International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
Vol. 9, No. 5 (2001) 587-604
© World Scientific Publishing Company

TRADE-OFF BETWEEN COMPUTATION TIME AND NUMBER OF RULES
FOR FUZZY MINING FROM QUANTITATIVE DATA*

TZUNG-PEI HONG'

Department of Information Management, I-Shou University, Kaohsiung, 84008, Taiwan, R.O.C.
E-mail: tphong @isu.edu.tw

CHAN-SHENG KUO
Department of Management Information Systems, National Chengchi University,
Taipei, 11623, Taiwan, R.O.C.
E-mail: chansheng @mis.nccu.edu.tw

SHENG-CHAI CHI
Department of Industrial Management, Huafan University, Taipei, 223, Taiwan, R.O.C.
E-mail: scchi@huafan.hfu.edu.tw

Received August 1999
Revised February 2001

Data mining is the process of extracting desirable knowledge or interesting patterns from existing
databases for specific purposes. Most conventional data-mining algorithms identify the relationships
among transactions using binary values. Transactions with quantitative values are however
commonly seen in real-world applications. We proposed a fuzzy mining algorithm by which each
attribute used only the linguistic term with the maximum cardinality in the mining process. The
number of items was thus the same as that of the original attributes, making the processing time
reduced. The fuzzy association rules derived in this way are not complete. This paper thus modifies
it and proposes a new fuzzy data-mining algorithm for extracting interesting knowledge from
transactions stored as quantitative values. The proposed algorithm can derive a more complete set of
rules but with more computation time than the method proposed. Trade-off thus exists between the
computation time and the completeness of rules. Choosing an appropriate learning method thus
depends on the requirement of the application domains.

Keywords: data mining; fuzzy set; association rule; transaction; quantitative value.

1. Introduction

Most enterprises have databases that contain a wealth of potentially accessible
information. The unlimited growth of data however inevitably leads to a situation in
which accessing desired information from a database becomes difficult. Knowledge
discovery in databases (KDD) has thus become a process of considerable interest in
recent years, as the amounts of data in many databases have grown tremendously large.
KDD means the application of nontrivial procedures for identifying effective, coherent,

“This is a modified and expanded version of the paper "A fuzzy data mining algorithm for quantitative values,"
presented at The Third International Conference on Knowledge-Based Intelligent Information Engineering
Systems, 1999.
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Figure 1: A KDD Process

potentially useful, and previously unknown patterns in large databases [11]. The KDD
process [21] is shown in Figure 1

In Figure 1, data mining plays a critical role to the KDD process. It involves
applying specific algorithms for extracting patterns or rules from data sets in a particular
representation. Due to its importance, many researchers in database and machine learning
fields are primarily interested in this new research topic because it offers opportunities to
discover useful information and important relevant patterns in large databases, thus
helping decision-makers easily analyze the data and make good decisions regarding the
domains concerned. For example, there may exist some implicitly useful knowledge in a
large database containing millions of records of customers’ purchase orders over the last
five years. The knowledge can be found out using appropriate data-mining approaches.
Questions such as “what are the most important trends in customers' purchase behavior?”
can thus be easily answered. :

Data mining is most commonly used in attempts to induce association rules from
transaction data. An association rule is an expression X — Y, where X is a set of items
and Y is a single item. It means in the set of transactions, if all the items in X exist in a
transaction, then Y is also in the transaction with a high probability. For example, assume
whenever customers in a supermarket buy bread and butter, they will also buy milk.
From the transactions kept in the supermarkets, an association rule such as "Bread and
Butter — Milk" will be mined out. Most previous studies focused on binary valued
transaction data. Transaction data in real-world applications, however, usually consist of
quantitative values. Designing a sophisticated data-mining algorithm able to deal with
various types of data presents a challenge to workers in this research field.

Fuzzy set theory is being used more and more frequently in intelligent systems
because of its simplicity and similarity to human reasoning [20]. The theory has been
applied in fields such as manufacturing, engineering, diagnosis, economics, among others
[13, 20, 21, 29]. Several fuzzy learning algorithms for inducing rules from given sets of
data have been designed and used to good effect with specific domains [5-7, 10, 12,
14-16, 18-19, 25, 27]. Strategies based on decision trees [8] were proposed in [9, 23-25,
28]. Wang et al. also proposed a fuzzy version space learning strategy for managing
vague information [27].

