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 Abstract - We propose a hybrid algorithm of two fuzzy genetics-based machine learning 
approaches (i.e., Michigan and Pittsburgh) for designing fuzzy rule-based classification systems. 
First, we examine the search ability of each approach to efficiently find fuzzy rule-based 
systems with high classification accuracy. It is clearly demonstrated that each approach has its 
own advantages and disadvantages. Next, we combine these two approaches into a single hybrid 
algorithm. Our hybrid algorithm is based on the Pittsburgh approach where a set of fuzzy rules 
is handled as an individual. Genetic operations for generating new fuzzy rules in the Michigan 
approach are utilized as a kind of heuristic mutation for partially modifying each rule set. Then, 
we compare our hybrid algorithm with the Michigan and Pittsburgh approaches. Experimental 
results show that our hybrid algorithm has higher search ability. The necessity of a heuristic 
specification method of antecedent fuzzy sets is also demonstrated by computational 
experiments on high-dimensional problems. Finally we examine the generalization ability of 
fuzzy rule-based classification systems designed by our hybrid algorithm. 
 Index Terms - Pattern classification, fuzzy rules, genetic algorithms, machine learning. 
 
 

I. INTRODUCTION 
 
 Genetic algorithms have been successfully applied to various problems from combinatorial 
optimization to machine learning [1], [2]. Genetic algorithms can be viewed as a general-
purpose optimization technique in a discrete search space. Some fuzzy genetics-based machine 
learning (GBML) algorithms have been proposed for designing fuzzy rule-based systems 
without linguistic knowledge from domain experts in the literature (see [3] for a survey of fuzzy 
GBML algorithms). For example, genetic algorithms were used for designing fuzzy rule tables 
[4] and determining an appropriate combination of antecedent and consequent linguistic values 
of each fuzzy rule [5]. In those studies, fixed membership functions of linguistic values were 
used when fuzzy rules were generated. Genetic algorithms were also used for tuning 
membership functions in [6] where it was assumed that a set of fuzzy rules had already been 
given. In [7], genetic algorithms simultaneously performed the determination of the number of 
fuzzy rules, the generation of fuzzy rules, and the tuning of membership functions. As in the 
case of non-fuzzy GBML algorithms, fuzzy GBML algorithms can be also classified into two 
categories: Pittsburgh approach [8] and Michigan approach [9]. The above-mentioned studies in 
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[4]-[7] can be viewed as fuzzy versions of the Pittsburgh approach where a set of fuzzy rules is 
handled as an individual. On the other hand, some fuzzy GBML algorithms (e.g., [10]-[13]) 
were proposed using the framework of the Michigan approach where a single fuzzy rule is 
handled as an individual. 
 In this paper, we propose a hybrid algorithm of these two approaches for designing fuzzy 
rule-based systems for pattern classification problems. First we examine the search ability of 
Pittsburgh-style and Michigan-style fuzzy GBML algorithms through computational 
experiments on commonly used data sets in the literature. We demonstrate advantages and 
disadvantages of each approach. Then, we combine the two approaches into a single hybrid 
algorithm. Our hybrid algorithm is basically the Pittsburgh approach where each rule set is 
handled as an individual. The Michigan approach, which has high search ability to efficiently 
find good fuzzy rules, is used as a kind of heuristic mutation for partially modifying each rule 
set. In this manner, our hybrid algorithm utilizes the high search ability of the Michigan 
approach together with the direct optimization ability of the Pittsburgh approach. While the 
basic idea of our hybrid algorithm has already been suggested in our former study [14], this 
paper includes the following new contributions in comparison with [14]: 
1. Advantages and disadvantages of the two approaches of fuzzy GBML algorithms are 

demonstrated. 
2. The search ability of our hybrid fuzzy GBML algorithm is compared with that of its non-

hybrid versions. 
3. It is demonstrated that a heuristic specification procedure of antecedent fuzzy sets is 

necessary for handling high-dimensional data sets by fuzzy GBML algorithms. 
4. The generalization ability of fuzzy rule-based systems obtained by our hybrid algorithm is 

examined. 
5. Various high-dimensional data sets involving up to 60 attributes are used in computational 

experiments for examining the above-mentioned issues.  
6. A simple idea is incorporated into fuzzy GBML algorithms for handling the situation where 

we do not know an appropriate granularity of the fuzzy partition for each attribute. Our idea 
is to simultaneously use multiple fuzzy partitions with different granularities for generating 
fuzzy rules by fuzzy GBML algorithms. 

