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Abstract

Data mining techniques can be used to discover useful patterns by exploring and analyzing data, so, it is feasible to

incorporate data mining techniques into the classification process to discover useful patterns or classification rules from

training samples. This paper thus proposes a data mining technique to discover fuzzy classification rules based on the

well-known Apriori algorithm. Significantly, since it is difficult for users to specify the minimum fuzzy support used to

determine the frequent fuzzy grids or the minimum fuzzy confidence used to determine the effective classification rules

derived from frequent fuzzy grids, therefore the genetic algorithms are incorporated into the proposed method to

determine those two thresholds with binary chromosomes. For classification generalization ability, the simulation re-

sults from the iris data and the appendicitis data demonstrate that the proposed method performs well in comparison

with other classification methods.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Data mining is the exploration and analysis of

data in order to discover meaningful patterns

(Berry and Linoff, 1997). In addition, data mining
problems involving classification can be viewed

within a common framework of rule discovery

(Agrawal et al., 1993). The goal of this paper is just

to propose an effective method that can find a

compact set of fuzzy rules for classification prob-

lems by data mining techniques.

Recently, the discovery of association rules

from databases has become an important research

topic, and association rules have been applied for
analysis to help managers determine which items

are frequently purchased together by customers

(Berry and Linoff, 1997; Han and Kamber, 2001).

The Apriori algorithm proposed by Agrawal et al.

(1996) is an influential algorithm that can be used

to find association rules. In this algorithm, a can-

didate k-itemset (kP 1) containing k items is fre-

quent (i.e., frequent k-itemset) if its support is
larger than or equal to a user-specified minimum
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support. Significantly, the well-known Apriori

property (Han and Kamber, 2001) for mining as-

sociation rules shows that any subset of a frequent

itemset must also be frequent. Subsequently, we

use frequent itemsets to generate association rules.

A fuzzy classification rule is a fuzzy if–then rule
whose consequent part is a class label. Since the

comprehensibility of fuzzy rules by human users is

a criterion in designing a fuzzy rule-based system

(Ishibuchi et al., 1999), fuzzy classification rules

with linguistic interpretations must be taken into

account. To cope with this problem, we consider

both quantitative and categorical attributes, which

are used to describe each sample data, as linguis-
tic variables. Then, each linguistic variable can

be partitioned by its linguistic values represented

by fuzzy numbers with triangular membership

functions. Simple fuzzy grids or grid partitions

(Ishibuchi et al., 1999; Jang and Sun, 1995) in

feature space resulting from the fuzzy partition are

thus obtained.

In this paper, we propose a two-phase data
mining technique to discover fuzzy rules for clas-

sification problems based on the Apriori algo-

rithm. The first phase finds frequent fuzzy grids by

dividing each quantitative attribute with a pre-

specified number of various linguistic values. The

second phase generates effective fuzzy classifica-

tion rules from those frequent fuzzy grids. The

fuzzy support and the fuzzy confidence, which
have been defined previously (e.g., Ishibuchi et al.,

2001a; Ishibuchi et al., 2001b; Hu et al., 2002), are

employed to determine which fuzzy grids are fre-

quent and which rules are effective by comparison

with the minimum fuzzy support (min FS) and the

minimum fuzzy confidence (min FC), respectively.

However, both min FS and min FC are not

easily user-specified for each classification prob-
lem. To solve this problem, the genetic algorithm

(GA) (Goldberg, 1989) is thus incorporated into

the proposed algorithm to automatically deter-

mine those two parameters. A binary chromosome

with sufficiently large length used in this paper is

composed of two substrings: one for the min FS,

and the other for the min FC. Each generation of

the GA can obtain the fitness value of each chromo-
some, which maximizes the classification accuracy

rate and minimizes the number of fuzzy rules.

When reaching the termination condition, a

chromosome with the maximum fitness value is

used to test the performance of the proposed

method.

For classification generalization ability, the

simulation results from the iris data and the ap-
pendicitis data demonstrate that proposed learn-

ing algorithm performs well in comparison with

other fuzzy or non-fuzzy classification methods.

Thus, the goal of acquiring an effectively compact

set of fuzzy rules for classification problems can be

achieved.

This paper is organized as follows. Notations

used in this paper are described in Section 2. The
fuzzy partition methods are detailed introduced in

Section 3. In Section 4, the proposed learning al-

gorithm incorporated with the GA is presented. In

Section 5, the performance of the proposed

method is examined by computer simulation on

Anderson�s iris data (Anderson, 1935) and the

appendicitis data. Discussions and conclusions are

presented in Section 6 and Section 7, respectively.

