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Abstract. Many databases have grown to the point where they cannot fit into the fast memory of even large
memory machines, to say nothing of current workstations. If what we want to do is to use these data bases
to construct predictions of various characteristics, then since the usual methods require that all data be held in
fast memory, various work-arounds have to be used. This paper studies one such class of methods which give
accuracy comparable to that which could have been obtained if all data could have been held in core and which
are computationally fast.The procedure takes small pieces of the data, grows a predictor on each small piece and
then pastes these predictors together. A version is given that scales up to terabyte data sets. The methods are also
applicable to on-line learning.
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1. Introduction

Suppose that the data baseD is a large collection of examples(yn, xn) where thexn are
input vectors and theyn are class labels. What we want to do is use this data to construct a
classifier which can accurately assign a class label to future inputsx. But D is too large to
hold in the memory of any currently available computer.

What we show in this paper is that the aggregation of many classifiers, each grown on a
training set of modest sizeN selected from the data baseD, can achieve almost optimum
classification accuracy. The procedure, which we refer to as pasting votes together, has two
key ideas in its implementation:

(i) Suppose that up to the present,k predictors have been constructed. A new training set
of sizeN is selected fromD either by random or importance sampling. The (k+ 1)st
predictor is grown on this new training set and aggregated with the previousk. The
aggregation is by unweighted plurality voting. If random sampling is used to select the
training set, the training set is called anRprecinctand the procedure is calledpasting
Rvotes(R= random). If it is done using importance sampling, the training set is called
an Iprecinct and the procedure aspasting Ivotes(I = importance). The importance
sampling used (see Section 2) samples more heavily from the instances more likely to
be misclassified.

(ii) An estimatee(k) of the generalization error for thekth aggregatione(k) is updated.
The pasting stops whene(k) stops decreasing. The estimate ofe(k) can be gotten using
a test set, but our implementation uses out-of-bag estimation (Breiman, 1996).
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CART (Breiman et al., 1984) is used as a test bed predictor, but it is clear that pasting
votes will work with other prediction methods. In Section 2, we explore two versions
in classification-pasting Ivotes and pasting Rvotes. Using Rvotes is less complicated, but
pasting Ivotes gives considerably more accuracy. We experiment on five moderate sized
data sets. The accuracy of pasting Ivotes is compared to trees, single and multiple, grown
using the entire data set.

Section 3 applies a version of pasting Ivotes designed to minimize disk accesses to a
synthetic data base of a million records, each containing data on 61 variables. The total
disk access and read times were tallied together with the tree construction times and the
time needed to construct the Iprecincts. They had similar magnitudes. An analysis shows
that this version of pasting Ivotes scales up to terabyte data bases. In Section 4 pasting
Ivotes is applied to on-line learning using a synthetic data set as a test bed. Comments and
conclusions are given in Section 5 and a look at related work in Section 6.

2. Pasting votes

2.1. Method description

The simplest version of pasting is to select each training set of sizeN by random sampling
from the data baseD, grow the classifier, repeat a preassigned numberK of times, stop
and aggregate the classifiers by voting. This is certainly workable and cheap. If, after
aggregation, accuracy is checked on a test set, then further runs can be used to optimize the
values ofK andN. A more sophisticated version estimatese(k) after thekth aggregation
and stops whene(k) stops decreasing.

There are three methods that can be used to estimatee(k):

First: Set aside a fixed test set of examples inD. Run thekth aggregated classifier on the
test set. Estimatee(k) by the error on this test set.

Second: If T is the (k + 1)st training set, letr (k) be the error rate of thekth aggregated
classifier onT . SinceN is small,r (k) with be a noisy estimate ofe(k). Smooth it by
defininge(k) = p∗e(k− 1)+ (1− p)∗r (k). The valuep = 0.75 was used in all of our
experiments, but results are not sensitive to the value ofp.

If the total number of examples used in the repeated sampling of training sets gets
above an appreciable fraction of the number inD, the second estimate will be biased
downward because some of the examples in the (k+1)st training set will have been used
to construct the previous classifiers.

