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Toward Unsupervised Correlation
Preserving Discretization

Sameep Mehta, Srinivasan Parthasarathy, Member, IEEE, and Hui Yang

Abstract—Discretization is a crucial preprocessing technique used for a variety of data warehousing and mining tasks. In this paper,
we present a novel PCA-based unsupervised algorithm for the discretization of continuous attributes in multivariate data sets. The
algorithm leverages the underlying correlation structure in the data set to obtain the discrete intervals and ensures that the inherent
correlations are preserved. Previous efforts on this problem are largely supervised and consider only piecewise correlation among
attributes. We consider the correlation among continuous attributes and, at the same time, also take into account the interactions
between continuous and categorical attributes. Our approach also extends easily to data sets containing missing values. We
demonstrate the efficacy of the approach on real data sets and as a preprocessing step for both classification and frequent itemset
mining tasks. We show that the intervals are meaningful and can uncover hidden patterns in data. We also show that large
compression factors can be obtained on the discretized data sets. The approach is task independent, i.e., the same discretized data
set can be used for different data mining tasks. Thus, the data sets can be discretized, compressed, and stored once and can be used

again and again.

Index Terms—Data preprocessing, principal component analysis, data mining/summarization, missing data, data compression.

1 INTRODUCTION

DISCRETIZATION, a widely used data preprocessing primi-
tive, has typically been thought of as the partitioning of
the range of a continuous (base) attribute into intervals in
order to highlight the behavior of a related discrete (goal)
attribute. It has been frequently used for classification in the
decision tree context, as well as for summarization in
situations where one needs to transform a continuous
attribute into a discrete one with minimum “loss of
information.” It has recently been used as a preprocessing
step for frequent itemset discovery applications [22], as well
as a compression/summarization tool in data warehousing
environments.

Typically, discretization methods have focused on
discretizing a continuous attribute based on a single goal
attribute. Recently, several researchers [2], [12] have pointed
out that such methods are limited in a multivariate context,
which can result in nonoptimal solutions. To gain an
intuitive insight as to why this is so, consider the “XOR”
example in a classification context. Let the distribution of a
class (Class 1) be characterized by two normals with means
at opposite corners of the unit square, representing the X-Y
(the two base attributes being discretized) plane, say
((0,0),(1,1)). Let the distribution of the other class
(Class 2) be characterized by two normals with means at
the other two corners of a unit square, ie., ((1,0),(0,1)).
Viewing the joint distribution when projected onto a single
dimension, the typical discretization approach blurs the
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obvious separation that exists. While approaches to address
this limitation have been proposed, they are usually very
specific to a given task; thus, they are not interoperable and
quite expensive in nature. In this paper, we propose to
obtain discrete intervals based on the correlation structure
inherent in the database. We present a PCA-based algo-
rithm for discretization of continuous attributes in multi-
variate data sets. Our algorithm uses the distribution of both
categorical and continuous attributes and the underlying
correlation structure in the data set to obtain the discrete
intervals. We capture the interactions among the continuous
attributes by using correlation matrix. We also take into
account the correlations among continuous and categorical
attributes by using association patterns. This approach also
ensures that all attributes are used simultaneously for deciding
the cut-points, rather than one attribute at a time. An
additional advantage is that the approach is able to work
well on data sets with missing data (a common problem for
many data analysis algorithms).
To summarize, the key contributions of this article are:

e Developing novel unsupervised PCA-based correla-
tion preserving methods to efficiently discretize
continuous attributes in high-dimensional data sets.

o Demonstrating the efficacy of the above algorithms
as a preprocessing step for classical data mining
algorithms such as frequent itemset mining and
classification.

e Extending the above idea to work in the presence of
missing values in multivariate data sets.

e Extensive experimental results on real and synthetic
data sets demonstrating the discovery of meaningful
intervals for the continuous attributes.

The rest of this article is organized as follows: In
Section 2, we describe related work. In Section 3, we discuss
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the key intuitions underlying the proposed methods and
the basic algorithms. Section 4 reports on our empirical
results. In Section 5, we compare with existing techniques
and discuss various performance issues. Finally, we
conclude in Section 6.

2 RELATED WORK

Most discretization methods proposed in the past are
univariate. They discretize continuous attributes individu-
ally and are only able to compute optimal cut-points for
single-dimensional data sets. As a result, they cannot
generate optimal intervals for all the involved continuous
attributes in multidimensional cases. Dougherty et al. [4]
present an excellent classification of current methods in
discretization along three separate axes, viz., global versus
local, supervised versus unsupervised, and static versus
dynamic. Local methods, such as entropy-based discretiza-
tion, are applied to regions of the data sets. Global methods,
such as binning, produce the cut-points over entire data
sets. Supervised algorithms leverage the information about
the class labels to produce intervals, whereas unsupervised
algorithms like equi-frequency discretization ignore the
class labels. Finally, static methods derive the parameters
(e.g., number of intervals) in each dimension separately,
whereas dynamic methods try to find such parameters for
all the dimensions simultaneously and, thus, can preserve
interdependence among variables. The algorithm proposed
in this article is global, unsupervised, and dynamic in nature.

Among the discretization methods reviewed by Dough-
erty et al. [4] and elsewhere, the following are the most
germane to our work. The simplest discretization method is
an unsupervised static method, known as equal-sized
discretization. It calculates the maximum and minimum
for the target attribute to be discretized and simply
partitions the range observed into (some k) equal-sized
intervals. Equal-frequency discretization is another unsu-
pervised and static discretization method. For each target
attribute in a data set, it first identifies all of its associated
values in the data set and sorts them in order. It then
partitions these values into intervals in such a way that each
interval contains the same number of values.

