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Abstract. Many algorithms in data mining can be formulated as a set-mining problem
where the goal is to find conjunctions (or disjunctions) of terms that meet user-specified
constraints. Set-mining techniques have been largely designed for categorical or discrete
data where variables can only take on a fixed number of values. However, many datasets
also contain continuous variables and a common method of dealing with these is to
discretize them by breaking them into ranges. Most discretization methods are univariate
and consider only a single feature at a time (sometimes in conjunction with a class variable).
We argue that this is a suboptimal approach for knowledge discovery as univariate
discretization can destroy hidden patterns in data. Discretization should consider the
effects on all variables in the analysis and that two regions X and Y should only be in the
same interval after discretization if the instances in those regions have similar multivariate
distributions (Fx ∼ Fy) across all variables and combinations of variables. We present a
bottom-up merging algorithm to discretize continuous variables based on this rule. Our
experiments indicate that the approach is feasible, that it will not destroy hidden patterns
and that it will generate meaningful intervals.
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1. Introduction

In set mining the goal is to find conjunctions (or disjunctions) of terms that meet
all user-specified constraints. For example, in association rule mining (Agrawal et
al., 1993) a common first step is to find all itemsets that have support greater than
a threshold. Set mining is a fundamental operation of data mining. In addition to
association rule mining, many other large classes of algorithms can be formulated
as set mining such as classification rules (e.g., Quinlan, 1993; Cohen, 1995; Liu
et al., 1998) where the goal is to find sets of attribute–value (A-V) pairs with
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high predictive power, or contrast set mining (Bay and Pazzani, 1999, 2001)
where the goal is to find all sets that represent large differences in the probability
distributions of two or more groups.

There has been much work devoted to speeding up search in set mining
(Narendra and Fukunaga, 1977; Webb, 1995; Bayardo, 1998) and there are many
efficient algorithms when all of the data is discrete or categorical. The problem is
that data is not always discrete and is typically a mix of discrete and continuous
variables. A central problem for set mining and one that we address in this paper
is ‘How should continuous values be handled?’

The most common approach to handling continuous values is to discretize
them into a number of disjoint regions and then use the same set-mining algo-
rithm. Discretization is useful in that it can reduce the number of distinct values,
thereby reducing the complexity of the search and the number of mined results.

Past work on discretization has usually been done in a classification context
where the goal is to maximize predictive accuracy for algorithms that cannot
handle continuous values. For example, Dougherty et al. (1995) showed that
discretizing continuous attributes for the naive Bayesian classifier can greatly
improve accuracy over a normal approximation. In knowledge discovery we often
analyze the data in an exploratory fashion where the emphasis is not on predictive
accuracy but rather on finding previously unknown and insightful patterns in the
data. Thus we feel that the criteria for choosing intervals should be different from
this predictive context, as follows:

– The discretized intervals should not hide patterns. We must carefully choose our
intervals or we may miss potential discoveries. For example, if the intervals are
too big we may miss important discoveries that occur at a smaller resolution,
but if the intervals are too small we may not have enough data to infer
patterns. We refer to this as the resolution problem. Additionally, if the intervals
are determined by examining features in isolation then with discretization we
may destroy interactions that occur between several features.

– The intervals should be semantically meaningful. The intervals we choose must
make sense to a human expert. For example, when we are analyzing census
data we know that it is not appropriate to create intervals such as salary[$26K,
$80K] because people who make $26K/year are different qualitatively on
many variables such as education, occupation, industry, etc. from people who
make $80K/year. Intervals such as this can occur on skewed data with equal
frequency partitioning (Miller and Yang, 1997).

In addition, there is the obvious requirement that the method should be fast
enough to handle large databases of interest.

We feel that one method of addressing these points is to consider multivariate
discretization as opposed to univariate discretization. In multivariate discretiza-
tion one considers how all the variables interact before deciding on discretized
intervals. In contrast, univariate approaches only consider a single variable at a
time (sometimes in conjunction with class information) and does not consider
interactions with other variables.

We present a simple motivating example. Consider the problem of set mining
on XOR data as in Fig. 1(a). Clearly one should discretize the data as in Fig.
1(b), which is the result of the method we are proposing in this paper. However,
algorithms that do not consider more than one feature will fail. For example,
Fayyad and Irani’s (1993) recursive minimum entropy approach will not realize
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Fig. 1. Noisy XOR. (a) XOR. (b) XOR with multivariate discretization. (c) XOR with equal width
discretization.

that there is an interaction between X1, X2, and the class. It simply finds both X1

and X2 irrelevant and ignores them (this will occur even on a noiseless version
of the data). Equal width (or equal frequency 1) partitioning will result in Fig.
1(c). The main drawback of a fixed partitioning is the choice of the number
of intervals. Too many will result in sparse cells; too few will result in chunky
borders.

Our basic approach to this problem is to finely partition each continuous
attribute into n basic regions and then to iteratively merge adjacent intervals only
when the instances in those intervals have similar distributions. That is, given
intervals X and Y we merge them if Fx ∼ Fy . We use a multivariate test of
differences to check this.

Combining merging with a multivariate test of differences deals with several
problems common to discretization algorithms. Merging allows us to deal with the
resolution problem and it automatically determines the number of intervals. Our
multivariate test means that we will only merge cells with similar distributions so
hidden patterns are not destroyed and the regions are coherent. It can identify
irrelevant attributes and remove them.