Third: To eliminate the bias in the second method, ifTh is thehth training set, and C(x, h)
the classifier for input vectorx constructed usingTh, then classify an example (y, x) that
is a candidate for the (k + 1)st training set by aggregating all of the classifiers C(x, h),
h < k + 1, such that (y, x) is not in Th. This is the out-of-bag classifier COB(x, k).
Estimate the errorr (k) as the proportion of misclassifications made by COB. Smooth the
r (k) as in the second method to get the estimateeOB(k).

Out-of-bag (OB) estimation is shown in Breiman (1996) to give effective estimates
of the generalization error. (Regarding OB estimation, see also Wolpert (1996) and
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Tibshirani (1996)) In the examples we run, both the test seteTS(k) and the estimate
eOB(k) are computed and compared. Also compared are two methods for selecting the
examples for the (k+ 1)st training sets.

Random: This is simple random selection fromD with all examples having the same
probability of being selected. Continue untilN examples are selected. The classifier
grown on this training set is called a Rvote.

Importance: In this procedure, an example(y, x) is selected at random fromD with all
examples having the same probability of being selected. Let COB(x, k) be the out-of-
bag classifier at stagek. If y 6= COB(x, k) then put this example in the training set.
Otherwise, put it in the training set with probabilitye(k)/(1− e(k)). Repeat untilN
examples have been collected. Refer to the classifier grown on this training sets as an
Ivote.

The rationale for the importance sampling procedure is that the new training set will contain
about equal numbers of incorrectly and correctly classified examples. The probability that
the next instance sampled is incorrectly classified and put into the training set ise(k). The
probability that the next instance sampled is correctly classified and put into the training set
is alsoe(k) = (1− e(k)) ∗ [e(k)/(1− e(k))]. The sampling probabilities change as more
classifiers are pasted together. In this respect it is an arcing algorithm, where arcing is an
acronym standing foradaptiveresampling andcombining (Breiman, 1998).

An apparent question is: if one wants to get equal numbers of misclassified and correctly
classified instances into a training set of sizeN, why not sample until we getN/2 of each?
One answer is that fore(k) < 1/2, the expected number of instances we have to sample
to accomplish this is about the same as the expected number needed using the rejection
sampling. The rejection sampling adds a randomness to the training set selection that may
be important in sequential sampling from large data bases (see Section 3).

Although the algorithm for importance sampling used here differs essentially from those
used in the Breiman (1998) paper where the entire data base was used to grow each
classifier, it retains the basic idea—put increased weight on those examples more likely
to be misclassified. The first effective arcing algorithm is due to Freund and Schapire
(1995, 1996) and named Adaboost (see also (Drucker & Cortes, 1996; Quinlan, 1996;
Breiman, 1997). An idea similar to pasting Ivotes was suggested by Schapire (1990) in
the context of boosting in PAC learning, but used a sequence of training sets increasing in
size.

In our experiments,N is taken to be a few hundred examples out of data sets having up to
43,500 examples; In four of the data sets we use in our experiments Adaboost-CART was
shown to have a lower overall error rate than any of the other 22 well-known classification
methods reported on in the Statlog Project (Michie, Spiegelhalter, & Taylor, 1994). The
fifth data base is the famous Post Office handwritten digit data on which Adaboosted CART
is competitive with hand tailored neural nets.

Two surprising and gratifying things emerge in the experiments:

(1) Pasting together Ivotes, each one grown using only a few hundred examples, gives
accuracy comparable to running Adaboost using the whole data set at each iteration.
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(2) The computing times to construct the pasted classifiers are very nominal, making the
procedure computationally feasible even for data bases much larger than fast memory.

Pasting never requires storage of the entire data baseD in core. Examples are selected,
tested, and pulled out to form the small training sets. TheK trees constructed to date need
to be stored. This takes about 14KN bytes—very workstation feasible. The trees produced
are not pruned—the aggregation seems to eliminate the overfitting. Each tree construction
takes orderMN log N flops whereM is the number of input variables.