 
 

II. FUZZY RULE-BASED CLASSIFICATION SYSTEMS 
 
A. Fuzzy Rules for Pattern Classification  

 Let us assume that we have m labeled patterns )...,,( 1 pnpp xx=x , mp ...,,2,1=  from M 
classes as training data. That is, we have an n-dimensional M-class pattern classification 
problem with m training patterns. We also assume that a set of linguistic values (and their 
membership functions) is given for describing each attribute. We use fuzzy rules of the 
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following type for our n-dimensional pattern classification problem: 

Rule qR : If 1x  is 1qA  and ... and nx  is qnA  then Class qC  with qCF , rule...,,2,1 Nq = ,  (1) 

where qR  is the label of the q-th fuzzy rule, )...,,( 1 nxx=x  is an n-dimensional pattern vector, 

qiA  is an antecedent fuzzy set with a linguistic label (i.e., qiA  is a linguistic value such as 
“small” and “large”), qC  is a consequent class, qCF  is a rule weight, and ruleN  is the number 
of fuzzy rules. The rule weight qCF , which can be viewed as the certainty grade of the fuzzy 
rule qR , is used as the strength of qR  in fuzzy reasoning. Classification boundaries by a set of 
fuzzy rules can be adjusted by changing their rule weights without modifying the membership 
functions of antecedent fuzzy sets [15]. 

B. Rule Generation and Fuzzy Reasoning 

 First we explain how the consequent class qC  is specified. We define the compatibility 
grade of each training pattern px  with the antecedent part )...,,( 1 qnqq AA=A  using the product 
operator as  

)(...)()()( 2211 pnqnApqApqApq xxx µµµµ ⋅⋅⋅=xA ,              (2) 

where )( ⋅qiAµ  is the membership function of the antecedent fuzzy set qiA . The fuzzy 
conditional probability )|ClassPr( qh A  of Class h ( Mh ,...,2,1= ) for the antecedent part qA  is 
numerically approximated as follows [16]: 
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 The consequent class qC  of the fuzzy rule qR  is specified by identifying the class with the 
maximum fuzzy conditional probability as 

})|Class{Pr()|ClassPr( max
,...,2,1

q
Mh

qq hC AA
=

= .              (4) 

 Before explaining the specification of the rule weight qCF , we describe fuzzy reasoning for 
classifying new patterns by fuzzy rules of the form in (1). Let S  be a set of fuzzy rules. A new 
pattern px  is classified by a single winner rule wR , which is chosen from the rule set S as 

}|)(max{)( SRCFCF qqpwp qw
∈⋅=⋅ xx AA µµ .               (5) 

The winner rule wR  has the maximum product of the compatibility grade )( pq xAµ  and the rule 
weight qCF  in S. If multiple fuzzy rules have the same maximum product but different 
consequent classes for the new pattern px , the classification of px  is rejected. The 
classification is also rejected if no fuzzy rule is compatible with the new pattern px  (i.e., 
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0)( =pq xAµ  for  SRq ∈
∀ ). We use the fuzzy reasoning method based on a single winner rule 

because it makes the credit assignment in Michigan-style fuzzy GBML algorithms very simple. 
Since a single winner rule is responsible for the classification of the new pattern px , we can 
easily assign a reward/punishment to the winner rule based on the classification result (i.e., 
correct classification or misclassification of px ). 
 It was shown in [16] that the following specification of the rule weight qCF  is appropriate 
for two-class problems when we use the single winner-based method: 

)|ClassPr()|ClassPr( qqqqq CCCF AA −= ,               (6) 

where qC  is the complementary class of qC  in two-class problems (e.g., 2=qC  when 1=qC ). 
 There are several alternative definitions of rule weights as extensions of (6) to the case of 
multi-class problems [17]. In this paper, we use the following specification of the second term 
in the right-hand side of (6) in the case of multi-class problems (i.e., 2>M ). 

∑
≠
=

=
M

qCh
h

qqq hC
1

)|ClassPr()|ClassPr( AA .                (7) 

When qCF  becomes negative in (6), we do not generate any fuzzy rule with the antecedent part 

qA . That is, the rule set S includes no fuzzy rules with negative weights. We use the definition 
of rule weights in (6)-(7) because good results were reported using this definition in [17]. 
 
