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Abstract

This paper presents an approach to select the optimal reference subset (ORS) for nearest neighbor classi$er. The
optimal reference subset, which has minimum sample size and satis$es a certain resubstitution error rate threshold,
is obtained through a tabu search (TS) algorithm. When the error rate threshold is set to zero, the algorithm obtains
a near minimal consistent subset of a given training set. While the threshold is set to a small appropriate value, the
obtained reference subset may have reasonably good generalization capacity. A neighborhood exploration method and
an aspiration criterion are proposed to improve the e4ciency of TS. Experimental results based on a number of typical
data sets are presented and analyzed to illustrate the bene$ts of the proposed method. The performances of the result
consistent and non-consistent reference subsets are evaluated.? 2002 Pattern Recognition Society. Published by Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Nearest Neighbor (NN) classi$cation is one of the
important non-parametric classi$cation methods and has
been studied at length. It is well known that the main
drawbacks of NN classi$ers in practice have been their
computational demands and memories. Numerous stud-
ies have been carried out to overcome these limitations.
Dasarathy provides an excellent survey on nearest neigh-
bor techniques in his book [1].

In order to reduce the computational demands, one
may appropriately organize the given data and use ef-
$cient search algorithm. Another approach advocated
over the years has been the selection of a representative
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subset of the original training data, or generating a new
prototype reference set from available instances. The ob-
jective of reducing the number of reference samples is
of course the computational e4ciency in the operational
phase (when classifying unlabeled samples by using a
reference set), or=and making the resulting classi$cation
and generalization more reliable. The very early study
of this kind was probably the “condensed nearest neigh-
bor rule”(CNN) presented by Hart [2]. His method aims
to ensure that the condensed subset is consistent with
the original data set, i.e., all of the original samples are
correctly classi$ed by the condensed subset under the
NN rule. Hart’s method indeed ensures consistency, but
as admitted by the author, the condensed subset is not
minimal, and is sensitive to the randomly picked initial
selection and to the order of consideration of the input
samples. Under the same idea of picking appropriate
samples from the original data set onto the reference
subset by adding and deleting samples, there are “re-
duced nearest neighbor rule” of Gates [3], and “iterative
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condensation algorithm” of Swonger [4]. All of these al-
gorithms aim at reducing the size of the condensed sub-
set. However, these and other methods, though obtaining
a smaller subset than Hart’s algorithm at a higher com-
putational cost, do not realize the minimality of the ref-
erence subset. The method proposed by Chang created
a reference set by generating new representative proto-
types [5]. These prototypes are generated by merging two
nearest neighbors of the same class at each step as long as
such merging does not increase the error rate. This is ac-
tually a bootstrap method in statistics. The editing algo-
rithm MULTIEDIT [6], developed by Devijver and Kit-
tler, aims at editing the training samples to make the re-
sulting classi$cation more reliable, especially the ones lo-
cated near the boundaries between classes. MULTIEDIT
has been proven to be asymptotically Bayes-optimal, i.e.,
when the number of samples and the number of repe-
titions of the editing process tend to in$nity, the 1-NN
classi$cation on the edited reference subset will lead to
Bayesian decision. However, but in practice, we usually
have $nite samples, and the MULTIEDIT performance
needs investigation. Considering the above reasons, in
this paper, we will use Hart’s algorithm as a basis for
comparisons.

In 1994, Dasarathy presented a condensing algorithm
for selecting an optimal consistent subset based on his
concept of the nearest unlike neighbor subset (NUNS)
[7]. The algorithm introduced a voting mechanism to se-
lect the minimal consistent set (MCS) based on the sam-
ples representative signi$cance (in the following, we call
the algorithm as an MCS algorithm also, the meaning of
MCS can be distinguished from the context). Dasarathy’s
algorithm is the best known algorithm in terms of consis-
tent subset size and the selected samples’ representative
nature. However, his conjecture of the minimality of ob-
tained MCS (also cited in Ref. [8]) later is proven not to
be true by Kuncheva and Bezdek [9] and Cerveron and
Fuertes [10] for the popular IRIS data set. In this paper,
we will further illustrate, based on a number of exper-
iments, that the MCS obtained by the algorithm gener-
ally has less samples, but it is not minimal. We will also
give a counterexample to show that the consistent sub-
set of the MCS algorithm is not always monotonically
reducing.

In this paper, we treat the reference subset selection
as an optimization problem, that is to minimize the num-
ber of the reference samples while constrained to some
error rate of classi$cation. We use TS to solve this dis-
crete optimization problem and propose a neighborhood
exploration method and an aspiration criterion to im-
prove the performance of the general TS. In Section
2, the algorithm for the optimal reference subset selec-
tion is described. Experimental data sets are given in
Section 3. This is followed by the experimental results
and analyses in Section 4. A conclusion is provided in
Section 5.