The selection of the small training sets adds a computational burden. Assuming that
the estimated errore = e(k) is about equal to the true error rate over the whole database
ande< 1/2, the expected number of instances sampled from the database to form thekth
training set isN/2e (see Appendix). To decide whether to accept an instance, it must be
run through all trees constructed to date that do not use the instance in the training set. This
is accomplished as follows: For each instance, we store an integerNL equal to the tree
number when the instance was last run through the previous trees together withJ integers
nc(1), . . . ,nc(J) wherenc( j ) is the number of times the instance was classified as classj
in the run through the trees constructed prior toNL .

Then, to update thenc(1), . . . ,nc(J) the instance is passed through the trees constructed
from treeNL up to the last tree constructed. IfNB is the number of instances in the entire
database, then the expected number of flops needed to form the training set for each tree
construction is proportional to log(N) NB (see Appendix). For largeNB, this becomes
appreciable. But keeping track of which trees to run the instances through requires only
the updating ofNL and theJ-vectornc for each instance selected in forming the current
Iprecinct.

2.2. Pasting Ivotes

The data sets used these experiments are summarized in Table 1.
The first four of these data sets were used in the Statlog project and are described in

Michie, Spiegelhalter, and Taylor (1994). The last data set is the well-known handwritten
digit recognition data set. The data exists as separated into test and training set. The results
of 10cv-CART and Adaboost-CART are given in Table 2. On the digit data 100 iterations
were used in Adaboost. The other Adaboost results are based on 50 iterations.

To track the effect ofN, the size of the training sets, we ran pasting on all data sets with
N = 100,200,400,800. The number of total iterations was chosen, in each data set, to be

Table 1. Data set summary.

Data set Classes Inputs Training Test

letters 26 16 15000 5000

satellite 6 36 4435 2000

shuttle 7 9 43500 14500

dna 3 60 2000 1186

digit 10 256 7291 2007
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Table 2. Test set error (% misclassification).

Data set 10cv-CART Adaboost-CART

letters 12.4 3.4

satellite 14.8 8.8

shuttle 0.062 0.007

dna 6.2 4.2

digit 27.1 6.2

past the point of decreasing test set error. In letters, this was 1000, 500 for the digits data,
250 for the satellite data, 100 for the dna data, and 50 for the shuttle data. In these runs, we
kept track of the test set error, the OB estimates and compute times.

2.2.1. Test set error. The test set erroreTS(k) is computed by running the set aside test set
through the classifiers pasted together after thekth Ibite. These are shown in figure 1(a–e)
which give graphs of the test set erroreTS(k)at thekth iteration as a function ofk. Each graph
contains plots ofeTS(k) for N = 100,200,400,800. These can usually be distinguished
by the fact that for a given value ofk, test set error is highest forN = 100, and decreases
to N=800. The higher horizontal line is the error rate for 10cv-CART; the lower for
Adaboost-CART.

These conclusions can be read from the graphs:

Figure 1. Test set error (%): (a) letter data; (b) satellite data; (c) shuttle data; (d) dna data; (e) digit data.
(Continued on next page.)
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Figure 1. (Continued).
(Continued on next page.)
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Figure 1. (Continued).

(i) The test set error falls rapidly as the numberk of iterations increases, and then reaches
an asymptotic value for largek.

(ii) The accuracy in pasting Ivotes together is similar to that of Adaboost, especially for
the larger values ofN. For instance, the test set error percentages at the end of the
N = 800 runs are: letters 3.8%, satellite 8.7%, shuttle .007%, dna 3.8%, digit 6.5%.
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(iii) In all of the data sets, using even the smallest training sets (N = 100,200) gave test
set error comparable to or lower than 10cv-CART after a small number of iterations.

(iv) The effect of increasingN is data dependent. In the dna and shuttle data sets,N = 100
gives the same accuracy asN = 800. Generally, the asymptotic value is approached
faster in the largeN runs.

