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Summary

Objective: An important problem that arises in hospitals is the monitoring and
detection of nosocomial or hospital acquired infections (NIs). This paper describes
a retrospective analysis of a prevalence survey of NIs done in the Geneva University
Hospital. Our goal is to identify patients with one or more NIs on the basis of clinical
and other data collected during the survey.
Methods and material: Standard surveillance strategies are time-consuming and
cannot be applied hospital-wide; alternative methods are required. In NI detection
viewed as a classification task, the main difficulty resides in the significant imbalance
between positive or infected (11%) and negative (89%) cases. To remedy class
imbalance, we explore two distinct avenues: (1) a new resampling approach in which
both oversampling of rare positives and undersampling of the noninfected majority
rely on synthetic cases (prototypes) generated via class-specific subclustering, and (2)
a support vector algorithm in which asymmetrical margins are tuned to improve
recognition of rare positive cases.
Results and conclusion: Experiments have shown both approaches to be effective for
the NI detection problem. Our novel resampling strategies perform remarkably better
than classical random resampling. However, they are outperformed by asymmetrical
soft margin support vector machines which attained a sensitivity rate of 92%,
significantly better than the highest sensitivity (87%) obtained via prototype-based
resampling.
# 2005 Published by Elsevier B.V.
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1. Introduction

Surveillance is the cornerstone activity of infection
control, whether nosocomial1 or otherwise. It pro-
vides data to assess the magnitude of the problem,
detect outbreaks, identify risk factors for infection,
target control measures on high-risk patients or
wards, or evaluate prevention programs. Ulti-
mately, the goal of surveillance is to decrease infec-
tion risk and consequently improve patients’ safety.

There are several ways to perform surveillance,
each with its advantages and drawbacks. The gold
standard is hospital-wide prospective surveillance,
which consists in reviewing on a daily basis all
available information on all hospitalized patients
in order to detect all nosocomial infections (NIs).
This method is labor-intensive, infeasible at a hos-
pital level, and currently recommended only for
high-risk, i.e., critically ill patients. As an alterna-
tive and more realistic approach, prevalence sur-
veys are being recognized as a valid surveillance
strategy and are becoming increasingly performed.
Their major limitations are their retrospective nat-
ure, the dependency on readily available data, a
prevalence bias, the inability to detect outbreak
(depending on survey frequency), and the limited
capacity to identify risk factors. However, they
provide sufficiently good data to measure the mag-
nitude of the problem, evaluate a prevention pro-
gram, and help allocate resources. They give a
snapshot of clinically active NIs during a given index
day and provide information about the frequency
and characteristics of these infections. The efficacy
of infection control policies can be easily measured
by repeated prevalence surveys [1]. However, what-
ever the strategy used, surveillance of NI is resource
and labor-consuming, as it requires to assemble a
wide range of data gathered from multiple sources.
This calls for the development of alternative meth-
ods that would ultimately allow to constantly moni-
tor infection risk across the hospital, and at a lower
cost.
2. Background and motivation

The actual detection of NIs largely rely on manual
methods. Infection control practitioners report
infection rates using standard method (i.e. guide-
lines) elaborated by the Centers for Disease Control
1 A nosocomial infection is a disease that develops after a
patient’s admission to the hospital and is the consequence of
treatment–—not necessarily surgical–—or work by the hospital
staff. Usually, a disease is considered a nosocomial infection if
it develops 48 h after admission.
(CDC) [2]. Several teams have developed tools to
assist physicians in detecting NIs, using computer-
ized approaches. These tools typically work by
searching clinical databases of microbiology and
other data and producing a report that infection
control physicians can then use to assess whether or
not NI is present. Information technology is increas-
ingly applied to surveillance of nosocomial infec-
tions in order to facilitate data collection at the
bedside [3], to enhance data quality, or to render
surveillance automatic for cost reasons [4]. So far,
data mining techniques have only been rarely
applied to surveillance [5—9]. None of these appli-
cations, however, can directly be compared to our
approach to survey all endemic nosocomial infec-
tions using a wide range of patient data. Former
studies using data mining were limited to outbreak
detection, or merely based on microbiology results.
Our long-term goal is to identify patients with a high
risk of acquiring any kind of nosocomial infection in
order to cut down on work load for manual review of
patient records. This would, once more, render
hospital-wide surveillance possible.
3. Data collection and preparation

The University Hospital of Geneva (HUG) has been
performing yearly prevalence studies since 1994
[10]. These surveys are undertaken every year at
the same period and last approximately 3 weeks. All
patients hospitalized at time of the survey for more
than 48 h are assessed for the presence of an active
nosocomial infection. Data are extracted frommed-
ical records, kardex, X-ray and microbiology
reports, and interviews with nurses and physicians
in charge of the patient, if necessary. All nosocomial
infections active during the 6 days preceding the day
of survey are recorded and identified according to
modified CDC criteria [2]. Collected variables
include administrative information, demographic
characteristics, admission diagnosis, comorbidities
and severity of illness scores, type of admission,
exposure to various risk factors for infection (sur-
gery, intensive care unit stay, invasive devices,
antibiotics, antacids, immunosuppressive treat-
ments), clinical and paraclinical information, and
data related to infection, when present.

