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Discretization of Real Value Attributes
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Abstract—The Variable Precision Rough Sets (VPRS) model is a powerful tool for

data mining, as it has been widely applied to acquire knowledge. Despite its

diverse applications in many domains, the VPRS model unfortunately cannot be

applied to real-world classification tasks involving continuous attributes. This

requires a discretization method to preprocess the data. Discretization is an

effective technique to deal with continuous attributes for data mining, especially for

the classification problem. The modified Chi2 algorithm is one of the modifications

to the Chi2 algorithm, replacing the inconsistency check in the Chi2 algorithm by

using the quality of approximation, coined from the Rough Sets Theory (RST), in

which it takes into account the effect of degrees of freedom. However, the

classification with a controlled degree of uncertainty, or a misclassification error, is

outside the realm of RST. This algorithm also ignores the effect of variance in the

two merged intervals. In this study, we propose a new algorithm, named the

extended Chi2 algorithm, to overcome these two drawbacks. By running the

software of See5, our proposed algorithm possesses a better performance than

the original and modified Chi2 algorithms.

Index Terms—VPRS model, RST, data mining, discretization.
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1 INTRODUCTION

DERIVING classification rules is an important task in data mining.
As such, discretization is an effective technique in dealing with
continuous attributes for rule generating. Many classification
algorithms require that the training data contain only discrete
attributes, and some work better on discretized or binarized data
[9], [8]. However, for these algorithms, discretizing continuous
attributes is a first step for deriving classification rules. The
Variable Precision Rough Sets (VPRS) model is one example. The
VPRS model is a powerful mathematical tool for data analysis and
knowledge discovery from imprecise and ambiguous data.
Although the theory of VPRS has been successfully applied to
diverse areas, such as corporate failure prediction, identification of
low-paying workplaces, and Web searching [2], [3], [19], it cannot
conduct continuous data without discretization. Thus, this requires
studies on appropriate discretization methods.

There are three different axes by which discertization methods
can be classified: local versus global, supervised versus unsuper-
vised, and static versus dynamic [5]. Local methods, such as ID3
(interactive dichotomizer 3, Quinlan 1983), produce partitions that
are applied to localized regions of the instance space. By contrast,
the global discertization method uses the entire instance space to
discretize. Several discretization methods, such as equal width
interval and equal frequency interval methods, do not utilize
instance class labels in the discretization process. Thesemethods are
called unsupervised methods. Conversely, discretization methods
that utilize the class labels are referred to as supervised methods.

Many discretization methods require some parameter, m,
indicating the maximum number of intervals that are produced
in discretizing an attribute. Static methods, such as entropy-based
partitioning, perform one discretization pass of the data for each
attribute and determine the value of m for each attribute
independent of the other attributes. Dynamic methods conduct a
search through the space of possible m values for all attributes
simultaneously, thereby capturing interdependencies in attribute
discretization. A number of methods based on the entropy
measure establish a strong group of works in the discretization
domain. This concept uses class entropy as a criterion to evaluate a
list of best cuts, which together with the attribute domain induce
the desired intervals [14].

Holte [6] proposed a one-level decision tree algorithm, called
1RD (One Rule Discretizer), which attempts to greedily divide
the attribute range into a number of intervals, using a
constraint that each interval must include at least the user-
specified minimum number of values. It starts with an initial
partition into intervals, each containing the minimum number
of values, and then moves the initial partition boundary (cut),
by adding the attribute values, so that each interval contains a
strong majority of objects from one decision class. Nguyen and
Skowron [13] offered an approach dealing with the discretiza-
tion problem, which is based on a rough set and Boolean
reasoning and the computational complexity of which is
Oðn3kÞ, where n is the number of objects and k is the number
of attributes. The main results state that the problem of optimal
discretization of real value attributes is polynomially reducible
to the problem of minimal reduct finding, and so it is NP-hard.

Nguyen [12] considered a general genetic strategy-based
algorithm of searching for an optimal set of separating hyper-
planes by a genetic algorithm. In the case of a consistent decision
table (where the misclassification rate equals 0), the algorithm will
be continued until the hyperplants cut the space Rk into regions
containing objects from one decision class only. Nguyen [14] wrote
of the relationship between the reduct problem in the rough set
and the problem of real value attribute discretizaition, which
searches for a minimal set of cuts on attribute domains that
preserve the discernibility of objects with respect to any chosen
attributes’ subset of cardinality t (t denotes a parameter given by
the user). Such a discretization procedure assures that one can
keep all reducts consisting of at least t attributes.