(v) In all data sets, the major decrease in test set error has occurred by 100 iterations. In the
letters data set, it appears as though the error is decreasing out toK = 1000, although
the decrease is small afterK = 200. In the other data sets, the decrease has stopped
by K = 200.

2.2.2. Monitoring and selecting using the OB estimates.Suppose that the out-of-bag test
set estimateseOB(k) are used to monitor the pasting procedures in the sense that we stop
when the values ofeOB(k) become flat and select the pasted classifier corresponding to the
lowest value ofeOB(k) seen to date. Then if we decide to stop afterk iterations, the true test
set error will beeTS(h(k)) whereh(k)=argmin{eOB(h), h = 1, . . . , k}. The loss in using
this method depends on how close or far apart the values ofeTS(k) andeTS(h(k)) are.

Figure 2(a–e) give plots ofeOB(k), eTS(k), andeTS(h(k)) vs. k for each of the five data
sets forN = 200. The plot ofeOB(k) can be recognized as the noisiest. The plots ofeTS(k)
andeTS(h(k)) lie of top of each other. In all five data setseTS(k) andeTS(h(k)) differ very
little. Using the out-of-bag estimates to select a pasted classifier works well. However, one
thing that emerges from these graphs is that whileeOB trackseTS quite well ask increases,
it may be systematically low or high.

Figure 2. Test set, OB, and minimum OB error estimates: (a) letter data; (b) satellite data; (c) shuttle data;
(d) dna data; (e) digit data.

(Continued on next page.)
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Figure 2. (Continued).

Initially, we thought that this bias might be due to the fact that for the same classifier, the
“true” test set classification error may differ from the “true” training set classification error.
That is, the data sets used above come already separated into training and test sets. It may
be that the test set is intrinsically either more or less difficult to classify than the training
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Figure 2. (Continued).

set. We ran a test of this hypothesis by interchanging test and training sets. The result is
that if the OB estimate is biased high on the training set, it is also biased high on the test
set. Our conclusion, after additional research, is that the bias comes from some complex
interaction of the data set and the importance sampling.
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In the initial stages of pasting, the out-of-bag estimates are usually too high. One obvious
cause is that sinceeOB(k) is a smoothed version of past out-of-bag estimates, it reflects the
earlier and higher values of the error. The less obvious is this: in data sets of moderate size
with low misclassification error, examples that are prone to be misclassified are used over
and over again in the Iprecinct training sets. These examples will tend to be out-of-bag
in a relatively small number of the Ivotes. Therefore, their misclassification rate will be
elevated. Another question in using Ivotes is how big to takeN. In general, it seems that the
bigger, the better. But takingN larger also slows down the compute time. The out-of-bag
estimates can be used to resolve this issue, since modulo a possible offset due to systematic
bias, they will track the true test set error consistently. That is, looking at the out-of-bag
estimates for differentN will give a fairly accurate idea of how much one buys by using
largerN.

2.2.3. Compute times.Table 3 gives the compute times per 100 iterations for the five data
sets by training set size. The times are scaled to a SUN Ultrasparc 2 and do not include the
time to load the data.

These times were computed from the total elapsed time of the run. Thus, if the run was
500 iterations, the time was divided by 5.

2.3. Pasting Rvotes

Pasting Rvotes does not work as well as pasting Ivotes. To illustrate, random sampling was
used on the five data sets to form training sets of sizeN = 200. The number of iterations
was set at the upper limits specified in Section 2.2. The final test set error was divided by
the corresponding test set error for pasting Ivotes. These ratios are given in Table 4.

These ratios are disappointingly large and show that pasting Rvotes is not competitive
with pasting Ivotes in terms of accuracy. Still, except for the shuttle data, pasting Rvotes
has lower test set error than 10cv-CART.

Table 3. Compute time per 100 iterations (min).