This type of hospital-wide prevalence survey has
been favored over prospective surveillance, as it is
less time-consuming. However, it still requires con-
siderable resources, as about 800 h are needed for
data collection only. Consequently, we cannot
afford to perform this surveillance more than once
a year. The aim of this pilot study is to apply data
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mining techniques to data collected in the 2002
prevalence study in order to detect nosocomially
infected patients on the basis of the factors
described above.

The dataset consisted of 688 patient records and
83 variables. With the help of hospital experts on
nosocomial infections, we filtered out spurious
records as well as irrelevant and redundant vari-
ables, reducing the data to 683 cases and 49 vari-
ables. In addition, several variables had missing
values [11], due to mainly erroneous or missing
measurements. These values were assumed to be
missing at random, as domain experts did not detect
any clear correlation between the fact that they
were missing and the data (whether values of the
incomplete variables themselves or of others). We
replaced these missing values with the class-condi-
tional mean for continuous variables and the class-
conditional mode for nominal ones. These prepro-
cessing operations are often necessary in such retro-
spective analyses where data collection has not
been engineered specifically for data mining pur-
poses.
4. The imbalanced data problem

The major difficulty inherent in the data (as in many
medical diagnostic applications) is the highly
skewed class distribution. Out of 683 patients, only
75 (11% of the total) were infected and 608 were
not. The problem of imbalanced datasets is parti-
cularly crucial in applications where the goal is to
maximize recognition of the minority class.2 The
issue of class imbalance has been actively investi-
gated and remains largely open; it is handled in a
number of ways [12] such as resampling (either by
upsizing the minority class [13] or downsizing the
majority class) [14], building cost-sensitive classi-
fiers [15] that assign a higher cost to misclassifica-
tion of minority class members, and rule-based
methods that attempt to learn high confidence rules
for the minority class [16].

All solutions to data imbalance that have been
proposed to date can be roughly split into two main
categories: the first consists in pre-processing the
data to reestablish class balance whereas the second
involves modifying the learning algorithm itself to
cope with imbalanced data. In this paper we inves-
tigate solutions under each of these two categories.
Section 5 discusses these two approaches; experi-
ments conducted to assess them are described in
Section 6 and results are discussed in Section 7.
2 For convenience we identify positive cases with the minority
and negative cases the majority class.
5. Strategies for handling imbalanced
data

In this section we present two distinct approaches to
the imbalanced data problem. The first is aimed at
eliminating or at least attenuating class imbalance
before the learning process whereas the second
adjusts the learning algorithm’s bias to allow it to
learn despite the handicap of imbalanced data. In
the first approach, we decompose each class into
fine-grained clusters and generate artificial cases in
the form of cluster prototypes; these synthetic
cases are used to drive the preliminary resampling
process. In the second approach, we modify the
inductive process itself in order to favor the positive
minority and thus boost sensitivity [11]; this is done
through the use of asymmetrical soft margins in
support vector machines.

5.1. Prototype-based resampling

Resampling approaches appeared as the earliest and
remain the most popular methods for coping with
imbalanced data. Class rebalancing can be per-
formed in one of two ways. In the undersampling
approach, one eliminates instances to downsize the
majority class; cases to retain or eliminate are
usually drawn at random, but more informed stra-
tegies for subsampling have been proposed (see for
instance [14]). In the oversampling approach, the
minority class is upsized, typically by duplicating
randomly selected class members. More recently,
attempts have been made to augment the minority
class by generating synthetic instances. For
instance, Chawla et al. [13] generate synthetic
cases from real ones using a technique based on
nearest neighbors.

We pursue the resampling strategy by exploring a
new way of generating synthetic examples. A
selected class is subclustered and the resulting
prototypes are reintroduced as synthetic cases. In
one variant of the proposed strategy, we use the
artificially created examples to downsize the major-
ity class. This approach is novel and may appear
unnecessary and even counterintuitive at first sight.
One could indeed understandably question the need
to generate artificial examples to represent an
already over-represented class. The key difference
is that in the downsizing approach, the synthetic
cases are used to replace all the original majority
class members. The rationale is that since the arti-
ficial examples are built as centroids of subclusters
of the majority class, they thus distill the essential
discriminating properties of that class. For a given
cardinality, one could therefore legitimately expect
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a set of these prototypes to be more informative
than a set of real cases. To shrink the majority class,
we ran K-means clustering on the training instances
of this class with K ¼ Nmin , the size of the minority
class. These Nmin prototypes were then used as sole
representatives of the minority class so that training
was performed on equally distributed classes.

