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Learning Weighted Metrics to Minimize
Nearest-Neighbor Classification Error

Roberto Paredes and Enrique Vidal, Member, IEEE Computer Society

Abstract—In order to optimize the accuracy of the Nearest-Neighbor classification rule, a weighted distance is proposed, along with
algorithms to automatically learn the corresponding weights. These weights may be specific for each class and feature, for each
individual prototype, or for both. The learning algorithms are derived by (approximately) minimizing the Leaving-One-Out classification
error of the given training set. The proposed approach is assessed through a series of experiments with UCI/STATLOG corpora, as well
as with a more specific task of text classification which entails very sparse data representation and huge dimensionality. In all these
experiments, the proposed approach shows a uniformly good behavior, with results comparable to or better than state-of-the-art

results published with the same data so far.

Index Terms—Weighted distances, nearest neighbor, leaving-one-out, error minimization, gradient descent.

1 INTRODUCTION

THE Nearest-Neighbor (NN) rule is among the most
popular and successful pattern classification techniques.
NN classification generally achieves good results when the
available number of prototypes is (very) large, relative to the
intrinsic dimensionality of the data involved. However, in
most real situations, the number of available prototypes is
usually very small, which often leads to dramatic degrada-
tions of (k-)NN classification accuracy. This behavior is
explained by the following finite-sample theoretical result:
Let T, = {(x!',I!),...,(x",1")} be a training data set of
independent, identically distributed random variable pairs,
where I € {0,1},1 <4 < n are classification labels, and let
gn(-) be a classification rule based on T,. Let x be an
observation from the same distribution and let [ be the true
label of x. The probability of error is R, = P{l # gn(x)}.
Devroye et al. show that, for any finite integer n and
classification rule g, there exists a distribution of (x, ) with
Bayes risk R* =0 such that the expectation of R, is
E(R,) > % — ¢, where € > 0 is an arbitrary small number [7].
This theorem states that, even though we have rules, such as
the k-NN rule, that are universally consistent (that is, they
asymptotically provide optimal performance for any distribu-
tion), their finite sample performance can be extremely poor
for some distributions. This clearly explains the growing
interest in finding variants of the A&-NN rule and adequate
distance measures that help improve the k-NN classification
performance in small data set situations. Most of these
variants rely on using appropriately trained distance mea-
sures or metrics [31], [32], [13], [37], [10], [11], [12], [28], [20],
[8], [3], [25], [4] or prototype editing techniques [36], [34], [26],
(14], [5], [9], [18].
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Here, we focus on distance training, aiming to achieve
good performance with given prototype sets. More specifi-
cally, for any classification task, we assume that a set of raw
supervised examples is given and our aim is to find a good
metric that will lead to high classification accuracy with these
raw prototypes. To this end, a distance weighting scheme is
proposed which can independently emphasize prototypes
and/or features in a class-dependent manner. Using the
given prototypes as training data, the weights arelearned by a
gradient-descent algorithm based on update equations which
are explicitly derived by (approximately) minimizing the
leaving-one-out classification error of the training set.

The work presented here is based on our previous
studies in this direction [20], [18], [17], [22], [21] which, in
turn, follow the general ideas and concepts of other works
such as [31], [10], 8], [28], [29], [3], [25], [4].

In [31], Short and Fukunaga presented a locally adapted
distance based on the neighborhood of the query point. Their
algorithm uses the Euclidean distance to obtain a neighbor-
hood of the query point and, after that, a new local distance is
defined based on the class means computed within this
neighborhood. In [10], Hastie and Tibshirani presented a
more general model based on a local Linear Discriminant
Analysis, called the DANN algorithm. This local distance is
related, under some restrictive assumptions, to the weighted
Chi-squared distance of the class posterior probabilities
between the query point and the training points. The local
distance presented by Short and Fukunaga can be seen as an
example of this local distance. Following the idea underlying
the DANN algorithm, Domenicone et al. presented the
ADAMENN algorithm [8] in which the weights associated
with each feature are computed in a neighborhood of the
query point by means of a Local Feature Relevance factor. A
drawback of this otherwise interesting algorithm is the large
number of parameters which need to be tuned (four
neighborhood sizes, Ky, K, K3, and K, a fixed number, L,
of points within a defined interval, and a positive factor, ¢, for
the exponential weighting scheme).

A different point of view is presented by Ricci and Avesani
in [28], where a weighted distance is defined for each training
point and a “data compression” approach is proposed. This
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general idea has been further pursued in our recent work
discussed in [22], [23].

Finally, a number of recent works, based on kernel methods
and linear embedding, are worth mentioning. Among others,
we can cite the Adaptive Quasiconformal Kernel Nearest
Neighbors algorithm proposed in [25] by Peng et al. The
quasiconformal kernel aims at expanding or shrinking the
spatial resolution around prototypes whose class posterior
probabilities are different from or similar to those of the query
point, respectively. Among the linear embedding ap-
proaches, we can cite the Local Linear Embedding [29], a
supervised version called SLLE [3], and the Local Fisher
Embedding proposed in [4]. SLLE artificially increases the
precalculated distances between samples belonging to
different classes, but leaves them unchanged if samples are
from the same class. This distance increase is controlled by a
tunable parameter. The Local Fisher Embedding combines the
LLE and the Fisher mapping approaches by means of another
parameter that controls a trade-off between preserving local
geometry and maximizing class separability.

With respect to the above works, the approach we propose
here is discriminative in that it emphasizes the importance of
the prototypes lying close to the class boundaries. On the
other hand, it is fully nonparametric and explicitly aims at
minimizing the same (error) criterion that will be used to
measure the classifier performance in the test phase. This
approach has been assessed through a series of benchmark
experiments with UCI/STATLOG corpora, as well as with a
more specific task of text classification which entails very
large dimensionality and highly sparse data representation.
In all these tests, the proposed approach exhibits a uniformly
good behavior with results comparable to or better than other
state-of-the-art results published on the same data sets.

The rest of this paper is organized as follows: Section 2
establishes background concepts and notation. In Section 3,
the proposed optimization criterion is discussed in relation to
the leaving-one-out error estimate, and the corresponding
gradient descent update equations are derived. In Section 4,
this criterion and learning equations are revised under
different weighting schemes, aimed at reducing the overall
number of parameters to be learned. Experiments are
presented in Section 5, followed by conclusions drawn in the
final section.