Many supervised discretization algorithms have also
been proposed in the past. Compared to unsupervised
methods, supervised discretization requires information
external to the data set of interest. Typical external
information includes a set of user-specified thresholds. For
instance, ChiMerge is a supervised, incremental, and
bottom-up method implemented by Kerber [9]. The main
criterion of ChiMerge is that the intrainterval similarity
should be maximized while the interinterval similarity
should be minimized. ChiMerge uses the Chi-Squared
statistic to determine the interdependence of two adjacent
intervals of a target attribute. Two adjacent intervals are
merged if they are closely related. Entropy-based discretiza-
tion is another supervised method, which is proposed by
Fayyad and Irani [5]. It recursively selects the cut-points on
each target attribute to minimize the overall entropy and
determines the appropriate number of intervals (stopping
criteria) by using the minimum-description-length principal.
An improvement on this approach was presented recently
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by Subramonian et al. [23]. The work not only proposes an
unsupervised discretization approach, but also implements
visualization tools that allow end-users to refine the
discretization results. Catlett [3] also proposed a supervised
dynamic discretization method that recursively selects cut-
points to maximize Quinlan’s information gain [19]. It ends
until a stopping criterion based on a set of heuristic rules is
satisfied.

We formulated and discussed the 2D discretization
problem [18]. To solve this problem efficiently, we con-
sidered an approximate solution based on simulated-
annealing search. More recently, we extended the work to
provide an exact solution to this problem in a time-optimal
manner. Additionally, we considered the problem of
discretizing in the presence of dynamic updates as well as
proposed a parallel algorithm to solve the problem [17].

The recent work by Bay [2] and Ludl and Widmer [12] in
the area of multivariate discretization is closely related to
the work presented in this paper. Bay proposed a dis-
cretization approach that considers the interactions among
all attributes. It first finely partitions all continuous
attributes into intervals by using simple discretization
techniques such as equal-width. Then, a merge phase is
carried out iteratively on two adjacent intervals, where
two intervals are merged into one if they correspond to
two similar multivariate distributions. The merging process
continues until no more intervals can be merged. Since the
multivariate distribution involves all attributes, the result-
ing intervals are able to reflect the correlation among
different attributes. However, such an approach can be
computationally expensive and perhaps impractically so for
high-dimensional and large data sets. Compared to Bay’s
method, our approach relies on Principal Component
Analysis (PCA). By using PCA, our method intrinsically
takes the interactions among all attributes into account.
Moreover, we are able to take advantage of the statistics
provided by PCA to effectively reduce the data to manage-
able sizes in the case of high dimensionality and large data
size. This further reduction enables us to efficiently process
very large high-dimensional data sets.

Ludl and Widmer [12] propose a “mutual structure
projection” discretization method, which combines aspects
of both supervised and unsupervised discretization. It
computes the cut-points of a target attribute by first
projecting all the other attributes to the target attribute. It
then clusters the projected intervals and merges adjacent
intervals if their difference is under a user-specified
threshold. In order to project one continuous attribute to a
target attribute, the proposed method requires a prelimin-
ary step that splits a continuous attribute into equal-width
intervals. A major difference between this work and ours is
that we take the interdependences among all attributes into
account, while the interaction considered in their work is
only pair-wise and piecemeal. Furthermore, as pointed out
by the authors, such a projection-based method can lead to
unnecessary splits. Several other groups have studied
discretization [6], [21], [22] in the context of mining
association rules. However, the discretization approaches
discussed in these studies are typically not generic and can
only be used for mining associations. For instance, Fukuda
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et al. [6] proposed a discretization approach that only serves
for a specific association rule of interest.

3 ALGORITHMS

In this section, we describe our correlation preserving
discretization methods. Before getting into the details of our
approach, we present the key intuition behind our work.

3.1 Key Intuition

Our claim is that the discretization of a particular
continuous attribute must be sensitive to the influence of
the other attributes in the data set, especially if there is a
strong correlation structure in the data. This is often the case
with real data sets. If we ignore the influence of other
attributes, the resulting discretization can lead to a loss of
information and our ability to discover important/hidden
relationships will be impaired. To achieve this goal, we rely
on two well-known techniques in data mining, namely,
Principal Component Analysis (PCA) and Association
Mining. PCA helps identify the correlation structure among
the continuous attributes and, in conjunction with associa-
tion patterns, it can help to effectively capture correlations
in data sets containing both categorical and continuous
attributes as we shall see later. These two techniques enable
us to leverage the interactions among attributes to find the
intervals and discretize all attributes simultaneously rather
than one at a time. The use of PCA also helps to deal with
data set with very high dimensionality. Next, we briefly
describe these two techniques.

3.2 Principal Component Analysis

As indicated earlier, the attributes in high-dimensional data
are often correlated, which is an underlying assumption of
this paper. So, discretizing each attribute separately (uni-
variate discretization) will lead to loss of hidden patterns
and result in intervals that will not be meaningful. Due to
strong interattribute correlation in most real data sets, it is
possible to discretize a continuous attribute based on the
other attributes. To analyze the interdependence among
multiple attributes, we use the well-known Principal
Component Analysis (PCA) [8]. PCA generates a set of
n orthogonal vectors from the input data set with dimen-
sionality of N, where n < N and the n orthogonal directions
preserve most of the variance in the input data set.
Consider a data set with IV records and dimensionality d.
In the first step of the PCA technique, we generate the
correlation matrix of the continuous attributes in the data set.
The correlation matrix is a d x d matrix in which the
(¢,j)th entry is equal to the correlation between the
dimensions ¢ and j. In the second step, we generate the
eigenvectors {e;, ..., &} of this correlation matrix. These are
the directions in the data which are such that when the data is
projected along these directions, the second order correla-
tions are zero. Let us assume that the eigenvalue for the
eigenvector ¢; is equal to \;. When the data is transformed to
this new axis-system, the value J; is also equal to the variance
of the data along the axis e/. The property of this
transformation is that most of the correlation is retained in
a small number of eigenvectors corresponding to the largest
values of );. In our work, unless otherwise specified, we
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retain the k (k < d) eigenvectors that correspond to the largest
eigenvalues which add up to 90 percent [15].