The second variant involves oversampling the
minority class using agglomerative hierarchical
clustering (AHC). Partitional clustering methods
like K-means are less adequate for this task due
to the small number of clusters (and therefore of
prototypes) that can be created. The number of
clusters K should be considerably less than Nmin ;
with K ¼ Nmin each cluster will have a single mem-
ber which will naturally be its centroid. This is in
acceptable since the idea is precisely to synthesize
examples that are different from the existing cases
(otherwise we revert to standard case duplication).
Given this limit on K, the number of synthetic cases
generated will be insufficient to attain inter-class
equilibrium. Hierarchical clustering does not share
this limitation, since the number of (eventually
nested) clusters can be augmented at will by
increasing the number of levels and varying the
inter-cluster distance metrics used. We therefore
turned to AHC using single- and complete-linkage in
succession to vary the clusters produced. Clusters
were gathered from all levels of the resulting den-
dograms. Their centroids were computed and con-
catenated with the original positive cases, thus
upsizing the positive class to match the negative
class. Finally, the third variant is the combination of
AHC-based oversampling and K-means based under-
sampling.

5.2. Asymmetrical margin support vector
machines

In this section, we show how a learning algorithm
like support vector machines can be adapted to
learn in the presence of imbalanced datasets. To
make this paper self-contained, we start with a brief
overview of support vector classification before
describing how asymmetrical margins provide a
solution to the problem of skewed class distribu-
tions. The reader familiar with statistical learning
theory can go directly to Section 5.2.2.

5.2.1. Overview of support vector
classification
Support vector machines [17,18] (SVM) are learning
machines based on the Structural Risk Minimization
(SRM) principle from statistical learning theory. The
SRM principle seeks to minimize an upper bound of
the generalization error rather than minimizing the
training error (Empirical Risk Minimization (ERM)).
This approach results in better generalization than
conventional techniques generally based on the ERM
principle.

Consider a labeled training set fxi; yig; i ¼ 1; . . . ;
n; yi 2f�1;þ1g; xi 2Rd. For a separable classifica-
tion task, there exists a separating hyperplane,
defined by ðw � xÞ þ b, with w the weight vector, b
the bias and where ð�Þ denotes the inner product,
which maximizes the margin or distance between
the hyperplane and the closest data points belong-
ing to the different classes. This optimum separating
hyperplane is given by the solution to the problem:

minimize
1

2
kwk2

subject to yiðw � xi þ bÞ� 1; i ¼ 1; . . . ; n
(1)

where b=kwk is the distance between origin and
hyperplane. This is a quadratic programming pro-
blem (QP), solved by Karush—Kuhn—Tucker theo-
rem. Let a ¼ ða1;a2; . . . ;anÞ be the n nonnegative
Lagrange multipliers associated with the con-
straints, the solution to the problem is equivalent
to determining the solution of the Wolfe dual[19]
problem:

maximize
Xn
i¼1

ai �
1

2

X
i; j

aia jðxi:x jÞyiy j

subject to
Xn
i¼1

aiyi ¼ 0; ai� 0

(2)

The solution for w is

w ¼
Xn
i¼1

aiyixi (3)

There is a Lagrange multiplier ai for each training
point and only those training examples that lie close
to the decision boundary have nonzero ai. These
vectors are called the support vectors. The classifier
decision function fðxÞ is:

fðxÞ ¼ sign
Xn
i¼1

aiyiðx � xiÞ þ b

 !
(4)

5.2.1.1. Soft margin hyperplanes. While the above
method is fine for separable data points, very often
noisy data or sampling problems will lead to no
linear separation in the feature space. Very often,
the data points will be almost linearly separable in
the sense that only a few of the members of the data
points cause it to be nonlinearly separable. Such
data points can be accommodated into the theory
with the introduction of slack variables that allow
particular vectors to be misclassified. The hyper-
plane margin is then relaxed by penalizing the
training points misclassified by the system. Formally
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the optimal hyperplane is defined to be the hyper-
plane which maximizes the margin and minimizes
some functional uðjÞ ¼

Pn
i¼1 js

i , where s is some
small positive constant. Usually the values s ¼ 1
and 2 are used since it is a QP and for s ¼ 1 the
corresponding dual does not involve j and therefore
offers a simple optimization problem. The con-
straint in (1) now assumes the form

yiðw � xi þ bÞ� 1� ji; 8 iji� 0 (5)