 

III. FUZZY GBML APPROACHES 
 
 In this section, we explain Michigan-style and Pittsburgh-style fuzzy GBML algorithms. The 
search ability of these algorithms is examined through computational experiments on three well-
known data sets from the UCI machine learning repository: iris data with four attributes, wine 
data with 13 attributes, and sonar data with 60 attributes. We choose these three data sets 
because their dimensionality is totally different from each other (i.e., we choose the iris data as a 
low-dimensional problem, the wine data as a medium-dimensional problem, and the sonar data 
as a high-dimensional problem). Since we do not know an appropriate fuzzy partition for each 
attribute in those data sets, we simultaneously use four different fuzzy partitions in Fig. 1 for 
each attribute. This means that we have 15 antecedent fuzzy sets including don’t care. Thus the 
total number of possible combinations of the antecedent fuzzy sets for an n-dimensional 
problem is n15  (i.e., the number of possible fuzzy rules is n15 ). Our task in this section is to 
find a small number of good fuzzy rules with high classification ability from such a huge 
number of possible fuzzy rules. While we use four fuzzy partitions evenly divided with 
symmetric triangular fuzzy sets in Fig. 1, arbitrarily given fuzzy partitions (e.g., inhomogeneous 
fuzzy partitions with different fuzzy sets) can be used in fuzzy GBML algorithms in this paper.  
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Fig. 1. Four fuzzy partitions used in our computational experiments. The superscript of each 
fuzzy set means the granularity of the fuzzy partition. Each of the 14 fuzzy sets is represented 

by one of the 14 symbols (i.e., 1, 2, ..., 9, a, b, c, d, e) as shown in this figure. 

A. Michigan-Style Algorithm 

 In our Michigan-style algorithm [12], [13], the search for good fuzzy rules corresponds to 
the evolution of a population of fuzzy rules. A single fuzzy rule is handled as an individual. A 
population consists of a prespecified number of fuzzy rules. As we have already explained in 
Section II, the consequent class and the certainty grade of each fuzzy rule can be easily 
specified from compatible training patterns with its antecedent part. Thus we code each fuzzy 
rule as a string using its antecedent fuzzy sets. We use 15 symbols (e.g., 0, 1, ..., 9, a, b, c, d, e) 
for representing don’t care and the 14 antecedent fuzzy sets in Fig. 1. For example, “0102d0” 
denotes the fuzzy rule “If 2x  is 2S  and 4x  is 2L  and 5x  is 5ML  then Class qC  with qCF ” 
where don’t care conditions on 1x , 3x  and 6x  represented by 0’s in the string are omitted. 
 First, our Michigan-style algorithm randomly generates a number of fuzzy rules (say, ruleN  
fuzzy rules) as an initial population. That is, ruleN  strings of the length n are generated for our 
n-dimensional problem by randomly selecting each of the 15 symbols with the probability 1/15. 
Next, the fitness value of each fuzzy rule is evaluated. Let S be the set of the fuzzy rules in the 
current population. The evaluation of each fuzzy rule is performed by classifying all the given 
training patterns by the rule set S using the single winner-based method in (5). After all the 
given training patterns are classified by S, the fitness value )( qRfitness  of each fuzzy rule qR  
in S is calculated as the number of correctly classified training patterns by qR . Then, new fuzzy 
rules are generated from the existing rules in the current population by genetic operations. As 
parent strings, two fuzzy rules are selected from the current population using the binary 
tournament selection. From the selected two strings, two new strings are generated by the 
uniform crossover with a prespecified crossover probability. Each symbol of the generated 
strings by the crossover operation is randomly replaced with a different symbol using a 
prespecified mutation probability. The selection, crossover and mutation are iterated until a 
prespecified number of new strings (say, replaceN  strings) are generated. Finally, the worst 
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replaceN  strings with the smallest fitness values in the current population are removed, and the 
newly generated replaceN  strings are added to the remaining strings to form a new population. 
 The above procedures are applied to the new population again. The generation update is 
iterated until a stopping condition is satisfied. In most of our computational experiments, we use 
the total number of generations as the stopping condition to compare different algorithms under 
the same condition. In this case, the specification of the stopping condition is based on the 
available computation time. Our Michigan-style algorithm can be written as follows: 

[Michigan-Style Fuzzy GBML Algorithm] 
Step 1: Generate ruleN  fuzzy rules. 
Step 2: Calculate the fitness value of each fuzzy rule in the current population. 
Step 3: Generate replaceN  fuzzy rules using the genetic operations. 
Step 4: Replace the worst replaceN  fuzzy rules in the current population with the newly 

generated replaceN  rules. 
Step 5: Return to Step 2 if the prespecified stopping condition is not satisfied. 