3.3 Association Pattern Mining

Discovery of association rules is an important problem in
data mining. The prototypical application is the analysis of
sales or basket data [1], although, more recently, it has been
adopted in the domains of scientific computing, bioinfor-
matics, and performance modeling. The problem can be
formally stated as: Let Z = {4y, 3, - -, %, } be a set of m dis-
tinct attributes, also called items. Each transaction T' in the
database D of transactions has a unique identifier and
contains a set of items such that T' C 7. An association rule is
an expression of form A = B, where A, B C T are sets of
items called itemsets and A N B = (). Each itemset is said to
have a support S if S percent of the transactions in D
contain the itemset.

In addition to basic association patterns, we also define a
metric that determines the similarity of association patterns
generated by two data sets (or two samples of the same data
set in our case). This metric will be adapted to determine
the similarity between contiguous intervals when selecting
the discretization cut-points.

Let A and B be the two sets of frequent itemsets for
database samples d; and d, respectively. For an element
x € A (respectively, in B), let sup,, () (respectively, supg, (2))
be the frequency of x in d; (respectively, in dy). Our metric is
defined as:

> veanpmax{0,1 — af supy (z) — supy, (z)|}

Sim(d],dg) = HAU BH y

where « is a scaling parameter. The parameter o can be
varied to reflect the significance that a user attaches to the
variations of supports in d; and dy. For o = 0, the similarity
measure is identical to HiBgH , 1.e., support variance carries
no significance. Values of Sim are bounded and lie in [0,1].
Sim also has the property of relative ordinality, ie., if
Sim(X,Y) > Sim(X, Z), then X is more similar to Y than it
is to Z. Note that while the above formulation does not
explicitly consider correlations between itemsets (e.g.,
two itemsets (ABEK), (AEFK) that have many items in
common are not treated differently), they are accounted for
implicitly as all itemsets that can be formed by the common
items (A,E,K) are part of the summation.

3.4 Correlation Preserving
Discretization—An Overview

In this section, we provide an overview of our algorithm
using a simple illustrative example. The data set used for
this purpose is generated by a two-dimensional Gaussian
distribution. No class labels are needed because our
scheme is unsupervised. The attributes X and Y are highly
correlated. Since the attributes are highly correlated, the
first eigenvector alone is able to preserve most of the
correlation. Fig. 1a shows the major principal component of
the data set. Distance-based clustering is then applied to
the data projected on this eigenvector to produce the cut-
points. These cut-points are then projected back onto both
original dimensions X and Y. Fig. 1a shows the cut-points
(marked by the markers) produced by our approach. The
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Fig. 1. (a) Data set discretized with our approach. (b) Equi-width discretization.

dotted lines show the reprojection of the cut-points onto
the original dimensions. Our approach is able to correctly
identify the high correlation in the data set and produces
intervals such that the correlation is preserved. As shown
in the figure, the highly correlated parts of the data set are
not divided into smaller intervals. Fig. 1b shows the same
data set discretized using the equi-width approach. As
evident from the figure, equi-width discretization does not
account for the correlation and can produce very unin-
tuitive intervals.

Like equi-width and equi-frequency, our discretization
scheme is unsupervised in nature. In other words, the
discretization scheme does not take into account the class
labels or any other goal attribute. Data discretized in a
supervised manner often tends to be in favor of one mining
task. For instance, the classification error tends to be
minimized when the discretization takes class labels into
account; however, an association rule mining algorithm
may not be able to use the same discretized data to find
meaningful patterns and associations. In contrast, unsuper-
vised discretization is independent of the mining task. One
may argue that unsupervised discretization can lead to high
classification error since class labels are ignored. However,
our extensive experiments show that the correlation-based
discretization actually contradicts this belief. For example,
C4.5 bootstrapped with our discretization scheme gives
comparable or better accuracy when compared with
classifiers with supervised discretization like C4.5 and
Naive Bayes. We attribute this property of our discretiza-
tion scheme to the use of correlation, which intrinsically
captures the interaction among different attributes (contin-
uous and categorical) in a global sense. Discretization based
on global information also avoid the problems of data
fragmentation and suboptimal intervals, which are common
to most local information-based discretization approaches.
Vilalta et al. [24] explain the data fragmentation problem in
great detail. To reiterate, we propose an unsupervised and
global information-based discretization algorithm. The data
set discretized by our approach can be used for different
data mining tasks.

3.5 Correlation Preserving Discretization

Our algorithm is composed of the following steps (pseudo-
code in Fig. 2). While our algorithm is heuristic in nature,
we strongly believe that each step in the proposed
algorithm can be justified. We explain the rationale and/
or the key intuition behind each step. We also remark on
why the step is necessary and useful:

1. Normalization and Mean Centralization. The first
step of the procedure involves normalizing all the
continuous attributes (to lie between fixed intervals)
and mean centralizing the data.

Rationale. Mean centralization is a necessary and
standard preprocessing step conducted prior to PCA
computation.