2. Notations

Notations used in this paper are as follows:

C number of class labels

d number of attributes used to describe each

sample data, where 16 d
k dimension of one fuzzy grid, where 16

k6 d
K number of various linguistic values de-

fined in each quantitative attribute, where

K P 2

Axk
K;ik ikth linguistic value of K linguistic values

in the linguistic variable xk, where 16

ik 6K and 16m6 d
lxk
K;ik membership function of Axk

K;ik
tp pth training sample, where tp ¼ ðtp1 ; t2; . . . ;

tpd Þ, and tpi is the value with respect to the

ith attribute

Npop population size in each generation of the

GA

sðjÞ substring of the jth chromosome. sðjÞ en-
codes the min FS, where 16 j6Npop

cðjÞ substring of the jth chromosome. cðjÞ en-
codes the min FC, where 16 j6Npop
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3. Fuzzy partition methods

The concepts of linguistic variables were pro-

posed by Zadeh (1975a,b, 1976) and it is reason-

able that we view each attribute as a linguistic
variable. Formally, a linguistic variable is charac-

terized by a quintuple (Pedrycz and Gomide, 1998;

Zimmermann, 1991) denoted by ðx; T ðxÞ;U ;G;MÞ,
in which x is the name of the variable; T ðxÞ denotes
the set of names of linguistic values or terms,

which are linguistic words or sentences in a natural

language (Chen and Jong, 1997), of x; U denotes a

universe of discourse; G is a syntactic rule for
generating values of x; and M is a semantic rule

for associating a linguistic value with a meaning.

Using the simple fuzzy partition methods, each

attribute can be partitioned by various linguistic

values. The simple fuzzy partition methods have

been widely used in pattern recognition and fuzzy

reasoning. For example, there are the applications

to pattern classification by Ishibuchi et al. (1995,
1999), to fuzzy neural networks by Jang (1993),

and to the fuzzy rule generation by Wang and

Mendel (1992).

In the simple fuzzy partition methods, K vari-

ous linguistic values are defined in each quan-

titative attribute. K is also pre-specified before

executing the proposed method. Triangular mem-

bership functions are usually used for the linguis-
tic values. For example, K ¼ 3 and K ¼ 4 for the

attribute ‘‘Width’’ (denoted by x1) that ranges from
0 to 60 are shown as Figs. 1 and 2, respectively.

That is, three (i.e., small, medium and large) and

four (i.e., small, medium small, medium large and

large) various linguistic values are defined in Figs.

1 and 2, respectively.

In the proposed method, each linguistic value is

actually viewed as a candidate 1-dim fuzzy grid.

Then, AWidth
K;j1

can be represented as follows:

lWidth
K;j1

ðxÞ ¼ maxf1� jx� aKj1 j=b
K ; 0g ð1Þ

where

aKj1 ¼ miþ ðma�miÞðj1 � 1Þ=ðK � 1Þ ð2Þ

bK ¼ ðma�miÞ=ðK � 1Þ ð3Þ
where ma is the maximum domain value, and mi is

the minimum value. Here, ma ¼ 60 and mi ¼ 0 for

‘‘Width’’.

If we divide both ‘‘Width’’ and ‘‘Length’’ (de-

noted by x2) by three various linguistic values,

then a pattern space can be divided into nine 2-
dim fuzzy grids, as shown in Fig. 3. We use

AWidth
3;1 	 ALength

3;3 to denote the shaded 2-dim fuzzy

grid shown in Fig. 3, whose linguistic value is

‘‘small AND large’’.

As for categorical attributes, each has a fi-

nite number of possible values, with no order-

ing among values (e.g., sex, color) (Han and

Fig. 1. K ¼ 3 for ‘‘Width’’.

Fig. 2. K ¼ 4 for ‘‘Width’’.

Fig. 3. K ¼ 3 for ‘‘Width’’ and ‘‘Length’’.
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Kamber, 2001). If the distinct attribute values are

n0 (n0 is finite), then this attribute can only be

partitioned by n0 linguistic values. For example,

since the attribute ‘‘Class’’ is categorical, the lin-

guistic sentence of each linguistic value may be

stated as follows:

Aclass label
2;1 : class 1

Aclass label
2;2 : class 2

It should be noted that the maximum number of

dimensions for a single fuzzy grid is d. A signifi-

cant task is how to use the candidate 1-dim fuzzy

grids to generate the other frequent fuzzy grids and
effective classification rules. An effective algorithm

is thus described in following section.

4. Finding fuzzy classification rules

As we have mentioned above, the generation of

frequent fuzzy grids and fuzzy classification rules
are two significant phases of the proposed learning

algorithm. In this section, we thus describe the

individual phase of the proposed method in Sec-

tions 4.1 and 4.2. The proposed learning algorithm

incorporated with the GA is presented in detail in

Section 4.3.