 During the execution of this algorithm, we monitor the classification rate of the current 
population on the given training patterns. The rule set (i.e., population) with the highest 
classification rate is chosen as the final solution. 
 This algorithm is the simplest version of our Michigan-style algorithm [12], [13]. Its search 
ability can be improved by various heuristic tricks (e.g., by adding a misclassification penalty 
term to the fitness function, using a tailored initial population, and generating new fuzzy rules 
directly from misclassified and rejected training patterns [13]). In our computational 
experiments, we first use this simplest version for comparing the Michigan approach with the 
Pittsburgh approach under the condition of no heuristic tricks. We also examine the search 
ability of each approach with some heuristic tricks. In the following, we briefly explain the 
heuristic tricks used in our computational experiments. 
 It was shown in [13] that the search ability of our fuzzy classifier system was drastically 
improved by directly generating initial fuzzy rules from training patterns in the following 
heuristic manner. First we randomly select ruleN  training patterns. Next we generate a fuzzy 
rule from each of the selected training patterns by choosing the most compatible antecedent 
fuzzy set (excluding don’t care) with each attribute value. That is, the antecedent part 

)...,,( 1 qnqq AA=A  is specified so that qiA  has the maximum compatibility grade with pix  
when the fuzzy rule qR  is generated from the training pattern )...,,( 1 pnpp xx=x . Then each 
antecedent fuzzy set of the generated fuzzy rule is replaced with don’t care using a prespecified 
probability caretdonP ' . In this manner, ruleN  initial fuzzy rules are generated in our former study 
[13]. In this paper, we modify this heuristic procedure because some antecedent fuzzy sets from 
fine fuzzy partitions are never selected. Instead of choosing the antecedent fuzzy set with the 
maximum compatibility grade, we probabilistically choose an antecedent fuzzy set from the 14 
candidates kB  ( 14...,,2,1=k ) in Fig. 1 where each candidate kB  has the following selection 
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probability for the attribute value pix : 
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Then each antecedent fuzzy set of the generated fuzzy rule is replaced with don’t care using a 
prespecified probability caretdonP ' . 
 The specification of each antecedent fuzzy set by (8) and the replacement with don’t care 
using the probability caretdonP '  can be used not only for generating initial fuzzy rules but also 
for updating the current population. In the basic form of our Michigan-style algorithm, new 
fuzzy rules are generated by the genetic operations (i.e., selection, crossover and mutation) from 
the existing fuzzy rules in the current population. Fuzzy rules can be directly generated from 
misclassified or rejected training patterns to increase the search ability (see [13] for the effect of 
this procedure). We generate at least a half of new fuzzy rules by the genetic operations (i.e., at 
least 2/replaceN  fuzzy rules). Let MRN  be the sum of the number of misclassified and rejected 
training patterns by the existing fuzzy rules in the current population. When MRN  is less than 
or equal to 2/replaceN , MRN  fuzzy rules are directly generated from the MRN  training patterns 
in exactly the same manner as the above-mentioned procedure for generating initial fuzzy rules. 
Other fuzzy rules (i.e., )( MRreplace NN −  rules) are generated by the genetic operations. On the 
other hand, when MRN  is larger than 2/replaceN , 2/replaceN  training patterns are randomly 
chosen from the MRN  training patterns. Then 2/replaceN  fuzzy rules are directly generated 
from the chosen patterns. Other fuzzy rules are generated by the genetic operations.  

B. Pittsburgh-Style Algorithm 

 For the comparison with our Michigan-style algorithm in the previous subsection, we 
implement a fuzzy GBML algorithm based on the Pittsburgh approach where a set of fuzzy 
rules is handled as an individual. As in the previous subsection, each fuzzy rule is coded as a 
string of the length n. Thus a rule set with ruleN  fuzzy rules is coded as a concatenated string of 
the length ruleNn ×  where each substring of the length n represents a fuzzy rule.  
 In our Pittsburgh-style algorithm, first a number of rule sets (say, popN  rule sets) with ruleN  
fuzzy rules are randomly generated in the same manner as in the basic version of our Michigan-
style algorithm in the previous subsection. The generated popN  rule sets comprise an initial 
population. Next each rule set is evaluated by classifying the given training patterns. The fitness 
value of each rule set iS  in the current population is calculated as the number of correctly 
classified training patterns by iS . Then, new rule sets are generated from the existing rule sets 
in the current population by genetic operations. As parent strings, two rule sets are selected from 
the current population using the binary tournament selection scheme. From the selected two 
strings, two new strings are generated by the uniform crossover with the prespecified crossover 
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probability. The uniform crossover in the Pittsburgh-style algorithm exchanges substrings 
between the two parent strings. That is, we use the substring-wise (i.e., rule-wise) uniform 
crossover. We also examine the standard (i.e., bit-wise) uniform crossover. Each symbol of the 
generated strings by the crossover operation is randomly replaced with a different symbol using 
a prespecified mutation probability as in the Michigan-style algorithm. The selection, crossover 
and mutation are iterated until )1( pop −N  rule sets are generated. Finally, the best rule set in the 
current population is added to the newly generated rule sets as an elite rule set to form a new 
population including popN  rule sets.  
 The generation update is iterated until a prespecified stopping condition is satisfied. As in the 
Michigan-style algorithm, we use the total number of generation updates as the stopping 
condition. The final solution is the best rule set in the final population because the best rule set 
in the current population is always inherited to the next population by the elitist strategy. Our 
Pittsburgh-style algorithm can be written as follows: 