The ChiMerge algorithm introduced by Kerber [8] is a
supervised global discertization method. The user has to provide
several parameters such as the significance level �, and the
maximal intervals and minimal intervals during the application of
this algorithm. ChiMerge requires � to be specified. Nevertheless,
too big or too small, a � will overdiscretize or underdiscretize an
attribute. Liu and Setiono [10] proposed a Chi2 algorithm that uses
a ChiMerge algorithm as a basis, whereby the Chi2 algorithm
improves the ChiMerge algorithm in that the value of � is
calculated based on the training data itself.

Tay and Shen [17] indicated that, although the Chi2 algorithm
automates the ChiMerge algorithm by calculating a significance
value � based on the training data set, it still has two drawbacks:
1) The Chi2 algorithm requires the user to provide an inconsistency
rate to stop the merging procedure. This is unreasonable since an
inappropriate threshold will result in overmerging. 2) This
merging criterion does not consider the degrees of freedom, but
rather only the fixed degrees of freedom (the classes’ number
minus one). According to the statistical point of view, this is
inaccurate [11], since the power of a statistical test is affected by the
degrees of freedom of a test. They utilize the quality of
approximation to replace the inconsistency checking of the Chi2
algorithm and consider the degrees of freedom of each two
adjacent intervals, in which the two adjacent intervals when it has
a maximal difference in the calculated �2 value and the threshold
should be merged first.
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The rough sets approach is inspired by the notion of
inadequacy of the available information to perform a complete
classification of objects. That is, to perform a complete classifica-
tion requires that the collected data must be fully correct or certain.
However, in real-world decision making, the objects of classes
often overlap, suggesting that predictor information may be
incomplete.

In this study, we propose a method to determine the predefined
inconsistency rate (�) based on the least upper bound of data
misclassification error. In addition, the effect of variance in the two
merging intervals is considered. These two remedies can conquer
the drawbacks of the Chi2 algorithm. The effectiveness of our
proposed discretization method, named the extended Chi2
algorithm, is demonstrated by three numerical data sets. Compar-
ing the implementation results with the original Chi2 algorithm
and modified Chi2 algorithm using See5, the extended Chi2
algorithm performs better than the original and modified Chi2
algorithms.

2 VARIABLE PRECISION ROUGH SETS MODEL

The variable precision rough sets model was introduced by [18]
and is an extension of the original Rough Set Theory (RST) as a tool
for classification of objects. This is an important extension since, as
noted by Kattan and Cooper [7], “In real-world decision making,
the patterns of classes often overlap, suggesting that predictor
information may be incomplete... This lack of information results
in probabilistic decision making, where perfect prediction accuracy
is not expected.”

VPRS deals with partial classification by introducing a precision
parameter � (in the original rough set, the � value is zero). The
� value represents a bound on the conditional probability of a
proportion of objects in a condition, where the objects are classified
to the same decision class. Ziarko [18] defined the � value as a
classification error with a range in the domain ½0:0; 0:5Þ. However,
An et al. [1] and Beynon [2] considered � to denote the proportion
of correct classifications, in which case the appropriate range is
ð0:5; 1:0�. In this study, we use the Ziarko notion.

VPRS operates on what may be described as a knowledge
representation system or information system. An information
system (S) consisting of four parts is shown as:

S ¼ ðU;A; V ; fÞ;

where U is a nonempty set of objects:

. A is the collection of objects; we have A ¼ C
S
D and

C
T
D ¼ �, where C is a nonempty set of condition

attributes, and D is a nonempty set of decision attributes.
. V is the union of attribute domains, i.e., V ¼

S
a2A Va,

where Va is a finite attribute domain and the elements of Va

are called values of attribute a;
. F is an information function such that fðui; aÞ 2 Va for

every a 2 A and ui 2 U .

Every object that belongs to U is associated with a set of
values corresponding to the condition attributes C and decision
attributes D.