In [17], we proposed a mining approach that integrated fuzzy-set concepts with the
apriori mining algorithm [4] to find interesting itemsets and fuzzy association rules in
transaction data with quantitative values. The term “itemset” was first proposed by
Agrawal et al. in their papers [1-4] on data mining, and from then becomes a common
usage in this field. It means a set composed of items. Our previously proposed algorithm
first used membership functions to transform each quantitative value into a fuzzy set in
linguistic terms. It then calculated the scalar cardinalities of all linguistic terms in the
transaction data. Each attribute used only the linguistic term with the maximum
cardinality in the mining process, thus keeping the number of items the same as that of
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the original attributes. The algorithm therefore focused on the most important linguistic
terms to reduce its computation time. Although this approach could quickly find
interesting patterns, some patterns might however be missed since only the linguistic
term with the maximum cardinality in each attribute was used in the mining process. This
paper thus modifies it and proposes a new fuzzy data-mining algorithm for extracting
interesting knowledge from transactions stored as quantitative values. The proposed
algorithm considers all the important linguistic terms in the mining process and can thus
derive a more complete set of rules than the method proposed in [17] although its
computation time increases. Trade-off exists between the computation time and the
completeness of rules. Choosing an appropriate learning method thus depends on the
requirement of the application domains.

The remaining parts of this paper are organized as follows. Agrawal et al.'s mining
algorithms are reviewed in Section 2. Fuzzy-set concepts are introduced in Section 3. The
flow charts of both the proposed and the previous methods are shown in Section 4 as a
comparison. The proposed data-mining algorithm for quantitative values is described in
details in Section 5. An example is given to illustrate the proposed algorithm in Section 6.
Experiments to demonstrate the performance of the proposed data-mining algorithm are
stated in Section 7. Conclusions and proposal of future work are given in Section 8.

2. Review of Agrawal et al.’s Data-Mining Algorithms

The goal of data mining is to discover important associations among items such that the
presence of some items in a transaction will imply the presence of some other items. To
achieve this purpose, Agrawal and his co-workers proposed several mining algorithms
based on the concept of large itemsets to find association rules in transaction data [1-4].
They divided the mining process into two phases. In the first phase, candidate itemsets
were generated and counted by scanning the transaction data. If the number of an itemset
appearing in the transactions was larger than a pre-defined threshold value (called
minimum support), the itemset was considered a large itemset. Itemsets containing only
one item were processed first. Large itemsets containing only single items were then
combined to form candidate itemsets containing two items. This process was repeated
until all large itemsets had been found. In the second phase, association rules were
induced from the large itemsets found in the first phase. All possible association
combinations for each large itemset were formed, and those with calculated confidence
values larger than a predefined threshold (called minimum confidence) were output as
association rules.

In addition to proposing methods for mining association rules from transactions of
binary values, Agrawal et al. also proposed a method [26] for mining association rules
from those with quantitative attributes. Their proposed method first determined the
number of partitions for each quantitative attribute, and then mapped all possible values
of each attribute into a set of consecutive integers. It then found large itemsets whose
support values were greater than the user-specified minimum-support levels. These large
itemsets were then processed to generate association rules, and rules of interest to users
were output.

In this paper, we use fuzzy set concepts to mine association rules from transactions
with quantitative attributes. The mined rules are expressed in linguistic terms, which are
more natural and understandable for human beings.
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3. Review of Fuzzy Set Concepts

Fuzzy set theory was first proposed by Zadeh in 1965 [30]. Fuzzy set theory is primarily
concerned with quantifying and reasoning using natural language in which words can
have ambiguous meanings. This can be thought of as an extension of traditional crisp
sets, in which each element must either be in or not in a set.

Formally, the process by which individuals from a universal set X are determined to
be either members or non-members of a crisp set can be defined by a characteristic or

discrimination function [30]. For a given crisp set A, this function assigns a value () to
every x € X such that

1 if and only if xeA
H A (x) = . .
0 if and only if =xeA.