Data set N = 100 200 400 800

letters 15 0.24 0.59 0.84

satellite 0.06 0.12 0.26 0.55

shuttle 0.40 0.48 0.62 0.70

dna 0.10 0.18 0.43 0.47

digit 0.34 0.92 1.94 3.61

Table 4. Ratio of test set errors (Rvotes/Ivotes).

letters satellite shuttle dna digit

2.41 1.32 73.95 1.26 1.68
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2.4. Of-bag can’t be ignored

Keeping track of which examples are in and out-of-bag is a simple but extra complication. A
natural question is what happens if this complication is ignored and all incoming examples
treated as if they had never been seen—that is, everything is out-of-bag. If the database is
semi-infinite, so that duplicate examples in the training sets used in the pasting is infrequent,
then this works. But if the database is finite in the sense that duplication is not infrequent,
then performance degenerates.

One consequence is that the error, being a resubstitution estimate, is increasingly biased
low and generally goes to zero as the iterations continue. Then the Iprecincts have to search
more instances to find enough misclassified ones and the procedure bogs down. For instance,
using the letters data andN = 400, it bogged down at around 90 iterations with a test set
error of 10.3, almost twice as large as the error gotten using out-of-bag.

3. Minimizing disk access—An alternative version

A point strongly made by the referees is that the timings given in Section 2 excluded the
many random disk accesses needed and that the time taken by these would swamp the cpu
times. This point was valid and to deal with it, the following algorithm was constructed.
Let a record consist of all data for a single instance.

(a) read a record
if at eof, rewind
check to see if instance is acceptable
if the number of instances accepted is<N, goto (a)
construct tree
goto (a)

The algorithm stops after a specified number of trees have been constructed or after a
specified number of epochs, where an epoch consists of running through the entire database
from beginning to a rewind.

The records are read sequentially, so no random accesses are required. To get an idea of
the times needed in a larger database, one million instances of synthetic data with 61 input
variables and 10 classes was generated, comprising about 250 Mbyte. For a description
of this data, see the Appendix. We setN = 1000 and ran for one epoch with 310 trees
constructed. On a 10,000 instance test set the error rate dropped to 17.1%. (Constructing
a single tree using 100,000 instances resulted in 21.1% test set error). We kept track of the
disk read and access times, the time to select instances for the training sets and the time for
tree construction. These are tabled below for one epoch.

The machine used is a 250 MHz Macintosh. The total time for the epoch was about
50 min, and the dominant factor is not the disk reads, but the selection cpu usage. The
select time is sublinear at the first, and then becomes linear in the number of trees. The
disk read and tree construction times are linear. LetR= NB/N. Per epoch the select time
TS is proportional to 2eNlog(N)R2. The tree timeTT is proportional to 2eM log(N)NB.
Dividing givesTT/TS = cM/R (see Appendix). From Table 5, it appears thatc is about 3.
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Table 5. Accumulated times—one epoch (sec).

Disk time Selection time Tree time Total

797 1829 333 2949

3.1. Scaling up

To get some idea of how the above algorithm scales up, assume a database withNB = 108

records such that each record contains data forM = 103 variables. Assuming numerical
variables, this is about half a terabyte. Also assume that 2e= .1. From Table 5, it took 333
seconds to construct trees for one epoch withe= 0.2, M = 61, N = 1000, andNB = 106.
Thus, the tree construction time for an epoch of the larger data set usingN = 105 is about
TT = 62.5 h on my Macintosh. Making the assumption that we are using a server five times
as fast as my machine gives an epoch tree building time of about 12 h.

Using cM/R for the ratioTT/TS with c = 3 leads toTS = .33TT . So add 4 h to the
running time. Allow about the same magnitude for disk read time, say 16 h. Then, the time
needed is about 32 h per epoch—reasonable for a half terabyte database. This is only about
double the time needed to sequentially access the entire database. No other algorithm that
accesses the entire database can improve on this time by more than 50%.

These results depend on theMN log(N) time for tree construction. The Appendix gives
justification. One consequence of theMN log(N) time is that even if there was a machine
with a terabyte of RAM, constructing a tree using the entire database would take over 11
days on a server five times as fast as my machine.