2. Optimal reference subset selection by tabu
search

2.1. De9nitions and notations

The optimal reference subset selection can be de-
scribed as following an optimization problem. Let
X = {x1; x2; : : : ; xN} be the given training data set for NN
classi$cation. Each sample has a known class label from
the set � = {!1; !2; : : : ; !m}. Let P(X ) be the solution
space, it denotes the power set of X , and S ∈P(X ) be
a selected reference subset. Card(S) denotes the cardi-
nality of S. Let the error rate be e(S) when classifying
X using the nearest prototype classi$er and S as the ref-
erence subset. Let t be the tolerable resubstitution error
rate threshold.

The problem can be formalized as follows:
Find a reference subset S∗ that satis$es

Card(S∗)=min Card(S); s:t: S ∈P(X ); e(S)6 t: (1)

When S satis$es the condition e(S)6 t, we call S a
feasible solution, otherwise an infeasible solution.

2.2. Tabu search

Tabu search, proposed by Glover and Laguna [11,12],
is a meta-heuristic method that can be used to solve
combinatorial optimization problems. It has received
widespread attention recently. Its Oexible control frame-
work and several spectacular successes in solving
NP-hard problems caused rapid growth in its applica-
tion. The method of neighborhood exploration and the
use of short- and long-term adaptive memories distin-
guish tabu search from local search and other heuristic
search methods, and result in lower computational cost
and better space exploration.

Tabu search involves a lot of techniques and strategies,
but it mainly comes from the use of short-term memories
(tabu list) that keep track of recently examined solutions
intending to avoid cycling in the solution space explo-
ration (this is usually called the $rst level of heuristics
in TS). Tabu search scheme can be outlined as follows:
start with an initial (current) solution x, called a con$g-
uration, evaluate the criterion function for that solution.
Then, follow a certain set of candidate moves, called
the neighborhood N (x) of the current solution x. After a
move is performed (i.e., a solution is picked), the move
is declared tabu for a predetermined number l of moves,
i.e., this move cannot be reversed until a tabu tenure l
expires. This means that TS is a dynamic neighborhood
method, where the neighborhood of x can change accord-
ing to the history of the search. However, a tabu move
is admissible if it is compliant with an aspiration crite-
rion, usually that of improving the best current solution.
At each step, we select the best non-tabu move (may
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be an ascending move in some situation of the search)
from those available moves, and use the improved-best
aspiration criterion to allow a move to be considered ad-
missible in spite of its tabu status, i.e., if the tabu move
results in a value of the objective function that is bet-
ter than that of the best-solution known so far, then the
aspiration criterion is satis$ed and the tabu restriction is
relieved. Tabu search saves the best current solution at
any time and proceeds iteratively until a chosen termi-
nation criterion is satis$ed (usually a prede$ned number
of iterations or=and when the best solution was not im-
proved in some predetermined number of iterations). The
short-term memory is usually implemented with a $rst
in $rst out list. Its size equals the tabu tenure l.

Tabu search provides a Oexible framework for discrete
optimization problem solving. In the following, we use
TS to solve the optimal reference subset selection prob-
lem, and propose a heuristic neighborhood exploration
method and an aspiration criterion to enhance the e4-
ciency of TS.

2.3. Application of tabu search to the optimal
reference subset selection

The reference subset is represented by a 0=1 bit string,
the kth bit 0 or 1 denotes the absence or presence of the
kth sample in the reference subset. Let Scurr ; Snext and
Sbest be the current, next and the best reference subsets,
respectively. TL is a $rst in $rst out tabu list. It has a
prede$ned length l (tabu tenure).

In our implementation of TS, the neighborhood of each
solution Scurr ∈P(x) is de$ned as N (Scurr) consisting of
all subsets that diPer from Scurr in only one sample ad-
dition or deletion, that is, all subsets resulting by adding
or deleting a sample to or from the current solution Scurr .
We denote all the subsets resulting by adding a sample
to Scurr as N+(Scurr), and all the subsets resulting by re-
moving a sample from Scurr as N−(Scurr). We may de$ne
a larger neighborhood, such as adding or deleting two or
more samples to or from Scurr , and randomly pick out a
part of them as the candidate moves. However, this will
increase the computational cost and decrease the intensi-
$cation of the space search. We did not adopt this kind
of neighborhood in this paper.

In adding or deleting a sample to or from Scurr , we
consider the following three properties of the resulted
reference subset:

(1) The change of the classi$cation error rate before and
after adding or deleting a sample.

(2) After adding a sample into Scurr , the change of the
classi$cation of the samples, which are wrongly clas-
si$ed by Scurr .

(3) The distance between the original data set and the
resulted reference subset, which is de$ned as the sum
of the distance between each sample in the original

data set and its nearest sample of the same class in
the reference subset. The intention of doing so is to
select the representative samples that are near to the
cluster center of the same class samples.

Based on the above demands, in searching the best so-
lution Snext among all the candidate solutions in N+(Scurr)
generated by adding a sample to Scurr , we use the follow-
ing two heuristic criteria:
Criterion 1: Search the Snext of the minimal error rate

in the candidate subsets N+(Scurr). If e(Snext)¡e(Scurr),
then Snext is the best solution in the candidate subsets. If
there is more than one solution having the minimal error
rate, then select the one that has the minimal distance
from the original data set. The distance is de$ned as
above.
Criterion 2: For the minimal error rate Snext in the

candidate solutions N+(Scurr), if e(Snext)¿ e(Scurr), then
consider selecting such solutions in N+(Scurr) which
could correctly classify at least one of the samples that
are wrongly classi$ed by Scurr . Among such candidate
solutions, select the solution with minimal error rate or
minimal distance. If there are no such candidate solu-
tions, then aspirate the best (minimal error rate) one in
TL and start a new search process.

