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Abstract

k-nearest neighbor (k-NN) classi"cation is a well-known decision rule that is widely used in pattern classi"cation.
However, the traditional implementation of this method is computationally expensive. In this paper we develop two
e5ective techniques, namely, template condensing and preprocessing, to signi"cantly speed up k-NN classi"cation
while maintaining the level of accuracy. Our template condensing technique aims at “sparsifying” dense homogeneous
clusters of prototypes of any single class. This is implemented by iteratively eliminating patterns which exhibit high
attractive capacities. Our preprocessing technique "lters a large portion of prototypes which are unlikely to match
against the unknown pattern. This again accelerates the classi"cation procedure considerably, especially in cases where
the dimensionality of the feature space is high. One of our case studies shows that the incorporation of these two
techniques to k-NN rule achieves a seven-fold speed-up without sacri"cing accuracy. ? 2002 Pattern Recognition
Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The k-nearest neighbor (k-NN) rule [1–8] is a
well-known decision rule widely used in pattern classi-
"cation applications. The misclassi"cation rate of the
k-NN rule approaches the optimal Bayes error rate
asymptotically as k increases [3] and is particularly ef-
fective when the probability distributions of the feature
variables are not known, thereby rendering the Bayes
decision rule [3] ine5ective. The computational ineB-
ciency of the k-NN rule stems from the following obser-
vation. To perform template 1 matching, the complexity
of each matching is O(n), where n is the dimension of
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the feature space. In order to achieve a high recognition
rate, the feature dimension n and the template size M
are chosen to be large. For example, consider the GSC
recognizer which uses features based on gradient, struc-
tural, and concavity aspects of a character image [8] and
uses the k-NN rule to achieve high classi"cation accu-
racy. It has a feature dimension of 512 and template size
of 32,000 [8] making it quite ineBcient to match a test
pattern against the entire set of prototypes. In this paper
we propose two e5ective techniques to improve the eB-
ciency: template condensing and preprocessing.
Template condensing is an important part of the near-

est neighbor (1-NN) rule. The set of prototypes in the
template are chosen so that classi"cation obtained us-
ing any proper subset of the initial template leads to a
gradual degradation in recognition accuracy. This greatly
decreases the number of prototypes that an unknown
pattern must be compared to with sacri"ce of accuracy
[9–13]. In this paper, we develop a novel method of se-
lecting the subset of prototypes for general k-NN classi-
"cation. The idea is motivated by the observation that, if
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a large number of prototypes form a homogeneous clus-
ter in feature space, then the number of prototypes in the
neighborhood of the test pattern is usually larger than
k (suBcient number according to the k-NN rule) when
the test pattern is located in this area. This observation
is further strengthened by the fact that k is usually quite
small in real applications in order to keep the process of
searching the nearest k prototypes eBcient. Our idea is
to “sparsify” dense homogeneous clusters by iteratively
eliminating patterns which exhibit high “attractive capac-
ities” (de"ned in Section 3). This not only reduces the
template size signi"cantly but also maintains the level
of classi"cation accuracy. In this sense the method pre-
sented in this paper di5ers from those described in Refs.
[9–13].
We also describe a preprocessing operation wherein an

unknown pattern is matched against a prototype in two
sequential stages. In the "rst stage a quick assessment of
the potential of match is made. The approach is motivated
by an insightful observation that the norm of a pattern
vector represents a characteristic of the pattern. In order
for a full match to occur in the second stage, the di5erence
of the norms of the prototype and the test pattern must
be less than a predetermined threshold. The threshold
is designed for each prototype individually. Prototypes
that fail in the "rst stage of matching are not considered
any further. A large portion of the prototypes are thus
dynamically precluded. This preprocessing just takes one
step, i.e., the complexity isO(1) and is independent of the
dimensionality of the feature space. Furthermore, such
preprocessing does not sacri"ce the accuracy for it only
rejects prototypes which are not “close” to the test pattern
in feature space, if properly applied.
The rest of the paper is organized as follows. In Sec-

tion 2, we introduce the general k-NN classi"cation.
In Sections 3 and 4, we present template condensing
and preprocessing respectively. We present experi-
mental results in Section 5, and draw conclusions in
Section 6.