2 PRELIMINARIES AND NOTATION

e  Representation space. Objects of interest are given as
elements of a suitable representation space, E. Unless
noted otherwise, it will be assumed that E is an
m-dimensional vector space, i.e., E = R".

o A training set T is a collection of prototypes or class-
labeledpointsof E:T = {x!,...,x"},x' € E,1 <i < n.
Without loss of generality, we will assume that all
prototypes in T are different. Properly denoting
repetitionsin7 would entail cumbersome formulation
insome of the developments to appear throughout this
paper. A generic prototype in 7' will be denoted either
“xeT”or"x,1<i<n”

e The index of a prototype x €T is denoted as
index(x), defined as: index(x) =i iff x = x'.
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e Theclass of a prototype x € T'is an integer denoted as
class(x). Thesets T, = {x € T'| class(x) = c}and T, =
{x € T | class(x) # c} will denote the prototypes of
class c or those of a class different from c, respectively.

e A dissimilarity is a function d: E x E — R=" such
that d(y’,y) = 0 iff y’ = y. Abusing the language, we
will often use the words distance and metric instead
of dissimilarity.

e A prototype x € T is a d-Nearest-Neighbor (d-NNr)
of y € E iff d(y,x) <d(y,x) Vx € T. When talking
about NNs, both d and T will be omitted if there is
no ambiguity.

e  Same-class and different-class NN. Let x be a prototype
of class c and let T, = T, — {x}. The d-NN7 and the
d-NNy of x will be denoted as x~ and x7,
respectively.

e The step function, centered at z = 1, is defined as:

0 ifz<1
step(z) = { 1 ifz> 1. S

e  The sigmoid function with slope 3, centered at z =1,
is defined as:

1

So(2) = Trgpna -

Note that, if 3 is large, then

(2)

Sp(z) = step(z),Vz € R,z # 1.

e The derivative of Si(-) will often be needed through-
out the paper:

y _dSp(z) Be1-2)
Sp2) = dz (14 ef1-2)2 )

S'[,(z) is a “windowing” function which is maximum
for z =1 and vanishes for |z — 1| >> 0. If § is large,
then S);(z) approaches the Dirac delta function;
conversely, if 3 is small, then S);(2) is approximately
constant for a wide range of values of z.

3 DiISTANCE DEFINITION AND WEIGHT LEARNING

Let T = {x!,...,x"} be a set of training vectors or prototypes,
each of which may belong to one of C classes. A fairly general
weighted distance from an arbritrary vector y € E to a
prototype x € T' can be defined as:

Ay x) = | Dyl — ) (4)

where wyy; is a weight associated with the jth component of
vectors x and y.

Note that this definition can assign independent weights
to the different dimensions or features of the representation
space. Note also that it is fully local in that it depends on the
exact positions of the two vectors being compared. This
definition includes, as particular cases, the weighting
schemes adopted in many papers on this topic. In particular,
the Euclidean distance (L;) corresponds to wyy; = 1 forallx,y,
and j, while the so-called Class-Dependent (diagonal) Mahala-
nobis distance (CDM) corresponds to wxy; = 1/0.j, where ¢ =
class(x) and o,; is the standard deviation of z; Vx € c.
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3.1 Finite Parameter Formulation

The number of parameters, wyy;, needed for the distance
definition (4) is infinite. Therefore, in order to allow for a
proper formulation of the estimation of these parameters,
some simplifications are needed.

A first step is to ignore the dependence of wyy; ony, i.e.,

m

Py, x) =Y wy; — ;)% (5)
=

where i = index(x),x € T. This way, the number of para-
meters to learn, w;;,1 <i < n,1 < j < m, becomes finite.
Note that the weighting scheme underlying this dissim-
ilarity is asymmetric in that weights are associated only with
the right-hand vector (the prototype x) of the two being
compared. On the other hand, when used for NN classifica-
tion, it is expected that test points generally fall close to some
prototype. Correspondingly, the weights assigned to a given
prototype properly determine how the dissimilarity will
behave in the neighborhood of this prototype and this
distance definition can be considered local in a similar sense
as the word local is used in other works such as [31], [28], [10],
[8]. This remark also applies to the simpler weighting
schemes (17) and (20) that will be introduced in Section 4.

3.2 Learning the Weights

Our proposal for weight learning is to minimize a criterion
index which is closely related with the leaving-one-out (LOO)
NN estimate of the probability of classification error. Let W be
the set of weights to be learned. The LOO NN error estimate
can be written as:

1 d(x,x7)
700 = S sten () ©
where x~ and x” are the same-class and different-class NNs of
X, as defined in Section 2.

If x is closer to some prototype of its own class than to
any other from a different class, the NN rule classifies x
without error. In this case, d(x,x~) < d(x,x”) and the
argument of step is smaller than 1. On the contrary, if x is
closer to some prototype of a different class than to any
other from its own class, the NN rule classifies x with error
and the argument of step is greater than 1. Correspond-
ingly, Jp(W) is in fact the LOO NN estimate of the
misclassification probability over the training set 7.

This index is related to the theory of margin maximiza-
tion and boosting [30]. In [30], the classification margin is
defined as the difference between a weight assigned to the
correct label and the maximal weight assigned to any single
incorrect label. A test point is classified correctly if and only
if its margin is positive. Conceptually speaking, these
weights are in close relation to our distances d(x,x~) and
d(x, x*), and the classification rule is similar to ours, where
a test point is correctly classified if the relation between
both distances satisfies a suitable condition.

Throughout this paper, gradient descent optimization will
be used. This requires the functions to be minimized to be
differentiable with respect to the corresponding parameters
(wij,1 <1< n, 1 <5< m). Therefore, some approximations
are needed. First, the step function will be approximated by
using the sigmoid function, Ss:
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TW) == 3™ 85(r(%)) ™)
where r(x) = % (8)

Clearly, if 3 is large, this approximation is very accurate. On
the other hand, if it is small, the contribution of each LOO NN
classification error (or success) to the index Jr is more or less
important depending on the corresponding quotient of the
distances responsible of the error (or the success). In some
cases, this can be a desirable property which may make the
sigmoid approximation preferable to the exact step function.
The minimization of Jp(W) by gradient descent consists
in an iterative procedure which, at each step ¢, updates the
weights w;; by a small amount, y;;, in the negative direction

of the gradient of J;:
oJr(W)\"
Hij (7T( )> : 9)

(+41) g8 L
U)ij

wtj @
The values of 1i;; are refered to as learning rates or learning
step factors. They can take just a fixed value for all ¢, j or may
depend on ¢, j following simple rules; for instance, they may
be inversely proportional to the variance of each feature j.

To obtain the required partial derivatives from (7)-(8), it
should be noted that Jr depends on W through the distances
d(-,-) in two different ways. First, it depends directly through
the weights involved in the definition of d(-, -) (5). The second,
more subtle dependence is due to the fact that, foreachx € T,
x~ and x” may change as the weights W are varied.
Correspondingly, we can write:

Jr(W) = Jp(W, H(W)), (10)

where H is an abstract selection function which determines
which prototypes are same-class and different-class NNs of the
others. Therefore, the partial derivatives of Jr(W) involve
primary terms, Jr/Ow;j, plus secondary terms which depend
on the derivatives of H, 0H /Ow;;.