2.1 �-lower and �-upper Approximations

Suppose that information system S ¼ ðU;A; V ; fÞ, with each
subset Z � U and an equivalence relation R that is referred to
as an indiscernibility relation, corresponds to a partitioning of
U into a collection of equivalence classes R� ¼ fE1; E2; . . . ; Eng.
We will assume that all sets under consideration are finite and
nonempty [19]. The variable precision rough sets approach to
data analysis hinges on two basic concepts, namely, the �-lower
and the �-upper approximations of a set. The �-lower and the
�-upper approximations can also be presented in an equivalent
form as shown below:

The �-lower approximation of the set Z � U and P � C:

C�ðDÞ ¼
[

1�PrðZjxiÞ��

fxi 2 EðP Þg:

The �-upper approximation of the set Z � U and P � C

C�ðDÞ ¼
[

1�PrðZjxiÞ<1��

fxi 2 EðP Þg;

where Eð�Þ denotes a set of equivalence classes (in the above
definitions, they are condition classes based on a subset of

attributes P ).

Z � EðDÞ; PrðZjxiÞ ¼
cardðZ

T
xiÞ

cardðxiÞ
:

2.2 Majority Inclusion Relation

The heart of the VPRS model is the generalization of the notion of
the standard set inclusion relation. The extended notion should be

able to allow for some degree of misclassification in the largely
correct classification.

Let X and Y be nonempty subsets of a finite universe U . We say
that X is included in Y , or X � Y , if every a 2 X implies a 2 Y .

Clearly, there is no room for even the slightest misclassification
according to this definition. Therefore, before a more general

definition is presented, it is convenient to introduce the measure
cðX;Y Þ of the relative degree of misclassification of the set X with
respect to set Y , which is defined as:

cðX;Y Þ ¼ 1� cardðX\Y Þ
cardðXÞ if cardðXÞ > 0

0 if cardðXÞ ¼ 0:

(

Here, card denotes set cardinality.
If we classify all elements of the set X into set Y , then in

cðX;Y Þ � 100% of the cases, we would make a classification error.

Consequently, the quantity cðX; Y Þ will be referred to as the
relative classification error.

3 MODIFIED CHI2 ALGORITHM

The modified Chi2 algorithm introduced by Shen and Tay [16] can
be sectioned into two phases: The first phase of the modified Chi2
algorithm can be regarded as a generalization version of the
ChiMerge algorithm. Instead of specifying a �2 threshold, the
modified Chi2 algorithm provides a wrapping that automatically
increments the �2 threshold (decreasing the significant level �). A
consistency check is used as a stopping criterion to make sure that
the modified Chi2 algorithm automatically determines a proper
�2 threshold while still keeping the fidelity of the original data.

The second phase is a finer process of the first phase, beginning

with the significant level �0 determined in the first phase, where
each attribute i is associated with a sigLvl½i� and they take turns for

merging. A consistency check is conducted after each attribute’s
merging. If the inconsistency rate does not exceed the predefined

inconsistency rate (�), then sigLvl½i� is decreased for attribute i’s
next round of merging. Otherwise, the attribute i will not be
involved in further merging. This process is repeated until no

attribute’s value can be merged.
In the modified Chi2 algorithm, inconsistency checking (In-

ConCheck (data) < �) of the original Chi2 algorithm is replaced by
the quality of approximation Lc after each step of discretization

(Lc-discretized � Lc-original). This inconsistency rate is utilized as the
termination criterion. The quality of approximation coined from

the Rough Sets Theory is defined as follows:

Lc ¼
P

cardðBXiÞ
cardðUÞ ; ð1Þ

where U is the set of all objects of the data set:
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. X can be any subset of U .

. BX is the lower approximation of X in B (B � A).

. A is the set of attributes. The card denotes set cardinality.

The merge criterion of the original Chi2 algorithm does not
consider the degrees of freedom, as it only used the fixed degrees
of freedom (the classes’ number minus one). The original Chi2
algorithm merges the pair of adjacent intervals with the lowest
x2 value being the critical value. The merge criterion of modified
Chi2 considers the degrees of freedom of each of the two adjacent
intervals. When two adjacent intervals have a maximal difference
in the calculated �2 value, the threshold should be merged first.