The optimization problem becomes

minimize
1

2
kwk2 þ C

Xn
i¼1

js
i

subject to yiðw � xi þ bÞ� 1� ji; i ¼ 1; . . . ; n

8 iji� 0:

(6)

where ji is a positive slack variable that measures
the degree of violation of the constraint. The pen-
alty C is a regularization parameter that controls the
trade-off between maximizing the margin and mini-
mizing the training error. This is called the soft
margin approach. Again, instead of solving directly
optimization problem (6) we consider the corre-
sponding dual problem. We will consider the soft
margin case for s ¼ 1 and 2.
Figure 1 Schematic 2D overview of the asymmetrical soft
represent positive and circles negative examples; dark symbo
graph (A) shows the decision boundary induced by a symmetric
positive and negative examples. The right graph (B) shows the
Cþ and C� respectively for positive and negative examples. Ob
pushed away from the positive training examples (i.e. H1 in (
while reducing the negative margin of (A). This margin adjus
shown by the two positive examples (grey squares) which ar
approach must not be confused with a naive postprocessing m
adjusting b: fðxÞ ¼ sign

Pn
i¼1 aiyiðx � xiÞ þ bþ Db

� �
. In fact we

different from the one in (A) (w 6¼w0, as shown in (B) by the
1-Norm soft margin. If we select s ¼ 1 the dual
problem becomes

maximize
Xn
i¼1

ai �
1

2

Xn
i; j¼1

aia jðxi � x jÞyiy j

subject to 0 � ai � C; i ¼ 1; . . . ; nXn
i¼1

aiyi ¼ 0

(7)

The only difference with respect to (2) is that the
Lagrange multipliers are upper bounded by C. The
KKTconditions imply that nonzero slack variables can
onlyoccur forai ¼ C. Forthecorrespondingpoints the
distance from the hyperplane is less than 1=kwk as
can be seen from the first constraint in (6). For ai

between0andC thecorrespondingpoints lieononeof
the twomargin hyperplanes as depicted in Fig. 1 (A).

2-Norm soft margin. If we select s ¼ 2the dual
problem becomes

maximize
Xn
i¼1

ai �
1

2

Xn
i; j¼1

aia jððxi:x jÞ þ
1

C
di; jÞyiy j

subject to ai� 0; i ¼ 1; . . . ; nXn
i¼1

aiyi ¼ 0

(8)
margin principle on a toy classification problem. Squares
ls stand for training and grey for test examples. The left
al margin SVM, i.e., with a single penalty factor C for both
new boundary obtained by introducing two penalty factors
serve that in (B) the decision boundary from (A) has been
A)). This can be viewed as increasing the positive margin
tment results in improved generalization performance as
e misclassified in (A) and correctly classified in (B). This
ethod which consists in moving the decision boundary by
can see that the direction of the decision boundary in (B) is
nonnull angle between these vectors).
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where di; j is the Kronecker symbol defined to be 1 if
i ¼ j and 0 otherwise. The only difference w.r.t. the
1-norm is the addition of 1=C to the diagonal of the
Gram matrix3G ¼ ðxi � x jÞ.

5.2.1.2. Nonlinear support vector classifica-
tion. The entire construction can be extended
rather naturally to include nonlinear decision
boundaries. Given a mapping f : X !H each data
point x in input space is mapped onto a vector z ¼
fðxÞ in a higher dimensional feature space H. We
can then substitute the dot product ðfðxÞ � fðxiÞÞH in
feature space with a nonlinear function Kðx; xiÞ, also
called a kernel. Conditions for a function to be a
kernel are expressed in a theorem by Mercer
[20,21]. The kernel function behaves like an inner
product in H, but can be calculated as a function in
Rd. Thus choosing a kernel will implicitly define a
mapping f. Most common kernels are polynomial
Kðx; zÞ ¼ ððx � zÞ þ 1Þ pand RBF Gaussian Kðx; zÞ ¼
exp ð�kx � zk=2s2Þ. The final classifier fðxÞ is then
expressed in term of Kðx; xiÞ

fðxÞ ¼ sign
Xn
i¼1

aiyiKðx; xiÞ þ b

 !
: (9)

5.2.2. Asymmetrical margin support vector
classification
The above formulation of the SVM is inappropriate
in two common situations: in the case of unba-
lanced distributions, or whenever misclassifica-
tions must be penalized more heavily for one
class than for the other. Generally in these cases
the training set is unrepresentative of the whole
dataset and the resulting classifier learned may
have poor generalization performance. To illus-
trate the problem, Fig. 1 shows a toy binary clas-
sification problem where the training set is
imbalanced. In this case the decision boundary
induced by the maximal-margin SVM classifier pre-
dicts poorly since it misclassifies some positive
(unseen) examples.