As we will see below, the primary terms can be directly
developed from (7)-(8). The secondary terms are more
problematic. H(W) is not a continuous function of W and,
moreover, the dependence of H on W is quite complex.
While this formulation can still be followed to some extent
[17], the development becomes rather cumbersome and, in
the end, it does not really lead to useful approximations.
Therefore, a simpler approach will be followed here which
just ignores the secondary dependence of Jr on W through
H(W). In other words, we will assume that, for sufficiently
small variations of the weights, the prototype neighbor-
hoods remain unchanged.! Under this assumption, we can
derive from (5) and (7)-(8):

>

Sj(r(x)) r(x) Rj(x,x )wi;
VxeT:
index(x=)=i

S LS S ) Ry X s

VxeT:
indew(x? )=i

oJr 1

~ —
810“ n

(11)

1. This assumption can certainly be inappropriate for specific prototype
and metric configurations. We hope, however, that the effects of the
secondary terms will be negligible in many practical situations, thereby
making the proposed approximation adequate in these cases.
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where 7(x) and Sj(-) are as in (8) and (3), respectively, and,
for x € {x=,x"}:

(z; — ;)"

Rj(X, )~() = m

(12)
Using these derivatives in (9) leads to the following update
equations:

(t+1)
W =

W)~y [ S0 Sr(x) (%) Ryx,x7)

xeT:
index(x=)=i

— Y Sir()) r(x) By(x,x7)

VxeTl:
index(x7)=i

(13)

The effects of these equations are intuitively clear. For
each prototype x, the weight associated with its same-class
NN, x~, is modified so as to make it appear closer to x,
while that of its different-class NN, x7, is modified so that it
will appear farther from x.

All the update equations are affected by the windowing
factor S;(r(x)) (the derivative of the sigmoid function). The
argument of S is the distance ratio (8) between the x~ and x”
for each training vector x € T. For large values of 3, learning
only happens when the distance ratio is (very) close to 1,
maybe never if 3 is very large. On the other hand, for small
values of 3, the sigmoid derivative is almost constant and the
algorithm would learn almost the same regardless of the
value of r(x). That is, the same importance would be given to
those training vectors x that are safely well-classified (with
r(x) < 1.0) as to other vectors x that lie close to the class
decision boundaries (r(%) ~ 1.0) or are plainly misclassified
(r(x) > 1.0). In this case, as the number of correctly classified
vectors becomes much larger than the number of errors, after
some iterations, the algorithm can become reluctant to learn
more. A suitable § value should allow the proposed
algorithms to learn from the prototypes that lie near the class
decision boundaries or are misclassified, but, moreover, the
windowing effect of the sigmoid derivative should prevent
learning from outliers whose r(x) value is too large.

This property reminds us of the effects of boosting
techniques. Boosting is known to be particularly good at
finding classifiers with large margins because it focuses on
those points whose margins are small (or negative) and
forces the base learning algorithm to generate good
classifications for those points. In our case, the effect of
the derivative of the sigmoid function enforces this same
behavior. An empirical study of these effects will be
presented in Section 5.3.

Note that, in general, gradient descent does not
guarantee global optimization. Moreover, the descent
equations (13) have been obtained thanks to several
approximations to the original LOO error estimation
criterion (6). As a consequence, the weights obtained at
the end of the gradient descent are not necessarily an
optimal solution for NN classification. In some cases,
however, the partial solutions (weights) available at some
intermediate steps of the descent process may happen to be
better solutions than those obtained at the end. Since a true
LOO NN error estimation is available at each step as a
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byproduct of computing (13), this suggests selecting a set of
weights W whose error estimation is the lowest among all
W obtained throughout the descent process. This guaran-
tees that, despite all the approximations, the resulting
weights will always provide a LOO NN error estimation
better than or at least as good as that provided by the
weights used to initialize the descent procedure.

3.3 Asymptotic Behavior

The simple weight selection technique mentioned above
allows us to characterize the asymptotic behavior of the
classification error of the proposed approach.

Devroye etal. show that, for any finite training set of size n,
E{lé(n) — e(n)|} < /7/n, where €é(n) is the LOO error
estimation for the nearest neighbor classifier and e(n) is the
probability of error of this classifier. This upper bound is
metric-independent and distribution-free.”> Consequently,
when n tends to infinity, the LOO error estimation of an
NN classifier tends to the expected error rate of this classifier.

As discussed above, the weights obtained by the proposed
weight selection technique always provide a LOO NN error
estimation, €y (n), better than or at least as good as that
provided by the weights used to initialize the descent
procedure, ép(n); i.e., éw(n) < ép(n). Let ey be the asympto-
tical error of the NN with the optimal weights provided by
the proposed approach and ep be the asymptotical error of the
plain NN classifier with the metric used to initialize the
proposed weight learning algorithm. Then:

ew(n) < ép(n)
limnﬁw éD(n) — €p
hmnﬂoo éW’(n) = €W

— €W S €p. (].4)

In conclusion, the algorithm proposed here guarantees
an asymptotical classification error which is equal to or
lower than that of the original NN classifier with the initial
distance.

4 RebpucING THE NUMBER OF PARAMETERS TO BE
LEARNED

The number of parameters involved in the distance (5)
defined in Section 3 is exceedingly large for practical
purposes: There are n - m parameters, i.e., as many as scalar
data available in 7. In order to render the parameter
learning problem tractable, several approaches to reduce
this number will be discussed in the following sections.

4.1 Sharing All the Weights within Each Class

A natural way to reduce the number of parameters is to
assume that all the prototypes of the same class share the
same weights. This Class-dependent Weighting (CW) scheme
leads to a dissimilarity defined as:

m

ey (v, %) = wal(y, - zj)Zv (15)
=1

2. The bound is obtained under the assumption that the same
randomized tie-breaking criterion is used both for LOO error estimation
and for the final classifier (see [6] and [7] for details). Note that randomized
tie-breaking is the usual way to deal with equal-distance situations, though
it is seldom necessary because features are continuous in most cases.
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where c¢ = class(x),x € T. The number of parameters,
Wej, 1 <e <0, 1< j<m,is now C-mjie., n/C times less
than the amount of scalar data in 7'

Departing from (15) and (7)-(8), a similar development as
in Section 3.2 easily yields the following update equations:

(t+1) _

Wy Z Hej S/

xeT:
class(x™ )=c

+ Z fiej Sy(r

VxeT:
class(x7#)=c
where 7(x), S4(-), and R;(-,-) are as in (8), (3), and (12),
respectively, and p.; are adequate learning step factors. Note
that, by the definition of x~, the condition of the first sum in
(16) can be equivalently written as Vx € T': class(x) = c.

As in the general case (13), these equations modify the
weights associated with x~ and x” so as to make them
appear closer or farther, respectively, from each x e T.
Here, however, the same modifications affect globally to all
prototypes in each class.