4.1. Determining frequent fuzzy grids

Without loss of generality, given a candidate

k-dim fuzzy grid Ax1
K;i1

	 Ax2
K;i2

	 � � � 	 Axk�1
K;ik�1

	 Axk
K;ik ,

where 16 i1; i2; . . . ; ik 6K, the degree to which tp
belongs to this fuzzy grid can be computed asPn

p¼1 lA
x1
K;i1

	A
x2
K;i2

	���	A
xk�1
K;ik�1

	A
xk
K;ik

ðtpÞ. The fuzzy sup-

port (Ishibuchi et al., 2001a; Ishibuchi et al.,
2001b; Hu et al., 2002) of Ax1

K;i1
	 Ax2

K;i2
	 � � �	

Axk�1
K;ik�1

	 Axk
K;ik is defined as follows:

FS Ax1
K;i1

�
	 Ax2

K;i2
	 � � � 	 Axk�1

K;ik�1
	 Axk

K;ik

�
¼

Xn

p¼1
lA

x1
K;i1

	A
x2
K;i2

	���	A
xk�1
K;ik�1

	A
xk
K;ik

ðtpÞ=n

¼
Xn

p¼1
lx1
K;i1

ðtp1Þ � l
x2
K;i2

ðtp2Þ � . . . � l
xk�1
K;ik�1

ðtpk�1Þ
"

� lxk
K;ik ðtpk Þ

#,
n ð4Þ

It is clear that the algebraic product, which is a

t-norm operator in the fuzzy intersection, is used

in Eq. (4). When FSðAx1
K;i1

	 Ax2
K;i2

	 � � � 	 Axk�1
K;ik�1

	
Axk
K;ik Þ is larger than or equal to the user-specified

min FS, we can say that Ax1
K;i1

	Ax2
K;i2

	���	Axk�1
K;ik�1

	
Axk
K;ik is a frequent k-dim fuzzy grid. For any two

frequent grids, say Ax1
K;i1	Ax2

K;i2	���	 Axk�1
K;ik�1	Axk

K;ik

and Ax1
K;i1	Ax2

K;i2	���	Axk�1
K;ik�1	 Axk

K;ik 	Axkþ1
K;ikþ1 , since

lA
x1
K;i1

	 A
x2
K;i2

	���	 A
xk�1
K;ik�1

	 A
xk
K;ik

	 A
xkþ1
K;ikþ1

ðtpÞ 6 lA
x1
K;i1

	 A
x2
K;i2

	���	

A
xk�1
K;ik�1

	A
xk
K;ik

ðtpÞð16 p6 nÞ from Eq. (4), Ax1
K;i1

	
Ax2
K;i2

	���	Axk�1
K;ik�1

	Axk
K;ik 	Axkþ1

K;ikþ1
�Ax1

K;i1
	Ax2

K;i2
	���	

Axk�1
K;ik�1

	Axk
K;ik thus holds. It is clear that any subset

of a frequent fuzzy grid must also be frequent. We

can observe that this is quite different from the

Apriori property, but we may view it as a special

property for mining frequent fuzzy grids.

Table FGTTFS is implemented to generate

frequent fuzzy grids. FGTTFS consists of the
following substructures:

(a) Fuzzy grid table (FG): each row represents a

fuzzy grid, and each column represents a lin-

guistic value.

(b) Transaction table (TT): each column repre-

sents tp, and each element records the mem-

bership degree of the corresponding fuzzy
grid.

(c) Column FS: stores the fuzzy support corre-

sponding to the fuzzy grid in FG.

An initial tabular FGTTFS is shown as Table 1

as an example, from which we can see that there

are two samples t1 and t2, with two attributes x1
and x2. Both x1 and x2 are divided into three lin-
guistic values (i.e., K ¼ 3). Assume that x2 is the

attribute of class labels. Since each row of FG is a

bit string consisting of 0 and 1, FG[u] and FG[v]

(i.e., uth row and vth row of FG) can be paired to

generate certain desired results by applying the

Boolean operations. For example, if we apply the

OR operation on two rows, FG½1� ¼ ð1; 0; 0; 0;
0; 0Þ and FG½4� ¼ ð0; 0; 0; 1; 0; 0Þ, then ðFG½1�OR-
FG½4�Þ ¼ ð1; 0; 0; 1; 0; 0Þ corresponding to a can-

didate 2-dim fuzzy grid Ax1
3;1 	 Ax2

3;1 is generated.

Then,FSðAx1
3;1 	 Ax2

3;1Þ ¼ ðTT½1� � TT½4�Þ ¼ ½lx1
3;1ðt11Þ �

lx2
3;1ðt12Þ þ lx1

3;1ðt21Þ � l
x2
3;1ðt22Þ�=2 is obtained to com-
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pare with the min FS. However, any two linguistic
values defined in the same attribute cannot be

contained in the same candidate k-dim fuzzy grid

(kP 2). Therefore, for example, ð1; 1; 0; 0; 0; 0Þ and
ð0; 0; 0; 1; 0; 1Þ are invalid.

In the Apriori algorithm, a candidate k-itemset

can be derived by joining two frequent (k � 1)-

itemsets, and these two frequent itemsets share

(k � 2) items. Similarly, a candidate k-dim ð26
k6 dÞ fuzzy grid is derived by joining two frequent
ðk � 1Þ-dim fuzzy grids, and these two frequent

grids share ðk � 2Þ linguistic values. For example,
we can use Ax1

3;2 	 Ax2
3;1 and Ax1

3;2 	 Ax3
3;3 to generate

the candidate 3-dim fuzzy grid Ax1
3;2 	 Ax2

3;1 	 Ax3
3;3

because Ax1
3;2 	 Ax2

3;1 and Ax1
3;2 	 Ax3

3;3 share Ax1
3;2.

