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Abstract Analyzing the quality of data prior to constructing data mining models
is emerging as an important issue. Algorithms for identifying noise in a given data
set can provide a good measure of data quality. Considerable attention has been
devoted to detecting class noise or labeling errors. In contrast, limited research
work has been devoted to detecting instances with attribute noise, in part due to
the difficulty of the problem. We present a novel approach for detecting instances
with attribute noise and demonstrate its usefulness with case studies using two
different real-world software measurement data sets. Our approach, called Pair-
wise Attribute Noise Detection Algorithm (PANDA), is compared with a nearest
neighbor, distance-based outlier detection technique (denoted DM) investigated in
related literature. Since what constitutes noise is domain specific, our case stud-
ies uses a software engineering expert to inspect the instances identified by the
two approaches to determine whether they actually contain noise. It is shown that
PANDA provides better noise detection performance than the DM algorithm.

Keywords Data quality · Noise detection · Data cleaning · PANDA

1 Introduction

Data quality is a critical issue whenever data mining techniques are applied to
real-world data sets. Organizations have realized the value of information and now
consider data as an asset of the company [2]. Important decisions are made every
day based on the data stored within a company’s databases, from understanding
the behaviors of profitable customers to determining the likelihood of future loss
on new business contracts. However, the decisions made are only as good as the
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data upon which they are based. High-quality data is defined as data that is fit for
use by data consumers [26]. Characteristics of high-quality data belong to four
categories: Intrinsic, Accessibility, Contextual, and Representational.

The most common type of problem occurs in the Intrinsic category, which
relates to accuracy and objectivity of the data source. Quality issues in the Ac-
cessibility category are related to the ability to retrieve the necessary data in a
timely and efficient manner. Contextual problems include missing, incomplete, or
improperly defined data. The Representational category includes issues related to
interpretability, ease of understanding, and the concise and consistent represen-
tation of data. Data quality issues are often multifaceted and complex, and it is
crucial for information management departments to build applications that sup-
port the goal of achieving high-quality data within an organization. Errors in data
can often be found when multiple data sources are merged [10, 11]. Records pro-
cessed within different systems may have different data formats or representations
[7]. When such databases are merged, two records referring to the same entity
may not match, resulting in duplicate entries or missing data. An important area
of data quality research involves detecting duplicate or near duplicate records in a
database.

Data mining techniques are often used to detect interesting relationships within
very large databases that would be difficult for humans to discover otherwise.
The knowledge derived from these algorithms is based on the data within the
database being analyzed, and low-quality data can obscure important patterns that
may exist. In a classification problem, for example, it has been shown that the
presence of errors in the training data set does indeed lower the predictive accuracy
of a learner on test data [13, 15, 29, 30]. In the machine learning context, noise
can dramatically slow the convergence of a learning algorithm, or even cause it to
converge to a suboptimal set of hypotheses [5].

While a description of the complete taxonomy of data noise is an open research
issue, there are generally two types of noise in a given data set [3]: class noise
and attribute noise. Class noise or labeling errors occur when an instance belongs
to the incorrect class. Class noise can be attributed to several causes, including
subjectivity during the labeling process, data entry errors, or the absence of some
representative attributes. In contrast, attribute noise reflects erroneous values for
one or more attributes (independent variables) of the data set. The complexity
of detecting class noise is relatively lower than that of detecting attribute noise.
Subsequently, very limited attention has been given to attribute noise. Our study
focuses on detecting instances with attribute noise.

Various methods have been investigated for coping with data quality issues.
Generally, there are three types of such methods: robust learners, data polishing,
and noise filtering. Learners are considered robust if they are less likely to be influ-
enced by the presence of noise in data. A good example of a robust learner is the
C4.5 decision tree algorithm [22]. The C4.5 learner employs pruning strategies
to remove statistically insignificant portions of the tree to form the final model.
However, if the noise level is relatively high, even a robust learner may have poor
performance. Many learners are sensitive to data noise and require data prepro-
cessing to address the problem. Noise filtering identifies noisy instances which
can be eliminated from the training data [3, 9, 17, 30]. Finally, data polishing
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corrects the noisy instances prior to training a learner [27]. Though considerably
tedious, such an approach is viable when the data set is small.

We present a novel noise ranking and filtering algorithm for detecting in-
stances with noise in one or more attributes. Abbreviated as PANDA for Pairwise
Attribute Noise Detection Algorithm, the proposed approach can be used with any
number of (numeric or binary) attributes, including the class attribute (dependent
variable). PANDA is evaluated in case studies using two different software mea-
surement data sets, and is compared with a nearest neighbor, distance-based outlier
detection technique (abbreviated DM) presented in related literature [23].

In addition to presenting a novel algorithm for detecting instances with at-
tribute noise, this study is unique because it employs a software engineering ex-
pert1 to validate the instances identified by the two techniques. To our knowledge,
this is the first study to present an algorithm for detecting instances with attribute
noise without using the class label.

The definition of a noisy instance is rather domain specific, and a given noise
detection algorithm may not realize domain-specific exceptions and other allow-
able instances. An instance identified as noisy by a given technique may not actu-
ally be noise for the given domain. Therefore, it is important to note the distinc-
tions between outliers, noise, and exceptions. An observation is called an outlier if
it appears to be inconsistent with the remainder of a set of data, or which deviates
so much from other observations so as to arouse suspicions that it was generated
by a different mechanism [25]. In [20], outliers are defined as ‘objects deviating
from the major distribution of the data set’.