In the next section, we discuss past approaches to discretization. In Section 3,
we review multivariate difference tests from the statistics literature. We describe
them and discuss their limitations for our application. We then present a more
appropriate test based on Contrast Set mining. In Section 4, we present a bottom-
up merging algorithm for discretization. In Section 5, we investigate the sensitivity
of our algorithm to hidden patterns in the data. In Section 6, we evaluate the
algorithm on real datasets to confirm its efficiency and the quality of the intervals
found. Finally, we discuss the limitations of this work and present directions for
future research.

2. Past Approaches to Discretization

The literature on discretization is vast but most algorithms are univariate in that
they consider each feature independently (or only jointly with a class variable)
and do not consider interactions with other features. For example, Fayyad and
Irani (1993) recursively split an attribute to minimize the class entropy. They
use a minimum description length criterion to determine when to stop. Other

1 Because the distribution is uniform for this data, equal frequency and equal width partitioning will
be similar.
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algorithms in this category include: ChiMerge (Kerber, 1992), Chi2 (Liu and
Setiono, 1995), error-based discretization (Kohavi and Sahami, 1996), and many
others. Dougherty et al. (1995) and Zighed et al. (1999) provide good overviews
of many of the classical discretization algorithms. Elomaa and Rousu (1999)
examined methods for finding an optimal set of splits according to well-behaved
evaluation functions such as information gain, training set error and others. As
we mentioned previously, the problem with these approaches is that they can miss
interactions of several variables and they are not applicable without an explicit
class variable.

Srikant and Agrawal (1996) proposed an approach that would avoid these
limitations. Although they discretize each feature separately they attempt to
consider all possible discretizations of a feature and thus will not miss any
potential discoveries. Their basic approach is to finely divide each attribute into
n basic intervals and then consider all possible combinations of consecutive
basic intervals. However, this creates two problems they refer to as ExecTime
and ManyRules. The ExecTime problem is that since each continuous attribute
is effectively expanded into O(n2) new intervals the complexity will ‘blow up’,
especially when we consider the interaction with other features. They deal with this
problem by limiting the maximum support of any given interval composed from
the basic intervals. Thus they simply do not consider the larger intervals with high
support. In set mining these terms cause the most problems because they combine
to form many long itemsets. The ManyRules problem is also related to the number
of combinations. If an interval meets the minimum support requirement so does
any range containing the interval; e.g. consider that if age[20,30] meets the
minimum support constraints then so will age[20,31], age[20,40], age[20,60] and
so on. This can result in a huge number of rules for the end user to view. They
deal with this by defining an interest measure based on the expected support
(confidence) where interesting rules are those whose support (confidence) differs
greatly from the expected value.

Miller and Yang (1997) pointed out that Srikant and Agrawal’s solution
may combine ranges that are not meaningful and thus can result in unintuitive
groupings. They present an alternative approach based on clustering the data and
then building association rules treating the clusters as frequent itemsets. Their
results will be strongly dependent on the clustering algorithm and distance metric
used.

Monti and Cooper (1999) also used clustering to perform discretization in the
absence of a class variable. They treated the latent cluster variable as a proxy for
the class variable which could then be used with a univariate approach.

Wang et al. (1998) proposed discretizing data by merging adjacent intervals
on a continuous variable. Unlike previous approaches, they guided the merging
process by combining the intervals that most improved the interestingness score
of a set of association rules derived from the data.

Concurrent with our research, Ludl and Widmer (2000) also investigated the
problem of discretizing numeric variables for unsupervised learning algorithms
such as association rule miners. They have the same goal of trying to preserve
all dependencies between variables, but they use a very different approach. For
example, in order to discretize a target variable t they examine how values of
the other variables are distributed on t. Specifically, given another categorical
variable A which can take on values v1, v2, . . . , vn, they project all points that have
A = v1 onto t. The projected points are then clustered and the cluster boundaries
are recorded as potential split points. They repeat this for each possible value of
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the variable (i.e., v1, . . . , vn) and for each of the other variables in the data. If some
of the other variables are numeric, they are discretized with a default method
such as equal width partitioning for the purpose of this procedure. Finally, once
all the split points are found from the other variables in the data, they are post-
processed with a merging routine to select a final set of discretization cutpoints.
A major difference with our approach is that they only consider how pairs of
variables interact and do not examine higher-order combinations. Thus, they may
have difficulty handling data such as the XOR problem in Fig. 1.

Finally, an alternative to explicit discretization is to use range tests (>, >,
<, 6). This approach is usually taken in optimized rule mining (Fukuda et
al., 1996; Yoda et al., 1997; Rastogi and Shim, 1998; Brin et al., 1999; Rastogi
and Shim, 1999) where the goal is not to find a set of rules that characterize the
data but rather to find a single rule that is optimal according to a metric. Because
of the complexity of considering all possible ranges the methods can only handle
a limited number of numeric attributes (usually just 1 or 2).

3. Multivariate Tests of Differences

Our approach is based on using a multivariate test of differences. A multivariate
test of differences takes as input instances drawn from two or more probability
distributions and determines if the distributions are equivalent. In statistical terms
the null hypothesis H0 is that Fx = Fy and the alternate hypothesis is that the two
distributions are different, Fx 6= Fy . In this section, we review past approaches
and discuss why they are inappropriate for our application. We argue for a new
test based on recent work in contrast set mining (Bay and Pazzani, 1999; Bay
and Pazzani, 2001).