) r(x) Ry(x,x" )l
) () By, x7 )l (16)

cj

4.2 Sharing Weights for Each Prototype

A different way to reduce the number of parameters in
definition (5) is to assume that all data features (dimen-
sions) are equally “important” (so they have the same
weight), but distances are measured differently depending
on the (positions of the) specific prototypes involved. Such a
Prototype-dependent Weighting (PW) scheme leads to a local
dissimilarity defined as:

m

=2 il - )

where i =index(x),x € T. The number of parameters,
v;,1 <i < n,is now n, i.e., m times less than the amount
of scalar data in 7'

This weighting scheme is particularly interesting because
it can be applied to any kind of dissimilarity, even to
nonvector space dissimilarities. Let 6 be any dissimilarity
defined in an arbritrary representation space £. Then, a PW
dissimilarity is defined as:

dpw (y,z) = v; 6(y, ). (18)

Obviously, if E = R and ¢ is the Euclidean metric in £,
then (18) reduces to (17).

Now, let us use the dissimilarity dpy defined by (18) in
(7)-(8). In this case, the same dependence assumptions as in
the introduction to Section 3.2 can be made to obtain the
derivatives 0Jr/0v;, leading to the following update
equations:

dpu y, X (17)

1
DEtJrl) = fUEt) _ Z Pi SIJ(T(X)) T(X) W
i

o) Yi
, 1 (19)
+ VX; pi S(r(x)) T(X)E,

index(x7 )=i

where r(x) and 8;3(~) are as in (8) and (3), respectively, and
pi are adequate learning step factors.

As in the general case (13), these equations modify the
weights associated with x~ and x” so as to make them appear
closer or farther, respectively, from each x € T. Here,
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however, the modifications are local, as they only affect the

position (or neighborhood) of each prototype involved.
On the other hand, in contrast with (13) and (16), the

update equations (19) do not depend on R;(:,-). That is,
they are independent on the features (j) of the objects being
compared. As mentioned above, since only full interobject
distances are involved, this weight learning technique can
be applied to any arbritrary base dissimilarity, 6, even in
cases where it is not defined in a vector space.

4.3 Combining Class-Dependent and
Prototype-Dependent Weighting

Definitions (15) and (17) can be combined into a weighting
scheme that assumes both the Class and the Prototype
dependencies, but in an independent manner, that is:

m

—vzgw ,

where i = index(x) and ¢ = class(x),x € T.
Now, we have two sets of parameters, v;, 1 < i < nand w,;,

1<c¢<C, 1< j<m, which amounts to n + C - m parame-
ters—still generally much less than the total amount of scalar
data in 7'. Finally, using (20) in (7)-(8), yields the following
update equations for the combined d¢py dissimilarity:

) r(x) R

g pyy (v, x (20)

WY =

Wej = = Z Hej 53

\xET
class(x=)=c

+Zu@

VxeT:
class(x7)=c

Y 2 S(r(x) r(x)

VxeT:
index(x=)=i

1
+ Y Sy ()W

VxeT":
index(x7 )=i

(Xv X:)wg})

r(x) Rj(x,x ) ®

5(r(x)) o

1 (21)

1) _ 0
i T NO

=

where r(x), S’j() and R;(-,-) are as in (8), (3), and (12),
respectively, and (i, p; are adequate learning step factors.

As in the general case (13), these equations modify the
weights associated with x~ and x” so as to make them
appear closer or farther, respectively, from each x € T.
Here, however, the different types of weights are expected
to account both for class (and dimension)-dependent effects
and/or for local effects which only depend on the position
of the prototypes involved.

Note that, as defined in (8), r(x) involves two different

subsets of weights, one associated with x~ and the other
with x7. Therefore, a simple manner to implement the
update (21) is by visiting each prototype x in 7 and
updating the weights associated with the same-class and
different-class NNs of x. This is shown in the iterative
procedure presented in Fig. 1. To initialize this procedure, a
set of initial weights (V, W) is needed. Typically, the weights
in V are simply initialized to 1, while either the Euclidean or

the CDM weights can be used to initialize W.
A similar procedure can be written for all the update

equations discussed in the previous sections.
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ClassPrototypeWeightLearning (T, V, W, 3, u, p,e) {
// T: training set; V,W: initial weights;
/[ sigmoid slope; i, p: learning factors; e: small constant
N=o00; A= Jp(V,W); V'=V; W =W
while(|N — A| > ¢) {
No= A
for all x e T {
x~ = FINDNNSAMECLASS(T, V, W, x)
x7 = FINDNNDIFFCLASS(T, V, W, x)
i = index(x™); k = index(x7)
¢ = class(x™); | = class(x7)
Q = Sj(r(x)) -r(x)
v =v — pi-Q/u
U= + pr-Q/ vk
forj=1...m{
e — pej - Q- Bj(x,x7) - wy;
wy; =wy + - Q- Ri(x,x7) - wy

—_— /!
Wy = We;

}
}
V=V W=W; A= Jp(V,IW)
}
return(V, W)

Fig. 1. Class and Prototype Weight Learning Algorithm (CPW).

5 EXPERIMENTS

The capabilities of the proposed distance learning techniques
have been empirically assessed through three different types
of experiments. In the first one, a synthetic data set was used

2+

4} ]
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toshow the behavior of the proposed approach in a controlled
setting. In the second experiment, several standard benchmark
corpora from the well-known UCI Repository of Machine
Learning Databases and Domain Theories [1] and the
STATLOG Project [33] were considered. The last experiment
corresponds to a more specific task of text classification, which
will be fully described in Section 5.5.

5.1 Synthetic Data

The following class-conditional normal distributions with
identical priors were assumed. Class A: u = (2,0.5), ¥ =
(1,0;0,1) (identity matrix). Class B: p= 0,2)", ©=
(1,0.5;0.5,1). Class C: p=(0,—1), ¥ =(1,-0.5;-0.5,1).
See Fig. 2.

The standard technique to achieve good classification
boundaries in this task would be editing [18]. Alternatively,
we can reduce the importance of the prototypes that are in
the class overlapping regions by increasing the associated
weights using the proposed PW approach. Given the
symmetries underlying the proposed task, it seems clear
that class-dependent feature weighting (CW) could hardly
help to improve the boundaries in this case.

Fig. 2 shows classification error rates for different
training set sizes, ranging from 8 to 256 prototypes per
class. For each size, the algorithm was run 100 times with
different training sets randomly drawn from the above
distribution. A fixed test set of 5,000 vectors, independently
drawn from the same distribution, was used for error
estimation. Each point of the figure is the error averaged
over the 100 runs. The class and prototype dependent
weights, w.; and v;, respectively, were initialized to 1.0. The
learning rates p. and p; were set to 0.001 and 0.01,
respectively. The sigmoid slope 5 was set to 10.