In our study, outliers are more specifically defined as instances with attribute
values that reside on the extremes of the general distributions observed for the
given attributes in the data set. In contrast, instances may be considered noisy
when the values of one or more attributes of an instance are corrupted or incorrect
relative to the values of the other attributes. However, an instance without errors
may appear noisy when one or more of its attributes does not follow the general
distributions observed for the given attributes. These exceptions therefore often
appear as noisy instances. Such instances are very difficult to detect without the
input of a domain expert. In our study, the software engineering expert plays an
important role in categorizing the instances detected by PANDA as either excep-
tions or instances with attribute noise.

The remainder of this paper is organized as follows. Section 2 discusses some
related work in the noise detection domain. Section 3 describes the noise detection
algorithm proposed in this paper. Section 4 describes the software measurement
data sets used in the case studies, while Sect. 5 discusses the obtained results. We
conclude in Sect. 6 and highlight some future research directions.

2 Related work

As mentioned earlier, noise can occur in either the dependent variable (class noise)
or independent variables (attribute noise). Related literature on noise detection
has primarily concentrated on the class noise problem [30]. Various techniques

1 The expert is not involved in the modeling process and only analyzes the results of PANDA
from a domain-knowledge point of view.
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have been developed to identify instances with class noise with a high degree of
accuracy [16]. In contrast, very few methods are available for detecting instances
with attribute noise, largely due to the high complexity of the problem. In this
section, some related works on noise detection are briefly discussed including
association rules, noise filtering, and data polishing. A discussion on some outlier
detection techniques is presented in Sect. 3.2, including the DM algorithm [23]
which is considered in our comparative study.

Ordinal association rules are introduced and defined in [20] for the detection
of data errors. Data errors are identified when ordering relations between attributes
prevalent in the remainder of the data set do not hold for the observation in ques-
tion. For example, an observation with date of birth greater than date of death
would be declared as noise. This is a useful tool, but is rather limited in scope.

The majority of the algorithms for noise detection utilize classifiers for the
identification or correction of noisy instances, and suffer from the limitation that
they cannot be applied to a data set without the class variable. The assumption
usually made is that an observation that is difficult to classify correctly is likely
to be noise. Of course, it may also be the case that the instance is part of a target
concept that is difficult to learn. For the most part, these algorithms do not treat
any observations that are predicted correctly. It is not necessarily true, however,
that these observations do not contain noise.

In [3], multiple classifiers are aggregated to create an ensemble filter. An in-
stance is tagged as noise if a given number of classifiers are unable to correctly
classify the instance. A majority filter is defined as a system which categorizes an
instance as noise if out of the five classifiers built, three or more fail to correctly
classify that instance. In a recent study, we investigated a very large ensemble filter
(25 classifiers) and partitioning filters for noise filtering of software measurement
data [14, 17].

In [8, 9], inductive learning algorithms are used to filter noisy instances. A
target theory is built using a rule induction algorithm such as C N2 [4] to cor-
rectly classify all instances in the data set. Instances that maximize the reduction
in the Minimum Description Length (MDL) cost of encoding the target theory are
removed, until the cost cannot be reduced any further.

Data polishing is introduced as a two-step procedure to both detect and cor-
rect noise [27]. Given a data set which contains N independent variables and 1
dependent variable, a total of N modified classifiers are constructed, where each
independent variable is switched in turn with the dependent variable. For instances
that are misclassified by the base classifier T , the number of attribute misclassifi-
cations over the N modified classifiers are recorded. In the polishing phase, using
the predictions for each attribute from the N classifiers, the predicted attribute val-
ues are inserted into the instance. If the base classifier T is able to correctly predict
the class of this modified instance, then the polishing procedure is complete and
a noisy instance has been cleansed. The complexity of this algorithm is high and
increases significantly as the number of independent variables increases.

It is argued that data polishing is best used when the independent variables
are highly correlated to the class [28]. Yang et al. illustrate an algorithm that
shows better results for independent variables that cannot be predicted by using the
class and the other independent variables (so-called predictive-but-unpredictable
attributes). A set of rules predicting the class variable are learned from the data. If
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an instance fails to satisfy at least one rule, it is identified as noise. The instance
can then be corrected by finding a rule that minimizes the number of changes
necessary to make the instance consistent with the rule set.

The data polishing algorithms investigated in [27, 28] require all independent
variables to be non-numeric. In addition, all of these techniques operate in a su-
pervised learning environment, disqualifying their use when the class label is un-
available. In contrast, the noise detection algorithm proposed in this paper can be
used with or without the class variable. If the class variable is available, it can be
treated as another attribute. The advantages of the proposed technique include:

1. Erroneous observations can be examined prior to collecting data for the de-
pendent variable in situations where the class label data collection process is
expensive. Collecting data for the class label can be a very difficult and tedious
task in some domains.

2. It can be applied to the test data set (with unknown class labels) as well as the
training data set. This approach may be useful in real-world applications as a
data quality control filter before information is run through the final classifiers.
Observations that do not conform to the general structure of the data set can
be presented to the domain-specific practitioner for inspection and validation
before being processed through the classifier. This process is independent of
training the classifier.

In several of the works discussed previously, performance of the noise detec-
tion technique was evaluated by injecting simulated noise into the data sets, which
were primarily obtained from the UCI Repository of machine learning databases
[21]. There are two important problems with this evaluation approach. First, it is
unknown whether the underlying data set into which simulated noise is injected
is noise-free or clean. Injecting additional noise into a data set that may already
contain noise makes the analysis of the effectiveness of the algorithms difficult.

Second, the injected noise may not represent the types of noise present in a
real-world data set of the given domain. Obtaining a completely clean data set
prior to noise injection is a difficult task and the injection of noise into such a data
set to simulate real-world conditions is an open research issue. In our case studies,
we consider real-world data sets which inherently contain noisy instances (i.e., we
do not inject noise into the data set). A domain expert is needed to inspect and
identify instances that are actually noise. The noise detection techniques can then
be evaluated with respect to their performance in detecting those instances.

