filter with consensus scheme at its 8th (and last) iter-
ation, and ipfmaj-2 indicates the Iterative-Partitioning
Filter with majority scheme at its 2nd iteration.

The number of instances detected as noisy by the
different filtering schemes at different filtering levels or
at different iterations are listed in Table 1. For each
filter, the amount and the proportions of nfp and fp
instances that are potentially noisy are also provided.
We observe that the Iterative-Partitioning Filter with
majority scheme is the most aggressive filter. More-
over, the use of the cross-validation constraint with the
Multiple-Partitioning Filter limits the potential number
of instances the filter can remove.

3.4 Performance on JM1-4425

In our study, we select four different final classi-
fiers: J48['8]1 OneR9!, JRip[2Y, and IBk[2l. The se-
lected final learners are the base learners of the Multiple-
Partitioning Filter. LWLStump[?®! was not selected as a
final learner because using four different final classifiers
was considered sufficient enough to give an overall good
estimate of the performance. In addition, the runtime of
LWLStump is relatively very large as compared to the
others.

The quality-of-fit of the final classifiers built on
the JM1-4425-Fit filtered by the Multiple-Partitioning
Filter and the Iterative-Partitioning Filter at different
levels of conservativeness are summarized in Table 2.
The table shows the respective NECM values averaged
among the four learners. Similarly, the quality-of-test is
presented in Table 3. The critical ranges of the costs of
misclassification, obtained by a t-test[** at significance
level 0.10, are also presented. The first row of the tables
(i.e., nof) provides the performance of the final models
built on the fit dataset before filtering (Fay).

)
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Table 1. Number and Proportion of Instances Removed by the Filters

Filters nfp Modules fp Modules Total

Count Proportion (%) Count Proportion (%) Count
mpf-23 495 84.76 89 15.24 584
mpf-20 779 82.87 161 17.13 940
mpf-17 914 79.20 240 20.80 1154
mpf-13 1074 77.32 315 22.68 1389
mpfcv-23 419 84.99 74 15.01 493
mpfcv-20 577 84.85 103 15.15 680
mpfcv-17 614 83.54 121 16.46 735
mpfcv-13 632 82.83 131 17.17 763
ipfcons-1 425 80.34 104 19.66 529
ipfcons-2 584 79.67 149 20.33 733
ipfcons-3 756 80.94 178 19.06 934
ipfcons-4 835 80.91 197 19.09 1032
ipfcons-5 897 81.18 208 18.82 1105
ipfcons-8 928 79.66 237 20.34 1165
ipfmag-1 884 78.58 241 21.42 1125
ipfmaj-2 1019 76.85 307 23.15 1326
ipfmaj-3 1046 76.52 321 23.48 1367
ipfmaj-4 1052 76.23 328 23.77 1380
ipfmag-5 1054 76.10 331 23.90 1385

Table 2. Expected Costs of Misclassification (NECM) on the Fit Dataset

Filters CH/CI =10 CH/CI =20 CII/CI =30 CH/C] =50
nof 0.95 £ 0.05 1.62 +£0.10 2.29+0.16 3.63 £0.26
mpf-23 0.68 + 0.02 1.16 £ 0.03 1.64 £+ 0.05 2.61 +0.07
mpjf-20 0.46 + 0.02 0.78 & 0.03 1.11 £ 0.04 1.76 £ 0.06
mpf-17 0.25 + 0.01 0.43 +0.01 0.60 £ 0.02 0.95 £+ 0.03
mpjf-13 0.07 £ 0.01 0.11 & 0.02 0.15 £ 0.03 0.24 £+ 0.05

mpfcv-23 0.72 £ 0.02 1.23 £0.03 1.74 £0.05 2.76 +0.08
mpfcv-20 0.64 + 0.02 1.09 £0.03 1.54 +£0.04 2.44 +0.06

mpfev-17 0.60 £ 0.02 1.02 + 0.03 1.45 £ 0.04 2.29 £ 0.06
mpfcv-13 0.60 £ 0.02 1.02 +0.03 1.44 £+ 0.04 2.28 +0.07
ipfecons-1 0.66 = 0.03 1.12 4+ 0.04 1.58 £ 0.06 2.50 £0.10
ipfecons-2 0.55 £ 0.01 0.94 £+ 0.02 1.32 £0.03 2.09 +0.04