The Chi2 algorithm is shown as follows:

Phase 1:

Set � ¼ 0:5;

do while (InConCheck (data)< �)

{ for each numeric attribute

{ Sort (attribute, data); /* sort data

on attribute */

Chi-sq-init (attribute, data);

do

{ Chi-sq-calculation (attribute, data);

} while (Merge (data))

}

�0 ¼ �;

� ¼ decreSigLevelð�Þ;
}

Phase 2:

Set all SigLvl½i� ¼ �0 for attribute i;

do until no attribute can be merged

{ for each mergeable attribute i

{ Sort (attribute, data); /* sort data on

attribute */

Chi-sq-init (attribute, data);

do

{ Chi-sq-calculation (attribute, data);

} while (Merge (data))

if (InConCheck (data) < �)

SigLvl [i]=decreSigLevel (SigLvl [i]);

else attribute i is no mergeable;

}

}

4 FORMULATION OF EXTENDED ALGORITHM

The modified Chi2 algorithm utilizes the quality of approximation
[4], in which it considers the effect of degrees of freedom. There are
two shortcomings of this algorithm that should be overcome.

First, the rough sets approach is inspired by the notion of
inadequacy in the available information to perform a complete
classification of objects; that is, to perform a complete classifica-
tion requires that the collected data must be fully correct or
certain. Nevertheless, in real-world decision making, the objects
of classes often overlap, suggesting that predictor information
may be incomplete. Thus, we need a new method to determine
the inconsistency rate to replace the quality of approximation in
the RST.

Ziarko [18] defined the measure of the inconsistency rate of the

set X with respect to Y as:

cðX;Y Þ ¼ 1� cardðX\Y Þ
cardðXÞ if cardðXÞ > 0

0 if cardðXÞ ¼ 0:

(

Here, card denotes set cardinality.

In this study, we utilize a simple method to determine the
inconsistency rate in the VPRS, which is based on the least upper
bound �ðC;DÞ of the data set, where C is the equivalence relation
set, D is the decision set, and C� ¼ fE1; E2; . . . ; Eng is the
equivalence classes. According to [18], the specified majority
requirement (the admissible classification error �) must be within
the range 0 � � < 0:5. Since we determine the � value in the VPRS
model, which is based on the least upper bound �ðC;DÞ of the data
set, if one chooses the max value in m1 and the min value in m2,
then this leads to the calculated �ðC;DÞ < �� (��: the exact
classification error of data set), which cannot be discernible in
the data set. Therefore, we propose to choose the min value in m1

and the max value in m2. The following equality is used for
calculating the least upper bound of the data set.

�ðC;DÞ ¼ maxðm1; m2Þ; ð2Þ

where

m1 ¼ 1�min cðE;DÞjE 2 C� and 0:5 < cðE;DÞf g;

m2 ¼ max cðE;DÞjE 2 C� and cðE;DÞ < 0:5f g:

cðE;DÞ ¼ 1� cardðE \DÞ
cardðEÞ :

In the extended Chi2 algorithm, inconsistency checking (InCon-
Check (data) < �) of the Chi2 algorithm is replaced by the lease
upper bound � after each step of discretization (�discretized < �original).
By doing this, the inconsistency rate is utilized as the termination
criterion.

Second, Tay and Shen [17] proposed that the difference in
degrees of freedom must be considered if there exists a �2 value
calculated from the adjacent two intervals (I) and the threshold
difference is greater than the other �2 value calculated from the
adjacent two intervals and threshold difference. This means that
the independence of the adjacent two intervals (I) is greater than
the other adjacent intervals. In this case, we suggest that the
adjacent two intervals (I) should be merged first.