Thus, the function maps elements of the universal set to the set containing 0 and 1.
This kind of function can be generalized such that the values assigned to the elements of
the universal set fall within specified ranges, referred to as the membership grades of
these elements in the set. Larger values denote higher degrees of set membership. Such a
function is called the membership function, 4 (x), by which a fuzzy set A is usually
defined. This function is represented by

X > 10,17,

where [0, 1] denotes the interval of real numbers from O to 1, inclusive. The function can
also be generalized to any real interval instead of [0,1].
A special notation is often used in the literature to represent fuzzy sets. Assume that

X; to x, are the elements in fuzzy set A, and p, to U, are, respectively, their grades of
membership in A. A is then usually represented as follows:

Azﬂllxl +‘U2/.X2 +...+,LLn/xn,

An o-cut of a fuzzy set A is a crisp set A, that contains all elements in the universal

set X with membership grades in A greater than or equal to a specified value of a. This
definition can be written as:

Ag={xeXlur ()2 a}.
The scalar cardinality of a fuzzy set A defined on a finite universal set X is the
summation of the membership grades of all the elements of X in A. Thus,

|Al= 3 p.(x)-

Among operations on fuzzy sets . are the basic and commonly used
complementation, union and intersection, as proposed by Zadeh.

(i) The complementation of a fuzzy set A is denoted by A, and the membership
function of —A is given by:
Uy ()=1-p_, (x), V xeX .

(ii) The intersection of two fuzzy sets A and B is denoted by A N B, and the member-
ship function of AN B is given by:
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U anp(x) =min {/.lA(x),ﬂB(x) }, V xeX .

(iii) The union of fuzzy sets A and B is denoted by A U B, and the membership function
of AUBis given by:

Hoa un(x)=max{/.t,,(x),ps (x) }, V xeX .

The above fuzzy operations will be used in the proposed mining algorithm to find
linguistic association rules.

4. The Flow Charts of the Proposed and the Previous Methods

The flow charts of the fuzzy data mining approaches proposed in [17] and in this paper
are respectively shown in Figures 2 and 3. The difference in these two figures is
distinguished by the grey regions. In Figure 2, only the linguistic terms with the
maximum count for each attribute are used to form the candidate set.
In Figure 3, all the linguistic terms are used. Linguistic terms belonging to the same
attribute cannot, however, belong to the same itemset. The computation in Figure 3 is
more complex than that in Figure 2 since all possible linguistic terms are used in
calculating the large itemsets, but the derived set of association rules in Figure 3 is more
complete than that in Figure 2.

5. The Fuzzy Data-Mining Algorithm for Quantitative Values
Notation used in this paper is first stated as follows.

n: the total number of transaction data;
m: the total number of attributes;
A ; : the j-th attribute, 1 <j<m;

| A ,~| : the number of fuzzy regions for A ; ;

R j, : the k-th fuzzy region of A ;, 1<k< IAJ'| ;
D : the i-th transaction datum, 1 <i<n;

v Ei): the quantitative value of A ; forD® ;

@) .

j s
fy : the membership value of vg‘) in RegionR ; ;

f ji).‘ the fuzzy set converted from v

. : 0 ‘i .
count the summation of fl.k’ fori=Ito n,

Q : the predefined minimum support level;

A : the predefined minimum confidence value;

C,: the set of candidate itemsets with r attributes (items);
L, : the set of large itemsets with r attributes (items).

The proposed fuzzy mining algorithm first transforms each quantitative value into a
fuzzy set of linguistic terms using membership functions. The algorithm then calculates
the scalar cardinality of each linguistic term on all the transaction data. The mining
process based on fuzzy counts is then performed to find fuzzy association rules. The
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Figure 2: The flow chart of the previously proposed approach
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details of the proposed mining algorithm are described as follows. Here we assume the
training data are directly fed into the proposed mining algorithm.

The Fuzzy Data Mining Algorithm:

INPUT: A set of n training data, each with m attribute values, a set of membership
functions, a predefined minimum support value ¢¢, and a predefined confidence
value 2 . '

OUTPUT: A set of fuzzy association rules.