The results agree with the above discussion. CW is slightly
worse than the Euclidean distance for very small training sets
due to the biased LOO error estimation. However, as the
amount of training data increases, CW becomes as good as the
original Euclidean distance. This tendency is in clear
agreement with the asymptotical behavior discussed in
Section 3.3. On the other hand, both PW and CPW are better
than the Euclidean distance, even for small training sets and
the improvement increases with the amount of training data.

22 T T T T 22
Euclidean ——

21

20

19

—_ 118
®

5 17
g

M i 16

15 115

14 + 1 14

13 413

12 L L L L 12

8 16 32 64 128 256

Number of trainig samples per class

Fig. 2. Left, class distributions. Right, comparison of the Bayes risk and the Nearest neighbor error with the Euclidean, CW, PW, and CPW

dissimilarities.
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TABLE 1
Benchmark Data Sets Used in the Experiments

Task N C m
Australian 690 2 42
Balance 625 3 4
Cancer 685 2 9
Diabetes 768 2 8
DNA 3,186 3 180
German 1,000 2 24
Glass 214 6 9
Heart 270 2 25
Letter 20,000 26 16
Liver 345 2 6
Satimage 6,435 6 36
Vehicle 846 4 18
Vote 435 2 10
Vowel 440 11 16
Wine 178 3 13

N, C, and m are, respectively, the total number of vectors, the number
of classes, and the dimension of each data set. In two data sets,
Australian and Heart, m is the dimension after expanding categorical
features (the corresponding original dimensions were 14 and 13,
respectively).

5.2 UCI and Statlog Corpora

A short description of the selected UCI/STATLOG corpora is
given in Table 1. Some of these data sets involve both numeric
and categorical features. In our experiments, each categorical
feature has been replaced by as many binary features as
different values are allowed for this feature. Many UCI and
STATLOG data sets are small. In these cases, B-Fold Cross-
Validation [27] (B-CV) has been applied to estimate error rates.
Each corpus is divided into B blocks using B — 1 blocks as a
training set and the remaining block as a test set. Therefore,
each block is used exactly once as a test set. In all the
experiments with UCI/STATLOG data, B is fixed to 5, except
for DNA, Letter, and Satimage. In these relatively larger
corpora, the single partition into training and test sets
specified in the UCI repository was adopted.

5.3 Dependence on the Sigmoid Slope

As previously discussed, the slope of the sigmoid function, 3,
may affect the learning performance of the proposed
techniques. This section is devoted to studying this depen-
dence and to determine adequate values to be used in further
experiments. Only the results for the CW dissimilarity
measure will be reported. Similar behavior was observed
for both PW and CPW. The experiments were performed
with the “small” selected data sets from the UCI/STATLOG
repository, using 5-CV to estimate the error rate, as
mentioned above. In order to clearly show the tendencies
we are interested in, sufficiently smooth results are needed.
To achieve this goal, in these (relatively small) experiments,
each training-testing experiment was run 100 times using
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TABLE 2
Error Rate (%) Obtained Using CW for Different Values of

0125 05 20 80 32 128 | Avge  StdD
Australian | 18.10 17.64 1679 1737 17.62 18.06 | 17.6  0.18
Balance 1700 1703 1725 1798 1775 2526 | 1870 1.20
Cancer 377 383 409 369 373 475|397 0.5
Diabetes | 30.67 30.82 3092 3023 3044 32.60 | 3095 032
German | 27.68 27.77 2830 27.99 27.74 3215 | 2861 0.65
Glass 2809 2841 2820 2852 2837 2723 | 28.13 0.17
Heart 2344 2360 2278 2234 2277 22.55 | 2291 0.18
Liver 40.05 4020 4039 4022 39.57 39.42 | 39.98 0.15
Vehicle 3059 3054 3025 2938 3043 3210 | 30.55 0.33
Vote 705 703 703 661 625 697 | 682  0.12
Vowel 155 160 151 136 164 167 | 1.56  0.04
Wine 215 215 206 144 243 260|213 0.14
Average | 19.18 1922 19.13 1893 19.10 20.45

different random 5-CV partitions and the results were
averaged over the 100 runs.

The weights of the CW dissimilarity were initialized
according to the following simple rule, which is based on
LOO NN performance of conventional methods on the
training data: If the raw Euclidean (Ls) metric outperforms
Class Dependent Mahalanobis (CDM), then set all initial
w;j = 1; otherwise, set them to the inverse of the corre-
sponding training data standard deviations. Similarly, the
step factors, p;;, were set to a small constant (0.001) in the
former case and to the inverse of the variance in the latter.
In the case of CDM, computation singularities can appear
when dealing with categorical features, which often exhibit
null class-dependent variances. This problem was solved by
using the overall variance as a “back-off” smoothing for the
null values.

Table 2 shows the results obtained for a range of
values of .

A fairly stable CW behavior is observed for all the values
of § up to 32, with better overall results around (= 8.
Accuracy tends to worsen significantly using 5 = 128 for
several tasks (Balance, German, and Vehicle). This is
consistent with our discussion about the update equations
of the proposed gradient descent algorithm (Section 3.2).

For one of the tasks studied in Table 2, Vehicle, Fig. 3 plots
the CW results as a function of 3, along with the results
obtained using the Euclidean and CDM distances. For
(B =128, the error rate obtained is the same as that of the
Euclidean distance, which corresponds to the weights used to
initialize the CW. Clearly, for such alarge 3 value, the descent
algorithm was not able to learn the appropriate class
dependent weights for this task.

5.4 Experiments with CW, PW, and CPW

The experiments in this section were carried out to compare
the results obtained using the baseline distances (Ly, CDM)
and the three trained dissimilarities (CW, PW, CPW)
proposed here. In all the cases, the 1 — NN classification rule
was used. Following the results of the previous section, the
sigmoid slope was set to § = 8.0 in all the cases. The results
are reported in Table 3. For the small data sets, these results
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Fig. 3. Results for the Vehicle corpus, using Euclidean (L2), Class
Dependent Mahalanobis, and CW(;3) dissimilarities.

were obtained, as in the previous subsection, by averaging
100 5-CV runs on the available data. For the larger corpora
(Letter, Dna, and Satimage), the standard training/test parti-
tion specified in the UCI/STATLOG repository was adopted.

Initial values of the class dependent weights w;; and the
corresponding learning rates ji;; for CW were selected using
the same simple rule described in the previous subsection. In
the case of PWW, the prototype weights v; were initialized to
1.0 and the corresponding learning rates p; were set to 0.001.
Finally, the combined C'PW class and prototypes dependent
weights (w;j, v;) were initialized as for CW and PW. In this
last case, using values of  significantly higher than those of
p amounts to give more emphasis to weight the features than
the prototypes, while, if the values of p are higher that those of
1, weighting the prototypes is more important. Therefore,
several combinations of learning factors y;; € [0.0,0.01] and
pi € [0.0,0.01] were considered during the first five iterations
of the gradient descent algorithm. The combination with the
best LOO error estimation after these initial iterations was
adopted for the remaining gradient descent process.