The purpose of criterion 2 is to prevent adding many
redundant samples. If only based on criterion 1, many
redundant samples may be added. Although they do not
deteriorate the classi$cation, they do not help. The above
aspiration operation was adopted to avoid the meaning-
less exchange of samples between the feasible and infea-
sible regions of the solution space. We will explain this
in more detail in Section 4.

The case of deleting a sample from Scurr is relatively
easy. We may use a criterion similar to the above criterion
1 to select the sample to be deleted based on the minimal
error rate and minimal distance criteria between the two
subsets.

The reference subset selection algorithm based on tabu
search is as follows:

(1) Input the original training data set X , specify the
tabu list length l, the error rate threshold t.

(2) Generate an initial solution Sinit , set Scurr = Sinit ,
Sbest =X . Let TL=�; k =0.

(3) (a) Find the best solution Snext in the neighborhood
of Scurr . There are two cases:
If e(Scurr)¿t, then search the best solution Snext

in N+(Scurr) according to criterion 1 and crite-
rion 2;
If e(Scurr)6 t, then search the best solution Snext

among all the solutions in N−(Scurr) according
to the minimal error rate and minimal distance
criterions.

(b) If Snext is in TL and does not satisfy the aspiration
criterion, then let N+(Scurr)=N+(Scurr)−{Snext}
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or N−(Scurr)=N−(Scurr)−{Snext}, respectively,
goto 3(a); Otherwise, let Scurr = Snext .
If e(Scurr)6 t and Card(Scurr)¡Card(Sbest), or
Card(Scurr)=Card(Sbest) and e(Scurr)¡e(Sbest),
then let Sbest = Scurr .

(c) If termination condition is satis$ed, stop and out-
put the Sbest ; otherwise insert the Scurr into TL,
k = k + 1, Goto (3).

Termination condition is a prede$ned number of iter-
ations or when there is no improvement of the best so-
lution after a given number of successive rounds. The
initial reference subset of tabu search may be null set,
or randomly generated subset, or the result of other ref-
erence subset selection algorithms. The use of the full
original data set is not recommended, as it will take more
time to converge.

3. Test data sets

Seven data sets, which have broad spectrum in prop-
erty, were used to test the proposed reference subset se-
lection methodology. These data sets are as follows:

(1) The Iris data set (IRIS): The Fisher’s Iris data set
contains 150 four-dimensional feature vectors from three
classes: Setosa, Virginica and Versicolor. Each class con-
tains 50 samples.

(2) The I-I data set (I-I): The I-I data set, used
by Fukunaga and Hamamoto [13,14], was generated
from two classes of n-dimensional normal distributions
N (�i;

∑
i); i =1; 2. The parameters are

�1 = [0; : : : ; 0]T; �2 = [�; 0; : : : ; 0]T;
∑

1 =
∑

2 = In;

where �1 the n-dimensional zero vector and In the n × n
identity matrix. The value � controls the overlap between
the two distributions. We used � =2:56 in the experi-
ments, which results in a Bayes error rate of 10%. When
the dimensionality of the data changes, the Bayes error
rate stays the same for a $xed �.

(3) The ring shaped data set (RING): This is a
two-class problem de$ned in two-dimensional plane.
The classes are circumscribed by three circles of ra-
dius r1; r2 and r3, respectively (Fig. 1). One class is
represented by the gray areas, and the other class by a
white ring. Samples are uniformly distributed over the
corresponding areas.

(4) The diagonal data set (DIAGONAL): It is a
two-class, two-dimensional data set. Each class consists
of two normal distributions as follows:

p1(x)= 1
2N (�11; In) + 1

2N (�12; In);

p2(x)= 1
2N (�21; In) + 1

2N (�22; In);

Fig. 1. Ring data set.

where �11 = [0; 0]T, �12 = [�; �]T, �21 = [�; 0]T, �22 =
[0; �]T. The Bayes error rate of this data set is determined
by �. � =3:5 is used in the experiments.

(5) The interval data set (INTERVAL): It is a
two-class data set taken from Ref. [13] of Fukunaga.
Each class consists of two normal distributions as fol-
lows:

p1(x)= 1
2N (�11; In) + 1

2N (�12; In);

p2(x)= 1
2N (�21; In) + 1

2N (�22; In);

where �11 = [0; 0; : : : ; 0]T, �12 = [6:58; 0; : : : ; 0]T, �21 =
[3:29; 0; : : : ; 0]T, �22 = [9:87; 0; : : : ; 0]T. Even when the
dimensionality of the data changes, the Bayes error rate
of this data set remains 7.5%.

