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In induction graphs methods such as C4.5' or SIPINAZ, taking con-
tinuous attributes into account needs particular discretization procedures.
In this paper, we propose on the one hand, an axiomatic leading to a set of
criteria which can be used for continuous attributes discretization, and on
the other hand, a method of discretization called FUSINTER. The results
obtained by FUSINTER are compared to those obtained by techniques
developed by Fayyad and Irani® and Kerber? and they have proved better
for the majority of the examples studied.
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1. Introduction

In a machine learning problem, we generally wish to dispose of reliable meth-
ods, that do not modify the data structure, that do not require very high statisti-
cal hypotheses and that provide models easy to interpret. Among the techniques
which correspond best to these characteristics, induction graphs take an impor-
tant place. For example, there is the segmentation by binary tree®, C4.5! that
provides a decision tree, SIPINA? which provides a decision graph, ...

Initially, those methods have been conceived for categorical attributes, i.e
for attributes that take their values in a discrete set of finite cardinal. In a
sociological investigation for example, the “sexual” attribute takes its values in
the set {male, female}. If, as it is often true, the variable is continuous, so it
is discretized. This consists in cutting its field in a finite number of intervals,
and each interval will be identified by a different code. The attribute being thus
made categorical, it can be used in the process of induction graph process.

The choice of the discretization technique has important consequences on the
induction model which will be built. In this paper we propose a new method
called FUSINTER whose performances have proved better than others achieved
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by Chi-Merge* or MDLPC® which are the most quoted in machine learning
literature® 78 9.... ‘

The presentation of this article is made in seven points. In section 2, we will
fry to give a precise formulation of the discretization problem of a continuous
attribute. We will, of course, find ourselves in the context of the methods we
have just evoked i.e those in which we deal with a pattern recognition problem
by supervised learning. In section 3, we will evoke methods which are said un-
supervised, that is, those which do not use the information related to classes
for which we are researching a predictive model. These techniques choose a cut
point, either in an arbitrary way or with a view to optimizing a criteria. We
must precise that, in this case, only the information related to the attribute we
have to discretize is taken into account. In section 4, we present the two super-
vised methods which seem the most performing ones. These are the Chi-Merge
method?, and MDLPC3. We establish a criticism showing the limits of these
methods on concrete illustrations. Section 5 will be devoted to the presentation
of the FUSINTER method. We are showing how this one properly handles the
limits of MDLPC and Chi-Merge. In section 6, we propose a comparison be-
tween the three methods. To do that, we use artificial and real data sets. In
section 7, we shall discuss the results of this research and its interests in the
frame of the induction graph process.

2. Discretization

2.1. Notations

Let X(.) be a statistical attribute taking its value on the straight line of the
real numbers IR. For any example w taken from a training sample noted Q, X (w)
stands for the value taken by this example on the attribute X(.), (X{w) €RR).
To fix our mind, let’s suppose that X(.) stands for the height of a person in cm.
X(w) = 182.3cm means that the person w is 182.3cm. Generally, in machine
learning problem, we dispose of several numeric and categorical attributes. They
are called, according to the various fields, exogenous variable or explicative
attributes. In any problem of supervised learning, we also dispose of a particular
statistical variable noted Y'(.). It stands for the belonging class of the examples.
We try to define its values by a model. It is called endogenous variable, class
or concept, according to the disciplines. Unlike exogenous attributes, Y (.) is a
variable supposed to be categorical. It takes its values in a finite and discrete
set called “label set” and noted F = {y1,..., ym}. If the example w is labeled
Y;, then, we will say that it belongs to the y; class and we will write Y (w)=y;.
The value of Y'(.) is supposed to be known for all the examples of the training
sample Q. In a machine learning problem, we aim at building a model M which
would enable us to calculate the value of Y(.) thanks to the attributes ones :

Y()=MX1(), ..., Xp()

In the particular case of the induction graphs, this model is expressed by a
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decision graph; in rule induction from example, this model is a set of production
rules.