2. Eigenvector Computation. We next compute the
correlation matrix A/ from the data. The correlation
matrix for a data set is positive semidefinite and can
be expressed in the form M = PNPT, where N is a
diagonal matrix containing the eigenvalues Ay, . .., Aq.
The columns of P are the eigenvectors ey, ..., ¢eq4,
which form an orthogonal axis-system. We assume
without loss of generality that the eigenvectors are
sorted so that A\ > X > ... > );. To find these
eigenvectors, we rely on the popular Householder
reduction to tri-diagonal form and then apply the QL
transform [8], which is the fastest method known to
compute eigenvectors for symmetric matrices. Once
these eigenvectors have been determined, we decide
to retain only those which preserve the greatest
amount of variance from the data. Well-known
heuristics for deciding the number of eigenvectors
to be retained may be found in [8].

Rationale. This step identifies the directions of
maximal variance. This step provides the correlation
preserving nature to our approach since all the
original dimensions that are highly correlated will be
associated with the same eigendimension. PCA also
facilitates the discretization approach to scale very
well to high-dimensional data. For example, the UCI
repository data set MUSK1 has 166 dimensions;
however, by using PCA, we were able to reduce them
to only nine dimensions. Therefore, the discretization



1178

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO.9, SEPTEMBER 2005

: dataset that consists of continuous and/or discrete attributes

Input:
D
o_C : set of continuous attributes in D
0D : set of discrete attributes in D

MAP_TYPE: selected mapping method—PROJECTION or KNN

(2) Mean-centralize each attribute o_i € O_C
(3) P_C < do PCA on all attributes in O_-C
4)if (OD#9%)

(7 ) Foreach dimensiond € P_C_s

(10) If (O_-D=9)
(11) Foreach dimension d € P_C_s

k : number of points searched when MAP_TYPE is KNN
Output:

A set of intervals for each continuous attribute
Algorithm:

(1) Normalize each attribute in O_C //normalize attributes to 0-1

5) AP_D < Compute association patterns on all attributes in O_D
(6) P_C_s + set of most contributing s dimensions using correlation criteria // ( P_.C_s C P_C)

8) determine the number of cut points on d based on proportion of variance
9) /l(the i** eigenvalue)/(sum of eigenvalues)

(12) compute the cut points by naturally partitioning each eigen component
(13) else

(14) Foreach dimension d € P_C_s

(15) determine the cut points on d based on AP_D

(16) Foreach attribute o_i € O_-C

(17) Identity the principal component p_i € P_C having the maximum impact on o_i
(18) if ( MAP_TYPE =KNN )

(19) begin

(20) Foreach attribute o_i € O_C

21 Foreach cut point ¢ on p_i

(22) Search the k& points in D that have intercepts on p_i being closest to ¢
(23) k_mean <— mean point of the k points

(24) a cut point on o_i +— Project k_mean back to o_i

(25) end

(26) else // MAP_TYPE=PROJECTION, normalization is required for this type

(27) begin

(28) v_o < the unit vector representing o_i

29) v_p < the unit vector representing p_i

(30) Foreach attribute o_i € O_C

31) Foreach cut point cp on it p_i

(32) scale <— the intercept of ¢p on p_i

(33) a cut point on o0_i < (v_o - v_p) X scale

(34) end

Fig. 2. Algorithm.

only needs to process nine dimensions instead of
166 dimensions. Moreover, each dimension now can
be processed independently because the second
order correlations are zero (a property of PCA
transformation). We also note that this step is
effective if there is a strong correlation structure in
a data set, which is true for most of the real data sets.
3. Data Projection onto Eigenspace. In this step, we
project the data points in the original data set D onto
the eigenspace, which is determined by the vectors
we retain from the previous step. Each data point d
in D will be projected onto the eigenspace.
Rationale. To take advantage of dimensionality
reduction, the points in the original space need to be
projected onto the eigenspace. Furthermore, for
noisy data sets, this step implicitly removes most
of the noise by eliminating the dimensions of low
eigenvalues [13].
4. Discretization in Eigenspace. Once all the data
elements are projected onto the eigenspace, we
discretize each of the dimensions separately in the

eigenspace. Our approach to discretization here
depends on whether a data set has categorical
attributes or not. If there are no categorical attri-
butes, we choose to apply simple distance-based
clustering along each dimension in the eigenspace.
The resulting cut-points are denoted as ¢ ...c. for
each eigenvector or eigendimension ¢;.

If the data set contains categorical attributes, then
the discretization approach is as follows: First, we
compute the frequent itemsets generated from all
categorical attributes in the original data set D (for a
user-determined support value). Let us refer to this
as set A. We then split the eigendimension ¢; into
equal-frequency intervals (similar to the approach
taken by Bay [2]) and compute the frequent itemsets
in each interval that are constrained to being a subset
of A. Next, we compute the similarity between
contiguous intervals using the metric described in
Section 3.3. If the similarity exceeds a user-defined
threshold, the contiguous intervals are merged.
Again, like the case without categorical attributes,
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Fig. 3. (a) K-NN. (b) Direct projection.

we are left with a certain number of cut-points along
each eigendimension.

Rationale and Key Intuition. First, due to the
property of PCA reduction, when we discretize
attributes along a principal component, we do not
need to consider the influence of other components
since the second order correlations are zero. Thus,
each principal component can be discretized inde-
pendently. Second, the use of association rules and
the use of A (as a constraint measure) ensures that
correlations with respect to the categorical attributes
are captured in the discretization process.
Correlating Original Dimensions with Eigenvec-
tors. The step determines which original dimensions
correlate most with which eigenvectors. This is a key
step in factor analysis methods and can be computed
by finding the contribution of dimension j on each of
the eigenvectors (e1...e,), scaled by the correspond-
ing eigenvalue and picking the maximum [10].