Although the modified Chi2 algorithm considers the effect of
the degrees of freedom, this algorithm only regards the difference
in the �2 value and the threshold. It ignores the effect of variance in
the two merging intervals. From the view of statistics, the
compared baseline is not equal, and the interpretation is depicted
as follows: Consider when we have a pair of two adjacent intervals.
By (3), the first two adjacent intervals of the �2 value are 3.94, while
the corresponding threshold is 7.344 (degrees of freedom � ¼ 8;
significant level � ¼ 0:5), the difference between the �2 value and
the corresponding threshold is 3.404, the second two adjacent
intervals of the �2 value are 0.54, while the corresponding
threshold is 3.357 (degrees of freedom � ¼ 4; significant level
� ¼ 0:5), and the difference in the �2 value and the threshold is
2.817. If the variance in the two adjacent intervals is considered,
then the normalized difference (¼ difference=

ffiffiffiffiffiffiffiffiffiffi
2 � �

p
Þ in the first

two adjacent intervals is 0.851; the normalized difference in the
second two adjacent intervals is 0.996. Therefore, the second two
adjacent intervals should be merged.

The extended Chi2 algorithm

Step 1. Initialize:

Set the significant level as � ¼ 0:5; calculate the

predefined inconsistency rate �.

Step 2. Calculate the chi-square value:

For each numeric attribute, sort data on the attribute

and use (3) to compute the x2 value.

Step 3. Merge:

For a comparison, compute the x2 value and

corresponding threshold; merge the adjacent two

intervals which have the maximal normalized

difference and the computed x2 value is smaller than

the corresponding threshold. If no two adjacent
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intervals satisfy this condition, then go to Step 5.

Step 4. Check inconsistency rate for merger:

Check the merged inconsistency rate, and if the

merged inconsistency rate exceeds the predefined

inconsistency rate, then discard the merger. Go to

Step 5. Otherwise, go to Step 2.

Step 5. Decrease the significance level:

Decrease � ! �0.

Step 6. Calculate finer the chi-square value:

For each numeric attribute, sort data on the attribute

and use (3) to compute the x2 value.

Step 7. Finer merge:

For a comparison, compute the x2 value and

corresponding threshold; merge the adjacent two

intervals which have a maximal normalize difference

and the computed x2 value is smaller than the

corresponding threshold. If no two adjacent intervals

satisfy this condition, then go to Step 9.

Step 8. Check the inconsistency rate much finer for a

merger:

Check the merged inconsistency rate; if the merged

inconsistency rate exceeds the predefined

inconsistency rate, then discard the merger. Go to

Step 9. Otherwise, go to step 6.

Step 9. Decrease finer the significance level:

Decrease the significance level; then stop.

The formula for computing the �2 value is:

�2 ¼
Xn
i¼1

Xk
j¼1

ðAij � EijÞ2

Eij
; ð3Þ

where

. n ¼ 2 (two intervals being compared);

. k = number of classes;

. Aij = number of objects in the ith interval, jth class;

. Ri = number of objects in the ith interval ¼
Pk

j¼1 Aij;
. Cj = number of objects in the jth class ¼

Pn
i¼1 Aij;

. N = total number of objects ¼
Pn

i¼1 Ri;

. Eij = expected frequency of Aij ¼ Ri�Cj

N .

If either Ri or Cj is 0, then Eij is set to 0.1. The degrees of

freedom of the �2 statistic are one less than the number of classes.

5 EXPERIMENTAL RESULTS

Five data sets are demonstrated to present the effectiveness of
the proposed extended Chi2 algorithm. The five data sets are
taken from the University of California, Irvine’s repository of
machine learning databases (http:// www.ics.uci.edu/~mlearn/
MLSummary.html).

5.1 The Data

The five data sets used in the experiment are the Bupa Liver
Disorders, the Glass Types, the Heart Disease, the Iris Plants, and
the Breast Cancer. They have different types of attributes. The
Bupa Liver Disorders data, Glass Types data, and the Iris Plants
data are of the type with continuous attributes, the Breast Cancer
data are of ordinal discrete ones, while the Heart Disease data
shows mixed attributes (numeric and discrete). The five data sets
are described below:

1. The Bupa Liver Disorders Data. This data set contains
345 instances (145 instances that are normal; 200 instances
of a liver malfunction), where each instance is described

using six numeric attributes: MCV, ALKPHOS, SGPT,
SGOT, GAMMAGT, and DRINKS.

2. The Glass Types Date. This data set contains 214 instances
(70 instances of building windows that are float processed,
76 instances of building windows that are nonfloat
processed, 17 instances of vehicle windows float pro-
cessed, 13 instances of containers, 9 instances of tableware,
29 instances of headlamps), each instance is described
using nine numeric attributes: RI, NA, MG, AL, SI, K, CA,
BA, and FE.