2.2. Formalization

Let Dx be the definition field of X(.). Discretizing the attribute X(.) is
to cut Dx with a set of threshold values d;. We obtain & intervals I; (j =
1,...,k; k> 2) which are numbered from 1,...,k.

IL = [do,dl[
I; = [dj—1,d4]
I = [dk-1,di]

Once these threshold values are found, the continuous attribute X (.) is re-
placed by a categorical attribute X(.) which takes its values in the set {1,..., k}.
Thus, Yw € £,

if

di-1 < X(w) < d;
then

Xw)=3j

3. Unsupervised methods

Unsupervised methods do not bother about knowing whether the intervals
resulting from a discretization are interesting in relation to the class. Only the
information relative to the attribute X(.) is taken into account regardless of any
other attribute.

Among the most basic methods, we can quote the one which consists in
determining k arbitrarily and in building k intervals of equal ranges, or the one
which makes a subdivision of d into k intervals of equal size. The unsupervised
discretization can be apprehended in a more complex way. Lafaye!® regards it
as a problem of sorting and separating intermingled probability laws where each
mode characterizes a particular law. The existence of an optimum analysis was
studied by Teicher'!, Yakowitz!2.

In this perspective, many discretization techniques have been proposed.
Dorofeyuk®® and Lafaye'® list the main ones and show their limits which are
generally due to very high statistical hypotheses and which are seldom checked
on real data. Some of those proposed methods are recent!.
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4, Supervised methods

4.1. General formalization

The supervised methods search for discretization points of the attribute X (.)
taking the values of Y'(.) into account. Indeed, in the way that the final goal
is to build a model which enables to predict the value of Y (.), it seems natural
to search for the discretization points which bring us closer to this situation,
where each interval of the discretization will have to contain exclusively examples
possessing the same class label Y(.). Hence the new formulation of the objective:

o we have to cut the field of definition d of X(.), into the intervals I; (j =

1. kk>2).
I = [do, di]
}j = [dj-1,d4]
:Ik = [di—1,dk[
such as

VLi=1,.., k), 3y e{y, ...um} / Plu/) =1

Let us precise that no hypothesis on statistical distribution of P(Y(.)/I;) can
be made. The probabilities P(y;/I;) can be, for instance, estimated empirically
by f{y/I;), the frequency of the class y; in the interval I;.

Card{iw e ; X(w) € [;,Y(w) =y}

fw/L) = Card{w € ;X (w) € I;}

Let us imagine that no examples superpose :
V(w,w') € 9% X(w) # X()

A simple solution consists in cutting Dx into as many intervals as there are
examples in the sample set. Since each example only belongs to one class and
considering the hypothesis that no points superpose, we have thus :

VLG=1,.. k), Aywe{y, - ,umb flw/l) =1

This discretization is not interesting of course since the probabilities have
been estimated each time on one example. Refusing this procedure shows us
that the solution of the discretization problem does not exist necessarily. In-
deed, if the examples sorted according to their value of X (.) take different and
alternate values on Y (.), so the only discretization which correspond to the ob-
jective defined previously consists in adopting the simple division (one example
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for one interval) we have rejected. Any discretization must thus lead to intervals
containing a sufficient number of examples. Before discretization methods pre-
sentation, we are going to introduce some notations which will make the writing
easier.

Let us consider for X(.) a division into k intervals and :

1. Let n;; be the number of training examples which are in the interval I;
and which belong to the class y;,

ni; = Card{w € 4, X(w) € I;,Y (w) = u:}

2. Let n ; be the number of the examples which are in the interval I;.
m
FEDIT
=1

3. Let n;. be the number of examples of the class y;,

k
ni = E nij

ji=1

4. n be the number of the sample.

m
n= E n;,
i=1

To each discretization in k intervals we can associate a matrix T of m lines
and k columns. The lines correspond to the classes and the columns to the
intervals.

11 N2 Nik

n21 N2 N2k
T= .