Here is how memory scales up. Keeping track ofNL andnc(1), . . . ,nc(J) requires about
2JNB bytes. ForJ = 2, this comes to about 0.4 of a Gbyte. The training set consists of
105 records, each containing 1000 4-byte variables—another 0.4 Gbyte. Storing all trees in
an epoch costs aboutNB bytes—100 Mbytes. The only memory requirements that expand
as we go to multiple epochs is the number of trees stored. But this is the least memory
extensive requirement. Since gigabyte servers are getting common nowadays, the scaling
on memory is reasonable.

3.2. Accuracy of the alternative

An important question is how much accuracy is lost using this less randomized alternative
(version 2). Our experimental results indicate that the loss is small. We ran version 2 on
the databases used in Section 2. Training set sizes of 800 were used and the algorithm
run for the same number of trees as used by version 1 in reaching the optimum result. A
comparison of the test set errors at the end of the runs is given in Table 6.

3.3. A caveat

Version 2 will not work if the database has a highly non-uniform distribution of classes.
For instance, if all class 1 instances come first in the database. If this structure is known, it
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Table 6. Comparison of test set error (%).

Data set Version 1 Version 2

letters 3.8 4.3

satellite 8.7 9.4

shuttle 0.007 0.000

dna 3.8 5.4

digit 6.5 6.4

can be dealt with using additional disk accesses. For instance, a sequential disk read could
be used to acceptN/2 class 1 instances, and then jump to the last accessed class 2 instance
and do a sequential read to accept the otherN/2 instances. This costs two disk accesses
per tree constructed.

4. On-line learning

In situations where there is a steady flow of new examples being formed, incremental or on-
line learning research has focused on the continual updating of a prespecified architecture.
For instance, given a flow of examples how is a neural net with specified architecture updated
as each new example occurs? Or given a binary tree structure, find efficient ways to update
the tree as new examples are added. There has been research on incremental decision tree
building starting with Utgoff (1989).

What we propose instead is to do on-line learning by the steady pasting on of new Ivotes.
Thus the architecture grows as the information flows in. The drawback is that the storage
requirements cannot be set in advance. Ivotes are added until an asymptote is reached. But
this is offset by two important advantages—accuracy and speed. As seen in the previous
section, pasting Ivotes gives generally low test set error. Further, the compute times required
per example are small.

In on-line learning the possibility of a sampled example being sampled again is zero.
This simplifies the algorithms. In forming test set error estimates, one can assume that
none of the incoming examples have been previously used in a training set. Similarly, in
deciding whether an incoming example is correctly classified or not, we can assume that it
has not previously been used as a training example.

The on-line procedure generates training sets of sizeN in the way similar to the Section 2
method. But instead of dealing with a fixed databaseD, there is a flow of incoming examples.
As the new examples come in, they are checked to see how they are classified by the current
pasted together classifier. If misclassified, they are accepted into the training set. If not,
they are accepted with probabilityeTR/(1− eTR). Continue this procedure until there are
N examples in the training set. The error estimateseTR(k) are computed as the smoothed
version ofr (k), wherer (k) is the proportion of misclassified examples found in forming
thekth training set.

To study on-line performance, 10 class, 61 input synthetic data was manufactured (see
Appendix). Before going on-line, a test set of 5000 examples was generated. At thekth
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Figure 3. On-line synthetic data: (a) test set error (%); (b) training set error estimates (%).

iteration, botheTS(k) andeTR(k) are computed. Again, we useN = 100,200,400,800.
Figure 3(a) shows the test set errors vs. the number of iterations out to 250 iterations. All
the test set plots show a rapid decrease to an error of about 20% followed by a slow decrease.
Although we stopped at 250 iterations, the test set error was still slowly decreasing. To
see what happens if we kept going, we did theN = 400 pasting out to 750 iterations. The



100 L. BREIMAN

test set error dropped from 17.7 at 250 to 16.6 at 750. In application, there is usually no
test set available, and the stopping decision must be made on the basis of theeTR values.
Figure 3(b) plots the values ofeTR for the 250 iterations. The values are noisy and need
more smoothing, but generally agree with the test set values.