With a single dimension, one can use the Kolmogorov–Smirnov (K-S) two-
sample test or the Wald–Wolfowitz (W-W) runs test (Conover, 1971) to check
for differences. These methods sort the examples and compute statistics based on
the ranks of sorted members in the list. For example, the K-S test looks at the
maximum absolute difference in the cumulative distribution functions. The W-W
test uses the total number of runs, R, where a run is a set of consecutive instances
with identical labels. H0 is rejected if R is small.

The problem with these methods is that the notion of a sorted list does not
apply in multivariate data and datasets of interest for data mining are usually
multivariate. Thus in their basic form the K-S and W-W tests are not useful for
our problems. However, Friedman and Rafsky (1979) generalized the notion of a
sorted list by using a minimum spanning tree (MST). They use order information
in the MST to calculate multivariate generalizations of the K-S and W-W tests.
For the K-S variant, they use a height-directed pre-order traversal of the tree
(visit subtrees in ascending order of their height) to define a total order on nodes
in the tree. For the W-W test the multivariate generalization is to remove all
edges in the tree that have different labels for the defining nodes and let R be the
number of disjoint subtrees. However, using an MST-based test has a number of
disadvantages:

– The generation of the MST requires pairwise distance measures between all
instances. In data mining, variables within a dataset can be both continuous
and discrete, thus developing a distance metric is not straightforward. Any
MST developed will be sensitive to the metric used.
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– MST is expensive to find. Using Prim’s algorithm it is O(V 2) and using Kruskal’s
it is O(E logE) (Sedgewick, 1990), where E is the number of edges (O(N2) for
N data instances) and V is the number of vertices (V = N). For our datasets
N is usually very large, thus making the complexity prohibitive.

– The above tests were designed to measure significance and have no meaningful
interpretation as a measure of the size of the differences between the two
distributions. For example, one cannot relate changes in the test statistic (i.e.,
difference in cumulative distribution function, distribution of runs) to mean-
ingful differences in underlying analysis variables such as age or occupation.
Additionally, significance by itself is not sufficient (Bakan, 1966) because as
N → ∞ all differences, no matter how small, between the distributions will
show up as significant.

We propose using an alternate test of differences between two distributions based
on Contrast Set miners such as STUCCO (Bay and Pazzani, 1999; Bay and Paz-
zani, 2001). Essentially STUCCO attempts to find large differences between two
probability distributions based on observational data. For example, given census
data we may be interested in comparing various groups of people based on their
education levels. If we compare PhD and Bachelor’s degree holders, STUCCO
would return differences between their distributions such as: P(occupation =
sales | PhD) = 2.7%, while P(occupation = sales | Bachelor) = 15.8%.

Formally the mining objectives of STUCCO can be stated as follows: Given
two groups of instances G1 and G2, find all conjunctions of attribute value pairs
C (contrast sets) such that:

|support(C,G1) − support(C,G2)| > δ (1)

Support is a frequency measurement and is the percentage of examples where C
is true for the given group. Thus, equation (1) is a size criterion and is an estimate
of how big the difference is between two distributions. We require the minimum
difference in support to be greater than δ.

STUCCO also carefully controls the error caused by examining multiple
hypotheses and strictly controls the false positive rate. The observed difference
in support must also be significant under a chi-square test which must reject the
null hypothesis that

P (C | G1) = P (C | G2) (2)

This is a significance test and is designed to ensure that the differences we find
could not be explained by fluctuations in random sampling. STUCCO uses an α
value that decreases with the number of hypotheses examined to control overall
Type I error.

STUCCO finds these contrast sets using search. It uses a set enumeration
tree (Rymon, 1992) to organize the search and it uses many of the techniques
in Narendra and Fukunaga (1977), Webb (1995) and Bayardo (1998), such as
dynamic ordering of search operators, candidate groups and support bounds in
conjunction with pruning rules geared for finding support differences.

We use STUCCO as a multivariate test of differences as follows. If STUCCO
finds any C that satisfies equation (1) and is significant, then we say that Fx is
substantially different from Fy , otherwise we say that Fx is similar to Fy (i.e.,
Fx ∼ Fy).
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4. Multivariate Discretization

Given our test from the previous section, we now present our algorithm for
multivariate discretization (MVD):

1. Finely partition all continuous attributes into n basic intervals using either
equal-width or equal-frequency discretization.2

2. Select two adjacent intervals X and Y that have the minimum combined
support and do not have a known discretization boundary between them as
candidates for merging.

3. If Fx ∼ Fy then merge X and Y into a single interval. Otherwise place a
discretization boundary between the two intervals.

4. If there are no eligible intervals stop. Otherwise go to step 2.

Note that we do not need to look at the features in any particular order and we
may merge on different attributes in consecutive iterations.

We test if Fx ∼ Fy by using STUCCO where the instances that fall in X
and Y form the two groups whose distributions we compare over all other
variables in the dataset. If there is a class variable, we simply treat it as another
measurement variable. STUCCO requires that we specify δ, which represents how
big a difference we are willing to tolerate between two distributions. This allows
us to control the merging process: small δ means more intervals and large δ
means fewer intervals. We set δ adaptively according to the support of X and Y
so that any difference between the two cells must be larger than a fixed percentage
of the entire dataset. For example, if we tolerate differences of size up to 1% of
the entire distribution then we set δ = 0.01N/min{support(X), support(Y )}. This
increases δ for cells with small support.