(6) The Ness data set (NESS): This data set was used
in Ref. [15] by Ness. The samples were independently
generated from two n-dimensional normal distributions
N (�i;

∑
i) with the following parameters:

�1 = [0; : : : ; 0]T; �2 = ["=2; 0; : : : ; 0; "=2]T;

∑
1 = In;

∑
2 =

(
In=2 O

O 1
2 In=2

)
;

where " is the Mahalanobis distance between class !1

and class !2. The Bayes error rate varies depending on
the value of " as well as n.

(7) The VMD data set (VMD): This data set was
independently generated from two n-dimensional normal
distributions N (�i;

∑
i); i =1; 2. The mean vector of the

second class is decreased by degrees

�1 = [0; : : : ; 0]T; �2 =
[
�;

�
2
;
�
3
; : : : ;

�
n

]T
;∑

1 =
∑

2 = In:

Table 1 summarized the seven data sets including the
dimension, number of classes, number of samples, and
the values of parameters. In the data set RING, the sam-
ples for the two classes are 120 and 60, respectively.
In other data sets (except IRIS), the number of training
samples for the two classes are equal.
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Table 1
Data sets

Data Dimension Classes Number Parameters
of samples

IRIS 4 3 150 —
I-I 6 2 300 n = 6; � = 2:56
RING 2 2 180 r1 = 1; r2 = 2,

r3 = 3
DIAGONAL 2 2 100 n = 2; � = 3:5
INTERVAL 5 2 300 n = 5
NESS 10 2 300 n = 10; " = 2:0
VMD 10 2 200 n = 10; � = 3:0

4. Experimental results and analyses

We have carried out two kinds of experiments on these
data sets. In the $rst kind of experiment, we set the error
rate threshold to zero. Thus, the resulting reference sub-
sets are the consistent subsets of the original data sets.
The second kind of experiment uses a small non-zero er-
ror rate threshold and independent training and test data
sets. The sizes of the obtained reference subsets and error
rates on independent test data sets are used to compare the
proposed algorithm with the CNN and MCS algorithms.

4.1. The optimal consistent subsets by tabu search

Setting the error rate threshold to zero, tabu search can
select the near optimal (minimal) consistent subsets. The
experimental results are shown in Table 2. Euclidean dis-
tance is used in these experiments. The classi$cations are
made with the nearest prototype classi$er. For compari-
son, we also implemented CNN and MCS algorithms and
the results are also shown in Table 2. For CNN method,
we show the best and the average results of 10 runs. The
initial solutions of tabu search were null set or randomly
generated subsets. For randomly generated initial solu-
tions, 10 runs were executed on each data set. Table 2
lists the best, the worst, and the average results, along
with the standard deviations. For null set initial solution,

Table 2
Consistent subsets by CNN, MCS and tabu search

Data set Original CNN MCS TS (null initial set) TS (Random m samples)
samples

Best Average m Best Worst Average (±s:d:)

IRIS 150 18 19.8 15 15 15 11 15 14:0 (±0:8)
I-I 300 90 97.4 74 62 30 55 71 63:1 (±5:0)
RING 180 44 51.0 43 28 18 26 35 30:7 (±3:1)
DIAGONAL 100 12 16.2 13 6 10 6 10 7:5 (±1:3)
INTERVAL 300 98 104.1 89 58 30 57 72 68:8 (±4:4)
NESS 300 67 72.6 46 29 30 26 39 33:9 (±3:9)
VMD 200 29 34.4 23 4 20 4 13 7:7 (±2:6)

tabu search only runs once, as the solution is unique
according to our TS-based algorithm. In experiments,
the length of the TL is set to equal the number N of
samples in the training set, respectively. The termination
condition is 2N times of iterations or termination after N
times of iterations without improvement of the solutions.

From Table 2, we see that the resulted consistent sub-
sets by CNN have more samples than that of MCS and
TS. As previously mentioned, CNN is also very sensitive
to the initial samples and to the order of consideration
of samples. Meanwhile MCS method resulted in smaller
consistent subsets than CNN (except DIAGONAL data
set). However, the resulting consistent sets of MCS are
not minimal. The TS method obtained even smaller con-
sistent subsets than that of MCS on all the seven data
sets. Although to some extent TS is sensitive to the initial
solutions, even in the worst case, the consistent subsets
are still smaller than that of MCS (for IRIS, the same
number).

Based on the above experimental results, we analyze
the MCS method and the proposed aspiration criterion
further:

(1) In Ref. [7], the author believed that though no
formal mathematical proof has been established, the
MCS algorithm realized the minimality of the consistent
subset size. Ref. [8] also cited this minimality. How-
ever, counter examples to the author’s conjecture are
later given by Kuncheva and Bezdek in Ref. [9] and
Cerveron and Fuertes in [10] independently. They ob-
tained a 12-element consistent subset [9] and even an
11-element one [10] for the popular IRIS data set, while
the minimal consistent subset found by MCS algorithm
was a 15-element subset. Our experiments also found
an 11-element consistent subset many times. The ex-
periments also demonstrate that the minimality goal in
consistent subset selection of the MCS algorithm does
not realize not only for the IRIS data set, but also for the
other data sets. Moreover, the diPerences in the size of
the resulting consistent subsets by MCS algorithm and
the TS-based method are obvious.