4.1. A modification to bound compute times and memory requirements

At the (k+ 1)st iteration each candidate example for the training set has to be passed down
k trees. The compute time to do this for thekth iteration increases linearly withk, and the
total compute time increases quadratically withk. Furthermore, the memory used grows
unboundedly.

This is not as problematic with finite data sets, since the out-of-bag condition bounds the
number of trees used to classify each candidate example and the size of the run is limited. To
explore a possible remedy for the problem in on-line learning, we revised the procedure so
that the Iprecinct training set is selected based only on the misclassifications in the pasting
together of the lastKB trees whereKB is set by the user. The compute times now increase
linearly. At 500 iterations the total compute time usingKB = 100, andN = 400 is 8.3 min
compared to 22.0 min for the unrestricted procedure.

The final test set error is similar—17.2% for the unrestricted vs. 17.4% for the restricted
version. One drawback is that theeTR estimates in the restricted arcing now reflect the
accuracy of the lastKB Ivotes, instead of all Ivotes. Therefore they have a pessimistic
bias. In the original procedure, the final value ofeTR is 18.0%. In the restricted procedure
it is 19.8%. Further experiments are needed to see if theKB restriction gives generally
satisfactory results and whether the pessimistic bias ineTR can be corrected. If it works,
then the memory requirements for the on-line learning can be bounded.

5. Comments and conclusions

Our prime conclusion is that pasting small Ivotes together is a promising approach to
constructing classifiers for large data sets and for on-line learning. On the data sets we
experimented with, it is fast, accurate, and has reasonable memory requirements. It will
scale up to terabyte databases. Its performance raises interesting issues and possibilities.

The increase in accuracy using Ivotes as compared to Rvotes is newsworthy. It empha-
sizes that in classification, concentrating on the examples near the classification boundaries
pays off in terms of reduced generalization error. The importance sampling approach used
here is differs from the Freud-Schapire algorithm. In Adaboost sampling weights for the
entire training set are updated in terms of the classifications done by the last classifier con-
structed. In pasting Ivotes, the sampling for the new training set is done on the basis of the
classifications of the entire past sequence of classifiers and the current estimate of test set
error.

The process of creating Iprecincts does not depend on the classifier used—it is simply a
method of forming the successive training sets. This leads to a question that will be explored
in the near future: suppose that there are a number of classifications methods available in
our repertoire, i.e., trees, nearest neighbor, neural nets, etc. Suppose that each of these is
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run on theK th Iprecinct and one is selected to paste onto the previous classifiers. Can this
significantly upgrade performance over the use of a single type of classifier?

6. Related work for large databases

There has been much interest lately on prediction in large databases. A good survey of is
given by Provost and Kolluri (1997a, 1997b). Interesting related work appears in Chan and
Stolfo (1997a, 1997b). Their approach, called meta-learning, is to split the data set into
pieces, run a classifier on each piece and then to grow a tree that arbitrates or combines the
different classifiers. Meta-learning is shown to give good accuracy on two moderate sized
databases, but no timings are given.

Provost and Hennessey (1996) distribute the data over multiple workstations, run a rule
learning program on each and then use an algorithm to select a subset of the rules gener-
ated. Timings were done on what they characterized as a massive database—over 1,000,000
records with 31 variables per record. Using 5 Sparc10 workstations, the run took about
1200 sec. Since their database is about half of the size of the synthetic database used in
Section 3, the times are comparable. Modifications of the basic algorithm are suggested
that cut the computing time significantly. No data was given concerning the accuracy
of the basic or modified algorithm. This paper also contains a nice summary of earlier
work.