2. Preliminary: k-NN classi�cation

Letp be the number of classes, andC , {c(i); i=1; 2;
: : : ; p} be the set of class labels. Let � be a set of la-
beled patterns referred to as a template. A labeled pat-
tern y∈Rn in the template is referred to as a prototype,
where n denotes the pattern dimension. w(y) denotes the
weight of a prototype y, i.e., the number of prototypes y
in the template. The class label of a prototype y is de-
noted by c(y).
Let H(x; y) be the matching measure between pattern

x and y, where H is supposed to be a non-negative and
symmetric function. The larger value of H(x; y) shows
the greater degree of similarity between x and y. The
reciprocal of the Hamming distance is a commonly used

measure for matching binary patterns. It is de"ned as
follows:

H(x; y)=

(
n∑
i=1

|xi − yi|
)−1

: (1)

Let y(1); y(2); : : : ; y(d), be the d prototypes which are
nearest to x, in the sense of H among all the prototypes
in the template�, and also satisfy

∑d
j=1 w(y

( j))= k. The
unweighted voting power of each class is computed as
follows:

vi ,
d∑
j=1

�(y( j); c(i)) · w(y( j)); i=1; 2; : : : ; p; (2)

where �(· ; ·) satis"es

�(y( j); c(i)),

{
1 if c(i) = c(y( j));

0 otherwise:
(3)

The weighted voting power of each class is computed
as follows:

ṽi,
d∑
j=1

H(x; y( j)) · �(y( j); c(i)) · w(y( j));

i=1; 2; : : : ; p: (4)

The unknown pattern x is classi"ed to the class c(t)

with the highest voting power vt (or ṽt).
We observe that the computational complexity of the

matching measureH is O(n). To achieve high accuracy,
both the feature dimension (n) and the template size (M)
tend to get large thus making the k-NN method time con-
suming. In this paper we demonstrate two novel methods
to improve eBciency, namely, template condensing and
preprocessing.

3. Template condensing

In the k-NN classi"cation the (k+1); (k+2); : : : ; pro-
totypes in the template nearest to an unknown x do not
a5ect the classi"cation of x. In fact, k is usually chosen
to be a small number, otherwise sorting k nearest patterns
over a template of size M , after all matching measures
H(x; ·) are calculated, will need computational complex-
ity O(kM=p) [14]. Often the number of prototypes (all of
a single class) which are nearer to x than prototypes of
other classes is much larger than k (which gives the suf-
"cient number according to the k-NN rule). Speci"cally,
we can imagine an area in feature space that is homoge-
neous in its class label and is also very dense with the
prototypes. If the test pattern x is located in such an area,
then the number of prototypes in this area which are clos-
est to the unknown pattern could be much greater than
k. Herein lies the motivation for our method of reducing
the template size.
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Fig. 1. Pictorial representation of the attractive capacity in 2D.

We will now describe the training process whereby
we decide on the template �. We start with an initial
(labeled) pattern set � that is suBciently large, and then
iteratively re"ne this set using the algorithm described
below.
We assume that all p classes are equally probable.

The training set � is initially created by extracting fea-
ture vectors from a very large set of images of interest
wherein each class has equal representation. We assume
the feature extraction algorithm is perfect so that any
two images of di5erent classes generate di5erent features
(pattern vectors). However, di5erent images of the same
class may have identical pattern vectors. We count the
weight of each pattern and keep only one of the identi-
cal patterns. We then de"ne the attractive capacity sy of
a labeled pattern y with respect to � as the number of
patterns from class c(y) in � which match better than
any other patterns from other classes. Analytically, the
attractive capacity of a labeled pattern y is de"ned as
follows:

sy , |{x∈�: H(y;x)¿ry}|; (5)

where ry is interpreted as attractive radius, such that

ry , max{H(y;x): ∀x∈�; c(x) 	= c(y)}: (6)

Note that the prototypes accounted for in sy have the
same class label as y while it is not necessary that y∈�.
Fig. 1 illustrates the concept of attractive capacity. In

the "gure, “.” denotes the prototypes of the same class
as y, and “x” denotes the prototypes of the class di5erent
from y. In the example of Fig. 1, the attractive capacity
of y is sy=13.