ipfcons-3 0.45 £+ 0.02 0.76 = 0.04 1.07 £ 0.06 1.70 £0.10
ipfecons-4 0.39 £ 0.03 0.66 +0.04 0.94 4+ 0.06 1.49+0.10
ipfcons-5 0.34 £0.04 0.57 £ 0.06 0.814+0.08 1.28 £0.13
ipfcons-8 0.27 £ 0.04 0.45 +£0.07 0.64 +0.10 1.01+0.15
ipfmag-1 0.36 = 0.01 0.61 +0.02 0.86 £ 0.03 1.35 £0.05
ipfmag-2 0.17 +£0.02 0.28 +0.04 0.40 £ 0.05 0.63 £ 0.08
ipfmag-3 0.13 +0.03 0.22 +£0.04 0.31 +0.06 0.49 +0.09
ipfmaj-4 0.11 £+ 0.02 0.18 +0.03 0.25+0.05 0.39 £ 0.07
ipfmaj-5 0.10 £0.03 0.16 £ 0.05 0.22 4+ 0.07 0.35+0.11

Table 3. Expected Costs of Misclassification (NECM) on the Test Dataset

Filters CH/CI =10 CH/CI =20 CH/CI =30 CH/CI =50
nof 0.96 £+ 0.08 1.66 +0.18 2.36 £ 0.29 3.76 £ 0.50
mpf-23 0.89 £ 0.06 1.47 £0.11 2.06 +0.16 3.24 £0.27
mpf-20 0.93 £ 0.04 1.57 £ 0.09 2.22+0.14 3.52+£0.23
mpf-17 0.93 £ 0.05 1.59 £0.11 2.25+0.18 3.57 £0.31
mpf-13 0.95 £ 0.02 1.65 £ 0.04 2.35 £ 0.06 3.74£0.10
mpfcv-23 0.91 £+ 0.09 1.54 £ 0.22 2.17+0.35 3.44 £ 0.60
mpfcv-20 0.91 + 0.02 1.53 £ 0.05 2.15 + 0.09 3.40 £0.15
mpfcv-17 0.92+0.05 1.56 £0.11 2.20£0.16 3.48 £0.27
mpfcv-13 0.91 + 0.09 1.55 £ 0.22 2.20 +0.35 3.48 + 0.62
ipfcons-1 0.90 £ 0.06 1.53 £0.12 2.16 £ 0.19 3.41 £0.32
ipfcons-2 0.93 £+ 0.05 1.60 £ 0.10 2.27+0.15 3.61 £0.25
ipfcons-3 0.90 £ 0.03 1.50 £ 0.04 2.11 £+ 0.06 3.32£0.10
ipfcons-4 0.91 £+ 0.02 1.54 +0.05 2.17 £ 0.08 3.42+0.13
ipfcons-5 0.88 £ 0.03 1.47 £ 0.08 2.06 +0.13 3.24 £ 0.24
ipfcons-8 0.94 + 0.05 1.60 £ 0.12 2.27+£0.19 3.61£0.32
ipfmag-1 0.93 £ 0.04 1.59 £0.11 2.25+£0.18 3.57 £0.32
ipfmaj-2 0.97 + 0.06 1.71£0.13 2.45 + 0.20 3.92 +0.35
ipfmag-3 0.97 £ 0.02 1.70 £ 0.04 2.42 £ 0.06 3.88 £0.11
ipfmaj-4 0.98 + 0.03 1.73 £ 0.06 2.48 +0.10 3.97 +0.17

ipfmag-5 1.00 + 0.02 1.76 £+ 0.06 2.53 +0.10 4.06 £0.17
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The quality-of-fit results indicate that the expected
cost of misclassification improves (decreases) as the fil-
tering level or the number of iterations goes from the
most conservative (A = 23 or first iteration) to the least
conservative (A = 13 or last iteration) approach. An op-
posite trend is observed for the test dataset, i.e., NECM
increases as the filtering goes from most conservative to
least conservative. However, the quality-of-test of the
learners induced on the non-filtered fit dataset is lower
than the quality-of-test of the learners induced on the
filtered fit datasets.

The predictive performance generally improves when
the fit dataset is filtered, except for the ipfmaj filter.
An aggressive filter does not guaranty a better predic-
tive accuracy compared to a relatively conservative filter
of the same family. For example, the learners induced
on the fit dataset filtered by ipfcons-1 perform better,
on average, than those filtered by ipfcons-8. For the
Multiple-Partitioning Filter without the cross-validation
constraint, it is observed that the more conservative is
the filter, the better is the predictive performance.