Results are shown in Table 3. Most of the proposed learned
dissimilarities achieved better results than the baseline
Euclidean or CDM distances (which were used to initialize
thelearning algorithms) and many of these improvements are
statistically significant assuming 95 percent confidence
intervals.

Taking into account that PW consists just in weighting the
baseline (Euclidean or CDM) distance by a weight v; learned
for each prototype x;, the important accuracy gain of this
dissimilarity with respect to the baselines is remarkable.
Clearly, the algorithm learns large weights for outliers and/
or prototypes that are not useful for the classification, while
small weights are obtained for those prototypes which are
important to define class boundaries. This explains the very
good behavior of the editing technique presented in [18], [24],
which consisted in pruning out those prototypes x; for which
v; is sufficiently large.

PW results are also generally better than those of CV.
Finally, CPW, by combining feature/class and prototype
weights, generally achieves some improvements over CW
or/and PW. Moreover, CPW outperforms both baseline
Euclidean and CDM in all the cases, except Glass.
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TABLE 3
Nearest Neighbor Error Rates (%) for the
Different Dissimilarities

Lo CDM | CW PW CPW
Australian | 34.37 18.19 | 17.37 16.95 16.83
Balance 25.26 35.15 | 17.98 1344  17.60
Cancer 4.75 876 | 3.69 332 3.53
Diabetes 32.25 3247 | 3023 2739 2733
Dna 23.44 15.01 472 649 4.21
German 33.85 32.15 | 27.99 28.32 27.29
Glass 27.23 3290 | 28.52 2628  27.48
Heart 42.18 2255 | 2234 1894 19.82
Letter 4.35 6.30 | 3.15 4.6 42
Liver 37.7 39.32 | 4022 3622 3695
Satimage | 10.55 1470 | 11.70  8.80 9.05
Vehicle 35.52 32.11 | 29.38  29.31 28.09
Vote 8.79 697 | 6.61 5.51 5.26
Vowel 1.52 1.67 1.36 1.68 1.48
Wine 24.14 2.60 1.44 1.35 1.24

Baseline: Euclidean (L;) and Class-Dependent Mahalanobis (CDM);
Learned: Class Weighted (CW ), Prototype Weighted (PW ), and Class
and Prototype Weighted (CPW ). The results typeset in boldface are
significantly better (with 95 percent confidence intervals) than the best of
the baseline distances (Euclidean or CDM).

Generally speaking, these results are comparable to or
better than those obtained by other state-of-the-art methods
recently published on the same tasks [22], [21], [4], [25], [15].

5.5 Text Classification

The capabilities of the proposed distance learning techniques
have been further assessed in a number of more specific
classification tasks including OCR [17], [24], face recognition
[22], confidence measures for Speech Recognition [17], [19],
and text classification [17]. In order to provide further insight
into the proposed techniques, an additional task of text
classification is considered here which is known as “4 Uni-
versities WebKb.”

The WebKb data set [2] contains Web pages gathered from
university computer science departments. The pages are
divided into seven categories: student, faculty, staff, course,
project, department, and other. Most works carried out on this
corpus have focused on the four most populous entity-
representing categories: student, faculty, course, and project, all
together containing 4,199 documents. In the present work, we
also adopt this standard setting. To estimate error rates, we
adopted the defacto standard hold-out partition generally
used for 4-Univ WebKb corpus, where 70 percent of the data
is used for training and 30 percent for testing.

Documents are represented using the popular bag-of-words
approach. An m-dimensional vector of word counts, x, is
assigned to each document, where m is the size of a given
vocabulary. Each feature j, 1 < j < m, corresponds to a word
of the vocabulary and z; is the number of times that the
Jth word appears in the document.
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Fig. 4. WebKb Nearest Neighbor classification results using the
Euclidean (L2) distance, as well as the CW, PW, and CPW learned
distances proposed here.

Vocabulary words are selected following basic ideas
commonly applied in the field of text classification. All the
words apearing in the given document collection are sorted
according to a mutual information criterion. The selected
vocabulary is then determined by picking the top m words
from the full vocabulary sorted in this way [38]. It should be
noted that m can be huge, which makes data representation
very sparse. For instance, an average WebKb document
contains about 80 different words, out of a vocabulary of
10* words. Therefore, for this largest m, each document is
represented as a 10*-dimensional vector and, on the average
documents, 99 percent of the features are zero.

The experiments compare the results obtained with the
NN rule using a conventional baseline distance and the here
proposed CW, PW, and CPW learned dissimilarities. The
Euclidean distance has been selected as the baselinebecause it
always outperforms the CDM distance in this task. In this
case, the sigmoid slope was set to § = 10 and the learning
factors to = 0.01 and p = 0.001. Fig. 4 shows the results
obtained for increasing vocabulary sizes.

The Euclidean distance achieves its best result (24.7 per-
cent) for a vocabulary size as small as 100 words. For larger
sizes, errors tend to increase monotonically. This is certainly
due to the fact that not all the vocabulary words share the
same class-discriminating power. In this kind of problem
with a word-count representation, it is important to ade-
quately enhance the class-dependent influence of the most
important words and to lower the impact of the irrelevant
words in each class. By adequately weighting each individual
reference document (prototype), the PW metric notably
improves the unweighted L2 accuracy. However, a similar
tendency to degradation with increassing vocabulary size is
observed. Clearly, these distances cannot account for the
(often very large) word discriminating power differences
and using more features only tends to add noise to the
representation.

The other two learned dissimilarities proposed here, CW
and CPW, easily overcome the problem. Results are much
less sensible to vocabulary sizes, with a general tendency to
improve accuracy with increasing sizes. The best results are
now obtained for a 1,000-words vocabulary, with 8.4 percent
and 8.0 percent error rates for CW and CPW, respectively.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO.7, JULY 2006

TABLE 4
Error Rates Achieved by CW, PW, and CPW Compared
with Those Reported for Other Techniques [16] on the
Same 4-Univ WebKb Corpus and Experimental Setup

Method Error rate (%)
Naive Bayes 13.7
Scaled NBayes 13.1
Max Entropy w/Prior 8.1
Max Entropy 7.9
1-N N Euclidean 24.7
1-NN PW 18.7
1-NN CW 8.4
1-NN CPW 8.0

The error rate was cut to a third of that of the original
Euclidean distance, which was used to initialize the
CW /CPW gradient descent algorithms.

Table 4 compares these results with state-of-the-art
results obtained using other techniques on the 4-Univ
WebKb corpus under the same experimental setup [16] (see
also [35] for additional results on this corpus). Naive Bayes
and Maximum Entropy are two commonly used techniques
for document classification tasks. Maximum Entropy can
suffer from overfitting. By introducing a prior on the model,
overfitting can be reduced [16]. According to the results in
Table 4, our 1-NN CPW classifier constitutes a competitive
approach for this task.