4.1. Efficiency

For each continuous feature, MVD may call STUCCO up to n−1 times, where n
is the number of basic intervals. Each invocation of STUCCO potentially requires
an evaluation of an exponential number of candidates (i.e., all combinations of
attribute–value pairs) and up to |A| passes through the database. This begs the
question of how we can implement MVD efficiently when it calls a potentially
expensive mining routine. We believe that on average it will be efficient enough
to run on a wide variety of datasets for the following reasons:

1. Even though the worst-case running time for STUCCO is exponential, in
practice it runs efficiently on many datasets (Bay and Pazzani, 2001).

2. The problems passed off to STUCCO are often easier than that faced by
the main mining program. STUCCO only needs to consider the examples
that fall into the two ranges that are being tested for merging. This can be
only a small fraction of the total number of examples, especially when we
finely partition the attribute. Additionally the support difference parameter is
set adaptively and is effectively increased for cells with small support. Past
work (Bay and Pazzani, 2001) indicates that mining is much easier with larger
support differences.

2 Equal frequency partitioning maximizes the entropy for a fixed number of intervals and under
Srikant and Agrawal’s (1996) partial completeness measure minimizes the amount of information lost.
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3. STUCCO only needs to find a single difference between the groups and then it
can exit. It does not need to find all differences. STUCCO only performs the
full search when there are no differences found which then results in merging.

4. Calling STUCCO repeatedly will result in many passes over the database.
However, the limiting factor is the exponential number of candidates that need
to be considered, not passes through the database. This behavior has been
noticed for other mining algorithms as well. For example, one of the most
difficult problems for Max-Miner (Bayardo, 1998) was the connect-4 database
available from the UCI Machine Learning Repository (Blake and Merz, 1998).
This database only has 67,557 instances but it contains 42 attributes which are
highly correlated.

Finally STUCCO is amenable to speed-up methods such as windowing, sampling,
and limiting the depth of the search (Provost and Kolluri, 1999). This will speed
up MVD accordingly.

4.2. Relation to Other Discretization Approaches

Our bottom-up merging process is similar to other discretization algorithms such
as ChiMerge (Kerber, 1992) and Chi2 (Liu and Setiono, 1995). They divide
the data into intervals and then merge them on the basis of a chi-square test,
checking for independence of interval membership and class. Our work differs
in our merging criteria as we require that the two intervals have substantially
different multivariate distributions.

Srikant and Agrawal’s approach considers O(n2) possible intervals for each
feature whereas we simply divide each feature into O(n) intervals. Thus they have
many more candidates to consider in their search and this extra complexity is
compounded when one considers interactions between features. For example, with
five dimensions they potentially have to examine O((n2)5) combinations whereas
we need look at O(n5).

Finally, our approach of merging adjacent values that have similar distribu-
tions is related to the statistical problem of collapsing cells in contingency tables.
The goal of collapsing adjacent cells together in a contingency table is to get a
simpler table that still preserves all of the original relationships. The danger in
collapsing is that relationships between variables can change and even apparently
reverse themselves (as in Simpson’s Paradox; Wagner, 1982). Bishop et al. (1975)
outline the conditions for which collapsing is valid based on how terms in a
log-linear model representing the data change, but clearly if instances in X and
Y have the same multivariate distributions Fx = Fy then their corresponding
log-linear models will be identical. Our work differs from strict adherence to this
condition as we allow merging of similar but not exactly equivalent distributions.

5. Experiments with Synthetic Data

In this section, we attempt to understand how MVD works by analyzing its
performance on synthetic datasets. We first examine how it discretizes three
variable datasets. This is the simplest case for which traditional algorithms may
have difficulty obtaining good intervals because of variable interactions. We then
investigate MVD’s sensitivity to high-dimensional patterns.
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Fig. 2. Experiment 1. (a) MVD. (b) ME-MDL.

5.1. Qualitative Performance on Three Variable Synthetic Datasets

We ran MVD on three variable synthetic datasets to understand how it works
in the presence of variable interactions. The datasets were generated from a
mixture of two-dimensional multivariate Gaussians. Each data point was also
assigned a discrete value representing its generating component (this is the third
variable).3 We will refer to the first two continuous variables as x1 and x2, and the
third discrete variable as x3. We used 1000 examples and equiprobable mixture
components. For comparison, we also present the discretization found by Fayyad
and Irani’s recursive minimum entropy approach with an MDL stopping criterion
(ME-MDL). ME-MDL requires a class variable and for this we used the mixture
component (x3).

Figure 2 shows the discretization for two multivariate Gaussians with similar
covariance matrices but with a slight offset from each other. MVD correctly
recognized the interaction between features and placed its intervals so as to
divide up data and concentrate on the overlap between the Gaussians (where
the distribution is changing rapidly with respect to x3). ME-MDL looks at each
feature independently and thus decided that the x1 was irrelevant (i.e., if we were
to project all points onto x1 we would have no information that could tell us
about the class variable x3).

Figure 3 shows two multivariate Gaussians arranged in a cross. ME-MDL
did not recognize the interaction and ignored both features. MVD recognized
the dependence of x3 on the (x1, x2) plane. Figure 3(a) shows the results with
δ = 0.01, which results in a fine partitioning of the data. If we increase δ to 0.05,
we obtain a coarser discretization as in Fig. 3(b).

Figure 4 highlights the differences between MVD and ME-MDL. Here we
have two clearly separable Gaussians. On x1, MVD creates cutpoints that split
both clusters internally while ME-MDL generates a single cutpoint which sep-
arates them. We have this difference in behavior because MVD is interested in
changes both with respect to x3 (our class variable for ME-MDL) and to other
variables (i.e., x2). In contrast, ME-MDL is solely concerned with predicting the
class variable x3.