[Pittsburgh-Style Fuzzy GBML Algorithm] 
Step 1: Generate popN  rule sets with ruleN  fuzzy rules. 
Step 2: Calculate the fitness value of each rule set in the current population. 
Step 3: Generate )1( pop −N  rule sets using the genetic operations. 
Step 4: Add the best rule set in the current population to the newly generated )1( pop −N  rule 

sets to form the next population. 
Step 5: Return to Step 2 if the prespecified stopping condition is not satisfied. 

 The heuristic procedure for directly generating initial fuzzy rules from training patterns can 
be used in our Pittsburgh-style algorithm in the same manner as in our Michigan-style algorithm.  

C. Comparison of Two Approaches 

 For comparing the two fuzzy GBML algorithms with each other, we performed 
computational experiments on the following data sets available from the UC Irvine machine 
learning repository: 

Iris data: 150 samples with 4 attributes from three classes. 
Wine data: 178 samples with 13 attributes from three classes. 
Sonar data: 208 samples with 60 attributes from two classes. 

 We applied the basic versions of our two fuzzy GBML algorithms to the three data sets. We 
examined the substring-wise (i.e., rule-wise) uniform crossover as well as the standard bit-wise 
uniform crossover in the Pittsburgh-style algorithm. Parameter values are summarized in Table 
1 where the mutation probability is specified by the number of attributes in each data set (i.e., n). 
Table 1 shows that our task is to design a fuzzy rule-based classification system with 10 or 20 
fuzzy rules by each algorithm for each data set. From Table 1, we can see that only 1,000 rule 
sets are examined in a single run of the Michigan-style algorithm. On the other hand, 200,000 
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rule sets are examined in the Pittsburgh-style algorithm since 200 rule sets are included in each 
population (i.e., population size is 200 in the Pittsburgh-style algorithm). 
 Average classification rates and average CPU time over 20 runs of each algorithm for each 
data set are summarized in Table 2 and Table 3, respectively. The CPU time was measured on a 
personal computer with a Pentium 4 (2.53 GHz) processor. Classification rates on each data set 
were measured on training patterns, which were the same as the whole data set in this 
subsection. Thus the experimental results in Table 2 should be used for evaluating the search 
ability of each algorithm. The generalization ability of extracted fuzzy rules (i.e., classification 
rates on test patterns) will be examined later in this paper. 
 
 

Table 1. Parameter values in each algorithm.  

Algorithm Michigan Pittsburgh
Number of fuzzy rules 10 or 20 10 or 20

Number of rule sets 1 200 
Crossover probability 0.9 0.9 
Mutation probability n/1  n/1  

Number of replaced rules 2 or 4 N. A. 
Total number of generations 1000 1000 

 
 

Table 2. Average classification rates (%). P-rule and P-bit mean the Pittsburgh-style fuzzy 
GBML algorithm with the rule-wise and bit-wise uniform crossover operations, respectively. 

# of rules 10 rules 20 rules 
Algorithms Mich P-rule P-bit Mich P-rule P-bit

Iris 96.77 99.53 99.33 96.83 99.70 99.53
Wine 94.24 99.89 100 97.11 100 100
Sonar 0 0 0 0 0 0 

 
 

Table 3. Average CPU time (seconds). 