In order to adapt the SVM algorithm to these cases
[22—24] the basic idea is to introduce different error
weights Cþ and C� for the positive and the negative
class respectively, which results in a bias for larger
multipliers ai of the critical class. This induces a
decision boundary which is more distant from the
smaller class than from the other, resulting in better
generalization performance. Let iþ ¼ fijyi ¼ �1g
3 Given a set of instances X ¼ fxi; yigni¼1, the Gram matrix is the
matrix of all possible inner-products of pairs from X, G ¼ ðgi jÞ ¼
ðxi:xjÞ.
and i� ¼ fijyi ¼ þ1g. This transforms (6) into the
following optimization problem:

minimize
1

2
kwk2 þ C�

X
i2 i�

j�i þ Cþ
X
i2 iþ

jþi (10)

subject to ðw � xi þ bÞ� 1� jþi ; i ¼ 1; . . . ; n
ðw � xi þ bÞ � �1þ j�i ; i ¼ 1; . . . ; n

ji� 0; i ¼ 1; . . . ; n

(11)

For s ¼ 1 with the same computations as above we
obtain the same formulation as in (7) except that

0 � ai � Cþ for yi ¼ þ1;

0 � ai � C� for yi ¼ �1

For s ¼ 2 we obtain the following dual formulation

LD ¼
Xn
i¼1

ai �
1

2

Xn
i; j¼1

aia jyiy j

� ðxi � x jÞ þ Ii2 iþ
1

Cþ
di j þ Ii2 i�

1

C�
di j

� �
(12)

where I is the indicator function. This can be inter-
preted as a change in the Gram matrix G. Then the
balance between sensitivity and specificity can be
controlled by adding 1=Cþ to the elements of the
diagonal of G which correspond to examples of the
positive class and 1=C� to those corresponding to
examples of the negative class. Writing the 2-norm
soft margin in a kernel-based version, we get:

Kðx; zÞ ¼
Kðxi; zÞ þ

1

C�
dxiz for yi ¼ �1

Kðxi; zÞ þ
1

Cþ
dxiz for yi ¼ þ1

8><
>: (13)

Veropoulos et al. [23] have shown that regulariza-
tion of kernel matrix diagonal elements produces
similar results for both 1-norm and 2-norm. The
experiments reported in the next section have thus
been restricted to the 1-norm case.
6. Experimental setup

6.1. Learning algorithms

For the preprocessing strategy we compared alter-
native solutions to the class imbalance problem
using five learning algorithms with clearly distinct
inductive biases. Decision trees such as those built
by C4.5 are models in which each node is a test on
an individual variable and a path from the root to a
leaf is a conjunction of conditions required for a
given classification [25]. Naive Bayes computes the
posterior probability of each class given a new
case, then assigns the case to the most probable
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class. IB1 is basically a K-nearest-neighbors [26]
classification algorithm, while Adaboost builds a
single-node decision tree iteratively, focusing at
each step on previously misclassified cases [27].
Support vector machines have been describedmore
extensively in Section 5.2.1 because of the central
role they play in our experiments. Aside from tak-
ing part in the study of the impact of preliminary
resampling on five learning algorithms, they are
used to illustrate how the inductive bias of learning
algorithms can be modified to ensure satisfactory
performance despite data pathologies such as class
imbalance.

6.2. Performance metrics

In classification tasks, the performance of a classi-
fier is commonly quantified in terms of its predictive
accuracy, i.e. the fraction of correctly classified
test cases. However, highly skewed class distribu-
tions can make this metric close to meaningless. To
see this, consider a dataset consisting of 5% positive
and 95% negatives. The simple rule of assigning a
case to the majority class would result in an
impressive 95% accuracy whereas the classifier
would have failed to recognize a single positive
case–—an inacceptable situation in medical diagno-
sis. The reason for this is that the contribution of a
class to the overall accuracy rate is a function of its
cardinality, with the effect that rare positives have
an almost insignificant impact on the performance
measure. To discuss alternative performance cri-
teria we adopt the standard definitions used in
binary classification. TP and TN stand for the num-
ber of true positives and true negatives respec-
tively, i.e., positive/negative cases recognized as
such by the classifier. FP and FN represent respec-
tively the number of misclassified positive and
negative cases. In two-class problems, the accuracy
rate on the positives, called sensitivity [11], is
defined as: sensitivity: TP=ðTPþ FNÞ, whereas the
accuracy rate on the negative class, also known
as specificity [11], is: specificity: TN=ðTNþ FPÞ.
Classification accuracy is simply: accuracy:
ðTPþ TNÞ=N, where N ¼ TPþ TNþ FPþ FP is the
total number of cases. To overcome the shortcom-
ings of accuracy and put all classes on an equal
footing, some have suggested the use of the geo-
metric mean of class accuracies, defined as

gm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP

TPþ FN
� TN

TNþ FP

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sensitivity� specificity

p
(14)