(2) In Ref. [7], the author thought the fact that the con-
sistent subsets is monotonically reducing is assured by
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sample point class x y 

o 1 0.0 0.0 

a1 1 1.0 0.0 

b1 1 1.3 0.0 

c1 2 1.9 0.0 

d1 2 2.4 0.0 

e1 2 2.7 0.0 

f1 1 3.2 0.0 

b1

x 

a1

c1

d1

e1 

f1 

O 

y 

 Class 1

 Class 2

Coordinates 

Fig. 2. A counterexample to the monotonically reducing MCS.

using the MCS algorithm. In the following, we $rst
brieOy introduce the MCS algorithm, then provide a
counterexample to illustrate that this is not always true.

The MCS method is based on the concept of NUNS,
the nearest unlike neighbor subset [7]. The NUN sub-
set is de$ned as the unique set of all samples which are
the nearest unlike neighbors of one or more of the given
samples. Based on this concept, for every given sam-
ple, the su4cient condition for its correct classi$cation,
i.e., for consistency, is the presence of a sample from
its own class that is closer than its NUN within MCS.
MCS algorithm employed a mechanism of vote of con-
$dence cast by the given sample and received by such
closer-than-NUN samples. The sample with the most
such votes represents the prime candidate for inclusion
in MCS. Once this is picked, all the samples which were
the voters contributing to the selection of the candidate
for MCS can be disregarded from further consideration
and the vote counts of other candidates are reduced to
reOect this. The candidate with the maximum votes after
this update becomes the next most ePective MCS sam-
ple. This process is repeated till all the voters have been
taken into account. It is possible that in some cases, the
samples may have only one vote of itself. In such cases,
these automatically become MCS candidates. It is also
possible that the voters to another sample may themselves
become candidates for MCS.

Once a candidate MCS set has been identi$ed, the al-
gorithm reexamines the problem as the ePective NUN
distances are now likely to be larger than before since
some NUNs are no longer in the subset under consider-
ation. Thus, there is now scope for reducing the candi-
date MCS further. For the process to be monotonically
reducing, the algorithm has to ensure that the candidate
list will only include samples (other than the last MCS
candidates) that will not create any new inconsistencies.
Thus, the algorithm maintains a candidate consistent set
consisting of all samples which are either (a) already
present in the current consistent set or (b) whose in-
clusion will not create an inconsistency (step 5 in the

Table 3

Point o a1 b1 c1 d1 e1 f1

Received 1 3 3 2 3 2 1
votes

NUN 1.9 0.9 0.6 0.6 0.8 0.5 0.5
distance

algorithmic procedure of Ref. [7]). According to the al-
gorithms the samples in the consistent set are monoton-
ically reducing. However, in our experiments, we found
that this is not always true, and the number of samples
in the resulted consistent set increases sometimes. Since
the sample distributions are complex in practical prob-
lems, and after recounting the NUN distances of each
sample and re-voting, the order of the most voted sam-
ple may change. This will ePect the consistent set not
to be monotonically reducing. In the following we con-
struct an example to illustrate this situation. In the exper-
iments we found that cases like this example occurred
often.

Fig. 2 is a two class data set. The samples are located
on the x- and y-axis. The coordinate values of the samples
on the positive x-axis are shown in the table of Fig. 2.
The other samples are rotated ones of the samples on
the positive x-axis. For the sake of convenience group
the points that are symmetrical about the origin to form
a set, and call them as O; A; B; C;D; E; F , respectively.
According to MCS algorithm, in the $rst iteration each
point in the sets O; A through F has a NUN distance
and receives votes are given in Table 3 (the same for the
samples in the same set).

So the algorithm obtains A ∪ D ∪ F as the consistent
set, its size is 12. The second iteration recounts the NUN
distances and re-votes, at this time each point of A votes
o, so the received votes of o are 5. The votes and NUN
distances of each point are given in Table 4.

Then, the candidate consistent set becomes O ∪ A ∪
D∪F . According to the MCS algorithm, the most voted
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Table 4

Point o a1 b1 c1 d1 e1 f1

Received 5 3 — — 3 — 1
votes

NUN 2.4 1.4 1.1 0.9 0.8 0.5 0.8
distance

sample o in the candidate consistent set should be desig-
nated as a member of a newly selected consistent set, as
this will not create any new inconsistencies. So the sec-
ond iteration results in a consistent set of O∪A∪D∪F .
Its size is 13, one larger than the previous size. This con-
Oicts with the concept of Ref. [7].

We noted that in most cases, the MCS was mono-
tonically reducing, but there were exceptions sometimes.
This constructive example gives us some hints as to why
MCS algorithm failed to attain the minimal consistent
subset. The overall analysis of the reasons for failure is
beyond the scope of this paper. It will be an interesting
work.

(3) In solving constrained optimization problems, the
search process often wanders between the feasible and
infeasible regions in the solution space. This decreases
the e4ciency of the search algorithm. As described in
Section 2.3, we use an aspiration criterion to avoid the
meaningless exchange of samples between the candidate
consistent subset and the rest of the samples. Here, we
give a simpli$ed example to illustrate the bene$t of in-
troducing this aspiration criterion.