3.5 ANOVA Models

A two-factor full factorial design*4! is employed to in-
vestigate whether the four final classification techniques
and the datasets processed (or not) by the different fil-
ters yield significantly different NECM values with re-
spect to one another. NECM is used as the response
variable with cost ratio (Cr/Cj) values of 10, 20, 30,
and 50.

Factor A consists of five levels (A = {13,17,20,23}
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and nof) for mpf and mpfev. On the other hand, fac-
tor A has six levels for ipfmaj (1st to 5th iteration and
nof) and seven levels for ipfcons (1st to 5th iteration,
8th iteration, and nof). Factor B represents the four
different final learners (b = 4). An ANOVA model is
built for each filter and on both the fit and test datasets
at different cost ratios. Due to paper-size consideration,
only the ANOVA models for cost ratio 20 are presented
as an example. The ANOVA results on the fit and test
datasets are presented in Tables 4 and 5, respectively. In
the tables SS, DF, and MS refer to the sum of squares,
the degrees of freedom, and the mean squares, respec-
tively. The F-value is selected at 90% confidence level
(i.e., the significance level is 0.10).

Examining the ANOVA models based on the quality-
of-fit of the final classifiers for all cost ratios, indicated
that the NECM values across the datasets processed ei-
ther at different filtering levels or at different numbers
of iterations are significantly different. For example, in
Table 4 this is indicated by p-values less than 0.0001.
The results statistically confirm the intuitive assump-
tion that the quality-of-fit would improve as more and
more software modules likely to be noisy are eliminated
from the fit dataset.

The performances on the test dataset are similar (at
0.10 significance) across the different levels of factor A
for both mpfcv and ipfmaj (Table 5). However, there is
a significant difference across the filtering levels and the
number of iterations for mpf and ipfcons, respectively.
The computed F-values are, however, far lower than
those computed for the performance on the fit datasets.
These conclusions are true at any cost ratio. Depending

Table 4. ANOVA Models on the Fit Dataset at Cp;/Cp = 20

Filter Component SS Variation (%) DF MS  F-Computed F-Table p-value
Levels 5.65 99.49 4 141 786.80 2.48 0.0000
mpf Learners 0.01 0.13 3 0.00 1.40 2.61 0.2904
Errors 0.02 0.38 12 0.00
Levels 1.01 96.96 4 0.25 196.65 2.48 0.0000
mpfcv Learners 0.02 1.56 3 0.01 4.21 2.61 0.0298
Errors 0.02 1.48 12 0.00
Iterations 3.77 98.55 6 0.63 398.78 2.13 0.0000
ipfcons  Learners 0.03 0.71 3 0.01 5.71 2.42 0.0063
Errors 0.03 0.74 18 0.00
Iterations 6.41 99.39 5 1.28 567.13 2.27 0.0000
ipfmaj Learners 0.01 0.08 3 0.00 0.79 2.49 0.5179
Errors 0.03 0.53 15 0.00
Table 5. ANOVA Models on the Test Dataset at C11/C1 = 20
Filter Component SS Variation (%) DF MS  F-Computed F-Table p-value
Levels 0.09 38.09 4 0.02 3.02 2.48 0.0613
mpf Learners 0.06 24.10 3 0.02 2.55 2.61 0.1048
Errors 0.09 37.82 12 0.01
Levels 0.05 12.92 4 0.01 0.60 2.48 0.6700
mpfcv Learners 0.08 22.43 3 0.03 1.39 2.61 0.2940
Errors 0.23 64.65 12 0.02
Iterations 0.11 37.68 6 0.02 2.66 2.13 0.0504
ipfcons  Learners 0.06 19.76 3 0.02 2.78 2.42 0.0705
Errors 0.12 42.57 18 0.01
Iterations 0.07 31.98 5 0.01 1.99 2.27 0.1388
ipfmaj Learners 0.04 19.77 3 0.01 2.05 2.49 0.1502
Errors 0.11 48.25 15 0.01
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Table 6. Evaluation of the Contrasts lim,f vs. rest on the Test Dataset

Filter CH/CI =10 CH/CI =20 CH/CI =30 CH/CI =50
mpf 0.0422 0.0914 0.1405 0.2388
mpfcv 0.0536 0.1171 0.1807 0.3078
ipfcons 0.0555 0.1215 0.1875 0.3195
ipfmaj —0.0061 —0.0352 —0.0644 —0.1227

on the filtering scheme used, the results indicate that
improving the quality of the fit dataset by using appro-
priate filtering schemes may significantly improve the
performance accuracy of the final learners on the test
dataset.