Rationale and Key Intuition. This step is analo-

gous to computing factor loadings in factor analysis.
In essence, we find all the dimensions which are
highly correlated in the original data space. The set
of original dimensions associated with a single
eigenvector will be discretized together, which really
is what we want since these original dimensions are
correlated with one another.
Reprojecting Eigen Cut-Points to Original Dimen-
sions. We consider two strategies in our work. To
explain our approaches for reprojection, let us assume
without loss of generality that the jth original dimen-
sion is associated with eigenvector ¢;:

a. K-NN method. To project the cut-point ¢} onto
the original dimension j using this method we
first find the k nearest neighbor intercepts of ¢}
on the eigenvector €. The original points

p1...pp, representing each of the k nearest
nelghbors as well as De,,s representing the cut-
point ¢, are obtained (as shown in Fig. 3a). We
then compute the mean (or, alternatively,
median) value of the jth dimension for each of
these points: p; ...p; and p., . This mean value
represents the correspondiﬁg cut-point along
the original dimension j (as shown in Fig. 3a).

b. Direct Projection. The other approach we
consider is direct projection. To project the cut-
points ¢! ...c! onto the jth original dimension
using this method, we 1 need to find the angle
between eigenvector ¢; and the jth original
dimension. The process is shown in Fig. 3b. The
cosine of angle 6;; can be calculated by the
formula:

cos(0;;) = € .05,

where 0; is an N-dimensional unit Vector along
the jth dimension. Now, the cut-points ¢! ...}
can be projected to the original dimension j by
multiplying it with cos(6;;). The same process is

applied for all cut-points.

Key Intuition. Regardless of which method is
adopted, if eigenvector e, is associated with more
than one original dimension (especially common in
high-dimensional data sets), the cut-points along
that eigenvector €; are projected back onto all the
associated original dimensions, which enables the
discretization method to preserve the inherent correlation
in the data.

3.6 Extension: Handling Missing Data

Incomplete data sets seemingly pose the following problems
for our discretization method: First, if values for continuous
attributes are missing, then it affects the first step of our
algorithm. Fortunately, if data is missing at random, then
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both the means and correlation matrix of the data can be
suitably estimated using expectation-maximization-based
approaches. Furthermore, in recent work, Parthasarathy
and Aggarwal [15] show that estimating the projections of
records with missing values along the principal compo-
nents is more accurate than direct imputation, especially
when large parts of the data set are missing. This fits in very
nicely with the first three steps of our algorithm presented
in the previous section, which enables us to handle missing
continuous attributes effectively.

Second, if categorical attributes are missing, then it can
affect Step 4 of our algorithm. However, the execution of the
step will not be affected since frequent pattern algorithms
naturally handle missing data. Missing entries can result in
changes to the set of frequent itemsets found in each
interval. This, in turn, can impact the similarity metric
computation which can influence the discretization process.
However, if these entries are also missing at random, our
premise is that the structure of the rest of the data, within a
given interval, will enable us to identify the relevant
frequent patterns, thus ensuring that the similarity metric
computation is unaffected. We will evaluate this premise in
the next section.

4 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we experimentally validate the proposed
algorithms both in terms of the quality of the resulting
discretization and its ability to uncover meaningful and
interesting patterns. We demonstrate the general-purpose
utility of the proposed work as a preprocessing step for data
mining tasks such as association rule mining and classifica-
tion. We also demonstrate that it readily adapts to data sets
with missing information.

4.1 Data Sets and Experimental Setting

In Table 1,' we describe the data sets on which we evaluate
the proposed algorithms. In terms of algorithmic settings,
for the K-NN approach, we selected K to be 4 for all the
experiments. (i.e., four nearest neighbors and the point
projecting onto the cut-point itself are used to determine the
cut-points along the original dimension(s)). Our default
similarity metric threshold for merging intervals is 0.8
(o = 0). All experiments were run on a 1GHz Pentium III
PC with 512MB memory.

4.2 Qualitative Results Based on Association Rules

In this section, we focus on the discretization of the Adult data
set (containing both categorical and continuous attributes) as
a preprocessing step for obtaining association rules and
compare these rules with published work on two multivariate
discretization approaches: MVD and ME-MDL [11].

Due to the correlation preserving nature of our approach,
we strongly believe that the intervals our methods produce
are meaningful and should compare well with MVD. Before
presenting results, we explain the notion of a meaningful
interval. For an interval to be meaningful, the following
two conditions should hold: First, the population within an
interval should exhibit similar properties. Second, the
population in different intervals should exhibit different
properties. Thus, each cut-point should suggest a major

1. All the data sets are obtained from UCI Data Repository (http://
kdd.ics.uci.edu.)
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TABLE 1
Data Sets Used in Evaluation

Dataset #Records | #Attributes | #Continuous
Adult 48844 14 6
Shuttle 43500 9 9
Musk (1) 476 164 164
Musk (2) 6598 164 164
Cancer 683 8 8
Bupa 345 6 6
Creditl 690 14 6
Credit2 1000 20 7
Pima 768 8 8
Iris 150 4 4
Glass 214 10 10
Isolet 6238 616 616
Letter 20000 17 17

change in population characteristics. Below, we discuss the
cut-points obtained for several continuous attributes in the
Adult data set and show that the intervals meet these
two conditions:

e Age—Table 2 shows the intervals obtained from our
approaches (both KNN and projection) and the
corresponding cut-points from MVD and ME-MDL
on the Age attribute. The intervals found are very
different from those that would be provided by
equal-width or equal-frequency partitioning. Equal-
width partitioning with the same number of intervals
would result in cut-points at approximately every
ten years. Equal-frequency partitioning would also
suffer from a lack of resolution at young age ranges.