However, Ax1
3;2 	 Ax2

3;1 	 Ax3
3;3 can also be generated

by joining Ax1
3;2 	 Ax2

3;1 to Ax2
3;1 	 Ax3

3;3. This implies
that we must select one of many possible com-

binations to avoid redundant computations. To

cope with this problem, the method we adopt

here is that if there exist integers 16 e1 < e2 <
� � � < ek, such that FG½u; e1� ¼ FG½u; e2� ¼ � � � ¼
FG½u; ek�2� ¼ FG½u; ek�1� ¼ 1 and FG½v; e1� ¼
FG½v; e2� ¼ � � � ¼ FG½v; ek�2� ¼ FG½v; ek� ¼ 1,

where FG[u] and FG[v] correspond to frequent
(k � 1)-dim fuzzy grids and FG[v; ek] stands for the
ekth element of the vth row of FG, then FG[u] and

FG[v] can be paired to generate a candidate k-dim

fuzzy grid.

4.2. Determining effective fuzzy rules

The general type of one fuzzy classification rule
denoted by R is stated as Eq. (5).

Rule R : Ax1
K;i1

	 Ax2
K;i2

	 � � � 	 Axk�1
K;ik�1

	 Axk
K;ik

) Axa
C;ia with CFðRÞ ð5Þ

where xa ð16 a6 dÞ is the class label and CF(R) is

the certainty grade of R. The above rule can be

interpreted as: if x1 is A
x1
K;i1

and x2 is A
x2
K;i2

and � � �
and xk is A

xk
K;ik , then xa is A

xa
C;ia with certainty grade

CF(R). The left-hand-side of ‘‘)’’ is the anteced-

ence of R, and the right-hand-side is the conse-

quence. Since ðAx1
K;i1 	 Ax2

K;i2 	 � � � 	 Axk�1
K;ik�1 	 Axk

K;ik 	
Axa
C;iaÞ � ðAx1

K;i1 	 Ax2
K;i2 	 � � � 	 Axk�1

K;ik�1 	 Axk
K;ik Þ holds,

R can be generated by Ax1
K;i1

	 Ax2
K;i2

	 � � � 	 Axk�1
K;ik�1

	
Axk
K;ik 	 Axa

C;ia and Ax1
K;i1 	 Ax2

K;i2 	 � � � 	 Axk�1
K;ik�1 	 Axk

K;ik .

In addition, the fuzzy confidence (Ishibuchi et al.,

2001a; Ishibuchi et al., 2001b; Hu et al., 2002) of R

(i.e., FC(R)) is defined as follows:

FCðRÞ ¼ FSðAx1
K;i1 	 Ax2

K;i2 	 � � � 	 Axk�1
K;ik�1

	 Axk
K;ik 	 Axa

C;iaÞ=FSðA
x1
K;i1

	 Ax2
K;i2

	 � � � 	 Axk�1
K;ik�1

	 Axk
K;ik Þ ð6Þ

When FC(R) is larger than or equal to the user-

specified min FC, we can say that R is effective.

FC(R) can further be used as the grade of certainty

of R (i.e., CFðRÞ ¼ FCðRÞÞ.
We also use Boolean operations to obtain the

antecedence and consequence of each rule. For

example, if there exists FG½u� ¼ ð1; 0; 0; 0; 0; 0Þ and
FG½v� ¼ ð1; 0; 0; 1; 0; 0Þ corresponding to frequent
fuzzy grids Lu and Lv, where Lv � Lu, respectively;

then FG½v� AND FG½v� ¼ ð1; 0; 0; 0; 0; 0Þ, corre-

sponding to the frequent fuzzy grid Ax1
3;1, is gener-

ated as the antecedent part of rule R. Then, FG½u�
XOR FG½v� ¼ ð0; 0; 0; 1; 0; 0Þ, which corresponds

to the frequent fuzzy grid Ax2
3;1, is generated to be

the consequent part of rule R. Then, FCðRÞ ¼
FSðAx1

3;1 	 Ax2
3;1Þ=FSðA

x1
3;1Þ is easily obtained by Eq.

(6).