The generally low p-value related to factor B indi-
cates that the bias of the four final learners has some
impact on the performance accuracy for both the fit
and the test datasets. This study, however, does not
focus on the relative performance of the selected learn-
ers. However, in a recent study!!l, we performed such
an analysis with twenty-five final learners built on the
JM1-8850 dataset processed by the Ensemble Filter.

3.6 Filtering Versus No Filtering

For a given filter, it is relevant to evaluate the con-
trast between the predictive performance of the learners
induced on the filtered fit datasets and on the un-filtered
fit dataset. This contrast and its evaluation are denoted
as Lyof vs. rest and ﬁnof vs. rest , Tespectively. For example,
the contrast related to mpf at cost ratio 10 is evaluated
using Table 316!

1
Y.nof — Z(Q.Azls + Ja=17 + Ja=20 + Ya=23)

1
=0.964 — 7 (0.951 +0.927 +0.925 + 0.856)
=0.042 (4)

where y o is the average expected costs of misclassi-
fication of the four final learners induced on Fg; and
applied to the test dataset; y., is the NECM average
of the final classifiers induced on the training dataset
filtered by mpf at filtering level A and applied to the
test dataset. The evaluation of the contrast for the four
filtering schemes is presented in Table 6. The positive
values, except for the ipfmaj filter, indicate that the per-
formance with noise filtering improves compared to the
un-filtering approach.

In order to assess which contrasts are significant, the
p-values are computed using the LSD statistical test!:!
(Table 7). Since there is no significant treatment effect
present in factor A for both mpfcv and ipfmaj, there
is no difference (at 0.10 significance) between the fil-
tering and un-filtering approaches for these two noise
handling techniques. However, the contrast is signif-
icant for mpf at significance level 0.10 for cost ratios
10, 20, and 30 — for cost ratio 50, the significance is
at 0.11. The same conclusions can be applied for ipf-
cons at significance level 0.03 at any cost ratio that we
considered. A similar contrast was considered for the

performance related to the quality-of-fit. As expected,
it was found that the contrast is significant for all the
filtering schemes and at any cost ratio (p-values below
0.0001).

Table 7. Significance of the Contrasts L;of vs. rest
on the Test Dataset

Filter CH/CI =10 CH/CI =20 CH/CI =30 CH/CI =50
mpf 0.0479 0.0805 0.0931 0.1035
mpfcv 0.1040 0.1570 0.1738 0.1868
ipfcons 0.0047 0.0131 0.0170 0.0205
ipfmaj 0.7467 0.4604 0.4039 0.3677

Removing noise from the fit dataset using the
Multiple-Partitioning Filter without the cross-validation
constraint (mpf) and the Iterative-Partitioning Filter
with consensus scheme (ipfcons) improves the predic-
tive accuracy of the final learners on the test dataset
for most cost ratios. Additionally, we observe that the
performance improves for mpfcv, but it is not significant
at 10%. In contrast, there is no performance improve-
ment for ipfmaj. Overall, we have shown that filtering
the fit dataset improves the prediction accuracy on the
test dataset for some noise handling techniques, namely
mpf and ipfcons.

These results can be attributed to the filtering effi-
ciency. An efficient filter removes noisy instances while
retaining good quality datal'?l. Only the mpf and ipf-
cons filters have some significant effects on the perfor-
mance on the test dataset. It may indicate that filtering
the fit dataset with these two filters removes noisy in-
stances in a way that allows the final models to induce
rules which describe concepts of the given domain prob-
lem more accurately!?). mpf and ipfcons may be rel-
atively efficient filters compared to their counterparts,
mpfcv and ipfmaj.

One may argue that the predictive performance on
the test dataset does not reflect the true accuracy of the
final learner because the test dataset (i.e., JM1-4425-
Test) is as noisy as the original training dataset (i.e.,
JM1-4425-Fit). It may be possible that an instance ap-
pears to be correctly classified despite the fact that it is
noisy. More specifically, suppose that an instance in the
test dataset is labeled fp, and also suppose that it was
mislabeled (i.e., class noise) because of an error during
the data collection process. Hence, the given instance
is actually nfp. If the final learner classifies it as fp,
the instance is not considered misclassified — but, in
reality it is misclassified. Even if the final learner gener-
ates a hypothesis covering noisy examples by overfitting
the noisy data, the hypothesis is unlikely to cover noisy
data points in the test dataset. If the noise was sys-
tematic in both the fit and the test datasets, it would
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be expected that training on the erroneous training set
would yield good performance on the test set which is
also erroneous!?.