3 Methodology

The proposed noise detection algorithm, PANDA, seeks to identify those instances
with a large deviation from normal given the values of a pair of attributes. When a
set of instances have similar values for one attribute, large deviations from normal
for the second attribute may be considered suspicious. The larger the deviation,
the stronger the evidence that the instance is noisy. One has to be careful in in-
terpreting the aforementioned assumption because the variance and distribution of
the two attributes may be different. In our study, we address this issue by stan-
dardizing all the attributes in the given data set. The output of PANDA is a list
of instances ordered from most noisy to least noisy. Each instance is assigned an
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output score (Noise Factor), which is used to rank the instance relative to the other
instances in the data set. After obtaining a noise ranking, some of the instances
may be discarded from the data set, which would result in a cleaner data set with
which to perform additional analysis. Removing noisy instances, however, is not
required and the user can apply any type of domain-specific treatment using the
noise ranking produced by PANDA.

Each ordered pair of attributes is considered. After the first attribute is par-
titioned, the conditional mean and standard deviation of the second attribute are
computed relative to the discretized value of the first attribute. Large deviations
from normal by the second attribute relative to the instances with the same parti-
tioned value for the first attribute have a higher contribution to the output score.
Based on these calculations, the value of each attribute is replaced by the stan-
dardized value. This process is repeated for each combination of ordered attribute
pairs, and the results are aggregated to an output score representing the amount of
noise present in the instance.

It should be noted that the partitioning process may introduce additional noise
into the data set, which should be considered during the respective analysis. As
discussed in the case studies, we partition the attributes using several bin sizes and
select the median ranking. Selecting the median ranking among multiple bin sizes
helps minimize the possibility of noise being introduced due to the discretization
process.

The details of PANDA are presented in Sect. 3.1. In our study, we compare the
noise detection performance of PANDA with a nearest neighbor distance-based
outlier detection algorithm (DM) [23]. The details of the DM algorithm are pre-
sented in Sect. 3.2.

3.1 Noise detection algorithm

The detailed procedure for PANDA is shown in Fig. 1. The parameters sik j are
initialized to 0 on line 1. The binning algorithm implemented in SAS [24] is used
to partition each attribute x∗ j in the data set (line 3). The partitioned attribute
x̂∗ j is integer-valued, x̂∗ j ∈ {0, . . . , L − 1}. L is determined by the user and is
the number of partitions of attribute x̂∗ j . SAS uses an equal frequency binning
algorithm, where, in the absence of tied values for the attribute, each partition
will have the same number of instances. An exception is made for instances with
the same value for the attribute at the boundary of the partition. As partitions
are required to be disjoint, all instances with the same attribute value are placed
into the same partition. While other binning procedures exist, we chose the SAS
binning algorithm for its simplicity. PANDA can be implemented with other
partitioning algorithms as well, and an investigation related to the same will be
considered in our future work.

After partitioning observations into the given number of disjoint bins, the mean
and standard deviation of the non-partitioned attributes x∗k , k �= j , relative to each
bin x̂∗ j = 0, . . . , L − 1 is calculated (line 6). The standardized value for attribute
value xik relative to the partitioned attribute value for instance i , x̂i j , is calculated
in line 8. The standardized value is calculated by subtracting the mean value of
attribute x∗k relative to the partitioned attribute value x̂i j from the attribute value
for instance i , xik . The absolute value of this quantity (as the sign of the difference
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Fig. 1 Pairwise attribute noise detection algorithm: main procedure

is not important) is divided by the standard deviation of attribute x∗k relative to
the value of the partitioned attribute x̂∗ j for instance i (i.e., x̂i j ). This procedure is
repeated for all pairs of attributes (x∗k, x̂∗ j ), k �= j . Finally, the SUM (line 15) or
MAX (lines 18) measures for each observation are calculated.

The instances with relatively large values of MAX or SUM may be considered
as potential noise because an observation with a large standardized attribute value
indicates a deviation from normal for that attribute. Based on the noise ranking
calculated by PANDA, noisy instances may be removed from the data set, al-
though this process is not required. In our case studies, we instead present the
noise ranking produced by PANDA to a domain expert for evaluation. In direct
elimination (Fig. 3), all the desired observations will be removed from the out-
put data set after a single iteration of PANDA. In iterative elimination (Fig. 2),
the user can specify the number of iterations to run the algorithm, eliminating a
portion of the total noise in each pass. Iterative elimination has the potential ad-
vantage that noise detected prior iterations will not affect the ranking that results
from the current iteration, although our experiments demonstrated similar results
for both methods.

The run-time complexity of our technique can be analyzed as follows. Sup-
pose m is the number of attributes in the data set and n is the number of instances.
Computing the mean and standard deviation for each pair of attributes in the data
set and standardizing each attribute value has complexity O(m2n). In many real-
world data sets, the number of attributes is much smaller than the number of
instances. Additionally, as PANDA is part of the preprocessing tasks of a data
mining project, the calculations can be performed offline in a batch environment.
Therefore, we can conclude that the running time of PANDA is not a significant
concern, especially for small- and medium-sized data sets.
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Fig. 2 PANDA—iterative elimination

Fig. 3 PANDA—direct elimination

3.2 Comparing with a distance-based algorithm

Outlier detection techniques were first developed within a statistical framework.
For example, given the data is sampled from an underlying normal distribution,
any observation more than 3 standard deviations from the mean might be consid-
ered an outlier. A major difficulty with applying this theory to real-world data sets
is that the distribution function is unknown, and is usually very difficult to deter-
mine. The work introduced in [18] provides a generalized definition of an outlier,
of which the criteria mentioned earlier is a special case. An observation x in a
data set D is an outlier if at least a fraction p of the objects in D are further than
d away from x .