However, some redundant rules must be elimi-

nated in order to achieve compactness. If there

Table 1

Initial table FGTTFS for an example

Fuzzy grid FG TT FS

Ax1
3;1 Ax1

3;2 Ax1
3;3 Ax2

3;1 Ax2
3;2 Ax2

3;3 t1 t2

Ax1
3;1 1 0 0 0 0 0 lx1

3;1ðt11 Þ lx1
3;1ðt21 Þ FSðAx1

3;1Þ
Ax1
3;2 0 1 0 0 0 0 lx1

3;2ðt11 Þ lx1
3;2ðt21 Þ FSðAx1

3;2Þ
Ax1
3;3 0 0 1 0 0 0 lx1

3;3ðt11 Þ lx1
3;3ðt21 Þ FSðAx1

3;3Þ
Ax2
3;1 0 0 0 1 0 0 lx2

3;1ðt12 Þ lx2
3;1ðt22 Þ FSðAx2

3;1)

Ax2
3;2 0 0 0 0 1 0 lx2

3;2ðt12 Þ lx2
3;2ðt22 Þ FSðAx2

3;2Þ
Ax2
3;3 0 0 0 0 0 1 lx2

3;3ðt12 Þ lx2
3;3ðt22 Þ FSðAx2

3;3Þ
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exist two rules, say R and S, having the same

consequence, and the antecedence of R is con-

tained in that of S, then R is redundant and can be

discarded, whereas S is temporarily reserved. For

example, if S is ‘‘Ax1
K1;i1 	 Ax2

K2;i2 	 � � � 	 Axk�1
Kk�1;ik�1 )

Axa
C;ia ’’, then R can be eliminated. This is because

the minimization of the number of antecedent

conditions should be considered.

Ishibuchi et al. (1999) and Nozaki et al. (1996)

further demonstrated that the performance of

fuzzy rule-based systems can be improved by ad-

justing the grade of certainty of each rule. There-

fore, it is possible to improve the classification

ability of our methods by incorporating the adap-
tive rules proposed by Nozaki et al. (1996) into the

proposed learning algorithm. Now, we determine

the class label of tp by applying fuzzy rules derived
by the proposed learning algorithm. Without loss

of generality, if the antecedent part of a fuzzy as-

sociative classification rule Rs is A
x1
K1;j1 	Ax2

K2;i2 	���	
Axz
Ks ;is , then we can calculate xs of Rs as Eq. (7).

xs ¼ lx1
K1;j1

ðtp1Þ � l
x2
K2;j2

ðtp2Þ � . . . � lxs
K;is

ðtpsÞ � FCðRsÞ
ð7Þ

Then tp can be determined to categorize to the class
label which is the consequent part of Rb, when

xb ¼ max
j

fxjjRj 2 TRg ð8Þ

where TR is the set of fuzzy rules generated by the
proposed learning algorithm. The class label of tp
is thus determined and adaptive rules can be em-

ployed to adjust the fuzzy confidence of the ‘‘fir-

ing’’ rule Rb. That is, if tp is correctly classified then
xb is increased; otherwise, xb is decreased.

4.3. The proposed learning algorithm

As we have mentioned above, both min FS and

min FC are user-specified. However, it is difficult

for users to appropriately give these two thres-

holds for each classification problem. Therefore
GA is incorporated into the proposed algorithm to

automatically determine the above-mentioned

parameters (i.e., min FS and min FC).

As we have mentioned above, the type of a bi-

nary chromosome is composed of min FS and

min FC. That is, as shown in Fig. 4, the jth

chromosome is actually denoted by sðjÞcðjÞ, with
total length ðjsðjÞj þ jcðjÞjÞ, where jsðjÞj and jcðjÞj are
the lengths of sðjÞ and cðjÞ, respectively. sðjÞ (or cðjÞ)
can be decoded by transforming the binary rep-

resentation to an integer number, and then this

number is divided by 2s
ðjÞ
(or 2c

ðjÞ
). For example, if

sðjÞ ¼ 10010 (i.e. jsðjÞj ¼ 5), then the corresponding

min FS can be obtained by transformed sðjÞ to

0.5625 (i.e., 18/32). From Fig. 4, we can also see
that the two-point crossover operator (Rooij et al.,

1996) is used for exchanging partial information

between two selected chromosomes, and two new

chromosomes are thus generated at the same time

to replace their parents. Two crossover points are

randomly selected and lie in sðjÞ and cðjÞ, respec-
tively. It should be noted that both jsðjÞj and jcðjÞj
should be sufficiently large (e.g., jsðjÞj ¼ jcðjÞj ¼ 10);
otherwise, it may be unnecessary to employ the

GA to find min FS and min FC by the proposed

chromosome.

In each generation of the GA, the fitness value

of each chromosome can be obtained. Moreover,

the fitness value f ðV ðjÞÞ of the jth chromosome is

formulated as follows:

f ðV ðjÞÞ ¼ WCAR � CARðV ðjÞÞ � WV � jV ðjÞj ð9Þ
where V ðjÞ denotes a set consisting of the effective
fuzzy classification rules obtained by sðjÞcðjÞ, and
WCAR and WV are relative weights of the classifi-

cation accuracy rate by V ðjÞ (i.e., CARðV ðjÞÞ) and
the number of fuzzy rules in V ðjÞ (i.e., jV ðjÞj), re-
spectively. The chromosome that has the maxi-

mum fitness value in the final generation is further

used to examine the classification performance of

the proposed method. That is, the acquisition of a
compact fuzzy rule set with high classification ac-

curacy rate is taken into account in the overall

Fig. 4. The jth chromosome.
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objective. In general, 0 < WV � WCAR holds since

the classification power of a classification system is

more important than its compactness (Ishibuchi

et al., 1995).