It is also worth noting that filtering the fit dataset
has less impact on the quality-of-test than on the
quality-of-fit. This result leads to a very important prac-
tical conclusion: filtering the fit dataset is not sufficient
enough to ensure good predictions on the test dataset. In
other words, the practitioner should not always expect
improvement in the quality-of-test results.

3.7 Multiple Pairwise Comparisons

Since there is generally a significant treatment effect
among the levels of factor A for both mpfand ipfcons on
the test dataset (Fig.1), Tables 8 and 9 present multiple
pairwise comparisons among these levels using Tukey’s
test!'%]. Comparisons are only shown for mpf and ipf-
cons. The levels of factor A (i.e., the filtering level) are
ordered from the least to the most accurate predictive
performances. The results are presented for cost ratios
10, 20, 30, and 50, at significance level 0.10.

Table 8. Multiple Pairwise Comparison Results for mpf
CH/CI =10 CH/CI =20 CH/CI =30 CH/CI = 50 Levels
nof
13
17
20
23

R
R
S 3
L

<N
<N
<N
<N

Table 9. Multiple Pairwise Comparison Results for i¢pfcons
CII/CI =10 CII/CI =20 CII/CI =30 CII/CI = 50 Iterations

nof
8

KR
PR
KR
ST
KR
SRR
RO
SRR
[ VUV N V)

Table 8 indicates that levels nof, 13, 17, and 20 be-
long to cluster X at any cost ratio. In other words, these
levels are similar to each other, at significance level 0.10.
On the other hand, levels 17, 20, and 23 belong to clus-
ter Y. Since levels 17 and 20 also belong to X, level 23
is significantly different from levels 13 and nof Since
Ja=23 < Y.nof at any cost ratio when the filter of inter-
est is mpf (Table 3), the predictive performance on the
test dataset does significantly improve compared to the
not filtering approach (nof).

Table 9 clusters the levels of factor A for the test
dataset filtered by the Iterative-Partitioning Filter with
consensus scheme. Similarly, combining the results in
Tables 3 and 9 indicates that filtering the fit dataset
using the Iterative-Partitioning Filter with consensus
scheme at its 5th iteration (ipfcons-5) significantly im-
proves the predictive performance compared to the not
filtering approach (nof), at any cost ratio. Table 9 also

indicates that there is a significant difference in perfor-
mance between the not filtering approach and ipfcons-3
at cost ratio 10.

Similar to the discussion in Subsection 3.6, these
results may provide an indication on the relative effi-
ciency of the two filters. Filtering noise with mpf23
and ipfcons-5 may remove instances in such a way that
the final learners have enough instances to learn the con-
cepts of the domain problem. Selecting the most aggres-
sive filter may not produce the best performance on the
test dataset. This may be due to the removal of clean
instances from the training dataset when an aggressive
filtering is used. In other words, relying on robust final
learners with a manageable level of noise may be recom-
mended instead of using a noise-free but small training
dataset. Hence, it is critical for the practitioner to find
the right balance between aggressive and conservative
noise filtering schemes.

4 Conclusions

This paper studies the performance of final learners
induced on potentially noise-free training datasets and
evaluated on a noisy test dataset. The quality of the
training dataset is improved by removing instances de-
tected as noisy by the Multiple-Partitioning Filter or
the Iterative-Partitioning Filter. The amount of noise
removed is varied by tuning either the filtering level or
the number of iterations.

It was found that processing the fit dataset with the
Multiple-Partitioning Filter without the cross-validation
constraint (mpf) or the Iterative-Partitioning Filter with
consensus scheme (ipfcons) improves the performance of
the final learners on the test dataset for most cost ratios
that we considered. On the other hand, the quality-of-
test does not significantly improve when the fit dataset
is filtered by the Multiple-Partitioning Filter with the
cross-validation constraint (mpfcv) and the Iterative-
Partitioning Filter with majority voting (ipfmay).

The improvement in performance on the test dataset
remains less significant than that on the fit dataset.
However, even with a noise free training dataset, the
learner may still perform poorly on the noisy test
dataset. In order to reduce the presence of noise in
the datasets, resources should be dedicated to ensure
error-free data collection for the given project.

The performance of the final learners on the test
dataset allows us to make some assumptions about the
relative efficiencies among the different levels of con-
servativeness of a given filter. For the software mea-
surement dataset studied, it is concluded that, mpf23
and ipfcons-5 are relatively efficient filters. By injecting
artificial noise, future work can confirm the efficiency
of the Multiple-Partitioning Filter without the cross-
validation constraint and the Iterative-Partitioning Fil-
ter with consensus scheme.
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