STEP 1: Transform the quantitative value vS-i) of each transaction datum D ¢, i=1 to n,

for each attribute A;, j=1 to m, into a fuzzy set f ](i) represented as

g, 10

() . . . .
: o+ fi using the given membership functions, where

h J2 i

Ry is the k-th fuzzy region (linguistic term) of attribute A;, f j(,i) is vf) ’s fuzzy
membership value in region Ry, and [ (=| A; | ) is the number of fuzzy regions for
A;.

STEP 2: Calculate the count of each attribute region (linguistic term) Ry in the
transaction data:

count ; = 2 fjff) .
i=1
STEP 3: Collect each attribute region (linguistic term) to form the candidate set C;,
STEP 4: Check whether count it of each Ry (1<j<mand 1 <k< I A, I ) is larger than or

equal to the predefined minimum support value & . If R; satisfies the above
condition, put it in the set of large 1-itemsets (L;). That is:

Li={ Ryl count , > o, 1<j<mand I <k< \Aj‘ ).

STEP 5: IF L; is not null, then do the next step; otherwise, exit the algorithm.

STEP 6: Set r=1, where r is used to represent the number of items kept in the current
large itemsets.

STEP 7: Join the large itemsets L, to generate the candidate set C,,,; in a way similar to
that in the apriori algorithm [4] except that two regions (linguistic terms)
belonging to the same attribute cannot simultaneously exist in an itemset in G, .
Restated, the algorithm first joins L, and L, under the condition that r-1 items in
the two itemsets are the same and the other one is different. It then keeps in C,,;
the itemsets which have all their sub-itemsets of r items existing in L, and do not
have any two items R;, and R;, (p # q) of the same attribute R;.

STEP 8: Do the following substeps for each newly formed (r+1)-itemset s with items

(5, 8y, ey 8,,)inCrar:
(a) Calculate the fuzzy value of each transaction data D in s as
fs(") = fs](i )Afsgi AL Afs(i? , where fx(_") is the membership value

of D in region s;. If the minimum operator is used for the intersection,
then:
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W _ e £
fs" =Min £O.

(b) Calculate the count of s in the transactions as:

n
coum‘s=z £
=

(c) If count, is larger than or equal to the predefined minimum support value ¢,
putsinL,,;.

STEP 9: IF L,,, is null, then do the next step; otherwise, set r=r+1 and repeat STEPs 6
to 8.

STEP 10: Collect the large itemsets together.
STEP 11: Construct association rules for each large g-itemset s with items
(sl » S5 e S, ), q22, using the following substeps:
(a) Form each possible association rule as follows:
;A As As, A As, = s, ,k=1t0q.
(b) Calculate the confidence values of all association rules using:

5 £

=1 ‘
n (i) C () 5 @
El(f” AN fol s Fauh - AFD)

STEP 12: Output the association rules with confidence values larger than or equal to the
predefined confidence threshold A .

After STEP 12, the rules output can serve as meta-knowledge concerning the given
transactions. If testing data exist, they are then used to verify the accuracy of the
association rules mined.

6. An Example

In this section, an example is given to illustrate the proposed data-mining algorithm. This
is a simple example to show how the proposed algorithm can be used to generate
association rules for course grades according to historical data concerning students'

course scores. The data set includes 10 transactions, for simplification, are shown in
Table 1.

Table 1:The set of students’ course scores in the example

Case No. oop DB ST DS MIS

1 86 77 86 71 68
2 61 87 89 77 80
3 84 89 86 79 89
4 73 86 79 84 62
5 70 85 87 72 79
6 65 67 86 61 87
7 71 87 75 71 80
8 86 69 64 84 88
9 75 65 86 86 79
10 83 68 65 85 89
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Membcrshig

Value . Low Middle High

~

59 63 69 73 78 85 90 100 Score

Figure 4: The membership functions used in this example

Each case consists of five course scores: Object-Oriented Programming (denoted
OOP), Database (denoted DB), Statistics (denoted ST), Data Structure (denoted DS), and
Management Information System (denoted MIS). Each course is thought of as an
attribute in the mining process. Assume the fuzzy membership functions for the course
scores are shown in Figure 4.