We note that the patterns that have high capacities are
at the center of areas dense in prototypes of the same
class. Thus, a reasonable approach would be to remove
some of the prototypes with high attractive capacity from
the pattern set �. However, if we eliminate all the pat-
terns whose attractive capacity is over a certain thresh-
old, we might “over-sparsify” the dense area, and thus
inevitably lower accuracy. Let us consider an example
to illustrate the disadvantage of such a method. Suppose
the patterns of one particular class are densely clustered
in feature space but are far from the patterns of any other
class, in �. In such cases, the capacity of all patterns in
that class are equally high. Thus, we would end up re-
moving all the training patterns of that class, according
to the above method. Of course this is not reasonable.
We must also keep in mind that the capacity of a pro-
totype is determined not merely by itself but mainly by
others. Furthermore, the attractive capacities change dy-
namically. When certain patterns are eliminated from the
template, the attractive capacities of the remaining pat-
terns may either increase or decrease depending on the
distribution of the patterns in feature space.
An alternative approach is to remove the prototypes

with high capacities gradually. Speci"cally, we can it-
eratively eliminate a small portion of patterns which
correspond to the highest capacities. We introduce
two parameters for this purpose: �(t); t=1; 2; : : :—the
maximum portion that can be eliminated in the tth it-
eration, and �—the threshold capacity below which
a pattern must be reserved. �(t) is supposed to be a
decreasing function of time epoch t. The condensing
procedure halts when all patterns have capacities no
greater than �. We present the details of the procedure to
condense �.
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Fig. 2. Pictorial representation of original template.

3.1. Template reduction procedure

1. Calculate the weight of each pattern and keep only
one out of all identical patterns. Set t=1.

2. Calculate the attractive capacity for each pattern in the
updated set �.

3. Check if all attractive capacities are no greater than
�. If true, set �← � and stop.

4. Eliminate the patterns which exhibit capacities greater
than � and are among the �(t) portion of patterns
corresponding to the highest capacities.

5. Set t ← t + 1; Go to Step 2.

As long as the values of �(t) (t=1; 2; : : :) are suB-
ciently small, the above approach enables a proper elim-
ination of a large portion of redundant prototypes.
We present here an example to illustrate the proposed

template reduction technique. Suppose we are given a
randomly picked labeled pattern set� of two dimensions
as shown in Fig. 2, where each of the three classes con-
tain 40 patterns, respectively. We also assume that the
matching measure is the reciprocal of the Euclidean dis-
tance and 1-nearest neighbor rule is applied. After gradu-
ally eliminating patterns with high capacities, we "nally

obtain the template � as shown in Fig. 3. The re"ned
template retains 59 out of the 120 original patterns.

4. Preprocessing

In the previous section we have introduced a method
to reduce the template size while maintaining nearly the
original accuracy. In this section, we further enhance the
eBciency of the k-NN algorithm. Our idea is to reject
a large part of the template prototypes dynamically by
carrying out computationally eBcient preprocessing.
We observe that the norm of a prototype, || · ||, is a spe-

cial characteristic of that prototype when appropriately
de"ned (usually l1 or l2 norm). An unknown pattern x
can be considered to be a distorted version of y if the
di5erence of the norms, | ||x|| − ||y|| |, is within a cer-
tain threshold �y. It is worth noting that ||x|| − ||y||=0
if y=x.
We observe that when the threshold is chosen smaller,

larger numbers of prototypes are precluded from partic-
ipating in the matching process. On the other hand, if
the threshold is too small, the preprocessing procedure
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Fig. 3. Pictorial representation of reduced template.

even rejects the prototypes that are very close to the test
pattern. Thus, a trade-o5 must be made to maintain ac-
curacy while precluding unlikely prototypes from partic-
ipating in the matching process. Keeping the competing
issues in mind, we proceed to determine the appropriate
threshold �. For a given prototype y, we consider its �y
nearest neighbor prototypes y(1); y(2); : : : ; y(�y), from the
class c(y), as the distorted versions of y itself. Then, if
an unknown pattern with feature y is tested (it is a coin-
cidence that a testing pattern is identical to one of proto-
types), y(i); i=1; 2; : : : ; �y, are retained. We propose to
determine the threshold as follows:

�y , max{| ||y|| − ||y(i)|| |: i=1; 2; : : : ; �y}: (7)