Nm1 NMm2 P

We note T} all the column j of the matrix T

T}:
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In some passages of this article, to be clearer, we adopt the following writing
for T :

T= (T17'~')2}J"'1Tk)

4.2. The methbd based on the MDLPC Criterion

It was proposed by Fayyad and Irani® and uses an information criterion
called Minimum Description Length Principal Cut. This is a top down method:
Dx is divided into two intervals which are in their turn divided each into two
intervals and so on until a certain stopping rule. First, we describe the main
steps of the algorithm. Second, we present the MDLPC criterion.

4.2.1. The steps of the discretization algorithm based on the MDLPC

1. : All examples are sorted according to the increasing values of X(.) making
thus runs of points identified by their class.

2. : Each run of points of a same class forms an interval.

3. : If several classes are superposed on a same value of X(.), then the
associated interval will be reduced to this unique value and unlike other
intervals, this one will contain a mixing of classes. For example, on the
figure 1, the fourth interval contains three examples among which two
come under the class represented by "x” and one belonging to the one

”.

noted "0”.
didz I di dss
'l xxzx xxax 0000 ©Oo0o0lXiol
P ITIXXXIEXIXX 00000 0 000 H
x;ogxxxxxxxxxx 00000 00 Coio X!
[ i i gl t
1;2;3456789012"3§ !:=9;012;345578901234557:3;9§0=X(‘)

Figure 1: Definition of the runs I; and potential discretization points d; in a
population divided up into two classes : "o” and x”.

4. : The discretization point is necessarily taken from the boundary point d;
of the intervals made up at the steps 2 and 3.

5. : Among the k points of discretization, we look for the one which leads

to the "bi-partition" checking best the condition based on the M DLPC
criterion.

6. : The fifth steps is renewed on each of the two sub-populations.

7. : The process stops as soon as no improvement is possible. The result of
the algorithm on the data of figure 1 is represented in picture 2
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I g b g‘i, 5 g, I, a &
- G e e e Y v N
IXX XXX ox'oxooi o 0000 000XO
IXIIXIXXXIIILOXOXOX X0 00000 0000XOX
TOXIIIXIXIXTIXLOXOXAX X0 00000 0000{0XO0X _
: »
1234667880223 45676901234567890123456(7880 X0

Figure 2: The MDLPC criterion leads to a five-interval discretization I,

(=1,...

5).

4.2.2. The MDLPC criterion
Let us go to the fourth stage of the algorithm with k intervals generated by

the boundary points d;(j = 1,...

, k). We are looking for the discretization point

d; which leads to the best bi-partition on £2. Let Q) and Q2 be the elements of
this bi-partition.

we

= {w c Q,X(w) < dt}
Qo ={w € O X{w) > d:}
We must remind that,

e n = Card(L?), stands for the sample number

o n;=Card(Q;),(j=1,2)

o n; = Card{w € Q;Y (w) = y;}, number of the class y;, (i =1,...,

e n;; = Card{w € Q;;Y(w) = yi}, number of the y;, ¢ = 1,...,
sub-sample Q;, (7 = 1,2).

o m; = Card(Y~1(Q;)), with
y-1! P[Ql— E
Q; = y; = argmaxCard{w € Q;;Y(w) = y;}

The MDLPC criterion is

loga(n—1) 4(d)

W(d) =

choose the discretization point d* that checks :

Notations are:

o h(Q) = -3 7%, Zi-LogyBi-
o h(Qy) = — 3L FiLlogy T

Gain(d) —

d* = arg max,[¥(d)]
¥(d*) >0

, the Shannon entropy;

, the conditional entropy;

m)

m) in the
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e Gain(d;) = h(Q) — h(Q;), the entropy gain criterion;
* 6(d) = loga(3™ = 2) — mh(Q) + j=; msh(%).

4.3. The Chi— Merge method

This method was proposed by Kerber? and lies on the use of a statistical
criterion, the x? test. This is a bottom-up algorithm and can be summed up as
such :

1. : The examples are sorted according to increasing values or X(.) .

2. : Each value taken by the attribute X(.) forms an interval.

Figure 3: There are as many intervals as there are observed different values for
X().

3. : To each interval I; is associated a distribution T; where n;; stands for
the number of examples of the interval I; belonging to the class y;.