# of rules 10 rules 20 rules 
Algorithms Mich P-rule P-bit Mich P-rule P-bit

Iris 0.4 73 69 0.65 139 133
Wine 0.75 159 144 1.35 276 239
Sonar 0.45 102 105 0.95 202 209

 
 
 From Table 2, we can see that no meaningful fuzzy rules were found for the sonar data by 
the genetic search from randomly generated initial populations. This is because the search space 
for the sonar data with 60 attributes is too large to search for fuzzy rules using no heuristic 
procedure. We will examine the effect of the heuristic specification procedure of antecedent 
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fuzzy sets on the performance of our two fuzzy GBML algorithms later in this section. We can 
also see from Table 2 that the Pittsburgh-style algorithm outperformed the Michigan-style 
algorithm on the iris data and the wine data. The performance of the two versions (i.e., rule-wise 
crossover and bit-wise crossover) of the Pittsburgh-style algorithm is almost the same in Table 2. 
 From Table 3, we can see that the Michigan-style algorithm spent much less CPU time than 
the Pittsburgh-style algorithm. So we compared the two approaches with each other under the 
same computation load. Experimental results on the iris data and the wine data are summarized 
in Fig. 2 and Fig. 3, respectively, for the case of 20 rules. It should be noted that we did not use 
1000 generations as the stopping condition in Fig. 2 and Fig. 3. The horizontal axis of each 
figure is the number of examined rule sets, which is the same as the number of generations in 
the case of the Michigan-style algorithm. Those figures show the average classification rate over 
20 trials of each algorithm for each data set. The average classification rate at each generation 
was calculated using the best rule set obtained until that generation in each trial. From those 
figures, we can see that the Michigan-style algorithm has much higher search ability to 
efficiently find good fuzzy rules than the Pittsburgh-style algorithm in the early stage of 
evolution. That is, the average classification rate was rapidly improved by the Michigan-style 
algorithm. Further improvement by the Michigan-style algorithm, however, was very slow after 
examining a certain number of rule sets (e.g., about 100 rule sets in Fig. 2). In the long run, the 
Pittsburgh-style algorithm outperformed the Michigan-style algorithm in Fig. 2 and Fig. 3. 
 These observations suggest that the Michigan-style algorithm has high search ability to 
efficiently find good fuzzy rules. The Michigan-style algorithm, however, cannot directly 
optimize fuzzy rule-based systems because it only measures the performance of each fuzzy rule. 
That is, the optimization of fuzzy rule-based systems is indirectly performed by finding good 
fuzzy rules. The lack of the direct optimization ability leads to inferior results by the Michigan-
style algorithm in the long run.  
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Fig. 2. Experimental results on the iris data set. 
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Fig. 3. Experimental results on the wine data set. 

 Next we examined the effect of the heuristic specification procedure of antecedent fuzzy sets 
directly from training patterns on the search ability of each algorithm. We applied each 
algorithm with the heuristic procedure to the three data sets in the same manner as in Tables 1-3. 
The two versions of the Pittsburgh-style algorithm used the heuristic procedure only for 
generating initial fuzzy rules. On the other hand, it was used for generating new fuzzy rules in 
each generation as well as for generating initial fuzzy rules in the Michigan-style algorithm. The 
probability of don’t care was specified as follows: =caretdonP ' 0.5 for the iris data set, 

=caretdonP ' 0.8 for the wine data set, and =caretdonP ' 0.95 for the sonar data set so that each 
fuzzy rule had a few antecedent fuzzy sets (excluding don’t care) on average. 
 Average experimental results over 20 runs are summarized in Table 4 and Table 5. From the 
comparison between Table 2 and Table 4, we can see that the average classification rates on the 
sonar data were drastically increased by the use of the heuristic procedure. The increase in the 
CPU time by the heuristic procedure, however, was not so large (compare Table 5 with Table 3). 
Since the performance of the two versions of the Pittsburgh-style algorithm is almost the same, 
hereafter we only use its substring-wise (i.e., rule-wise) uniform crossover version. 
 
 

Table 4. Average classification rates by each algorithm with the heuristic specification 
procedure of antecedent fuzzy sets (%). 

# of rules 10 rules 20 rules 
Algorithms Mich P-rule P-bit Mich P-rule P-bit

Iris 96.50 99.57 99.50 96.73 99.53 99.60
Wine 97.25 100 99.97 98.03 100 100
Sonar 80.72 94.76 92.21 84.01 97.36 96.18
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Table 5. Average CPU time by each algorithm with the heuristic specification procedure of 
antecedent fuzzy sets (seconds). 