However, this gives rise to another problem. How does
one determine the number of neighbors, �y? As can be
readily seen, �y is connected to the attractive capacity sy.
Moreover, higher attractive capacity should lead to higher
numbers of attractive neighbors. Hence, we determine �y
by

�y , min

{
�:

�∑
i=0

w(y(i))¿F(sy)

}
; (8)

where F(·) is a non-decreasing function. In order to be
consistent with the k-NN classi"cation rule, it is neces-
sary that

F(1)¿ k − 1: (9)

The conformance to the k-NN rule can be demon-
strated as follows. When a prototype y satisfying sy=1
is used as a pattern to be tested, then the closest prototype
is itself; the second closest one is from another class; the
3; 4; : : : ; k closest ones are perhaps from the same class as
y. So it is necessary to keep the k − 1 closest neighbors
of the same label (weights of prototypes are counted).
In summary, we "rst determine �y=F(sy). Then

we determine �y prototypes, say y(i); i=1; 2; : : : ; �y,
which are closest to y and in the same class
as y. We "nally determine the threshold �y such that
�y ← max16i6�y{| ||y|| − ||y(i)|| |}.
We may further deliberate preprocessing when H

is symmetric in terms of x (thus y by symmetry to
x) in index subset (instead of whole index set I ,
{1; 2; : : : ; n}) I1; I2; : : : ; Il, such that

⋃l
i=1 Ii= I; l�n

(e.g., l=2 vs. n=512), and |Ii|�1; i=1; 2; : : : ; l. Then,
it is appropriate to apply the above procedure to each
index subset I1; I2; : : : ; Il, respectively. Both the “or” and
“and” relations can be used to combine the results of the
sub-preprocessing procedures.
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Fig. 4. Classi"cation process.

Next we consider the issue of complexity. Note that
norm and threshold (norms and thresholds of index sub-
sets in latter) of each prototype can be pre-calculated
in the training procedure. We just need to calculate the
norm (norms of index subsets in latter) of unknown pat-
tern once. A preprocessing procedure requires at most
3 (4l − 1 in latter) operations. Most importantly, it is
independent of the pattern dimension n. On the other
hand, to obtain the matching measure H(y;x) the com-
plexity is O(n). Thus, the larger the pattern dimension
n, the more powerful the preprocessing e5ect. A high
dimension representation is usually chosen to provide
high separability between di5erent classes. The prepro-
cessing method described can work e5ectively in such
cases.
To classify an unknown pattern x, we "rst check

whether | ||x||− ||y|| |6 �y. If the check fails, we simply
do not consider y any further. Fig. 4 shows two stages
of classi"cation, where � denotes the set of prototypes
y which have quali"ed as the candidate prototypes of x,
i.e., | ||x|| − ||y|| |6 �y, and c(x) denotes the label that
x is classi"ed to.

5. Experimental results

In this section we describe the application of the two
techniques described in Sections 3 and 4 to handwritten
numeral recognition where the number of classes is 10
(p=10). The training set � of 126,000 patterns has
an equal number of patterns in each class. The testing
set has 25,300 patterns and again equal number in each
class. The experimental platform is the SPARC 400 MHz
computer.
In our "rst case study, the developed techniques are

applied to the “Gradient” recognizer, which encodes lo-
cal contour variation of the character image into a binary
feature vector of 192-dimension (i.e., n=192) [7]. Un-
weighted k-NN classi"cation is applied with the follow-
ing matching measure H:

H(x; y) = 5 · |{16 i6 n: xi=yi=1}|
+2 · |{16 i6 n: xi=yi=0}| (10)

and k =6.
“Original” classi"cation uses the training set of

126,000 patterns as template and the original k-NN
classi"cation rule. The experimental result is shown in

Table 1
Comparisons of performance of k-NN rule with or without
developed techniques for “Gradient” recognizer

k-NN rule Original Improved I Improved II

Mean time (ms=p) 134.5 32.1 21.2
Accuracy (%) 95.92 95.93 95.90

Table 1 (Original). In the template reduction procedure,
we set �(t)=0:25(t + 1)−0:5 and �=300. After seven
iterations, the re"ned template retains 29,345 prototypes
out of the 126,000. As shown in Table 1 in terms of
Improved I, it reveals similar accuracy as the orig-
inal k-NN algorithm. We also apply the proposed
preprocessing to accommodate Improved I classi-
"er. We limit the range of parametric function F(s)
in Refs. [10; 30], and adopt the following de"nition
F(s)=10 + �20 2