Breiman and Spector (1994) distributed construction of CART out to a workstation
network where each workstation owned a subset of the variables. The vector of the values
of each variable was sorted once and converted to ranks which eliminated the need for
further sorting at the nodes. At each node, each workstation searched its variable rankings
for the best split and reported the decrease in Gini due to that split to the master machine.
The master machine reported the best split to all slave machines, and they rearranged
the their variable rank values to correspond to the two new nodes. Unfortunately, with a
10 Mbyte network, the communication time proved to be a bottle neck and performance
degenerated if more than five machines were used. We plan to rerun on our recent 100 Mbyte
network.

Shafer, Agrawal, and Mehta (1996) design SPRINT—a clever parallel version of decision
tree construction based also on sort once at the top. To get timings they generated a synthetic
1,600,000 instance database with 9 variables per instance. Using a 16 node IBM SP 2 Model
9076 with the cpu’s running at 62.5 MHz, growing a tree took 375 sec. On the same database
pasting Ivotes, using training sets of size 1600, took 242 sec for an epoch (22 trees) on the
250 MHz Macintosh. Of this 242 sec, 71% was disk read time, 27% the select time and
2% the tree construction time. Their paper does not specify accuracies so comparison is
not possible.

Appendix

(a)Synthetic data: Let w(k,m) be a triangular function inm, with a maximum of 10 at
m = 10k, becoming zero at 10k − 10,10k + 10, and zero form outside this range.
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There are 10 distinct subsets of size 3 of the integers{1, 2, 3, 4, 5}. Assigning each of
these subsets to a class and denote byT( j ) the subset assigned to classj . Then the 61
dimensional inputs corresponding to classj are given by:

x(m) =
∑

k∈T( j )

zkw(k,m)+ um

where theum are independent mean zero normals with sd=10, and thezk are independent
mean zero normals with sd=1.

The data for each of the classes has a multivariate 61-dimensional mean-zero normal
distribution. The optimal classification scheme for this data is quadratic discrimination,
and the curved classification boundaries are hard for trees to approximate.

(b) Tree construction is MNlog(N) cpu time: My present version of CART, which dates
from Breiman and Spector (1994) sorts all variables only at the root node using Quick-
sort and replaces them by their ranks. This takes aboutMN log(N) flops. Then at each
node, the best split is found by a sequential search through the ranks of each variable.
This takes time aboutM∗(node population). At each tree depth, the flops needed to split
each node at that depth isMN. Assuming a balanced tree, the tree grows to depth log(N)
adding anotherMN log(N) flops.

Some empirical support comes from this fact—evaluate the constantc in c MN log(N)
using a training set of size 1000 of my 61 variable synthetic data. Consider running on
10,000 instances of the 9-variable synthetic data used in the Shafer, Agrawal, and Mehta
(1996) paper cited in Section 6. Then the predicted time is 2.1 sec. The actual time is
1.5 sec. The faster than predicted run time on the SPRINT data was probably due to
the many tied values in each variable. CART does not compute the floating point Gini
update on values tied with the value ahead. So the effective number of operations per
tree level is smaller thanMN.

(c) Select time: Assume e<1/2. The expected number of picks untilK incorrectly
classified examples are selected isK/e. So the number of picks untilN/2 examples
are selected isN/(2e). But in selecting theseN/2 incorrects,N/2 corrects are also
gathered. Therefore, the total number of selections needed for a training set of sizeN is
aboutL = N/(2e). So in constructing each tree,L instances are drawn at random out
of NB.

For any given instance, the probability that it appeared in the last draw isP = L/NB.
The probability that it occurred lastI draws ago isP(1− P)I −1. The expected number
of draws ago that it last occurred is 1/P. On average, each instance used in constructing
the current tree has to be run through 1/P trees. It takes about log(N) flops to run an
instance down a tree built usingN instances. To construct a tree,L instances need to be
checked. Therefore, it takes time proportional to log(N)L/P = log(N)NRto check the
instances needed to grow a tree, whereR = NB/N. Since construction time for each
tree is proportional toMN log(N), this results inTT/TS = cM/R.
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