First, ata coarse-grained level (as shown in Figs. 4a,
4b, and 4c which can be found on the Computer
Society Digital Library at http://www.computer.
org/tkde/archives.htm), the cut-points obtained by
our methods and MVD are quite similar and
intuitive. The cut-point at 63 corresponds to the
retirement age. The intervals 19-22 and 23-24 are
quite narrow but represent two different groups of
people as illustrated below:



TABLE 2

Cut-Points Obtained by Different Methods for Adult Data Set

Variable Method Cut-points

Projection | 19, 23, 25, 29, 34, 37, 40, 63, 85
KNN 19, 23, 24,29, 33,41, 44, 62
MVD 19, 23, 25,29, 33,41,62
ME-MDL | 21.5,23.5,24.5,27.5,29.5, 30.5,

35.5,61.5,67.5,71.5

Capital Gain | Projection | 12745

KNN 7298, 9998

MVD 5178

ME-MDL | 5119, 5316.5, 6389, 6667.5,

7055.5, 7436.5, 8296, 10041,

10585.5, 21045.5, 26532, 70654.5

Capital Loss || Projection | 165

KNN 450

MVD 155

ME-MDL | 1820.5, 1859, 1881.5, 1894.5, 1927.5,

1975.5, 1978.5, 2168.5, 2203, 2218.5,

2310.5, 2364.5,2384.5, 2450.5, 2581

Hours/Week | Projection | 23, 28, 38, 40, 41, 48, 52

KNN 19, 20, 25, 32, 40, 41, 50, 54

MVD 30, 40, 41, 50

ME-MDL | 34.5,41.5,49.5, 61.5, 90.5

- 3.4 percent of people aged 19-22 have a
bachelor’s degree as compared to 22.7 percent
of people aged 23-24.

- 6.0 percent of people aged 19-22 are married as
compared to 17.0 percent of people in the other
group.

- 19.0 percent of people aged 19-22 are in service
as compared to 12.2 percent people aged 23-24.

MVD also obtains similar cut-points. However,
we have an extra cut-point at age 37, which gives us
intervals 34-37 and 38-40. MVD combines them into
one interval 33-41. At first glance, these intervals do
not seem meaningful, since there is usually not
much difference in education level and job profiles

of people in these two groups. However, upon a
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closer inspection on the resulting association pat-
terns, we find that 26.0 percent of people in the
34-37 interval are Never Married, compared to
13.0 percent in the interval of 38-40. The interval
34-37 also captures an unusual behavior in the data
set. Between the age of 34 and 37, there are
484 individuals who are still in school. Moreover,
181 people in this interval are reported to be in between
1st and 9th grade! We capture this anomalous
behavior by deriving cut-points at age 34 and 37.
This shows the usefulness of capturing the interac-
tions between continuous attribute (age) and cate-
gorical attribute (education level). This distinction is
obviously missed by MVD which reports cut-points
at 33 and 41. Thus, our approach finds truly
meaningful intervals where records in each interval
exhibit radically different behavior from the adjoin-
ing intervals.

MVD’s last cut-point is 62, which implies that, after
the age of 62, there is not much change in demographic
and employment variables. For the KNN method, we
obtain an extra cut-point at age 85 because there are
more females than males when age > 85.

Capital Gain—The cut-points obtained by all
four methods are shown in Table 2 and Figs. 5a and
5b (which can be found on the Computer Society
Digital Library at http://www.computer.org/tkde/
archives.htm). The cut-point from the projection
method is 12,745. MVD also gives one cut-point,
which is at 5,178. ME-MDL finds numerous cut-
points which may not be very useful. Both of these
methods separate people with high gains from people
who make little or no gains to moderate gains. Using
KNN, we are able to get even better cut-points. It
divides the entire range into three intervals: < $7,298
(low capital gain) which has 1,981 people,
(87,299, $9,998) (moderate gain) having 920 people,
and > $9,999 (high gain) having 1,134 people.
Capital Loss—From Table 2 and Figs. 6a, 6b, and 6c
(which can be found on the Computer Society Digital
Library at http://www.computer.org/tkde/archi-
ves.htm), we see that MVD and our approaches give
similar intervals on this attribute. One can observe
that records are discretized based on whether a loss
was declared. With such a cut-point, we were able to
find the rule: (CapitalLoss > 377) = (salary > 50K)
(3 percent support, 49.3 percent confidence), which
was also found by MVD [2]. Again, ME-MDL
partitions the space very finely between range
[2000,2600] as shown in Fig. 6d (which can be found
on the Computer Society Digital Library at http://
www.computer.org/tkde/archives.htm). It fails to
find the cut-point around 500 which was found by
the other three methods.

Hours/week—Our cut-points for hours/week are
also listed in Table 2 and Figs. 7a, 7b, and 7c (which
can be found on the Computer Society Digital
Library at http://www.computer.org/tkde/archi-
ves.htm). This is one attribute where we get
significantly different cut-points from MVD. We
believe that our cut-points are more intuitive. For
example, MVD's first cut-point is at 30 hours/week,
which implies anyone working less than 30 hours is
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similar. This includes people in the age group (5 to
27) which is a group of very different people with
respect to working habits, education level, etc. Yet, all
of these are grouped together in MVD. Using KNN,
we obtain the first cut-point at 19 hours/week. We
are thus able to extract the rule (Hours/week < 19)
= (age < 20), which makes sense as children and
young adults typically work less than 20 hours a
week while others (> 20 years) typically work longer
hours. As another example, we obtain a rule that
states that “people who work more than 54 hours a
week typically earn less than 50K.” Most likely, this
rule refers to blue-collar workers. We note that there
is a reduction in percentage of such people in the
interval 50-54 hours, thus explaining the last couple
of cut-points.