6 CONCLUSION

From the results reported in the last section, we can
conclude that the proposed techniques achieved a uni-
formly good performance when applied to a great variety of
classification tasks, including those involving categorical
data, as well as others with huge dimensionality and a
highly sparse object representation. In all the cases, the very
same algorithms were used and only a few parameters
needed some simple adjustments in order to provide the
high degree of accuracy achieved.

The impact of one of these parameters, the slope of the
sigmoid function (3), has been studied in Section 5.3. It has
been found that the algorithm performs reasonably well for a
wide range of values around 5 = 8 and, in fact, this value has
been generally adopted in all further experiments (except
WebKB). The other tunable parameters are the learning rates
wi; and p;. In all the experiments presented here, these
parameters have been tuned using very simple rules, based
only on training-data observations, and just two “metapara-
meters” (overall learning rates for ;; and p;). Overall learning
rates were not observed to significantly affect the results
when used separately for CW or PW. However, when used
together in CPW, the relation between p;; and p; may notably
impact the results for tasks where it is important to properly
balance prototype and class/feature weights. This depen-
dence stems from the fact that the proposed methods only
guarantee finding an (approximate) local minimum of the
leaving-one-out error criterion function. Clearly, a higher
learning rate for the prototypes tends to bias the minimization
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process toward local minima which are close to local minima
of the prototype-weights manifold of the search space.
Similarly, a higher learning rate for the class/feature weights
may lead to different results, closer to local minima of the
class/feature-weights manifold.

Therefore, this 11/ p balance is the only significant tuning
which has been proven necessary in some cases, such as in the
CPW experiments reported in Section 5.5. Future research
should study this issue in more detail and should investigate
adequate techniques to automatically optimize the balance.
Other future works should study alternative weight initi-
alization and optimization techniques. In addition, it could be
interesting to study the benefits of using a small initial 5 value
(allowing us to learn the class distributions), and to increase
this value along the succesive algorithm iterations (to finally
model the class boundaries in a discriminative way). Also,
suitable extensions of the approaches discussed here to learn
optimal weights for k — NN classifiers, rather than plain NV,
could be worth exploring. Some steps in this direction appear
in [17], but additional research is needed. On the other hand,
other error estimator indexes can be studied, for instance,
M-fold cross-validation instead of Leaving One Out.

Finally, closely related with the ideas discussed here,
another promising approach we have recently been work-
ing with is worth mentioning [22], [23]. In this approach,
called Learning prototypes and Distances (LPD), rather than
using all the training data available, 7', a small subset P is
selected (at random, as in [28]). Then, T is used to gradient-
descent train, for every x € P, both its feature-and-prototype
dependent weights and the corresponding positions (features)
themselves. As compared with the methods discussed in
this paper, LPD has one more parameter to tune (the size of
P), but, otherwise, it has also shown uniformly good
performance in many classification tasks, with results
generally similar to those reported here.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their careful reading and in-depth criticisms and
suggestions. This work was partially supported by the
Spanish “Ministerio de Ciencia y Tecnologia” under grants
TIC2003-08496-C04-02 and DPI2004-08279-C02-02.

REFERENCES

[1] CJ. Merz, P.M. Murphy, and D.W. Aha, “UCI Repository of
Machine Learning Databases,” Dept. of Information and Compu-
ter Science, Univ. of California, Irvine, http://www.ics.uci.edu/
~mlearn/MLRepository.html. 1997.

[2] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K.
Nigam, and S. Slattery, “Learning to Extract Symbolic Knowledge
from the World Wide Web,” Proc. 15th Nat’l Conf. Artificial
Intelligence, pp. 509-516, 1998.

[3] D.deRidder, O. Kouropteva, O. Okun, M. Pietikdinen, and R.P.W.
Duin, “Supervised Locally Linear Embedding,” Proc. Joint Conf.
Artificial Neural Networks and Neural Information Processing, 2003.

[4] D. de Ridder, M. Loog, and M..T. Reinders, “Local Fisher
Embedding,” Proc. 17th Int'l Conf. Pattern Recognition, vol. 2,
pp. 295-298, 2004.

[5] P.Devijver and J. Kittler, Pattern Recognition. A Statistical Approach.
Prentice Hall, 1982.

[6] L. Devroye, L. Gyorfi, A. Krzyzak, and G. Lugosi, “On the Strong
Universal Consistency of the Nearest Neighbor Regression Func-
tion Estimates,” Annals of Statistics, vol. 22, pp. 1371-1385, 1994.

(7]
8]

]

[10]

(11]

[12]

(13]

(14]

(15]

[16]

(171

(18]

[19]

(20]

(21]

(22]

[23]

[24]

(23]

[26]

(27]

(28]

(29]

1109

L. Devroye, L. Gyorfi, and G. Lugosi, A Probabilistic Theory of
Pattern Recognition. Springer-Verlag, 1996.

C. Domeniconi, J. Peng, and D. Gunopulos, “Locally Adaptive
Metric Nearest Neighbor Classification,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 24, no. 9, pp. 1281-1285,
Sept. 2002.

F. Ferri, ]J. Albert, and E. Vidal, “Considerations about Sample-
Size Sensitivity of a Family of Edited Nearest-Neighbor Rules,”
IEEE Trans. Systems, Man, and Cybernetics, vol. 29, no. 4, pp. 667-
672, Aug. 1999.

T. Hastie and R. Tibshirani, “Discriminant Adaptive Nearest
Neighbor Classification and Regression,” Advances in Neural
Information Processing Systems, vol. 8, pp. 409-415, 1996.

N. Howe and C. Cardie, “Examining Locally Varying Weights for
Nearest Neighbor Algorithms,” Proc. Second Int’l Conf. Case-Based
Reasoning, pp. 455-466, 1997.

R. Kohavi, P. Langley, and Y. Yung, “The Utility of Feature
Weighting in Nearest-Neighbor Algorithms,” Proc. Ninth European
Conf. Machine Learning, 1997.

I. Kononenko, “Estimating Attributes: Analysis and Extensions of
RELIEF,” technical report, Faculty of Electrical Eng. and Compu-
ter Science, Univ. of Ljubjana, 1993.

J. Koplowitz and T. Brown, “On the Relation of the Performance to
Editing in Nearest Neighbor Rules,” Pattern Recognition, vol. 13,
no. 3, pp. 251-255, 1981.

M. Loog and R.P.W. Duin, “Linear Dimensionality Reduction via
a Heteroscedastic Extension of LDA: The Chernoff Criterion,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 6,
pPp- 732-739, June 2004.

K. Nigam, J. Lafferty, and A. McCallum, “Using Maximum
Entropy for Text Classification,” Proc. IJCAI-99 Workshop Machine
Learning for Information Filtering, pp. 61-67, 1999.