The drawback of the geometric mean is that there is
no way of giving higher priority to the rare positive
class. In information retrieval, a metric that allows
for this is the F-measure

Fa ¼
PR

aRþ ð1� aÞP (15)

where R (recall) is no other than sensitivity and P
(precision) is defined as P ¼ TP=ðTPþ FPÞ, i.e., the
proportion of true positives among all predicted
positives. The a parameter, 0< b< 1, allows the
user to assign relative weights to precision and
recall, with 0.5 giving them equal importance. How-
ever, the F-measure takes no account of perfor-
mance on the negative class, due to the near
impossibility of identifying negatives in information
retrieval. In medical diagnosis tasks, however, what
is needed is a relative weighting of recall and spe-
cificity. To combine the advantages and overcome
the drawbacks of the geometric mean accuracy and
the F-measure, we propose the mean class-
weighted accuracy (CWA), defined formally for
the K-class setting as

cwa ¼ 1Pk
i¼1wi

Xk
i¼1

wi accui (16)

where wi 2N is the weight assigned to class i and
accui is the accuracy rate computed over class i. If
we normalize the weights such that 0 � wi � 1 andP

wi ¼ 1, we get cwa ¼
Pk

i¼1 wiaccui which simpli-
fies to

cwa ¼ wi � sensitivity þ ð1� wiÞ

� specificity (17)

in binary classification.

6.3. ROC curves

In medical diagnosis [28], biometrics and recently
machine learning [29], the usual way of assessing a
classification method is the receiver operating char-
acteristic (ROC) curve. A ROC curve plots sensitivity
versus 1� specificityfor different thresholds of the
classifier output. Based on the ROC curve, one can
decide how many false positives (respectively false
negatives) one is willing to tolerate and tune the
classifier threshold to best suit a certain applica-
tion. A random assignment of classes to data would
result in a ROC curve in the form of a diagonal line
from (0, 0) to (1, 1).

6.4. Evaluation strategy

The experimental goal was to measure (1) the rela-
tive performance of different approaches to adjust-
ing class distribution and (2) the performance of an
SVM asymmetrical soft margin approach to cope
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with uneven datasets. Given the limited amount of
data, we adopted stratified five-fold cross-valida-
tion in all the experiments. To evaluate the resam-
pling approach, we ran the five learning algorithms
(1) on the original class distribution, then on training
data balanced via (2) random subsampling, (3) ran-
dom oversampling, and (4) different variants of our
approach as described in Section 4. All learned
models were validated on a test set with the original
class distribution. In this way, it was ensured that
the validation stage was not influenced by any bias
introduced by the various class resampling strate-
gies.

To train our SVM classifiers we use a radial basis
kernel of the form

Kðxi; x jÞ ¼ exp
�kxi � x jk2

2s2

 !
(18)

To obtain the optimal values for the hyperpara-
meters s;C;Cþ and C� we experimented with dif-
ferent SVM classifiers using a range of values. The
performance of the selected SVMs was quantified
based on sensitivity, specificity and accuracy.

For our experiments we fixed C� at 1, and to
determine the best Cþ parameter we built several
SVM classifiers using different values for Cþ.
7. Results

Table 1 summarizes performance results on the
original skewed class distribution and illustrates
clearly the inadequacy of the accuracy criterion
for this task. For instance, AdaBoost exhibits the
highest accuracy of 90% but actually performs more
Table 1 Baseline performance (original class distribution:

Classifier Sensitivity Spe

IB1 0.19 0.9
Nave Bayes 0.57 0.8
C4.5 0.28 0.9
AdaBoost 0.45 0.9
SVM 0.43 0.9

Table 2 Random subsampling and oversampling (0.5 pos,

Classifier (a) Random subsampling

Sens Spec CWA A

IB1 0.01 0.99 0.26 0
Nave Bayes 0.21 0.96 0.40 0
C4.5 0.00 1.00 0.25 0
AdaBoost 0.04 1.00 0.28 0
SVM 0.05 0.99 0.29 0
poorly than Nave Bayes in detecting positive cases of
nosocomial infections. In fact, Nave Bayes ranks last
in terms of accuracy rate due to its poor perfor-
mance on the majority class (specificity of 0.88,
lower than all the others) but attains the highest
sensitivity, 12% higher than that of AdaBoost. Accu-
racy clearly underestimates themerit of recognizing
rare positives.