3 Note that the third variable does not need to be discrete and could be continuous. We chose x3 to
be discrete for ease of visualization.
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Fig. 3. Experiment 2. (a) MVD δ = 0.01. (b) MVD δ = 0.05.
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Fig. 4. Experiment 3. (a) MVD. (b) ME-MDL.

Consider the left cluster in Fig. 4. MVD created cutpoints which internally
divide up this cluster while ME-MDL does not. If all we care about is classification
then clearly ME-MDL’s discretization is the right thing to do. However, if we are
interested in how x1 varies with x2 then MVD’s discretization is to be preferred.
Note that because the left cluster is a multivariate Gaussian with its major axis
aligned at an angle to the coordinate axes, as we move from left to right on x1 the
distribution of points on x2 shifts to lower values. MVD’s discretization allows
us to capture this change.

For example, if we were to run an association rule miner we would find that
the top left box would generate the following rule: x1 < −0.21 ⇒ x2 > 2.6 with
support 3.6% and confidence 36%. This is very different from its neighbor to the
right: x1[−0.21, 0.32] ⇒ x2 > 2.6 with support 2.6% and confidence 13%.

5.2. Sensitivity to Hidden Patterns

In this section, we test the ability of MVD to properly discretize data in the
presence of hidden patterns in high-dimensional data. To test sensitivity, we
define a problem called Parity R+I . This problem is a continuous version of the



Multivariate Discretization for Set Mining 501

Table 1. Cutpoints found by MVD on the Parity 5+I problem. MVD
found at most 1 cutpoint per feature

Feature

Trial F1 F2 F3 F4 F5 F6

1 0.08 0.03 0.15 −0.08 0.01 ignore
2 −0.12 −0.10 −0.15 0.19 −0.02 ignore
3 −0.13 0.20 0.00 0.06 −0.10 ignore
4 −0.18 ignore ignore ignore ignore ignore
5 0.02 0.06 −0.15 0.16 0.08 ignore

parity problem where there are R continuous variables ranging from [−0.5,0.5]
with a uniform distribution, one continuous irrelevant variable also ranging from
[−0.5,0.5], and a Boolean class variable. If an even number of the first R features
are positive then the class variable is 1; 0 otherwise. We then add 25% class
noise (i.e., we examined each instance and with a 25% probability flipped the
class designation). We generated 10,000 examples from this distribution.

We used MVD with equal frequency partitioning (100 divisions per feature)
on the Parity 5+I problem. This problem is difficult because there is an embedded
six-dimensional relationship and with our initial partitioning of features we have
only 10,000 instances to be divided into 1006 × 2 possible cells. We ran five trials
and Table 1 shows the cutpoints we found for each feature. The true solution is
[0,0,0,0,0,ignore]. MVD did very well at identifying the relationship between F1,
. . ., F5 and the class. Although it did not exactly reproduce the desired cutpoints,
it came reasonably close, and a set miner would still be able to identify the
parity relationship. MVD failed only once out of the five trials to identify the
relationship and it always managed to identify the irrelevant variable. In contrast,
univariate discretizers will only be able to solve the Parity 1+I problems.

6. Experiments with Real Data

Real data is significantly different from the synthetic data we examined in the
previous section. Most real datasets are far larger and involve many more exam-
ples and variables. The clean separations we obtained on the synthetic data may
not exist because with many variables and interactions there will be conflicting
constraints on where to put the boundaries. In this section, our goal is to show
that on real data MVD is feasible from a computational perspective and that
MVD generates intervals that are meaningful while still being adaptive to the
underlying interactions between variables.

For our experiments we again compared MVD with Fayyad and Irani’s
recursive minimum entropy approach with the MDL stopping criterion (ME-
MDL). We used the MLC++ (Kohavi et al., 1997) implementation of this
discretizer. Past work has shown that ME-MDL is one of the best methods
for classification (Dougherty et al., 1995; Kohavi and Sahami, 1996). We also
compared our execution times with Apriori to give an indication of how much
time discretization takes relative to the set-mining process. We used C. Borgelt’s
implementation of Apriori, version 2.1, which was implemented in C.4 This

4 This program is available from http://fuzzy.cs.Uni-Magdeburg.de/∼borgelt/. Version 1.8 of his
program is incorporated in the data mining tool Clementine.



502 S. D. Bay

Table 2. Description of datasets

Dataset # Features # Continuous # Examples

Adult 14 5 48,812
Census-Incomea 41 7 199,523
SatImage 37 36 6,435
Shuttle 10 9 48,480
UCI Admissions 19 8 123,028

aWe used the training set for this database because ME-MDL would
run out of memory on the combined train-test database of 299,285
instances. MVD did not have memory problems with the full dataset.

version of Apriori is highly optimized and uses prefix trees which implement
set-enumeration search and can quickly count candidates in a similar manner to
candidate groups (Bayardo, 1998).

We ran experiments on the following five databases, which are summarized in
Table 2:

– Adult. The Adult Census data contains information extracted from the 1994
Current Population Survey. There are 14 variables such as age, working class,
education, sex, hours worked, and salary.

– Census-Income. This database is similar to the Adult Census data as they both
contain demographic and employment variables. However, this dataset is much
larger (both in terms of number of variables and number of records) and more
detailed (i.e., standard census variables such as industry code or occupation are
recorded at a more detailed level in this database).