Suppose a is such a sample that it will not be correctly
classi$ed unless it is in the reference subset by itself.
B= {b1; b2; : : : ; bk} is a cluster of samples of a class.
Provided any element of B is within the reference subset,
all the samples of B will be correctly classi$ed. Suppose
now that tabu search obtains a reference subset S , which
satis$es the error rate threshold condition, and a; b1 ∈S .
The next step of TS will be to try to remove a sample
from S . After calculation, removing a will result in a
minimal error rate. So, TS obtains the subset S − {a}
(signs ‘−’ and ‘+’ denote deleting or adding a sample).
Suppose the classi$cation error rate with this reference
subset becomes already larger than the threshold, then TS
will add a sample to the reference subset. If there was no
aspiration criterion, TS would add a redundant sample b2

as S is tabu (a; b1 ∈S is in the tabu list). After this the
error rate still does not satisfy the threshold, it needs to
add further samples, then a is added, and a subset S+{b2}
results. It satis$es the error rate threshold. Afterwards,
TS algorithm deletes b1, obtains S + {b2} − {b1} (it is
not tabu). So, the search process might be

S → S − {a} → S − {a} + {b2} → S + {b2}
→ S + {b2} − {b1} : : : :

Table 5
Subset sizes by TS with and without aspiration criterion for
IRIS (Random initial subset)

Size With aspiration Without aspiration
criterion criterion

Best 11 14
Worst 16 17
Average 14.2 15.5

Table 6
Subset size diPerences of TS with and without aspiration
criterion for IRIS

Size diPerence 0 1 2 3
Occurrence time 5 6 7 3

These steps only replace b1 with b2, and such meaning-
less replacements might continue. Since S+{b2}−{b1}
satis$es the threshold, the next step might remove a, and
the process may be possible as follows:

S → · · · → S + {b2} − {b1} → · · · → S + {b3} − {b1}
→ · · · → S + {bk} − {b1} : : : :

Obviously, these processes would decrease the e4-
ciency of the algorithm, especially when the tabu list
is short, the algorithm would be trapped in meaningless
exchanges of samples between feasible and infeasible so-
lution regions.

In these cases, the search process should add a again
and try to remove another sample after removing of a
failed. By introducing the aspiration criterion described in
Section 2.3, we may achieve the desired search process.
For example, when TS obtains S − {a}, as adding any
bi ∈B (i =1; : : : ; k) cannot decrease the error rate and
correctly classify any wrongly classi$ed sample by S −
{a}, the algorithm will aspirate S not to be tabu, then start
a new search path. Since at this time S − {a} becomes
tabu, the algorithm will try to remove some other sample
from S , and avoid the meaningless exchanges of samples.

In our experiments, situations like this simpli$ed il-
lustrative example often take place. After introducing the
aspiration criterion, the e4ciency of the algorithm is ob-
viously improved. In order to demonstrate the role of the
aspiration criterion, we conducted the following experi-
ments. Using the same initial subsets (20 random initial
subsets and a null subset), we implemented the TS algo-
rithms with and without aspiration criterion on IRIS data
set, respectively. The sizes of resulting consistent sub-
sets of the random initial subsets are shown in Table 5.
For the null initial subset, the sizes of resulted reference
subsets are 15 and 17, respectively.

During 21 times of runs, the diPerences in sizes of the
resulted consistent subsets between TS with and without
the aspiration criterion are shown in Table 6.
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Table 7

Data set

Algorithms IRIS1 IRIS2 I-I RING DIAGONAL INTERVAL NESS VMD

(A) Data sets and the error rate of 1-NN classi9cation
Number of 30=120 75=75 300=300 180=3000 100=2000 300=3000 300=3000 200=2000
training=testing samples

Error rate of 1-NN (%) 4.17 4.00 17.73 9.44 8.75 13.07 9.10 6.75

(B) Resulting reference subset sizes
CNN (average) 7.1 12.4 97.4 51.0 16.2 104.1 72.6 34.4
MCS 6 9 74 43 13 89 46 23
Tabu (t = 0:00)(average) 4.0 8.2 63.0 30.4 7.4 67.8 33.4 7.3
Tabu (t = 0:05)(average) 4.0 3.0 11.4 13.6 4.0 12.2 2.0 2.0
Tabu (t = 0:10)(average) 3.0 3.0 2.6 9.8 4.0 4.0 2.0 2.0

(C) Error rates on independent test data sets (%)
CNN (average) 5.12 8.43 20.54 12.17 11.94 16.71 14.24 10.48
MCS 6.67 12.00 21.27 11.73 10.60 18.73 15.50 9.45
Tabu (t = 0:00) Best 3.33 6.67 19.23 10.17 6.55 15.57 12.10 4.90

Worst 5.00 12.00 21.03 12.93 12.90 18.30 14.97 7.55
Average 3.67 8.27 20.23 11.19 10.28 17.04 13.80 6.36

Tabu (t = 0:05) Best 3.33 4.00 12.47 10.07 6.50 9.73 7.70 5.45
Worst 5.00 4.00 16.60 14.20 8.70 13.60 7.70 5.45
Average 4.00 4.00 14.63 12.75 7.55 11.23 7.70 5.45