We then tested classical methods of random
undersampling and oversampling. At each cross-
validation cycle, the training set contained 60 posi-
tive cases and 486 negative cases. A random sample
of 60 negative cases was drawn and used with the 60
available positive cases to train the classifiers. In a
separate experiment, positive cases were randomly
duplicated until the size of the minority class
matched that of the majority class. Table 2 (a)
and (b) show performance measures obtained on
test data with the original class distribution by
classifiers trained on the adjusted class distribution.

The results are contrasted: while random sub-
sampling drastically degraded prediction of posi-
tives with respect to the original imbalanced
data, random oversampling clearly improved the
sensitivity and CWA of all the classifiers except
(understandably) IB1. Note that contrary to CWA,
accuracy misleadingly decreases with random over-
sampling.

As explained in Section 4, our approach differs
from these random approaches in its principled
generation of synthetic samples. In the first variant,
we use K-means clustering to subsample the major-
ity class. Results shown in Table 3 (a) support clearly
the efficacy of K-means based subsampling. Sensi-
tivity ranges from 0.56 for IB1 to 0.83 and 0.84 for
SVM and Adaboost respectively–—a visible leap from
0.11 pos, 0.89 neg)

cificity CWA Accuracy

6 0.38 0.88
8 0.65 0.85
5 0.45 0.88
5 0.58 0.90
2 0.55 0.86

0.5 neg)

(b) Random oversampling

ccu Sens Spec CWA Accu

.88 0.19 0.96 0.38 0.88

.88 0.68 0.83 0.72 0.81

.89 0.49 0.87 0.59 0.83

.89 0.73 0.87 0.77 0.85

.88 0.60 0.89 0.67 0.86
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Table 3 Oversampling and undersampling based on synthetic examples

Classifier (a) K-means subsampling (0.5 pos, 0.5 neg) (b) AHC oversampling (0.38 pos, 0.62 neg)

Sens Spec CWA Accu Sens Spec CWA Accu

IB1 0.56 0.88 0.64 0.84 0.33 0.91 0.48 0.85
Nave Bayes 0.75 0.78 0.76 0.78 0.64 0.85 0.69 0.82
C4.5 0.72 0.67 0.71 0.68 0.45 0.87 0.56 0.83
AdaBoost 0.84 0.74 0.81 0.75 0.65 0.89 0.71 0.86
SVM 0.83 0.74 0.81 0.75 0.53 0.88 0.62 0.84

Table 4 Combined AHC oversampling and K-means
subsampling (0.5 pos, 0.5 neg)

Classifier Sensitivity Specificity CWA Accuracy

IB1 0.49 0.86 0.59 0.82
Nave Bayes 0.87 0.74 0.84 0.75
C4.5 0.68 0.79 0.71 0.78
AdaBoost 0.77 0.85 0.79 0.84
SVM 0.69 0.82 0.73 0.81
the 0.19—0.57 interval on the original class distribu-
tion and especially from the 0.01 to 0.21 range
attained with random subsampling. More remark-
ably, specificity did not degrade considerably, so
that CWA rates vary between 0.67 and 0.81, defi-
nitely better than all previous performance.

We have explained (Section 4) why we chose
agglomerative hierarchical clustering to create pro-
totypical instances for oversampling. By combining
multilevel clusterings based on single and complete
linkage, we were able to compute a total of 234
synthetic instances of the minority class. Added to
the 60 original training positives and 486 negatives,
they produced a 0.38—0.62 class distribution for
training. Results of this operation are shown in
Table 3(b). Here again, sensitivity rates improve
significantly over the baseline for all classifiers.
However, AHC oversampling improves sensitivity
over random oversampling for only two out of the
five classifiers. This can be explained by the fact
that in random oversampling positives are as numer-
Table 5 Performance for different SVM configurations w
(original class distribution: 0.11 pos, 0.89 neg)

SVM Classifier Hyperparameters Sens

Symmetrical margin C ¼ 4 0.02
Symmetrical margin C ¼ 20 0.44
Symmetrical margin C ¼ 45 0.50

Asymmetrical margin Cþ ¼ 3 0.58
Asymmetrical margin Cþ ¼ 5 0.76
Asymmetrical margin Cþ ¼ 11 0.88
Asymmetrical margin Cþ ¼ 29 0.92
ous as negatives while they remain outnumbered in
0.38—0.62 AHC distribution.

Finally, we investigated the impact of combining
AHC-based oversampling and K-means based sub-
sampling. As seen in Table 4, sensitivity and class-
weighted accuracy improve over simple AHC over-
sampling for all classifiers but degrade over K-means
subsampling for four out of five classifiers. For Nave
Bayes, however, sensitivity reaches 0.87 and class-
weighted accuracy 0.84, yielding the maximum
performance level recorded over all our resampling
preprocessing experiments.