To summarize, the cut-points based on our approaches
are more informative and do suggest major changes in one
or more aspects of the population. This validates our claim
that, by taking correlation into account, our discretization
scheme is able to uncover more meaningful and hidden
patterns. It also suggests that a discretization scheme using
both association rules and principal components can well-
capture the interactions between continuous attributes and
categorical ones. Such an interaction has often been ignored
in most of the earlier work. MVD also takes into account the
interactions between attributes. We find similar cut-points
as MVD. However, due to inherent correlation preserving
nature, our scheme can uncover meaningful relationships
which MVD might miss. Moreover, MVD can be compu-
tationally prohibitive especially in case of high-dimensional
data sets such as Isolet (616 dimensions) and Musk
(161 dimensions). ME-MDL looks at each dimension
separately and, thus, misses most of the relationships
among attributes. As a result, ME-MDL produces many
cut-points (observed empirically) which are not useful and
in some cases may miss important cut-points.

4.3 Qualitative Results Based on Classification

For both the direct projection and KNN algorithms, we use
the discretization results with the C4.5 decision tree
classifier. We compare our approach against various
classifiers supported by the WEKA data mining toolkit.?
We note that most of these classifiers use a supervised
discretization algorithm (taking into account class label
distributions) as a preprocessing step, whereas our ap-
proach is unsupervised. For example, C4.5 and PART
perform entropy-based discretization while ONER attempts
to form bins containing a majority of a particular class. The
Naive Bayes implementation of WEKA assumes that all the
attributes are conditionally independent for a given class.
So, each attribute is modeled without considering other
attributes (except the class labels) in data sets.

To evaluate our approaches, we first apply our
discretization methods to a data set, then append the
class labels back to the discretized data sets before
applying the C4.5 classifier. All results reported here use
10-fold cross-validation. For large data sets, such as Letter
and Isolet, WEKA fails to report any result due to high
memory requirement. If this is the case, we cite the best
results reported in published work that we are able to
collect. Table 3 shows the classification accuracy of our
approaches (last two columns) as compared to seven

2. http:/ /www.cs.waikato.ac.nz/~ml/.
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different classifiers (first seven columns) on the nondis-
cretized data sets. From the results, it is clear that our
methods, coupled with C4.5, often outperform the other
approaches (including C4.5 itself).

Our schemes perform very well on high-dimensional
data sets: Musk(1), Musk(2), and Isolet. For Cancer, Creditl,
and Credit2, our scheme again outperforms the existing
schemes, however, the gain in accuracy is moderate. Our
classification accuracy is comparable for Adult, Pima, Glass,
and Letter data sets. For Bupa and Iris, the difference in
accuracy is 1 percent. This can be attributed to the weak
correlation structure present in both the data sets. This was
also pointed out by Parthasarathy and Aggrawal [15].

To summarize, our schemes perform very well on high-
dimensional data sets: Musk(1), Musk(2), and Isolet. We do
better in spite of the fact that our approaches are
unsupervised. This validates our claim that the inherent
correlations preserved by our methods are useful. Our
approach also lends itself to faster classifier construction
time. Decision trees built on top of the discretized data sets
were constructed around 10-20 percent faster on an average.
This does not represent a significant saving in execution
time for our data sets (since they are quite small), but it can
become quite significant for large data sets.

4.4 Experiments with Missing Data

In this set of experiments, we compare the impact of
missing data on the classification results on all the data sets.
For each data set, we randomly eliminated a certain
percentage of the data set and then adopted the approach
described in Section 3.6. Figs. 8 and 9 document these
results. Clearly, as the percentage of missing data increases,
classification accuracy decreases. However, this decrease in
accuracy is not too bad even when 30 percent of the data is
missing. As shown in the figures, when 10 percent of the
data is missing, the differences in classification accuracy are
relatively insignificant, which indicates that our discretiza-
tion approach can tolerate missing data quite well. The high
classification accuracy, even in the presence of missing data,
further solidifies our claim that discretization should take
into account the interactions among attributes.

The conclusion here is that one can extract meaningful
discrete intervals for continuous attributes if the data is
missing at random.

4.5 Compression of Data Sets

In this section, we evaluate the compressibility that can be
achieved by discretization, which is a useful utility in the
case of large data sets or data warehousing environments.
Note that, here, we do not consider classic compression
utilities such as gzip, which are orthogonal to our approach
and can be applied on top of our approach to achieve further
compression. Discretization of continuous attributes enables
fixed format compression, wherein a record can be reduced
to a bit string and each attribute in a record is associated
with a specific contiguous set of bits in the bit string.
Continuous attributes are usually floating numbers and,
thus, require the minimum four bytes to represent. How-
ever, by discretizing them, we can easily reduce the storage
requirements for such attributes. Table 4 shows the results of
compression on various data sets. As we can see from the
results, on most data sets, we achieve a compression factor
around 3 and, in some cases, the results are even better. A
factor of 4 can be further achieved if gzip is used on
discretized data sets.
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TABLE 3
Classification Results (Error Comparison—Best Results in Bold)
Dataset C4.5 | IBK | PART | Bayes | ONER | Kernel-based | SMO | Projection | KNN
Adult 15.7 | 2035 | N/A | 15.8 16.8 19.54 17 15.7 15.7
Shuttle 0 0 0 5.1 0 0 0 0
Musk (1) || 17.3 | 17.2 | 189 | 25.7 394 17.3 15.6 14.1 14.6
Musk (2) || 4.7 | 4.7 4.1 16.2 9.2 5.1 N/A 4.1 4.1
Cancer 54 | 43 4.8 4.1 8.2 5.1 43 4.1 4.1
Bupa 32 40 35 45 36 43 33 34
Creditl 15 14.9 17 23.3 15.5 17.4 15 14.8 14.9
Credit2 26.1 | 27.3 17 28.8. | 24.1 35.7 25.9 24 244
Pima 29.9 | 30.08 | 26.17 | 23.96 | 28.52 29.04 23.57 25 24.1
Iris 4.7 | 4.67 4.0 4.67 7.33 4.67 5.1 5.0 4.9
Glass 32 2991 | 29 | 5047 | 41.12 30.7 42.12 29 29.3
Isolet 6.1 | N/A | N/A | N/A N/A N/A N/A 4.7 4.9
Letter 129 | N/A | N/A | N/A N/A N/A N/A 13.1 13
100
90 [ ] ]
80 ]
70
80 I:lOrigina.I _
= D20%% missing
40 0 30% missing
30
20
10
o L
Shuttle Iris Musk2 isolet Letter Credit1

Fig. 8. Classification accuracy for incomplete data sets.