Tabu (t = 0:10) Best 10.00 4.00 11.33 13.40 5.50 9.33 7.70 5.45
Worst 12.50 4.00 12.67 19.97 7.50 12.40 7.70 5.45
Average 11.33 4.00 11.95 16.36 6.57 10.54 7.70 5.45

From Tables 5 and 6, we can see that the ePect of
the aspiration criterion is notable. The size diPerence
of the minimal consistent subsets is three samples. In
the 21 runs of TS with aspiration criterion (termination
criterion is 300 iterations or after 150 iterations without
improvement), the average steps of obtaining the opti-
mal reference subsets are 49.55 steps, and the average
number of activation of the aspiration criterion before
the optimal subsets result is 9.90, and the average num-
ber per run of activating the aspiration criterion is 67.2.
This shows that the aspiration criterion is more often
than not practically working and this is helpful to obtain
better reference subsets.

4.2. Classi9cation performance of the reduced
non-consistent reference subsets

In the previous section, we set the error rate threshold
to zero and obtained the consistent subsets of the original
data sets. However, in practice due to the $nite sample
size, the performance of the consistent reference subset
may not necessarily be the best in the operational phase.
Fukunaga and Hummels show that the 1-NN estimates
may be severely biased even for the large sample size if
the dimensionality of the data is large [16]. They recom-
mend a decision threshold r to take into account the bias
in density estimation [17]. That is, the decision rule can

be modi$ed as: classify x into class !k if

p̂(x |!k)¿p̂(x |!j) + r; for all j =1; : : : ; m; j �= k;

where p̂(x | •) denotes the estimated density. However,
it is di4cult to determine the optimal threshold r be-
cause of its complexity. We know that the basis of the
NN classi$cation comes from the NN density estimation.
Therefore, the consistent subset of the original training
data set is not necessarily accurate on unknown data. It
over$ts the training data, and may lack generalization
ability. In this section, we set the error rate threshold t
of Eq. (1) to be a small nonzero value, investigate the
reference subset sample reduction rate and the classi$-
cation performance of the reduced inconsistent reference
subsets on independent test data sets.

In experiments, the error rate thresholds are set to
t =0:00; 0:05 and 0.10, respectively. The training and test
data sets are independently generated (Table 7(A)). In
the training set of RING, the samples of two classes are
120 and 60 and 2000, 1000 in the test set, respectively.
In other data sets (except IRIS), the number of training
samples and test samples for two classes is equal. The
IRIS1 and IRIS2 data sets are two random partitions of
the IRIS data set, their numbers of training=test samples
are 30=120 and 75=75, respectively. For diPerent error
rate thresholds, we repeat the TS-based reference subset
selection algorithm $ve times, one of them uses null set
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(c) (d) 

(e) (f) 

(a) (b) 

Fig. 3. Distribution of DIAGONAL and its condensed subsets. (a) diagonal data set. (b) result of CNN. (c) result of MCS. (d)
result of TS(t = 0:00). (e) result of TS(t = 0:05). (f) result of TS(t = 0:10).

as an initial set, the other four times use random an initial
sets. By using the resulted reference subsets, classify the
samples of the test data sets, respectively. The resulting
reference subset sizes and the corresponding error rates
are tabulated in Table 7(B) and (C), respectively. For
comparison, we also conducted the 1-NN classi$cation
on the whole (training plus test) data sets, respectively.
The error rates are listed in Table 7(A). They provide
bases for comparison with other algorithms. For CNN
and MCS methods, the resulting reference subset sizes
and corresponding error rates are also shown in Table
7(B) and (C), respectively.

From Table 7 the following observations can be drawn
(1) The sizes of resulting reference subsets by MCS

algorithm are smaller than that of CNN algorithm. While
when t =0:00, the sizes of the resulting reference subsets
(they are consistent subsets) by TS are smaller than that

of CNN and MCS. When t =0:05 and 0.01, the sizes
of the resulting reference subsets by TS are even more
small.

(2) For independent test data sets, the error rates of
the condensed subsets of MCS are comparable to that of
CNN’s, but worse than the error rates of 1-NN algorithm.
Meanwhile, when t =0:00, the average error rates of the
resulting consistent subsets by TS are smaller than that of
MCSs and CNNs. This indicates that the consistent sub-
sets resulting from TS have better representative property
and generalization ability than that of MCSs and CNNs.

(3) When t =0:05, the average error rates of the result-
ing reference subsets by TS are smaller than that of 1-NN
algorithm. At the same time, the resulting reference sub-
sets of NESS and VMD data sets are rather rational, their
error rates approach the Bayes error rates. This con$rms
that the 1-NN estimates may be biased due to the $nite
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sample size, and that the performance of the consistent
subsets may not necessarily be the best in the operational
phase of classifying independent test data sets.

(4) When t =0:10, the I-I, DIAGONAL and INTER-
VAL data sets obtain quite rational reference subsets,
their sizes and classi$cation performances are superior
to those of t =0:00 and 0.05.