– SatImage. This dataset was generated from Landsat Multi-Spectral Scanner
image data (i.e., it is a satellite image). It contains multi-spectral values for
3×3 pixel neighborhood and the soil type (e.g., red soil, cotton crop, grey soil).

– Shuttle. This is a classification dataset that deals with the positioning of
radiators in the Space Shuttle.

– UCI Admissions Data. This dataset represents all undergraduate student appli-
cations to UCI for the years 1993–1999. There are about 18000 applicants per
year and the data contains variables such as ethnicity, UCI School (e.g., Arts,
Engineering), if an offer of admission was made, sex, first language spoken,
GPA, SAT scores, and statement of intent to enroll. We joined the data with
a zipcode database and with this information added fields for the distance to
UCI and to other UC schools.

We ran all experiments on a Sun Ultra-5 with 128 MB of RAM. We used the
following parameter settings: The basic intervals were set with equal frequency
partitioning with 100 instances per interval for Adult, SatImage, and Shuttle, 2000
per interval for UCI Admissions, and 10,000 per interval for Census-Income. We
required differences between adjacent cells to be at least as large as 1% of N.
ME-MDL requires a class variable and for the Adult, Census-Income, SatImage,
and Shuttle datasets we used the class variable that had been used in previous
analyses. For UCI Admissions we used Admit = {yes, no} (i.e., was the student
admitted to UCI) as the class variable.
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Table 3. Discretization time in CPU seconds

Dataset MVD ME-MDL Apriori (10%) Apriori (5%)

Adult 65 541 44 104
Census-Income 11065 8142 Out of memory Out of memory
SatImage 127 36 0 4
Shuttle 77 318 1 2
UCI Admissions 370 772 131 204

6.1. Execution Time

Table 3 shows the discretization time for MVD, ME-MDL and the time taken
by Apriori at 10% and 5% support constraints to perform frequent set mining
on MVD’s discretizations. In all of the datasets MVD’s time was comparable to
ME-MDL. Both discretization processes usually took longer than Apriori but
they were not excessively slow. Census-Income was exceptionally difficult for
Apriori, which ran out of memory and could not mine frequent itemsets at 10%
support. We tried mining with 30% support but even at this increased support
level Apriori could not complete mining in reasonable time and we stopped it
after 10 CPU hours.

6.2. Qualitative Results

We believe that our approach of combining ranges only when they have similar
distributions will lead to a discretization that has meaningful boundaries while
still being sensitive to the underlying multivariate distribution. Although MVD
is not given any prior knowledge about what intervals are meaningful, we believe
that much of this information is implicit and can be obtained from other variables
in the data. We support this argument by examining the intervals found on the
Adult and UCI Admissions datasets shown in Figs 5 and 6. For each variable
the cutpoints for MVD and ME-MDL are superimposed on its histogram. The
numeric values for the cutpoints are listed in Table 4.

6.2.1. Discussion of MVD Results

We invite the reader to examine the discretizations in Figs 5 and 6 to find an
MVD interval that does not make sense or that is significantly different from
how the reader would discretize it manually using his or her own background
knowledge. While one may argue about the exact positioning of the cutpoints,
we feel that in general the results are sensible. In contrast, for ME-MDL it is
quite easy to find intervals that do not make sense. In this section, we focus our
discussion on three variables: age, parental income and capital loss.

Age. Consider the age variable shown in Fig. 5(a). The intervals for MVD are
narrow at younger age ranges and wider at older ranges. This makes intuitive
sense as the data represents many demographic and employment variables and
people’s careers tend to change less as they age. MVD had a breakpoint just after
60 and this probably corresponds to a qualitative change as many people retire
around this age.

The intervals found are very different from those that would be provided by
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Fig. 5. Discretization cutpoints for adult. (a, c, e, g) MVD. (b, d, f, h) ME-MDL.

equal width or equal frequency partitioning. Equal width partitioning with the
same number of intervals would result in breakpoints at approximately every 10
years. This would give less detail to the younger age group and more at older ages.
Equal frequency partitioning would also suffer from a similar lack of resolution
at young age ranges.

We have just argued that we should have more frequent intervals at younger
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Fig. 6. Discretization cutpoints for UCI admissions. (a, c, e, g) MVD. (b, d, f, h) ME-MDL.

age ranges because our intuition tells us that employment-related variables change
most in this time frame. MVD can also explain the boundaries chosen by keeping
track of the differences found by STUCCO and thus verify our intuition. For
example, our algorithm placed a boundary between people aged 19–22 and 23–24.
These are very narrow age ranges, but they also indicate two groups of people
that differ considerably, as follows:

– 3.4% of people aged 19–22 have a Bachelor’s degree, as opposed to 22.7% of
people aged 23–24.
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Table 4. Summary of Cutpoints. Variable names in parentheses represent the class variable used for
discretization in ME-MDL approach

Variable Method Cutpoints (<)

Adult
Age MVD 19, 23, 25, 29, 33, 41, 62

ME-MDL (salary) 21.5, 23.5, 24.5, 27.5, 29.5, 30.5, 35.5, 61.5, 67.5, 71.5

Capital-Gain MVD 5178
ME-MDL (salary) 5119, 5316.5, 6389, 6667.5, 7055.5, 7436.5, 8296,