� arctan(s=30)�. The experimental re-
sults are presented in Table 1 (Improved II). Prepro-
cessing further reduces (average) classi"cation time by
roughly half. We note that the accuracy is about the
same as the original. A combination of both techniques
reduces the classi"cation time by a factor of 6 at almost
no loss in accuracy.
We then use the same labeled pattern set and conduct

a similar study on the GSC recognizer [8]. The GSC
classi"er is based on a feature set that captures the gra-
dient, structural, and concavity information from an im-
age. Gradient features use the stroke shapes on a small
scale (192 features). The structural features are based
on the stroke trajectories at the intermediate scale (192
features). Finally, the concavity features use stroke rela-
tionships at a global level (128 features). In all, there are
512 binary “GSC” features, i.e., n=512 [8]. The clas-
si"cation procedure uses the weighted k-NN rule. The
following matching measure H is used:

H(x; y) = 2 · |{16 i6 n: xi=yi=1}|
+ |{16 i6 n: xi=yi=0}| (11)

and k =6.
We set �(t)=0:25(t+1)−0:5 and �=300 (same as the

"rst study). The "nal template of 32,312 prototypes are
chosen after six iterations. The template size is reduced
by 74.4%. The results are listed in Table 2 (Improved
I). In the preprocessing stage, the parametric function
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Table 2
Comparisons of performance of k-NN rule with or without
developed techniques for “GSC” recognizer

k-NN rule Original Improved I Improved II

Mean time (ms=p) 307.1 78.7 41.5
Accuracy (%) 97.62 97.59 97.64

F(s) is set asF(s)=5+�20 2
� arctan(s=30)�. As we can

see from Table 2 (Improved II), preprocessing enables
a signi"cant savings in computation time. We note that
Improved II classi"er even shows a little improvement
in accuracy. This is not unusual since preprocessing ef-
"ciently gets rid of unlikely matches, and can improve
accuracy by blocking some of the original k nearest
prototypes which would result in potential mismatches.
It also veri"es the claim that preprocessing is more
powerful in cases where the features space has large
dimensionality by comparing to the "rst case study. In
summary, the combination of the two techniques reduces
the (average) classi"cation time by more than 7 times
with no accuracy drop.

6. Conclusions and future studies

In this paper we have shown how to improve the ef-
"ciency of the k-NN classi"cation by incorporating two
novel ideas. The "rst idea is the reduction of the tem-
plate size using the concept of attractive capacity. The
second idea is a preprocessing method to preclude par-
ticipation of a large portion of prototype patterns which
are unlikely to match the test pattern. This work no-
tably speeds up the classi"cation without compromising
accuracy.
The proposed template reduction technique is distinct

from the methods in literature, which reduce the template
size but result in classi"cation accuracy degradation
[9–13]. Our method attempts to sparsify the dense
attractive areas and is eBciently implemented by grad-
ually eliminating the prototypes with high attractive
capacity. It allows us to discard a lot of redundant pro-
totypes while keeping useful ones. Consequently, it is
able to reduce the template size but maintain the same
level of the accuracy. In the future, we would like to
adopt a strict mathematical framework to derive optimal
rules for the selection of prototypes.
The preprocessing described is based on the observa-

tion that the norm represents the intrinsic characteristic
of a pattern vector. We have established that a test pat-
tern is likely a distorted version of a prototype when
the norm di5erence is below a threshold associated with
that prototype. Each preprocessing operation takes O(1)
steps compared to the full matching complexity of O(n).
When the pattern dimension n is large, it is able to pre-

clude a large portion of prototypes which are unlikely to
match with the unknown pattern, and thus signi"cantly
promote classi"cation eBciency while maintaining ac-
curacy. We make two remarks here. Firstly, our work
is built on the intuitive observation that “the norm is an
intrinsic characteristic”. Secondly, we have not proven
theoretically that the proposed preprocessing is guaran-
teed to "lter out only irrelevant prototypes and maintain
accuracy.
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