In this example, each attribute has three fuzzy regions: Low, Middle, and High. Thus,
three fuzzy membership values are produced for each course score according to the
predefined membership functions. IF the transaction data in Table 1 are all used as the
training data, the proposed mining algorithm proceeds as follows.

STEP 1: Transform the quantitative values of each transaction datum into a fuzzy set.
Take the OOP score in Case 1 as an example. The score “86” is converted into a fuzzy set

(ﬂ_,_ 0.0 +_0'_7) using the given membership functions. This step is repeated for
Low Middle High

the other cases and courses, and the results are shown in Table 2.

STEP 2: Calculate the scalar cardinality of each attribute region (linguistic term) in
the transactions as the count value. Take the region OOP.Low as an example. Its scalar
cardinality = (0.0 + 0.8 + 0.0 + 0.0 + ... + 0.0) = 1.2. This step is repeated for the other
regions, and the results are shown in the bottom line of Table 2.

STEP 3: Each attribute region (linguistic term) is a candidate 1-itemset.

STEP 4: For each region (linguistic term), check whether its count is larger than or
equal to the predefined minimum support value & . Assume in this example, o is set at
2. Since the count values of OOP.Middle, OOP.High, DB.High, ST.High, DS.Middle,
DS.High, MIS.Middle and MIS.High are all larger than 2, these items are put in L; (Table
3).

STEP 5: Since L, is not null, the next step is then done.

STEP 6: Set r=1.

STEP 7: Join L, to generate the candidate set C,,;. C, is first generated from L; as
follows: (OOP.Middle, DB.High), (OOP.Middle, ST.High), ..., (DS.High, MIS.High).
Note that the itemset (OOP.Middle, OOP.High) is not kept in C; since both these two
items belong to the same course OOP.

STEP 8: Do the following substeps for each newly formed candidate itemset.

(a) Calculate the fuzzy membership value of each transaction datum. Here, the
minimum operator is used for the intersection. Take (OOPMiddle,
DB.High) as an example. The derived membership value for Case 1 is
calculated as: min(0.0, 0.0)=0.0. The results for the other cases are shown in
Table 4.
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Table 2: The fuzzy sets transformed from the data in Table 1

CaseNo.| OOP DB ST DS MIS
L M Hl L M H|L M H/ L M H|L M H
1 00 0.0 0.7} 00 0.7 0000 00 07/ 00 08 00|01 05 00
2 0.8 00 0.0] 0.0 00 0800 00 09f 00 07 00}00 04 02
3 00 0.1 05/ 00 00 09]00 00 07/ 00 05 0.1]00 00 09
4 00 10 0.0 00 00 0700 05 0.1f 00 01 0507 0.0 00
5 0.0 07 0.0 00 00 06 (0.0 0.0 0.8 00 09 0000 0.5 0.1
6 04 02 00 02 04 00|00 00 07 08 00 00|00 0.0 08
7 00 08 0.0} 00 00 0800 08 00 00 08 0000 04 02
8 00 00 0.7 00 06 0005 0.1 00f 00 01 0500 00 08
9 00 08 00| 04 02 00]00 00 07 00 00 07]00 05 0.1
10 00 02 04| 01 05 0004 02 00| 00 00 0600 00 09
Count 1.2 38 23] 07 24 38|09 16 46| 08 39 24|08 23 40

Table 3: The set of large 1-itemsets L, for this example

Itemset support
OOP.Middle 3.8
OOPHigh 2.3
DB.High 3.8
ST.High 4.6
DS.Middle 3.9
DS.High 2.4
MIS.Middle 2.3
MIS.High 4.0

Table 4: The membership values for OOP.Middle A DB.High

Case OOP.Middle DB.High OOP.Middle M DB.High
1 0.0 0.0 0.0
2 0.0 0.8 0.0
3 0.1 0.9 0.1
4 1.0 0.7 0.7
5 0.7 0.6 0.6
6 0.2 0.0 0.0
7 0.8 0.8 0.8
8 0.0 0.0 0.0
9 0.8 0.0 0.0
10 0.2 0.0 0.0

The results for the other 2-itemsets can be derived in similar fashion.

(b) Calculate the scalar cardinality (count) of each candidate 2-itemset in the
transaction data.