5 DiscussION

5.1 Comparison with MVD and ME-MDL

In terms of quantitative experiments, we could not perform
a direct comparison with the MVD method as the source/
executable code was not available to us. We will point out
that, for the large data sets (both in terms of dimensionality
and number of records), our approaches take on the order
of a few seconds in running time. The order complexity of
our method is bounded by the order complexity of each
step. The steps that dominate the execution time are: the
one to compute the correlation with complexity of O(d? - N)
and the one to compute the eigenvectors with complexity of

O(d*). Here, d is the number of dimensions and N is the
number of records in the data set. The order complexity for
the rest of the steps depends on the number of cut-points. If
we use the KNN strategy, the value of K will also need to
be taken into account. The other steps are at most linear of
the number of dimensions.

In comparing our methods with MVD, we find similar
cut-points (to MVD). However, we do so at a fraction of the
cost. Our benefits over MVD in terms of execution time can
be ascribed to the fact that our discretization is carried out
in a lower dimension space obtained as a result of
PCA transformation. To illustrate this point, we use the
Isolet data set, which has 616 dimensions, as one example.
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Fig. 9. Classification accuracy for incomplete data sets.

MVD would need to first partition all of these 616 dim-
ensions and then merge adjacent intervals on each one
based on their multivariate distribution. On the other hand,
our approach only needs to consider 90 independent
eigendimensions derived from PCA.

ME-MDL is significantly different from our method. It
considers each attribute independently and tries to mini-
mize the classification error. ME-MDL finds many cut-
points which are very close of each other. Therefore, as
pointed out by Bay [2], it is likely to find many meaningless
intervals.

TABLE 4
Compression Results
Datasets | Original | Byte Compressed | Compression
(in Bytes) | and Discretized Factor

Adult 537350 195400 2.75
Shuttle 1153518 478500 24
Musk1 85680 29693 2.89
Musk2 1319800 422336 3.13
Cancer 6830 3415 2.00
Bupa 3795 1035 3.67
Creditl 28735 3450 8.33
Credit2 79793 16000 4.99
Pima 46000 45317 0
Iris 3196 4551 1.42
Glass 12888 3072 3
Isolet 33554432 4194304 8
Letter 712704 300000 2.37

Credit2

Glass Bupa

5.2 Future Work

When discretizing a data set that has both continuous and
categorical attributes, our approach makes use of association
rules. The use of association rules poses two questions:
1) how to choose an “appropriate” minimum support
threshold and 2) how to deal with the high computational
complexity when mining association rules from a very large
data set?

Our solution to the first issue is similar to the one
adopted by most researchers: we choose the minimum
support threshold empirically. We note that the threshold
should not be too extreme. Too large a value will defeat the
process (categorical correlations will be ignored) and too
small a value may result in unacceptable computational
time. We observe that, in our experiments, if the number of
itemsets is at least a hundred, it works well, provided that
there are several categorical attributes. Also, please note
that if the discretization is a preprocessing step for frequent
itemset mining, the same minimum support value (user-
defined) can be directly used here.

To handle the second issue, a data set can be sampled
and associations can then be computed just based on the
sample [14]. Another alternative is to use only the first few
levels of the itemset lattice [7]. One can also sample the
lattice space [16] and use the sampled lattice to compute the
associations. Moreover, these techniques can be combined
to further speed up the process. We are currently working
on some of these issues. We also plan to extend this work by
applying out-of-core PCA, which will help us to handle
very large data sets more effectively. We also plan to use the
ideas proposed by Rabani and Toledo [20] toward this
purpose. Additionally, we would like to try different data
transformation schemes such as the logarithm transforma-
tion before normalization and systematically study the
effect of different transformations. Finally, we plan to
extend the proposed approaches so that they can also be
used to discretize dynamic data, where the cut-points on an
attribute may change over time [17].

6 CONCLUSIONS

In this paper, we proposed correlation preserving discreti-
zation, an efficient method that can effectively discretize
continuous attributes even in high-dimensional data sets,
by accounting for the inherent correlations in the data in a
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multivariate context. The algorithm considers the distribu-
tion of both categorical and continuous attributes and the
underlying correlation structure in the data set to obtain the
discrete intervals. The approach ensures that all attributes are
used simultaneously for deciding the cut-points rather than
one attribute at a time. We believe that the intervals
produced by our scheme are more useful and intuitive
than MVD. This fact is reflected in the detailed analysis of
frequent itemsets on the Adult data set.

We demonstrated the effectiveness of the approach on
real data sets, including high-dimensional data sets, as a
preprocessing step for classification as well as for frequent
association mining. We show that the resulting data sets can
be easily used to store data in a compressed fashion ready
to be used by other data mining tasks. We also propose an
extension to the algorithm so that it can deal with missing
values effectively and we vidate this idea. We also show
that the intervals obtained are meaningful, intuitive, and
can uncover hidden patterns in data.
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