The proposed learning algorithm incorporated
with the GA is detailed presented as follows:

Algorithm. Finding fuzzy classification rules based
on the Apriori algorithm
Input:

a. A set of training samples;

b. K;
c. Maximum number of iterations Jmax for per-

forming adaptive rules;

d. Population size Npop;

e. Weights WCAR and WV ;

f. Crossover probability Probc;

g. Mutation probability ProbM;

h. Maximum number of generations tmax.
Output: Phase I: Discover frequent fuzzy grids;

Phase II: Generate fuzzy classification rules
Method:

Step1. Initialization

Generate an initial population containing Npop

chromosomes and insert those chromosomes into

the current population P. Each gene is randomly

assigned to one or zero, with probability of 0.5.

Step 2. Perform the simple fuzzy partition

Step 3. Scan the training samples, and construct
FGTTFS

Step 4. Compute the fitness

4-1. Compute the fitness value for each chro-

mosome in P
Decode sðjÞcðjÞ ð16 j6NpopÞ, and generate
V ðjÞ through Step 5–8. Then, fðV ðjÞÞ can be
obtained by V ðjÞ.

4-2. Find the chromosomes denoted by LðP Þ
max

that has fmaxðP Þ which denotes the maxi-

mum fitness value in P. Set NP to /, de-
noting the next generation; then go to

Step 9.

Step 5. Generate frequent fuzzy grids

Generate frequent k-dim ðkP 2Þ fuzzy grids,

whose fuzzy support is larger than or equal to the

min FS, from ðk � 1Þ-dim frequent fuzzy grids.
Step 6. Generate fuzzy classification rules

Generate the antecedence and the consequence

of an effective fuzzy rule, whose fuzzy confidence is

larger than or equal to the min FC, using the

methods introduced in Section 4.2.

Step 7. Reduce redundant rules

Step 8. Employ adaptive rules to adjust fuzzy con-

fidences (Nozaki et al., 1996)

Set J to be zero.
Repeat

J ¼ J þ 1

For each training sample tp do
a. Find the ‘‘firing’’ fuzzy rule Rb which is

marked in FG.

b. If tp is correctly classified then

xb ¼ xb þ g1 � ð1� xbÞ ð10Þ
otherwise, as

xb ¼ xb � g2 � xb: ð11Þ
where g1 and g2 are learning rates.

End
Until J ¼ Jmax

Step 9. Selection

Select Npop=2 pairs of chromosomes from the

current population P. The selection probability

Prob(V ðjÞ) of the jth (16 j6Npop) chromosome is

as follows:

ProbðV ðjÞÞ ¼ f ðV ðjÞÞ � fminðP ÞP
V ðiÞ2P

½f ðV ðiÞÞ � fminðPÞ�
ð12Þ

where fminðPÞ denotes the minimum fitness value

in P.
Step 10. Crossover

For each selected pair, perform the two-point

crossover operation with probability Probc and

insert two new chromosomes to NP.
Step 11. Mutation

For each gene of the newly generated chromo-

somes in NP, perform the mutation operation (i.e.,

change each gene�s value either from one to zero or
from zero to one) with probability ProbM.

Step 12. Elitist strategy

12-1. From NP, find LðNP Þ
min that has fminðNP Þ,

where fminðNP Þ represents the minimum

fitness value in NP.
12-2. Replace LðNPÞ

min with LðPÞ
max. That is, the best

performing chromosome is retained and

inserted into the next generation without
change (Rooij et al., 1996).
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Step 13. Termination test

If tmax generations have been generated, then

terminate the execution of the whole learning

algorithm, and LðNP Þ
max with fmaxðNP Þ is the chromo-

some that is used to test the classification perfor-
mance of the proposed method; otherwise replace

P with NP and return to Step 4.

Nozaki et al. (1996) also suggested that the

learning rates should be specified as 0 < g1 �
g2 < 1. In later simulations, g1 ¼ 0:001, g2 ¼ 0:1
and Jmax ¼ 100 are used. In the following section,

simulation results are presented to demonstrate the
effectiveness of the proposed learning algorithm.

5. Experiments

To examine the performance of the proposed

learning algorithm for testing samples, we perform

the leave-one-out technique, which is an almost
unbiased estimator of the true error rate of a

classifier (Weiss and Kulikowski, 1991). Based on

the leave-one-out technique, we try to make a

comparison between the proposed learning algo-

rithm and other fuzzy or non-fuzzy classification

methods.

In Sections 4.1 and 4.2, we employ the proposed

learning algorithm to discover fuzzy classification
rules from the iris data and the appendicitis data,

respectively.