10041, 10585.5, 21045.5, 26532, 70654.5

Capital-Loss MVD 155
ME-MDL (salary) 1820.5, 1859, 1881.5, 1894.5, 1927.5, 1975.5, 1978.5,

2168.5, 2203, 2218.5, 2310.5, 2364.5, 2384.5, 2450.5,
2581

Hours-Per-Week MVD 30, 40, 41, 50
ME-MDL (salary) 34.5, 41.5, 49.5, 61.5, 90.5

UCI Admissions
Parental Income MVD 17000, 30000, 51760, 75000

ME-MDL (admit) 36070, 199629.5, 388500, 400200, 443100, 455000,
493639, 988883

ME-MDL (sex) 55605, 161950, 392737.5
ME-MDL (year) 13136, 94799

GPA MVD 2.86, 3.22, 3.35, 3.50, 3.63, 3.83, 4.14
ME-MDL (admit) 1.265, 1.565, 1.70, 1.79, 1.87, 1.91, 1.99, 2.01, 2.73,

2.91, 3.00, 3.14, 3.20, 3.30, 3.39, 3.48, 3.60, 3.90, 4.13

SAT Verbal MVD 360, 440, 520, 600, 690
ME-MDL (admit) 215, 225, 255, 295, 345, 395, 435, 465, 525, 575, 595,

635, 675

SAT Math MVD 420, 500, 560, 610, 660, 740
ME-MDL (admit) 225, 245, 295, 305, 395, 445, 495, 555, 595, 655, 715

– 6.1% of people aged 19–22 are married as opposed to 17.0% of people aged
23–24.

– 18.9% of people aged 19–22 work in service jobs as opposed to 12.2% of
people aged 23–24.

Parental Income. The discretization boundaries found for parental income on
UCI Admissions data are shown in Fig. 6(c). Note that we plotted the logarithm
of the income for visualization purposes only; we did not transform the variables
before discretization. The MVD cutpoints occur at $17,000, $30,000, $51,760, and
$75,000. These are meaningful because we can easily relate these to our notions
of poverty and wealth.

In contrast, the ME-MDL discretization is not meaningful. Consider that it
grouped everybody with parental income between $36,000 and $200,000 together.
Additionally, ME-MDL had many cutpoints distinguishing applicants at the
upper range of parental income (i.e., over $400,000). Essentially, ME-MDL is
claiming that all applicants from $36,000 to $200,000 are identical with respect
to the Admit variable.

While this relation between Parental Income and Admit may be true, in-
come is also clearly related to other variables in the analysis such as scholastic
achievement and ethnicity. Figure 7 plots a sample of 500 points from each
of three different ethnicities against SAT Math and Income. Note that in the



Multivariate Discretization for Set Mining 507

3 3.5 4 4.5 5 5.5 6
200

300

400

500

600

700

800

log(Income)

S
A

T
 M

at
h

3 3.5 4 4.5 5 5.5 6
200

300

400

500

600

700

800

log(Income)

S
A

T
 M

at
h

(a) (b)

3 3.5 4 4.5 5 5.5 6
200

300

400

500

600

700

800

log(Income)

S
A

T
 M

at
h

3 3.5 4 4.5 5 5.5 6
200

300

400

500

600

700

800

log(Income)

S
A

T
 M

at
h

(c) (d)

3 3.5 4 4.5 5 5.5 6
200

300

400

500

600

700

800

log(Income)

S
A

T
 M

at
h

(e)

Fig. 7. Income, SAT Math and Ethnicity. (a) MVD. (b) ME-MDL. (c) Ethnicity 1. (d) Ethnicity 2.
(e) Ethnicity 3.

data there are actually 14 different ethnic categories but we show only three to
prevent clutter. Figure 7(c–e) shows each group individually and we can see that
there are significant differences in the locations of each ethnicity on the plane.
MVD focuses its cutpoints where the ethnic groups overlap and the distribution
is changing rapidly. In contrast, ME-MDL seems to concentrate on the extreme
ranges of Income and SAT Math.
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Capital Loss. Figure 5(e) shows the discretization boundaries found for Capital-
Loss on Adult. Capital-Loss is a very skewed variable with most people reporting
$0, but a small fraction of people reporting capital losses around $2000. In this
case, we believe that the cutpoints found by MVD are sensible and can be
interpreted as ‘Did the person declare a substantial capital loss?’ ME-MDL’s
cutpoints are almost pathological from a knowledge discovery viewpoint.

We ran Apriori using both MVD and ME-MDL’s boundaries for capital
loss (using MVD’s discretization for all other variables) and found that the poor
cutpoints chosen by ME-MDL can hide important association rules. For example,
with MVD’s cutpoint we were able to find rules such as capital loss > $155 →
salary > $50,000 (support 2.3%, confidence 50.1%). This rule states that declaring
a capital loss is strongly predictive of having a high salary. The base rate for
salary > $50,000 is 24% so the rule identifies a group with twice this probability.
We did not find any similar rules with ME-MDL’s discretization because it used
too many partitions, making it difficult for Apriori to infer relationships with
capital loss.

6.2.2. A Comparison of MVD and ME-MDL

MVD and ME-MDL differ substantially in how they form their discretization
intervals. A useful way of thinking about the differences is that MVD focuses on
the multivariate distribution for the purpose of developing a good discretization
for discovery. It tends to put boundaries where the distribution with respect to
the other analysis variables changes the most. ME-MDL focuses on the variable
being discretized for the purpose of classification. It concentrates on putting
boundaries where the distribution with respect to the class variable changes the
most.