Algorithms are provided in [19] for mining these types of outliers. In [23],
the authors find outliers utilizing a modified distance-based metric to cope with
difficulties in determining the optimal value for d . Dk(p) is defined as the distance
from point p to its kth nearest neighbor. The α observations with the largest values
for Dk(p) for a given value of k are considered outliers. We denote this algorithm
as DM. The basic algorithm implementing DM has complexity O(n2), where n
is the number of instances in the data set. The authors introduce a partition-based
algorithm, which obtains an order of magnitude reduction in running time given a
wide range of parameters used in experiments on simulated data.

The DM algorithm is considered for comparison because like PANDA, it can
be used either with or without the class variable and can handle numeric attributes.
DM and PANDA also have comparable complexity. Although DM is specifically
designed for outlier detection, no other noise detection algorithm (excluding class
noise detection) has been proposed that can be used for this comparison. One
difficulty with distance-based techniques, however, is that they rely heavily on
some distance function, which looses effectiveness as the number of dimensions
of the feature space increases [1].
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Table 1 Software metrics for the JM1-2445 data set

Metric Symbol

Branch Branch count
Line count Executable LOC

Comments LOC
Blank LOC
Code and comments LOC
Total lines of code

Basic Halstead Total operators
Total operands
Unique operands
Unique operators

McCabe’s Cyclomatic complexity
Essential complexity
Design complexity

4 Description of the case study data sets

4.1 JM1-2445 data set

The software measurement data set JM1-2445 was derived from a NASA software
project written in C. Software metrics data was collected at the function level;
hence, a program module (instance) was defined as a function or subroutine. Upon
removing inconsistent instances (identical values for the software attributes but
different class labels), the data set was reduced from 10,883 to 8850 observations,
resulting in a data set called JM1-8850 [17].

JM1-8850 contains 21 software metrics (attributes) including McCabe Met-
rics, Halstead Metrics (both derived and basic), Line Count and Branch Count
Metrics. See [6] for a discussion on types, characteristics, and use of software
metrics. The 8 derived Halstead metrics were not used in our study, leaving 13
software metrics remaining. These 13 software product metrics are shown in
Table 1, where LOC represents the lines of code in a program module.

The JM1-8850 data set also contains a dependent variable, Class, with values
n f p (not fault prone) and f p (fault prone). An instance was labeled f p if it
contained at least one fault and n f p otherwise. The JM1-2445 data set used in
our case study was constructed from JM1-8850 using clustering techniques and
expert input.

The instances in JM1-8850 were partitioned into clusters using an unsuper-
vised clustering technique (k-means) as part of a related study [29]. Descriptive
statistics such as the mean and standard deviation were computed for both the en-
tire data set and each cluster. The software engineering expert then labeled (n f p
and f p) those clusters (and consequently, instances within the clusters) for which
he was completely confident. The expert-assigned labels of instances in those clus-
ters were then matched with their actual labels, and instances that did not have
matching labels were removed from the clusters. These instances were inspected
by the expert, and it was verified that their class labels did not match the class
labels the instances should have had based on their attribute values. As a result,
2445 instances with no class noise remained in the clusters labeled by the expert.
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Table 2 Software metrics for the CCCS data set

Symbol Abbreviation

Logical operators logop
Total lines of code tloc
Executable LOC eloc
Unique operands uopan
Total operands topan
Unique operators uoper
Total operators toper
Cyclomatic complexity ccomp

We denote this data set as JM1-2445, which consists of 2210 n f p instances and
235 f p instances. JM1-2445 is a real-world data set that was preprocessed (using
clustering and expert input) to remove any instances with class noise. Instances
with naturally occurring attribute noise, however, remain in the JM1-2445 data
set.

4.2 CCCS data set

The CCCS data set is a large military command, control, and communications
system written in Ada [12]. CCCS contains 282 instances, where each instance is
an Ada package consisting of one or more procedures. CCCS contains 8 indepen-
dent variables or attributes along with an additional attribute nfaults indicating the
number of faults attributed to the module during the system integration and test
phases and during the first year of deployment. The software metrics in the CCCS
data set are listed in Table 2. One hundred and forty-six of the 282 modules in the
CCCS data set contain no faults.

5 Empirical results

5.1 Case Study 1: JM1-2445 data set

As mentioned earlier, the outlier detection algorithm (DM) derived in [23] was
compared to PANDA. Dk(p) is defined as the distance from point p to its kth
nearest neighbor. The instances with the largest values for Dk(p) for a given value
of k are considered outliers. In DM, the number of nearest neighbors, k, is a pa-
rameter that is set by the user. In this case study, all variables or attributes were
standardized, and distance was calculated using the L2 (Euclidean) norm. The
DM algorithm was executed 10 times, with a different value for k from 1 to 10 at
each iteration. The final ranking was determined as the median ranking of the 10
iterations to minimize any potential bias when a single value for k is used.

In order to remove any anomalies that might occur due to binning (such as
introducing additional noise or using a lucky/unlucky binning size), PANDA was
executed 11 times using the SUM method, with 5, 10, 15, 20, 25, 30, 40, 50,
60, 75, and 100 bins. Similar to the procedure adopted for the DM algorithm,
the final ranking by PANDA was determined as the median ranking over the 11
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iterations (i.e., 11 different number of bins). The instances in JM1-2445 were then
rank ordered independently by both algorithms from most noisy to least noisy.
The instance ordering was then presented to an expert with more than 15 years
of expertise in the software engineering domain. The domain expert manually
inspected the rankings produced by DM and PANDA. It should be noted that the
expert only analyzes the results obtained from PANDA and DM and does not
influence the obtained results.