Table 5 summarizes performance results for sym-
metrical and asymmetrical SVMs on the original
skewed class distribution and illustrates clearly
the inadequacy of the former for this task. These
are the best results from a selection of configura-
tions used for training the classifiers.

In the first experiment based on symmetrical
margins, accuracy rates hover constantly around
90% whereas even the best sensitivity remains
barely higher than 50% (see Fig. 2). This clearly
illustrates the inadequacy of the symmetrical soft
margin approach as well as the inappropriateness of
accuracy as a performance criterion for the noso-
comial application.

To explore the effect of asymmetrical soft mar-
gins, we trained SVMs with s fixed at 0:1 and C� fixed
at 1 for a wide range of Cþ values. Fig. 3 illustrates
the effect of upper bound Cþ on the ai of the
positive (i.e. infected) class. For example, as Cþ
ith RBF Gaussian kernel and width parameter s ¼ 0:1

itivity Specificity CWA Accuracy

6 1 0.27 0.893
0.964 0.58 0.906

6 0.944 0.62 0.896

6 0.912 0.67 0.876
0.837 0.78 0.828
0.809 0.86 0.816
0.722 0.87 0.744
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Figure 2 Generalization performance of the symmetri-
cal margin SVM classifier against different C values.

Figure 4 ROC curve for SVM classifiers varying error
weight values for the positive class Cþ.
increases, the number of false positives is increased
but at the detriment of a decrease in the number of
false negatives. Sensitivity increaseswhile specificity
decreases with increasing values of Cþ (at least up to
29), but as shown clearly in the figure, the gain in
sensitivity far outdistances loss of specificity–—a fact
occluded by the concomitant decrease in accuracy.

A comparison of Table 5 and Tables 2—4 shows
that the asymmetrical margin approach leads to
better sensitivity than all our proposed resampling
methods, provided that the appropriate hyperpara-
meters are used. The best sensitivity rate in these
previous experiments was 0.87, attained by Naive
Bayes coupled with hybrid over/undersampling via
prototype generation. SVMs using asymmetrical
margins and a Cþ parameter of 29 perform remark-
ably better with a sensitivity rate of 0.92.
Figure 3 Generalization performance of the asymme-
trical margin SVM classifier against different Cþ values.
In order to visualize and assess the behavior of the
SVM classifiers throughout a whole range of the
output threshold values, the ROC curve shown in
Fig. 4 has been produced. This allows experts to
easily choose the model best suited to their pur-
pose. The model corresponding to the circled point
on the ROC curve (Fig. 4) has been retained by
Geneva Hospita experts for the NI classification
task. It corresponds to the highest sensitivity 92%
reached for a specificity of 72.2% which has been
judged completely acceptable.
8. Conclusion

We analyzed the results of a prevalence study of
nosocomial infections in order to predict infection
risk on the basis of patient records. The major
hurdle, typical in medical diagnosis, is the problem
of rare positives. We addressed this problem via two
different approaches. The first is based on the gen-
eration of synthetic instances for both oversampling
and undersampling. Generation of artificial cases
must however meet a hard constraint: the synthetic
cases generated must remain within the frontiers of
a given class. This constraint is met by the use of
prototypes of class subclusters. Results are encoura-
ging: whereas the sensitivity range of the five clas-
sifiers was 0.19—0.57 on the original class
distribution, it increased to 0.49—0.87 after com-
bined AHC-based oversampling and K-means based
subsampling. This suggests that both oversampling
and undersampling become more effective when
performed using synthetic samples instead of the
true instances.
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The second approach uses an algorithm proposed
by [22,23] where class-dependent regularization
parameters are introduced in such a way as to obtain
a larger margin on the side of the smaller class
(asymmetrical soft margin). The results obtained
are indeed promising: whereas the sensitivity range
of symmetrical soft margin SVMs was 2.6—50.6%, it
increasedto58.6—92%withasymmetrical softmargin
SVMs. The maximal sensitivity rate of 92% represents
a significant improvement over the best sensitivity of
87% attained by our first novel approach using class
balancing with synthetic examples.

These encouraging results make us believe that
effective pre-processing as illustrated by our first
approach can complement learning algorithm
adjustments such as the use of asymmetrical soft
margins for SVMs. Despite these results, we intend
to prospectively validate the best classification
models obtained by our two approaches by perform-
ing in parallel a standard prevalence survey and
then to improve it in order to classify site-specific
infections. We also plan to improve accuracy of SVMs
by enhancing the resolution in the support region
boundaries via conformal transformation [30,31].
Overall we feel that the combination of asymme-
trical soft-margin SVMs with data preprocessing for
class skew correction is a promising approach to
nosocomial infection detection.
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