5.1. Experiment 1

The iris data consists of three classes (Class 1:

Iris setosa, Class 2: Iris versicolor and Class 3: Iris

virginica) and each class consists of fifty samples
with four dimensions. Suppose that attribute x1 is
the sepal length, attribute x2 is the sepal width,

attribute x3 is the petal length, attribute x4 is the
petal width, and attribute x5 is the class label (i.e.,
d ¼ 5) to which tp ¼ ðtp1 ; tp2 ; . . . ; tp5Þ ð16 p6 150Þ
belongs. The pairs ðma;miÞ for x1, x2, x3 and x4 are
ð79; 43Þ, ð44; 20Þ, ð69; 10Þ, and ð25; 1Þ respectively.
Of course, since tpi is the value of the pth training
sample with respect to the ith attribute xi, the
range of tpi (16 i6 4) is equivalent to xi. It should
be noted that only three linguistic values can be

defined in x5; they are Aclass label
3;1 : ‘‘Class 1’’,

Aclass label
3;2 : ‘‘Class 2’’, and Aclass label

3;3 : ‘‘Class 3’’.

Parameter specifications used in the proposed

method are as follows:

Maximum iterations Jmax ¼ 100
Population size Npop ¼ 30

jsj ¼ jcj ¼ 10

WCAR ¼ 10

WV ¼ 1

Crossover probability Probc ¼ 1:0
Mutation probability ProbM ¼ 0:01

Maximum number of generations tmax ¼ 50
Simulation results with various values of K (i.e.,

K ¼ 2, 3, 4, 5 and 6) for each attribute except x5
are shown as Table 2. From this table, we can see

that the best result with the classification accuracy

rate 96.00% and 12.13 fuzzy if–then rules on an

average can be obtained by the proposed method

when K ¼ 5. It seems that K is also not an influ-

ential factor when it is larger than 2.
Some significant classification methods of fuzzy

if–then rule extraction using simple fuzzy partition

methods have been proposed, such as the simple-

fuzzy-grid method (Ishibuchi et al., 1992), the

multi-rule-table method (Ishibuchi et al., 1992),

the pruning method (Nozaki et al., 1996), and the

GA-based method (Ishibuchi et al., 1995). The

similarity between the proposed method and these
known fuzzy classification methods is that they all

use the concepts of ‘‘clusters define rules’’ (Kosko,

1992). That is, if one fuzzy grid whose fuzzy sup-

port is larger than zero, then this fuzzy grid may be

taken into account in the generation of fuzzy rules.

The simulation results of the aforementioned

methods demonstrated by Nozaki et al. (1996) are

shown as Table 3. The proposed method with the

Table 2

Simulation results of the proposed method by the leave-one-out

technique

K Rate (%) Average number of rules

2 76.00 15.35

3 95.33 11.87

4 96.00 18.27

5 96.00 12.13

6 94.67 10.09
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best result is also shown in this table. In compar-
ison with these known methods, we can see that

the proposed method can use the minimum aver-

age number of fuzzy rules to perform classifica-

tion. From the viewpoint of classification rates,

although the proposed method performs slightly

worse than the simple-fuzzy-grid method, it out-

performs the other methods, which may suffer

from overfitting to the training samples.
Previously, the classification accuracy rate of

the nine fuzzy methods (i.e., fuzzy integral with

perceptron criterion, fuzzy integral with quadratic

criterion, minimum operator, fast heuristic search

with Sugeno integral, simulated annealing with

Sugeno integral, fuzzy k-nearest neighbor, fuzzy c-

means, fuzzy c-means for histograms and hierar-

chical fuzzy c-means) were reported by Grabisch
and Dispot (1992). In addition, the 10 non-fuzzy

methods (i.e., the linear discriminant, the qua-

dratic discriminant, the nearest neighbor, the

Bayes independence, the Bayes second order, the

neural networks with the BP algorithm, the neu-

ral networks with the ODE algorithm, the PVM

rule, the optimal rule with size two and the CART

tree) for the iris data estimated by the leaving-one-

out technique were reported by Weiss and Kuli-

kowski (1991). The classification results of various

classification methods are summarized in Table 4.

The average classification accuracy rates for the
nine fuzzy methods and ten non-fuzzy methods

are 94.47% and 95.20%, respectively. Although

the best result (i.e., 96.00%) from the proposed

method is slightly worse than those of the above-

mentioned methods, it is clear that the best result

of the proposed method outperforms these two

average results.

5.2. Experiment 2

The appendicitis data consists of 106 samples

classified into two classes with seven attributes.
The same parameter specifications used in last

section of the GA are also employed here. Based

on the performance summarized in Table 2 ac-

cording to various K, K ¼ 5 is thus considered in

the classification of the appendicitis data. By using

the above-mentioned parameter specifications, the

classification accuracy rate obtained by the pro-

posed learning algorithm is 87.7% using an aver-
age of 42.78 fuzzy if–then rules.

The classification accuracy rate of aforemen-

tioned various methods for the appendicitis data

as estimated by the leave-one-out technique were

also reported by Grabisch and Dispot (1992) and

Weiss and Kulikowski (1991), respectively. The

classification results are summarized in Table 5.