The results of the expert inspections for the top 250 instances (ranked by both
algorithms) are presented in Table 3. These 250 instances are approximately 10%
of the instances in the JM1-2445 data set and represent the mostly likely data
noise. Based on the software engineering expert, 10% of the instances was enough
to determine the noise detection ability of the two algorithms. For another data set,
a different percentage of instances may represent the most likely noise.

The expert inspected the top 250 instances of JM1-2445 ranked by the two
algorithms and identified four types of instances: outlier, noise, exception, and
typical. PANDA does not differentiate between these different types of instances
but simply ranks them from most to least noisy. During post-analysis, the domain
expert is the one who categorizes the top 250 instances into the four groups for the
sole purpose of evaluating the effectiveness of PANDA and DM.

An outlier is defined as an instance having attributes with values that reside
within the tail of the general distributions of those attributes, and is a rare occur-
rence in a data set. An instance is considered as noise when one or more of its
attributes have incorrect or corrupted values. An exception is an instance having
attributes with values that do not follow the general distributions of those attributes
but can occur (albeit rarely) with a given data set. Without input from a domain
expert, detecting exceptions is very difficult because they are likely to be flagged
as noise. A typical or normal instance is one with attribute values that occur within
the general distributions of the given data set. It should be noted that from a noise
detection point of view, there is no inspection benefit in presenting typical in-
stances to a domain expert for review.

The number of instances classified into one of the four instance types as de-
termined by the expert after manual inspection are shown in Table 3. The results
are broken down into interval ranges for each algorithm. The first group repre-
sents the 25 highest ranking instances for both PANDA and DM, respectively. For
this group, the expert determined that there were 13 errors, 7 exceptions, and 5
outliers detected by PANDA. The DM algorithm detected 16 errors, 7 outliers, 1
exception, and 1 typical instance among the 25 most suspicious instances. Also
included are the cumulative results for observations 1–125 and 126–250 for both
algorithms.

The top 5% (rank 1–125) suspicious instances identified by PANDA included
108 errors, 10 exceptions, 7 outliers, and no typical instances, while DM detected
101 errors, 5 exceptions, 16 outliers, and 3 typical instances. For the top 5% of
instances, the DM algorithm detects a few normal instances, while PANDA does
not detect any normal instances. If the top 10% suspicious instances identified
by both algorithms are compared, PANDA’s detection included 220 errors, 11 ex-
ceptions, 12 outliers, and 7 typical instances, while DM’s detection included 173
errors, 10 exceptions, 17 outliers, and 50 typical instances. We observe that the
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DM algorithm misclassifies many typical instances as noisy when compared to
PANDA.

The expert also inspected some of the instances that were ranked at the other
extreme by both PANDA and DM, i.e., the least suspicious instances in the data
set. It would be expected that these instances are not of practical interest and would
generally be labeled by the expert as typical. When using either PANDA or DM,
the instances ranked as least suspicious were in all cases typical and of no interest
to the expert.

Tables 4 and 5 display the number of instances from each class ( f p and n f p)
that fell into each interval range. From a software engineering point of view, a
f p instance is likely to have relatively large values for its attributes, i.e., software
metrics. In contrast, a n f p instance is likely to have relatively lower values for its
attributes. The intuitive assumption is that the more complex a software program,
the more likely it is f p.

The first table (Table 4) shows the distribution for the top 125 instances, while
the second shows the distribution for the remainder of the top 250 instances. Over-
all, 124 of the 125 instances that DM ranked in the top 125 most suspicious in-
stances belonged to the f p group, and only 1 belonged to the n f p group. In con-
trast, for PANDA only 74 of the 125 were f p, while 51 were n f p. For instances
ranked by DM between 126 and 250, the vast majority (105 out of 125) of them
are f p.

This result is not surprising, as DM is designed to capture instances that are
far away from the main distribution of the data set. The f p group has observations
which have large values for all of the software attributes, and hence are more likely
to look like outliers. PANDA (while favoring the f p group for the top 5%) is much
more balanced with respect to the class variable. Comparatively speaking, PANDA
provides a more favorable noise detection result, since it is able to identify noisy
instances in both classes without heavily weighing one over the other. The DM
algorithm is more likely to detect normal f p instances.

The cumulative distribution of f p instances detected by the two algorithms
for different rank intervals is shown in Table 6. This table shows the distribution
for up to the top 2000 instances ranked by the two algorithms. Recall the JM1-

Table 4 Class of instances ranked 1–125 by PANDA or DM, JM1-2445 data set

Instance class 1–25 26–50 51–75 76–125 1–125

PANDA DM PANDA DM PANDA DM PANDA DM PANDA DM

f p 24 25 16 25 11 25 23 49 74 124
n f p 1 0 9 0 14 0 27 1 51 1

Table 5 Class of instances ranked 126–250 by PANDA or DM, JM1-2445 data set

Instance class 126–150 151–200 201–250 125–250

PANDA DM PANDA DM PANDA DM PANDA DM

f p 13 25 16 50 18 30 47 105
n f p 12 0 34 0 32 20 78 20
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Table 6 Cumulative distribution of f p instances, JM1-2445 data set

Rank PANDA DM

25 24 25
50 40 50
75 51 75
100 66 100
125 74 124
150 87 149
200 103 199
250 121 229
300 129 234
400 151 235
500 165 235
1000 208 235
1500 227 235
2000 233 235

Total f p 235 235

Table 7 Commonality between PANDA and DM, JM1-2445 data set

Rank Overlap (%)

25 44.00
50 40.00
75 44.00
100 44.00
125 46.40
150 47.00
200 47.00
250 54.00
300 62.00
400 72.00
500 72.00
1000 76.00

2445 data set consists of 2210 n f p and 235 f p instances. The DM algorithm
identifies all the f p instances within the top 400 instances. In contrast, among
the top 400 instances ranked by PANDA, only 151 are f p. Even among the top
2000 instances ranked by PANDA, there are two f p instances still remaining.
These results further demonstrate that PANDA provides a more favorable noise
detection result than DM does.