(c) Check whether these counts are larger than or equal to the predefined
minimum support value 2. Four itemsets, including (OOP.Middle,
DB.High), (DB.High, ST.High), (DB.High, DS.Middle) and (ST.High,
DS.Middle) , are thus kept in L, (Table 5).
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Table 5: The itemsets and their fuzzy counts in L,

OOP Middle DB High 22
DB_High ST High 22
DB High DS Middle 2.7
ST High DS.Middle - 2.8

STEP 9: IF L,,; is null, then do the next step; otherwise, set r=r+1 and repeat STEPs
6 to 8. Since L, is not null in the example above, r=r+1=2. STEPs 6 to 8 are then repeated
to find L;. C; is first generated from L,, and three itemsets (OOP.Middle DB.High
ST.High), (OOP.Middle DB.High DS.Middle) (DB.High ST.High DS.Middle) are
formed. Since all their counts are smaller than 2, they are not put in L;. L; is thus an
empty set. STEP 10 then begins.

STEP 10: Collect the large itemsets together. Here only L; and L, exist.

STEP 11: Construct association rules for each large 2-itemset using the following
substeps.

(a) Form all possible association rules. The following eight association rules
are possible:
If OOP.Middle then DB.High;
If DB.High then OOP.Middle;
If DB.High then ST.High;
If ST.High then DB.High;
If DB.High then DS.Middle;
If DS.Middle then DB.High;
If ST.High then DS.Middle;
If DS.Middle then ST.High.

(b) Calculate the confidence factors for the above association rules. Assume
the given confidence threshold A is 0.7. Take the fifth association rule as
an example. The fuzzy count of DB.High M DS.Middle is calculated as
shown in Table 6.

Table 6: The fuzzy count of DB.High M DS.Middle

Case DB.High DS.Middle DB.High M DS.Middle
1 0.0 0.8 0.0
2 0.8 0.7 0.7
3 0.9 0.5 0.5
4 0.7 0.1 0.1
5 0.6 0.9 0.6
6 0.0 0.0 0.0
7 0.8 0.8 0.8
8 0.0 0.1 0.0
9 0.0 0.0 0.0
10 0.0 0.0 0.0
count 3.8 39 2.7

The confidence factor for the association rule "If DB = High, then DS = Middle" is
then:
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10
DB .High DS .Middl
z o ddle D _2T 471
10 3.8
Y (DB .High )

i=1

Results for the other rules can be similarly derived.

STEP 12: Check whether the confidence factors of the above association rules are
larger than or equal to the predefined confidence threshold A . Since the confidence A
was set at 0.7 in this example, the following two rules are thus output to users:

(i) If the Database score is high, then the Data Structure score is middle, with a
confidence factor of 0.71;

(ii) If the Data Structure score is middle, then the Statistics score is high, with a
confidence factor of 0.72.

The two rules above are thus output as meta-knowledge concerning the given
transactions.

7. Experimental Results

Part of the customer purchase data from a supermarket of a department store in
Kaohsiung, Taiwan, were used to show the feasibility of the proposed mining algorithm.
A total of 1508 transactions were included in the data set. Each transaction recorded the
purchasing information of a customer. Execution of the mining algorithm was performed
on a Pentium-PC. The relationships between numbers of large itemsets and minimum
support values for A =0.3 are shown in Figure 5.

From Figure 5, it is easily seen that the numbers of large itemsets decreased along
with an increase in minimum support values. This is quite consistent with our intuition.
The curve of the numbers of large 1-itemsets was also smoother than that of the numbers
of large 2-itemsets, meaning that the minimum support value had a larger influence on
itemsets with more items. Also, appropriate minimum support values can avoid too many
large itemsets and uninteresting patterns.

——L
|—m—12

—&—13
—&— Total

Number of Large Itemsets

5 10 15 20 25 30

Minimum Support Value

Figure 5. The relationship between numbers of large itemsets and minimum support values using the proposed
method.



600 T.-P. Hong, C.-S. Kuo & S.C. Chi

Number of Large Itemsets

5 10 15 20 25 30

Minimum Support Value

Figure 6: The relationship between numbers of large itemsets and minimum support values using the previous
method.