Table 3

Simulation results of different fuzzy classification methods by

the leave-one-out technique

Method Rate (%) Average number

of rules

The proposed method 96.00 12.13

Simple-fuzzy-grid 96.67 294.50

Multi-rule-table 94.67 691.11

Pruning 93.33 42.62

GA-based 94.67 12.90

Table 4

Classification accuracy rates of various classification methods for the iris data

Fuzzy methods

Perceptron criterion Quadratic criterion Minimum operator Fast heuristic search Simulated annealing

95.33% 96.67% 96.00% 92.00% 91.33%

Fuzzy k-nearest

neighbor

Fuzzy c-means Fuzzy c-means for

histograms

Hierarchical fuzzy

c-means

96.67% 93.33% 93.33% 95.33%

Non-fuzzy methods

Linear discriminant Quadratic discriminant Nearest neighbor Bayes independence Bayes second order

98.00% 97.33% 96.00% 93.33% 84.00%

BP algorithm PVM rule ODE algorithm Optimal rule with size 2 CART tree

96.67% 97.33% 96.00% 98.00% 95.33%
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We can see that the best classification accuracy
rates for the nine fuzzy methods and 10 non-fuzzy

methods are 86.8% and 89.69%, respectively. It is

obvious that the classification rate of the proposed

method slightly outperforms the best rate of the

nine fuzzy methods, and is slightly worse than

the best rate of the 10 non-fuzzy methods. In ad-

dition, the result of the proposed method also

outperforms the average rates over the nine fuzzy
methods (i.e., 82.1%) and 10 non-fuzzy methods

(i.e., 84.3%), respectively.

On the other hand, a significant genetics-based

learning method proposed by Ishibuchi et al.

(1999) was employed to extract fuzzy if–then rules

from various classification data. Using the leave-

one-out technique to examine the performance of

the genetics-based learning method for the ap-
pendicitis data, the classification accuracy rate was

84.9% using 100 fuzzy if–then rules. However, due

to the intrinsic limits of this method, it is difficult

to minimize the number of fuzzy rules.

6. Discussions

The performance of the proposed method is

examined by the iris data and appendicitis data.

From Table 2, we may conclude that K is not an

influential factor when it is larger than 2.
We also find that the fuzzy classification

methods proposed by Ishibuchi et al. (2001a,b)

employed each (d � 1)-fuzzy grid, which does not

contain the dimension of the class label, as an

antecedence of one fuzzy rule, whose consequence
can be determined by computing the fuzzy confi-

dence for each class label. The class label with the

maximum fuzzy confidence then serves as the

consequence. However, since there are no min FS

and min FC to determine the frequent fuzzy grids

and the effective fuzzy rules, respectively, thus the

method of Ishibuchi et al. may suffer from the

curse of dimensionality (Ishibuchi et al., 1999).
For example, in the appendicitis data (i.e., d ¼ 8),

if each dimension is partitioned into five various

linguistic values, then a large number (i.e., 57)

fuzzy rules will be generated. However, based on

the well-known apriori algorithm, our method

searches for a compact set of fuzzy rules by using

the GA to automatically find the appropriately

min FS and min FC.
Since fuzzy knowledge representation can fa-

cilitate interaction of the expert system and users

(Zimmermann, 1991), it is feasible to extend the

proposed learning algorithm to discover other

types of fuzzy association rules to ease the fuzzy

knowledge acquisition bottleneck in building pro-

totype expert systems. That is, the proposed al-

gorithm may be further viewed as a knowledge
acquisition tool to discover fuzzy association rules

to perform the market basket analysis, which can

help users make decisions. For example, in a su-

permarket, the manager may design a particular

store layouts using the analytic results (Han and

Kamber, 2001).

In the fuzzy data mining, Hong et al. (2001)

presented discussions on the relations between the

Table 5

Classification accuracy rates of various classification methods for the appendicitis data

Fuzzy methods

Perceptron criterion Quadratic criterion Minimum operator Fast heuristic search Simulated annealing

79.2% 86.8% 86.8% 84.9% 81.1%

Fuzzy k-nearest

neighbor

Fuzzy c-means Fuzzy c-means for

histograms

Hierarchical fuzzy

c-means

86.8% 71.2% 78.3% 80.2%

Non-fuzzy methods

Linear discriminant Quadratic discriminant Nearest neighbor Bayes independence Bayes second order

86.8% 73.6% 82.1% 83.0% 81.1%

BP algorithm PVM rule ODE algorithm Optimal rule with size 2 CART tree

85.8% 86.8% 89.6% 89.6% 84.9%
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computation time and the number of rules. Their

study can further provide useful suggestions to

further improve the proposed method.

7. Conclusions

In this paper, we propose a learning algorithm

that can find fuzzy rules for classification problems

based on the processing of the Apriori algorithm.
Significantly, our method tries to find a compact

set of fuzzy rules by using the GA to automatically

find the appropriately min FS and min FC.

Simulation results on the iris data and the ap-

pendicitis data demonstrate that the classification

accuracy rates of the proposed method are com-

parable to the other fuzzy or non-fuzzy methods.

Thus, the goal of acquiring an effectively compact
set of fuzzy rules for classification problems can be

achieved.
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