Table 7 illustrates the number of common instances between PANDA and DM
at various levels, starting from the top 25 instances to the top 1000 instances.
Among the top 25 suspicious instances identified by both algorithms, 40% are
in common. Similarly, among the top 125 suspicious instances identified by both
algorithms, 46.4% are in common. For the top 1000 suspicious instances, repre-
senting 40.9% of the data set, the overlap is still only 76%. This data confirms
that there is a significant difference between the rankings produced by these two
algorithms.
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Considering the expert-based analysis of results obtained by PANDA and DM,
we conclude that PANDA is detecting more noise and fewer outliers and typical
instances than DM. Another interesting result of this analysis is that PANDA de-
tects exceptions, i.e., those rare instances that lie outside the general distributions
of the data set. Even if they do not contain errors, such instances are often of inter-
est to the expert because they may represent potentially new and interesting cases.
PANDA is also more balanced in regards to the class of the detected instances.
DM was unable to detect many of the n f p instances that were noise, since the
distance measure is dominated by large values, and f p instances generally have
relatively larger attribute values when compared to the n f p instances.

5.2 Case Study 2: CCCS data set

This case study examines the noise detection capability of both PANDA and DM
on another real-world data set called CCCS. In contrast to data set JM1-2445,
which was considered in Sect. 5.1, CCCS did not undergo any data preprocessing
prior to the application of PANDA. Preprocessing on JM1-2445 was done to elim-
inate class noise from the data set, and JM1-2445 is a relatively cleaner data set
than the one from which it was derived, JM1-8850. More specifically, JM1-2445
does not contain any instances with class noise, but it does contain instances with
attribute noise. CCCS, on the other hand, is a completely unaltered and unpro-
cessed real-world data set, which contains real-world noise in both the dependent
and independent variables.

PANDA was executed with 5, 7, 9, 12, 15, 17, and 20 bins with the final noise
rank equal to the median rank over these 7 iterations. Multiple bin sizes were used
to reduce the possibility of introducing anomalies that might be caused by the
partitioning process into the data set. Compared to JM1-2445, different bin sizes
were used for CCCS, since the size of the data sets are drastically different (282
instances in CCCS and 2445 instances in JM1-2445). The same parameters used
for DM in Case Study 1 were also used in this case study. Specifically, DM was
executed 10 times with a different value for k from 1 to 10 at each iteration. The
final ranking produced by DM was the median rank over these 10 iterations.

Table 8 displays the results of the expert evaluation of the 30 most suspicious
instances from the CCCS data set (approximately 10% of the data set) as identi-
fied by PANDA or DM. PANDA identifies many noisy instances as well as a few
exceptions and outliers, while DM detects a larger number of outliers (12 vs. 5 for
PANDA) but fewer noisy instances (18 vs. 21 for PANDA).

Table 8 Expert evaluation of the 10% most suspicious instances, CCCS data set

Instance category 1–10 11–20 21–30 1–30

PANDA DM PANDA DM PANDA DM PANDA DM

Noise 6 6 7 4 8 8 21 18
Outliers 2 4 2 6 1 2 5 12
Exceptions 2 0 1 0 1 0 4 0
Typical 0 0 0 0 0 0 0 0
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Table 9 Class of instances ranked 1–30 by PANDA or DM, CCCS data set

Instance category 1–10 11–20 21–30 1–30

PANDA DM PANDA DM PANDA DM PANDA DM

f p 4 8 5 10 1 8 10 26
n f p 6 2 5 0 9 2 20 4

Table 10 Cumulative distribution of f p instances, CCCS data set

Rank PANDA DM

20 9 18
40 13 32
60 18 39
80 25 45
100 27 53
125 32 55
150 37 55
175 40 55
200 45 55
225 47 55
250 51 55
282 55 55

Total f p 55 55

CCCS contains an attribute (n f aults) indicating the number of faults at-
tributed to the module during the system integration and test phases and during
the first year of deployment. To obtain a data set with a binary class variable in-
dicating whether each module should be considered fault prone ( f p) or not fault
prone (n f p), a threshold α can be set on the number of faults. Any module with
more than α faults is considered f p, while the remaining modules are consid-
ered n f p. When calculating the instance rankings created by both PANDA and
DM, the original attribute n f aults was used. For comparing the class distribution
of the two techniques in Tables 9 and 10, we use the binary class variable with
α = 3. Any module with more than three faults was considered f p. This particu-
lar threshold was chosen based on previous empirical studies using the CCCS data
set [12].

Table 9 displays the class distribution for the 30 most suspicious instances
as identified by either PANDA or DM. PANDA detects 10 f p instances and 20
n f p instances, while DM detects 26 f p instances and 4 n f p instances. Table 10
displays the cumulative distribution of f p instances for PANDA and DM. DM
has ranked all 55 f p instances in the 125 most suspicious instances, while even
at rank 250, PANDA has detected only 51 of the 55 f p instances. PANDA has
a much more favorable class distribution related to the detected instances when
compared to DM.