Although we can use ME-MDL’s discretization for discovery, it was not
designed for this task and thus it suffers from a number of drawbacks. First,
ME-MDL is susceptible to finding non-meaningful cutpoints. For example, on
income it grouped everybody with parental income from $36,000 to $200,000
together. Second, ME-MDL has a tendency to concentrate on the extremes of
the marginal distribution and places many cutpoints which are often very close
together (e.g., GPA, Income, Capital Gain, Capital Loss, and to a lesser degree
SAT Verbal and Math). In MVD our similarity test is biased against very close
cutpoints because it requires that adjacent intervals not only be different, but also
be different by a certain minimum amount. Finally, ME-MDL requires an explicit
class variable and the discretization is sensitive to this. While being sensitive to the
class variable is probably good in a classification context, it is not for discovery.
Stability is essential for domain users to accept the discovered knowledge. For
example, in a manufacturing domain Turney (1995) found that the engineers
‘were disturbed when different batches of data from the same process result in
radically different decision trees’. The engineers lost confidence even when they
could demonstrate that the trees had high predictive accuracy. We discretized UCI
Admissions data with ME-MDL using sex and year as alternate class variables
and we found wildly different cutpoints. Using sex produced income cutpoints
at roughly {$55,000, $162,000, $390,000} and using year produced cutpoints at
{$13,000, $95,000}.

These results suggest that while ME-MDL may be extremely good for classi-
fication, it is perhaps not appropriate for knowledge discovery when the goal is
understanding the data.
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7. Limitations

Any test of differences has a limited amount of power, which is the ability to
detect a difference if it exists, and this affects MVD’s ability to properly discretize
data. The finite power is important because of the way MVD deals with the
resolution problem (i.e., if the intervals are too large we may miss important
discoveries that occur at a smaller resolution, but if the intervals are too small
we may not have enough data to infer patterns).

To deal with the resolution problem, MVD merges adjacent intervals when
it finds that there are no differences between them. This can occur for two
reasons: (1) there is actually no difference between the intervals, and (2) there is
a difference between intervals but because of limited power, the multivariate test
of differences cannot detect this.

This second case can cause problems with consecutive merges. For example,
consider three adjacent intervals i1, i2, and i3 on a single variable. It is possible
that i1 is significantly different from i3, but if i1 and i2 are merged into a single
interval the combination may not register as different from i3. Thus we might end
up with an interval containing i1, i2, and i3 even though i1 and i3 are significantly
different from each other. A simple example of this is to consider the case where
we are examining the heights of three people {5 ft, 5 ft 6 in., 6 ft} and let us say
that we are interested in height differences of 10 inches or more. Merging the first
two people into a single group results in an average height of 5 ft 3 in. which is
less than 10 inches from the third group.

8. Future Work

We presented a new approach to discretization based on using a multivariate test
of differences. This opens up many avenues for further research and we envision
extending the work presented here as follows.

First, we would like to experiment with different variants of our multivariate
test of differences. Our test is based on equation (1) and when combined with
search effectively represents a maximum over all possible subtractive differences.
We could also use alternative difference measures, such as using a ratio (e.g.,
support(C,G1)/support(C,G2) as in Dong and Li (1999)) or a different aggrega-
tion function (e.g., min, average, median).

Second, MVD uses a bottom-up merging algorithm and does not make
refinements once a particular discretization is found. We would like to experiment
with iterative improvement algorithms to refine a given set of cutpoints by either
merging two intervals that are similar or splitting one interval into two different
ones.

Third, we would like to extend the merging process for other data types.
Clearly one can think about merging geographic variables such as zipcodes,
country codes, area codes, etc. All that is needed is an adjacency matrix that
describes which values are physically connected. We can also consider merging
nominal values of an attribute together. For example, on a variable like occupation
one might merge civil and mechanical engineering together.

Finally, we are interested in integrating MVD within the mining algorithm.
Currently MVD is applied as a preprocessing step and this results in a discretiza-
tion that is static (i.e., does not change) and global (i.e., the same for all instances).
However, MVD can also be applied during the search process of the set-mining
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algorithm to obtain a dynamic and local discretization. Many set-mining algo-
rithms such as Max-Miner (Bayardo, 1998), OPUS (Webb, 1995), and STUCCO
use a search tree to keep track of the sets have been examined so far and the
sets that need to be examined in descendants of the node. At each node in the
tree we can consider all pairs of adjacent intervals and see if they should be
merged. We have integrated MVD within STUCCO and are currently examining
the relationship between merging and dynamical ordering of search operators.

9. Conclusions

Discretization inherently involves information loss about the underlying data
distributions. If discretization is not done carefully then it may cause set-mining
programs to miss important patterns either because the intervals chosen are at
too fine or coarse a resolution, or the intervals have ignored the interaction of
several features.

Our approach to avoiding these problems was to combine a bottom-up merg-
ing algorithm with a multivariate test of differences. We finely partition continuous
variables and then merge adjacent intervals only if their instances have similar
multivariate distributions. Merging allows us to automatically and adaptively
determine an appropriate resolution to quantize the data. Our multivariate test
ensures that only similar distributions are joined thus we do not lose patterns
even when they involve interactions between many variables.

Our experimental results on synthetic data indicate that our algorithm can
detect high-dimensional interactions between features and discretize continuous
data appropriately. On real data our algorithm ran in time comparable to a pop-
ular univariate recursive approach and produced sensible discretization cutpoints.
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