R. Paredes, “Técnicas para la Mejora de la Clasificacién por el
Vecino Mas Cercano,” PhD thesis, Dept. de Sistemas Informatics
y Computacion, Univ. Politécnica de Valencia, Spain, 2003.

R. Paredes and E. Vidal, “Weighting Prototypes. A New Editing
Approach,” Proc. 15th Int’l Conf. Pattern Recognition, vol. 2, pp. 25-
28, Sept. 2000.

R. Paredes, A. Sanchis, E. Vidal, and A. Juan, “Utterance
Verification Using an Optimized k-Nearest Neighbor Classifier,”
Proc. Eighth European Conf. Speech Comm. and Technology, 2003.

R. Paredes and E. Vidal, “A Class-Dependent Weighted Dissim-
ilarity Measure for Nearest Neighbor Classification Problems,”
Pattern Recognition Letters, vol. 21, pp. 1027-1036, Nov. 2000.

R. Paredes and E. Vidal, “Learning Prototypes and Distances
(LPD). A Prototype Reduction Technique Based on Nearest
Neighbor Error Minimization,” Proc. 17th Int'l Conf. Pattern
Recognition, vol. 3, pp. 442-445, 2004.

R. Paredes and E. Vidal, “Learning Weighted Metrics to Minimize
Nearest-Neighbor Error Estimation,” technical report, Dept. de
Sistemas Informéticos y Computacién, Univ. Politécnica de
Valencia, Spain, 2004.

R. Paredes and E. Vidal, “Learning Prototypes and Distances: A
Prototype Reduction Technique Based on Nearest Neighbor
Error Minimization,” Pattern Recognition, vol. 39, no. 2, pp. 180-
188, 2006.

R. Paredes, E. Vidal, and D. Keysers, “An Evaluation of the WPE
Algorithm Using Tangent Distance,” Proc. Int’l Conf. Pattern
Recognition, pp. 48-51, 2002.

J. Peng, D.R. Heisterkamp, and H. Dai, “Adaptive Quasicon-
formal Kernel Nearest Neighbor Classification,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 26, no. 5, May
2004.

C. Penrod and T. Wagner, “Another Look at the Edited Nearest
Neighbor Rule,” IEEE Trans. Systems, Man, and Cybernetics, vol. 7,
pp- 92-94, 1977.

S. Raudys and A. Jain, “Small Sample Effects in Statistical Pattern
Recognition: Recommendations for Practitioners,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 13, no. 3, pp. 252-264,
Mar. 1991.

F. Ricci and P. Avesani, “Data Compression and Local Metrics for
Nearest Neighbor Classification,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 21, no. 4, pp. 380-384, Apr. 1999.

LK. Saul and S.T. Roweis, “Think Globally, Fit Locally:
Unsupervised Learning of Low Dimensional Manifolds,”
J. Machine Learning Research, vol. 4, pp. 119-155, 2003.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 25,2010 at 15:40:46 EST from IEEE Xplore. Restrictions apply.



1110

[30] R.E. Schapire, Y. Freund, P. Barlett, and W.S. Lee, “Boosting the
Margin: A New Explanation for the Effectiveness of Voting
Methods,” The Annals of Statistics, vol. 26, no. 5, pp. 1651-1686,
1998.

[31] R. Short and K. Fukunaga, “A New Nearest Neighbor Distance
Measure,” Proc. Fifth IEEE Int’l Conf. Pattern Recognition, pp. 81-86,
1980.

[32] C. Stanfill and D. Waltz, “Toward Memory-Based Reasoning,”
Comm. ACM, vol. 29, pp. 1213-1228, 1986.

[33] Machine Learning, Neural and Statistical Classification, D. Michie,
D.J. Spiegelhalter, C.C. Taylor, eds, Ellis Horwood, 1994, data
sets available from http://www.liacc.up.pt/ML/statlog/
datasets.html.

[34] I. Tomek, “An Experiment with the Edited Nearest Neighbor
Rule,” IEEE Trans. Systems, Man, and Cybernetics, vol. 6, no. 2,
pp. 121-126, 1976.

[35] D. Vilar, H. Ney, A. Juan, and E. Vidal, “Effect of Feature
Smoothing Methods in Text Classification Tasks,” Proc. Fourth Int’l
Workshop Pattern Recognition in Information Systems, pp. 108-117,
2004.

[36] D. Wilson, “Asymptotic Properties of Nearest Neighbor Rules
Using Edited Data,” IEEE Trans. Systems, Man, and Cybernetics,
vol. 2, pp. 408-421, May/June 1972.

[37] D. Wilson and T.R. Martinez, “Value Difference Metrics for
Continously Valued Attributes,” Proc. Nat’l Conf. Artificial
Intelligence, pp. 11-14, 1996.

[38] Y. Yang and ]J.O. Pederson, “Feature Selection in Statistical
Learning of Text Categorization,” Machine Learning: Proc. 14th
Int’l Conf. Machine Learning, pp. 412-420, 1997.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on February 25,2010 at 15:40:46 EST from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO.7, JULY 2006

Roberto Paredes received the PhD degree in
computer science in 2003 from the Universidad
Politécnica de Valencia, Spain. From 1998 to
2000, he was with the Instituto Tecnoldgico de
Informatica working on computer vision and
pattern recognition projects. In 2000, he joined
the Departamento de Sistemas Informaticos y
Computacion of the Universidad Politécnica de
! Valencia (UPV), where he is an assistant

- professor on the Facultad de Informatica. His
current flelds of interest include statistical pattern recognition and
biometric identification. In these fields, he has published several papers
in journals and conference proceedings. Dr. Paredes is a member of the
Spanish Society for Pattern Recognition and Image Analysis (AERFAI).

Enrique Vidal received the Doctor en Ciencias
Fisicas degree in 1985 from the Universidad de
Valencia, Spain. From 1978 to 1986, he was
with this university working on computer system
programming and teaching positions. In the
same period, he coordinated a research group
in the fields of pattern recognition and automatic
speech recognition. In 1986, he joined the
Departamento de Sistemas Informaticos vy
Computacion of the Universidad Politécnica de
Valencia (UPV), where he is a full professor on the Facultad de
Informatica. In 1995, he joined the Instituto Tecnoldgico de Informatica,
where he has been coordinating several projects on pattern recognition
and machine translation. He is coleader of the Pattern Recognition and
Human Language Technology Group of UPV. His current fields of
interest include statistical and syntactic pattern recognition and their
applications to language, speech, and image processing. In these fields,
he has published more than 100 papers in journals, conference
proceedings, and books. Dr. Vidal is a member of the IEEE Computer
Society, the Spanish Society for Pattern Recognition and Image
Analysis (AERFAI), and a fellow of the International Association for
Pattern Recognition (IAPR).

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