Table 11 displays the commonality between PANDA and DM on the CCCS
data set. The overlap among the 20 most suspicious instances identified by
PANDA and DM is 40%, while among the 100 most suspicious instances (which
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Table 11 Commonality between PANDA and DM, CCCS data set

Rank Overlap (%)

20 40.00
40 32.50
60 45.00
80 58.75
100 63.00
150 70.00
200 79.50

is approximately 35% of the data set) the overlap is 63%. This data confirms that
PANDA and DM are detecting different instances.

6 Conclusion

This paper focuses on the problem of data quality in measurement data. Decisions
made by data mining models are invariably affected by the quality of the under-
lying data. If the quality of the data is poor, a classification model trained using
that data is likely to yield incorrect estimations. While the problem of detecting
instances with class noise has seen increased attention, very limited focus has been
placed on detecting instances having attribute noise.

We have introduced a new noise detection algorithm called PANDA, which is
designed to detect instances that contain attribute noise. The output of PANDA is
a list of instances ordered from the most noisy to least noisy. PANDA is attractive
because it can be used for noise detection in the absence of the dependent
variable data, i.e., class labels. Furthermore, to our knowledge PANDA is the
first algorithm to address the problem of detecting instances with attribute noise
without the need of class label data.

The proposed approach is investigated in two separate case studies. The first
case study considers software measurement data from a NASA project which
is preprocessed to eliminate instances that contain class noise. The second case
study uses another software measurement data set which did not undergo any data
preprocessing before the application of our technique. Note that many additional
experiments with different data sets were conducted and similar empirical
conclusions were obtained; however, their presentation is omitted due to space
limitations. The proposed algorithm is automated in a software application
and can be applied to data sets of different sizes and from other domains. We
compare the performance of PANDA with an outlier detection algorithm. A
software engineering expert inspected the instances detected by both procedures
to determine whether they are noise, exceptions, or outliers. The algorithms were
then evaluated for effectiveness in detecting the noisy instances.

PANDA is able to identify more noisy instances and fewer outliers and typical
instances than the outlier detection procedure DM. Additionally, PANDA provides
more balanced noise detection among the f p and n f p classes, while the instances
identified by the DM algorithm were largely f p. It should be noted that from
a software engineering point of view, the attribute values for the f p instances
are generally larger than the corresponding attribute values for the n f p instances,
which is why DM is more likely to detect f p instances.
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In contrast to our expert-based approach to noise detection, related literatures
have often injected randomly generated noise in order to evaluate a given noise
detection technique. However, the data set into which noise is injected is often not
verified to be noise-free. In the first case study, we utilize a data set without class
noise which does, however, contain attribute noise. The second case study uses a
data set that received no special treatment before the application of PANDA. The
instances in these data sets contain the types of noise that are encountered in real-
world data. A software engineering expert is used to evaluate the effectiveness
of our algorithm on real-world data sets that contain real-world (as opposed to
injected) noise.

Future work will continue to explore other algorithms for attribute noise de-
tection that can be used with data sets of various domains. An investigation of
PANDA by including the class attribute in its analysis can be compared with other
supervised noise detection approaches. Whether the class label is treated like the
other attributes or as a special (or weighted) attribute needs investigation. An-
other important issue that needs further investigation is to determine the attributes
within an instance that caused the instance to be classified as noisy. As with any
empirical study, additional case studies will further validate the effectiveness of
the proposed noise detection approach.

Acknowledgements We thank Naeem Seliya for his suggestions and assistance with patient
modifications and editorial reviews of the paper. We thank Dr. Shi Zhong for reviewing the
manuscript. We also thank the anonymous reviewers and guest editors of the special issue on
Mining Low-Quality Data for their helpful comments and thoughtful reviews.

References

1. Aggarwal C, Yu P (2001) Outlier detection for high dimensional data. In: Proceedings of
ACM SIGMOD conference on management of data, ACM Press, Dallas, TX

2. Bobrowski M, Marre M, Yankelevich D. A software engineering view of data quality. Avail-
able at www.citeseer.ist.psu.edu/277636.html

3. Brodley CE, Friedl MA (1999) Identifying mislabeled training data. J Artif Intell Res
11:131–167

4. Clark P, Niblett T (1991) Rule induction with CN2: some recent improvements. In: Pro-
ceedings of the 5th European working session on learning, pp 151–163

5. Dunagan JD (2002). A geometic theory of outliers and perturbation. Ph.D. Dissertation.
Available at http://research.microsoft.com/∼jdunagan/thesis.pdf

6. Fenton NE, Pfleeger SL (1997) Software metrics: a rigorous and practical approach, 2nd
edn. PWS Publishing Company: ITP, Boston, MA

7. Galhardas H, Florescu D, Shasha D, Simon E (2000) An extensible framework for data
cleaning. In: Proceedings of 18th international conference on data engineering, IEEE Com-
puter Society, San Jose, CA

8. Gamberger D, Lavrac N, Dzeroski S (1999) Noise elimination in inductive concept learning:
a case study in medical diagnosis. In: Proceedings of the 7th international workshop on
algorithmic learning theory, Springer, Berlin Heidelberg Ney York, pp 199–212

9. Gamberger D, Lavrac N, Groselj C (1999) Experiments with noise filtering in a medical
domain. In: Proceedings of the 16th international conference on machine learning. Morgan
Kaufmann, San Mateo, California, pp 143–153

10. Hernandez MA, Stolfo SJ (1995) The merge/purge problem for large databases. In: Pro-
ceedings of ACM SIGMOD conference on management of data, ACM, pp 127–138. cite-
seer.ist.psu.edu/stolfo95mergepurge.html