From the experimental results, we observe that for
diPerent data sets, the appropriate thresholds t are also
diPerent. It depends on the data distribution. For exam-
ple, the RING data set needs more samples as reference
prototypes. Therefore, as t increases, the number of ref-
erence samples becomes smaller, and this may incur the
increase of the error rate. For IRIS1 data set, the classi-
$cation performance at t =0:10 also deteriorates.

In the experiments, we also observe that the sample
distributions of the resulting reference subsets by tabu
search are quite rational. Fig. 3 shows the sample point
distributions of the original DIAGONAL data set and
the resulting reference subsets by CNN, MCS and TS
(t =0:00; 0:05 and 0.10), respectively.

5. Conclusion

We use TS to select the near optimal reference subset
for the nearest neighbor classi$cation. The performance
of the proposed algorithm is demonstrated on several data
sets of broad spectrum. It shows that the proposed al-
gorithm outperforms the classical and other respectable
algorithms in the reference sample reduction rate and
classi$cation performance. We also demonstrated that the
consistent reference subsets are generally not accurate
on independent test data sets. It shows that the TS-based
selection method signi$cantly reduces the size of the
reference subset and get good generalization capacity.
Therefore, it should be considered as a promising tool in
the NN classi$er design.

References

[1] B.V. Dasarathy, Nearest Neighbor (NN) Norms: NN
Pattern Classi$cation Techniques, IEEE Computer Society
Press, Los Alamitos, CA, 1991.

[2] P.E. Hart, The condensed nearest neighbor rule, IEEE
Trans. Inf. Theory 14 (3) (1968) 515–516.

[3] G.W. Gates, The reduced nearest neighbor rule, IEEE
Trans. Inf. Theory 18 (3) (1972) 431–433.

[4] C.W. Swonger, Sample set condensation for a condensed
nearest neighbor decision rule for pattern recognition,
in: S. Watanade (Ed.), Frontiers of Pattern Recognition,
Academic Press, New York, 1972, pp. 511–519.

[5] C.L. Chang, Finding prototypes for nearest neighbor
classi$ers, IEEE Trans. Comput. 23 (11) (1974)
1179–1184.

[6] P.A. Devijver, J. Kittler, On the edited nearest neighbor
rule, Proceedings of the Fifth International Conference on
Pattern Recognition, Miami, Florida, 1980, pp. 72–80.

[7] B.V. Dasarathy, Minimal consistent set (MCS)
identi$cation for optimal nearest neighbor decision
systems design, IEEE Trans. Syst. Man Cybern. 24 (3)
(1994) 511–517.

[8] L.I. Kuncheva, Fitness functions in editing k-NN reference
set by genetic algorithms, Pattern Recognition 30 (6)
(1997) 1041–1049.

[9] L.I. Kuncheva, J.C. Bezdek, Nearest prototype classi-
$cation: clustering, genetic algorithms, or random search,
IEEE Trans. Syst. Man and Cybern. 28 (1) (1998)
160–164.

[10] V. Cerveron, A. Fuertes, Parallel random search and Tabu
search for the minimal consistent subset selection problem,
Lecture Notes in Computer Science, Vol. 1518, Springer,
Berlin, 1998, pp. 248–259.

[11] F. Glover, M. Laguna, Tabu search, in: R.C. Reeves
(Ed.), Modern Heuristic Techniques for Combinatorial
Problems, McGraw-Hill, Berkshire, pp. 70–150.

[12] F. Glover, M. Laguna, Tabu Search, Kluwer Academic
Publishers, Dordrecht, 1997.

[13] K. Fukunaga, Introduction to Statistical Pattern
Recognition, 2nd Edition, Academic Press, New York,
1990.

[14] Y. Hamamoto, S. Uchimura, S. Tomita, A bootstrap
technique for nearest neighbor classi$er design, IEEE
Trans. Pattern Anal. Mach. Intell. 19 (1) (1997) 73–79.

[15] J. Van Ness, On the dominance of non-parametric Bayes
rule discriminant algorithms in high dimensions, Pattern
Recognition 12 (3) (1980) 355–368.

[16] K. Fukunaga, D.M. Hummels, Bias on nearest neighbor
error estimates, IEEE Trans. Pattern Anal. Mach. Intell.
9 (1) (1987) 103–112.

[17] K. Fukunaga, D.M. Hummels, Bayes error estimation
using Parzen and k-NN procedures, IEEE Trans. Pattern
Anal. Mach. Intell. 9 (5) (1987) 634–643.

About the Author—HONGBIN ZHANG received his B.S. degree in Automation in 1968, and M.S. degree in Pattern Recognition
and Intelligent System in 1981, both from Tsinghua University, China. From 1986 to 1989 he was an invited researcher in the
Department of Information Science of Kyoto University, Japan. From 1993 to 1994 he was a visiting scholar of RPI, USA. Since
1993, he has been a professor of the Institute of Computer, Beijing Polytechnic University, China. His current research interests
include pattern recognition, computer vision, neural networks and image processing.

About the Author—GUANGYU SUN received his B.S. degree in Geology from Peking University in 1992 and his M.S. degree
from Computer Institute, Beijing Polytechnic University in 1999. His current research interests include pattern recognition and
computer vision.