60
50
40
30
20
10

—— 0.2 conf.
—8—(.3 conf.
—&— 0.4 conf.

Number of Association Rules

5 10 15 20 25 30

Minimum Support Value

Figure 7. The relationship between numbers of association rules and minimum support values.

The relationships between numbers of large itemsets and minimum support values
using the method in [17] are also shown in Figure 6 for comparison. It is obvious from
Figures 5 and 6 that the numbers of itemsets by the newly proposed method are larger
than those by the method in [17]. Our method can thus find more fuzzy association rules
although it needs more computation time than the previous one.

Experiments were then made to show the relationships between numbers of
association rules and minimum support values along with different minimum confidence
values. Results are shown in Figure 7.

From Figure 7, it is easily seen that the numbers of association rules decreased along
with the increase in minimum support values. This is also quite consistent with our
intuition. Also, the curves for larger minimum confidence values were smoother than



Trade-off Between Computation Time and Number of Rules for Fuzzy Mining 601

:g 120 |
g 100
€ %0 —&— 5 support |
g —&— 10 support
<V):) 60 —a— 15 support
gé 40 —&— 20 support
—qg 20
Z. 0
01 02 03 04 05 06 07 08 09 1
Minimum Confidence Value

Figure 8. The relationship between numbers of association rules and minimum confidence values.

those for smaller minimum confidence values, meaning that the minimum support value
had a large effect on the numbers of association rules derived from small minimum
confidence values.

The relationship between numbers of association rules and minimum confidence
values along with various minimum support values is shown in Figure 8.

From Figure 8, it is easily seen that the numbers of association rules decreased along
with an increase in minimum confidence values. This is quite consistent with our
intuition. The curves for larger minimum support values were smoother than those for
smaller minimum support values, meaning that the minimum confidence value had a
larger effect on the number of association rules when smaller minimum support values
were used. All of the various curves however converged to 0 as the minimum confidence
value approached 1.

Experiments were then made to measure the accuracy of the proposed mining
algorithm. The data set was first split into a training set and a test set, and the fuzzy
mining algorithm was run on the training set to induce the rules. The rules were then
tested on the test set to measure the percentage of correct predictions. In each run, 754
cases were selected at random for training and the remaining 754 cases were used for
testing. Results for different minimum support values and confidence values are shown in
Figure 9.

From Figure 9, it is easily seen that the mining algorithm run at a higher minimum
confidence value had a higher accuracy since the minimum confidence value could be
thought of as an accuracy threshold for deriving rules. The average accuracy of the rules
was also higher for a larger minimum confidence value.

Experiments were finally made to compare the accuracy of the proposed fuzzy
mining algorithm, the previous fuzzy mining algorithm, and the crisp-partition mining
method in which the possible values of each attribute were partitioned in a crisp fashion
and a traditional mining algorithm was used to mine association rules. The comparison of
accuracy for the minimum support value set at 10 is shown in Figure 10.

From Figure 10, it is easily seen that the accuracy of the proposed fuzzy mining
algorithm was higher than that of the crisp partition method and that of the previous

method in [17] for various minimum confidence values.
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Figure 10: The comparison of the accuracy of three mining algorithms

7. Conclusion and Future Work

In this paper, we have proposed a generalized data-mining algorithm, which can process
transaction data with quantitative values and discover interesting patterns among them.
The proposed algorithm can derive a more complete set of rules than the method
proposed in [17] although it needs more computation time. Trade-off thus exists between
the computation time and the completeness of rules. Choosing an appropriate learning
method thus depends on the requirement of the application domains. The proposed
algorithm can also solve conventional transaction-data problems by using degraded
membership functions. Experimental results with the data in a supermarket of a
department store show the feasibility of the proposed mining algorithm.

Although the proposed method works well in data mining for quantitative values, it
is just a beginning. There is still much work to be done in this field. Our method assumes
that the membership functions are known in advance. In [14, 16, 18], we also proposed
some fuzzy learning methods to automatically derive the membership functions. In the
future, we will attempt to dynamically adjust the membership functions in the proposed
mining algorithm to avoid the bottleneck of membership function acquisition. We will
also attempt to design specific data-mining models for various problem domains.
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