3. The Iris Plants Data. This data set contains 150 instances
(50 instances of setosa, 50 instances of versicolor, 50 in-
stances of verginica); each instance is described using four
numeric attributes: sepal-length, sepal-width, petal-length,
and petal-width.

4. The Breast Cancer Data. This data set contains 699 in-
stances, where 16 instances have missing attributes values.
Removing instances with missing attributes values, we use
683 instances (444 instances of benign, 239 instances of
malignant), where each instance is described using nine
attributes: clump thickness, uniformity of cell size,
uniformity of cell shape, marginal adhesion, single
epithelial cell size, bare nuclei, bland chromatin, normal
nucleoli, and mitoses.

5. The Heart Disease Data. This data set contains 297 in-
stances (160 instances of 0, 54 instances of 1, 35 instances of
2, 35 instances of 3, 13 instances of 4), where each instance
is described using eight nominal attributes: SEX, CP, FBS,
RESTECG, EXANG, SLOPE, CA, and THALPUL; and five
numeric attributes: AGE, TRESTBPS, CHOL, THALACH,
and OLDPEAK.

5.2 Experimental Results
We ran See5 on both the original data sets and the discretized data
sets. The parameters of See5 utilize its default setting. The 10-fold
cross-validation test method is applied to all data sets. The data set
is divided into 10 parts of which nine parts are used as training sets
and the remaining one part as the testing set. The experiments
were repeated 10 times. The final predictive accuracy is taken as
the average of the 10 predictive accuracy values.

The extended Chi2 algorithm is compared with the original
Chi2 algorithm and modified Chi2 algorithm with the predefined
inconsistency rate (�) value equal to 0 in the experiment. The
experimental process includes two steps:

Step 1: Discretization. All five data sets are discretized using the
original Chi2 algorithm, the modified Chi2 algorithm, the
extended Chi2 algorithm, and Boolean Reasoning algorithm.

Step 2: Comparison: The discretized data sets are sent into See5.
The predictive accuracy and its standard deviation of these
methods are listed in Table 1. From Table 1, we know that the
predictive accuracy of the extended Chi2 algorithm outper-
forms other discretization algorithms.

The tree sizes using See5 with different discretization methods
shown in Table 2. From Table 2, we know that, although the
extended Chi2 algorithm has no significant difference in tree size
compared to the original and modified Chi2 algorithms, it is in fact
significantly smaller than when using the original data with See5.

6 CONCLUSION

Many classification algorithms developed in the data mining
community can only acquire knowledge on the nominal attributes’
data sets. However, many real-world classification tasks exist that
involve continuous attributes, such that these algorithms cannot be
applied unless the continuous attributes are discretized. The VPRS
model is a powerful mathematical tool for data analysis and
knowledge discovery from inconsistent and ambiguous data. It
cannot be applied to extract rules from the continuous attributes
unless they are first discretized.

In this study, we propose an extended Chi2 algorithm that
determines the predefined misclassification rate (�) from the data
itself. We also consider the effect of variance in the two adjacent
intervals. With these modifications, the extended Chi2 algorithm
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not only handles misclassified or uncertain data, but also becomes
a completely automated discretization method and its predictive
accuracy is better than the original Chi2 algorithm.

Five real-world data set experiments were conducted to
demonstrate the feasibility of the proposed algorithm. The
experimental results show that our proposed algorithm could
acquire a higher predicted accuracy than the original and modified
Chi2 algorithm. Furthermore, the tree size is significantly smaller
than using the original data with See5.

For m attributes, the computational complexity of original Chi2
algorithm at phase 1 has OðKmn log nÞ, where n is the number of
objects in the data set, and K is the number of incremental steps. A
similar complexity can be obtained for phase 2. Although our
proposed algorithm adds one step (i.e., to select the merging
intervals), it does not increase the computational complexity as
compared to the original Chi2 algorithm. The computational
complexities of the original Chi2 algorithm, modified Chi2
algorithm, and our proposed algorithm are the same.

Further work should develop a merger criterion to effectively

reduce the computational complexity of the extended Chi2

algorithm.
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