# of rules 10 rules 20 rules 
Algorithms Mich P-rule P-bit Mich P-rule P-bit

Iris 0.3 70 69 0.65 136 134
Wine 0.6 130 130 1.15 232 226
Sonar 1.65 306 266 3.15 578 515

 

IV. HYBRID ALGORITHM 
 
 From the experimental results in the previous section, we can see that each algorithm has its 
own advantages and disadvantages. In this section, we combine the two fuzzy GBML 
algorithms into a single hybrid algorithm. Our aim is to implement a hybrid algorithm that has 
the advantages of the two fuzzy GBML algorithms. Our hybrid algorithm can be written as 
follows:  

[Hybrid Fuzzy GBML Algorithm] 
Step 1: Generate popN  rule sets with ruleN  fuzzy rules. 
Step 2: Calculate the fitness value of each rule set in the current population. 
Step 3: Generate )1( pop −N  rule sets by the selection, crossover and mutation in the same 

manner as the Pittsburgh-style algorithm. Apply a single iteration of the Michigan-style 
algorithm (i.e., the rule generation and the replacement) to each of the generated rule 
sets with a prespecified probability (0.5 in our computational experiments). 

Step 4: Add the best rule set in the current population to the newly generated )1( pop −N  rule 
sets to form the next population. 

Step 5: Return to Step 2 if the prespecified stopping condition is not satisfied. 

 Our hybrid algorithm is the same as the Pittsburgh-style algorithm except that the Michigan-
style algorithm is applied to each rule set after the mutation operation in Step 3 for generating 
new fuzzy rules. Our hybrid algorithm has the high search ability of the Michigan-style 
algorithm as well as the direct optimization ability of the Pittsburgh-style algorithm. 
 We applied our hybrid algorithm to the three data sets using the parameter specifications in 
Table 1. Average experimental results over 20 runs are summarized in Table 6 and Table 7. 
From the comparison between Table 4 and Table 6, we can see that the average classification 
rates on the sonar data were improved by the hybridization. We can also see that a 100% 
classification rate was always obtained for the wine data in all the 20 runs for the four cases in 
Table 6. This observation shows high search ability of our hybrid algorithm. It should be noted 
that the heuristic specification procedure of antecedent fuzzy sets is necessary in the application 
of the hybrid algorithm to the sonar data set in Table 6 as the other algorithms in Table 2.  
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Table 6. Average classification rates by the hybrid algorithm (%). 

# of rules 10 rules 20 rules 
Heuristics Off On Off On

Iris 99.53 99.57 99.63 99.23
Wine 100 100 100 100
Sonar 0 95.82 0 99.35

 

Table 7. Average CPU time by the hybrid algorithm (seconds). 

# of rules 10 rules 20 rules 
Heuristics Off On Off On

Iris 110 105 225 210
Wine 287 205 501 395
Sonar 146 518 300 1000

 
 The effect of the hybridization with the Michigan-style algorithm on the search ability of the 
Pittsburgh-style algorithm is demonstrated in Fig. 4 for the sonar data set in the case of 20 rules. 
This figure shows the average classification rate of the best rule set in each generation over 20 
trials of each algorithm. Each algorithm used the heuristic specification procedure of antecedent 
fuzzy sets. The hybrid algorithm was implemented using the rule-wise uniform crossover 
operation. From Fig. 4, we can see that the hybridization improved the ability of the Pittsburgh-
style algorithm to efficiently find good rule sets. The effect of the hybridization can be more 
clearly shown in computational experiments without the heuristic procedure. Fig. 5 shows 
experimental results on the wine data set in the case of 20 rules where the heuristic procedure 
was not used. From Fig. 5, we can see that much better rule sets were found by the hybrid 
algorithm than the Pittsburgh-style algorithm in the early stage of evolution. This is because the 
Michigan-style algorithm has high search ability to efficiently find good fuzzy rules.  
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Fig. 4. Experimental results on the sonar data set. 
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Fig. 5. Experimental results on the wine data set. 
 
 Finally we examine the generalization ability of fuzzy rule-based systems designed by our 
hybrid algorithm through computational experiments on seven data sets in Table 8 from the UC 
Irvine machine learning repository. Since the C4.5 algorithm [18] is one of the most well-
known and frequently-used methods for designing non-fuzzy rule-based systems, it is compared 
with our hybrid algorithm. As benchmark results, we cite in Table 9 the best error rate for each 
data set on test patterns among six variants of the C4.5 algorithm examined in [19]. The 
performance of each variant was examined by ten iterations of the whole ten-fold cross-
validation (10-CV) procedure (i.e., ×10 10-CV). In our computational experiments, we also 
used ten iterations of the whole 10-CV procedure for examining the performance of our hybrid 
algorithm. In Table 9, we also cite some recently reported results of a decision tree-based fuzzy 
classifier in [20] and a GA-based non-fuzzy classifier in [21]. In these studies, the average 
classification rates on test patterns were evaluated using the 10-CV procedure for each data set. 
 Experimental results by our hybrid algorithm are summarized in Table 9 where two 
parameter specifications (i.e., 10 rules and 20 rules) were examined. From Table 9, we can see 
that the average error rates by our hybrid algorithm are better than or comparable to the best 
results by the C4.5 algorithm in [19] except for the glass data. For the glass data, our results are 
inferior to the best result in [19]. We can also see that our results are very similar to the results 
of the decision tree-based fuzzy classifier in [20] except for the wine data. For the wine data, 
much better results were obtained by our hybrid algorithm than the decision tree-based fuzzy 
classifier in [20]. Our hybrid algorithm outperformed the GA-based non-fuzzy classifier in [21] 
for the Wisconsin breast cancer data (Breast W) and the wine data in Table 9. From these 
observations, we can see that our hybrid algorithm has high generalization ability. 
 In [21], experimental results on training patterns were also reported. For example, the 
average classification rates on training patterns for the iris data and the wine data were 98.20% 
and 99.78% in [21], respectively. From the comparison between these reported results and our 
results in Table 6 (i.e., 99.68% for the iris data and 100% for the wine data), we can see that our 
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hybrid algorithm has high search ability. 