11. Hernandez MA, Stolfo, SJ (1998) Real-world data is dirty: data cleansing and the
merge/purge problem. Data Min Knowl Discov 2(1):9–37



The pairwise attribute noise detection algorithm 189

12. Khoshgoftaar TM, Allen EB (1998) Classifcation of fault-prone software modules: prior
probabilities, costs and model evaluation. Empiric Software Eng 3:275–298

13. Khoshgoftaar TM, Bullard LA, Gao K (2003) Detecting outliers using rule-based modeling
for improving CBR-based software quality classification models. In: Ashley KD, Bridge
DG (eds) Proceedings of the 16th international conference on case-based reasoning. LNAI,
vol 1689. Springer-Verlag, Berlin Heidelberg New York, pp 216–230

14. Khoshgoftaar TM, Rebours P (2004) Generarting multiple noise elimination filters with
the ensemble-partitioning filter. In: Proceedings of the IEEE international conference on
information reuse and integration, IEEE Systems, Man and Cybernetics Society, Las Vegas,
NV, USA, pp 369–375

15. Khoshgoftaar TM, Seliya N (2004) The necessity of assuring quality in software measure-
ment data. In: Proceedings of 10th international software metrics symposium, IEEE Com-
puter Society, Chicago, IL, pp 119–130

16. Khoshgoftaar TM, Seliya N, Gao K (2005) Detecting noisy instances with the rule-based
classification model. Intell Data Anal 9(4):347–364

17. Khoshgoftaar TM, Zhong S, Joshi V (2005). Noise elimination with ensemble-classifier
filtering for software quality estimation. Intell Data Anal 9(1):3–27

18. Knorr E, Ng R (1997) A unified notion of outliers: Properties and computation. In Proceed-
ings of knowledge discovery and data mining. American Association for Artificial Intelli-
gence, Newport Beach, CA, pp 219–222

19. Knorr E, Ng R (1998) Algorithms for mining distance-based outliers in large datasets. In:
Proceedings of 24th international conference on very large databases, New York, NY, pp
392–403

20. Marcus A, Maletic J, Lin K-I (2001) Ordinal association rules for error identification in
datasets. In: Proceedings of 10th international conference on information and knowledge
management. ACM Press, Atlanta, GA, pp 589–591

21. Murphy, PM, Aha DW (1998) UCI repository of machine learning databases. Uni-
versity of California, Irvine, Department of Information and Computer Science.
http://www.ics.uci.edu/∼mlearn/MLRepository.html

22. Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann, San Mateo,
California

23. Ramasway S, Rastogi R, Shim K (2000) Efficient algorithms for mining outliers from large
datasets. In: Proceedings of ACM SIGMOD conference on management of data, ACM, pp
427–438

24. SAS Institute (2004) SAS/STAT user’s guide. SAS Institute Inc
25. Shekhar S, Lu C, Zhang P (2002) Detecting graph-based spatial outliers. Intell Data Anal

6:451–458
26. Strong D, Lee Y, Wang R (1997) Data quality in context. Commun ACM 40(5):103–110
27. Teng CM (1999) Correcting noisy data. In: Proceedings of 6th international conference

machine learning (ICML 99). Morgan Kaufmann, San Mateo, California, pp 239–248
28. Yang Y, Wu X, Zhu X (2004) Dealing with predictive-but-unpredictable attributes in noisy

data sources. In: Proceedings of 8th European conference on principles and practice of
knowledge discovery in databases, Pisa, Italy

29. Zhong S, Khoshgoftaar TM, Seliya N (2004) Analyzing software measurement data with
clustering techniques. IEEE Intell Syst, pp 22–29

30. Zhu X, Wu X (2004) Class noise vs attribute noise: a quantitative study of their impacts.
Artif Intell Rev 22(3–4):177–210



190 J. D. Van Hulse et al.

Jason Van Hulse is a Ph.D. candidate in the Department of
Computer Science and Engineering at Florida Atlantic Uni-
versity. His research interests include data mining and knowl-
edge discovery, machine learning, computational intelligence
and statistics. He is a student member of the IEEE and IEEE
Computer Society. He received the M.A. degree in mathe-
matics from Stony Brook University in 2000, and is currently
Director, Decision Science at First Data Corporation.

Taghi M. Khoshgoftaar is a professor at the Department
of Computer Science and Engineering, Florida Atlantic Uni-
versity, and the director of the Empirical Software Engineer-
ing and Data Mining and Machine Learning Laboratories.
His research interests are in software engineering, software
metrics, software reliability and quality engineering, compu-
tational intelligence, computer performance evaluation, data
mining, machine learning, and statistical modeling. He has
published more than 300 refereed papers in these subjects. He
has been a principal investigator and project leader in a num-
ber of projects with industry, government, and other research-
sponsoring agencies. He is a member of the IEEE, the IEEE
Computer Society, and IEEE Reliability Society. He served as
the program chair and general chair of the IEEE International
Conference on Tools with Artificial Intelligence in 2004 and
2005, respectively. Also, he has served on technical program
committees of various international conferences, symposia,

and workshops. He has served as North American editor of the Software Quality Journal, and
is on the editorial boards of the journals Empirical Software Engineering, Software Quality, and
Fuzzy Systems.

Haiying Huang received the M.S. degree in computer engineering from Florida Atlantic Uni-
versity, Boca Raton, Florida, USA, in 2002. She is currently a Ph.D. candidate in the Depart-
ment of Computer Science and Engineering at Florida Atlantic University. Her research interests
include software engineering, computational intelligence, data mining, software measurement,
software reliability, and quality engineering.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