Table 8. Data sets used in our computer simulations.  

Data set Number of 
attributes

Number of 
patterns 

Number of 
classes 

Breast W   9   683* 2 
Diabetes   8 768 2 

Glass   9 214 6 
Heart C 13   297* 5 

Iris   4 150 3 
Sonar 60 208 2 
Wine 13 178 3 

* Incomplete patterns with missing values are not included. 

Table 9. Average error rates by our hybrid algorithm and reported results in [19]-[21]. The best 
result in each row is highlighted by boldface. 

Our algorithm C4.5 Fuzzy GA Data set 
10 rules 20 rules [19] [20] [21] 

Breast W 3.54 3.32 5.1 3.18 4.70 
Diabetes 25.08 24.17 25.0 26.95 - 

Glass 37.80 34.63 27.3 33.97 - 
Heart C 46.50 45.52 46.3 - - 

Iris 5.33 5.60 5.7 4.89 4.40 
Sonar 23.70 23.70 24.6 - - 
Wine 4.94 5.11 5.6 8.78 8.33 

 

V. CONCLUDING REMARKS 
 
 In this paper, we first examined the search ability of two fuzzy GBML algorithms through 
computational experiments on commonly used data sets in the literature. These two algorithms 
were based on the Michigan approach and the Pittsburgh approach, respectively. From 
experimental results, we had the following observations. The Michigan-style fuzzy GBML 
algorithm had high search ability to efficiently find good fuzzy rules. Because the evolution of 
fuzzy rule-based systems in the Michigan-style algorithm was driven only by the performance 
of each fuzzy rule, it did not have high search ability to find a good combination of fuzzy rules. 
That is, the execution of the Michigan-style algorithm was not directly related to the 
optimization of fuzzy rule-based systems. On the other hand, the Pittsburgh-style algorithm 
could directly optimize fuzzy rule-based systems. Thus, it could find a good combination of 
fuzzy rules. The Pittsburgh-style algorithm, however, did not have high search ability to 
efficiently find good fuzzy rules because the performance of each fuzzy rule was not taken into 
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account in the evolution of fuzzy rule-based systems. Next we combined the two fuzzy GBML 
algorithms into a single hybrid algorithm based on these observations. In our hybrid algorithm, 
the Michigan approach was used for generating good fuzzy rules while the Pittsburgh approach 
was used for finding good combinations of generated fuzzy rules. In this manner, advantages of 
these two approaches were utilized in our hybrid algorithm. It was shown by computational 
experiments that our hybrid algorithm outperformed its non-hybrid versions. We also 
demonstrated the importance of the heuristic specification procedure of antecedent fuzzy sets 
when the three fuzzy GBML algorithms were applied to high-dimensional data sets (e.g., sonar 
data with 60 attributes). Finally the generalization ability of fuzzy rule-based systems designed 
by our hybrid algorithm was examined through computational experiments on various data sets. 
It was shown that the performance of our hybrid algorithm was better than or comparable to the 
C4.5 algorithm for many data sets. 
 Our hybrid algorithm can be easily extended to the case of variable string length. In this case, 
the number of fuzzy rules in each rule set (i.e., each string) is not fixed but evolved during the 
execution of our hybrid algorithm. The extended version can handle not only the maximization 
of the classification accuracy but also the minimization of the number of fuzzy rules. This 
version can be further extended to the multiobjective design of fuzzy rule-based classification 
systems for discussing the tradeoff between the accuracy of fuzzy rule-based systems and their 
complexity (e.g., the number of fuzzy rules and the number of antecedent conditions). 
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