4. : We calculate the value of the x2 associated to the matrix formed by the
Jjuxtaposition of two columns T; and Tj4+; corresponding to two adjacent

1ntervals:
m g+l (n —-n .zq+1 n: )2
2 1] J 2ak=q Tk
X (T Tig4n)) = ZZ 71 ~
i=1 j=q nj Zk—q

5. : We merge the pair of adjacent intervals I, and I,4; that gives the
smallest value of x? and that checks :

X*(Ty, Tigy1)) < X*(a,m—1)

where x%(a, m — 1) is read on the table of x? at the threshold & (« is the
type I error risk) and at m — 1 degrees of freedom.

6. : We renew the previous step with & — 1 intervals.

7. : The process stops as soon as no more merging is possible. The result of
the discretization is-shown on picture 4.
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d; dy ds dg dy I dg
Podig i <& i
XXX XXX !0Xjoixioo ; xio 0000 0 0 0iX 0
XIIIIIXXXIXXIIOINOION X0 006000 0000X0X
XOIIIIIXXIIXLIIOINOXON X0 00000 00000X0X
12(3456789012{34{5(6/789101234567890123456{7830 ()

Figure 4: Result of the discretization by Chi — Merge with a = 0.05

5. The FUSINTER method

The FUSINTER method uses the same strategy than the Chi-Merge method.
Its main characteristic is to be based on a measure sensitive to the sample size
and which was used in the SIPINA induction graphs construction method. This
measure was introduced in Zighed’s book?. Contrary to Chi-Merge method
that tries to merge adjacent intervals locally, FUSINTER method is a bottom-
up algorithm to find the partition which optimizes the measure. It has also the
advantage to avoid very thin partitioning due to its specific properties detailed
hereafter. In the following, we propose a short description of the FUSINTER
algorithm and then focus on the properties that a measure must verify.

5.1. The FUSINTER Algorithm

We are looking for the discretization that minimizes a criterion ¢. The
algorithm develops as follow :

1. : All the examples are ordered according to the increasing values of X(.)
thus forming runs of classes.

2. : Each run of examples of a same class will form an interval.

3. : If there is a superposition of several classes on a same value of X(.), then
the associated interval will be reduced to this unique value and unlike the
other intervals, this one will contain a mixing of classes.

dpdy dy I dp die

¢
0 0000 C 0 0ixio} | i
{6} 00000 o o ojolxiolx!
o C0000 000D

oixioixi

—pe
H
345678901234567;9§9§0;X(_)

Figure 5: Constitution of a first list of possible discretization points d; and
associated intervals.

4. : The discretization points are necessarily boundary points of the intervals
established at the steps 2 and 3.

5. : Let us suppose that this first discretization provides k intervals. We
deduce a matrix T' of m lines and k columns that allows to calculate ¢(7T')
T=T,....,T5-1,Tj, -, T)-
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6. : We are looking for the two adjacent intervals whose merging would
improve the value of the criterion, that is j such as :

(T =l ., (T T4y} - ) = Mazhzd (o(T) = ol .-, Tt + Tegy - )

7. I
QD(T)—-SO(Tl,...,I}+ﬂj+1),...,Tk) >0

then, the two intervals I; and I;; are gathered.

8. : The process is done again from step 2 with k — 1 intervals until no
improvement is possible or k reaches the value 1. If the process stops with
k = 1, it means that the discretization of X(.) is of no interest for the
determination of Y'(.). For the example presented before, the result of
FUSINTER is illustrated on picture 6.

I a4 = a4 by I dy s
<4 N - . . %iq - .5».%.@ ;_»;,é PO - .9.‘54 N
IXX XXX 0xX0X00 | XoO 0000 0000
xxxxxxxxxxxx;’oxoxo;l go 00000 000;0!0!
xoxxxxxxxxxxxxsoxox%x l;o 00000 OOOOEOXOI

.
P

! + 1 -
1234567890123 456789%012345678901234567890 X0

Figure 6: Result of the discretization by FUSINTER with o = 0.975 and A =1

5.2. Aziomatics for a new discretization criterion

The success of the discretization procedure basically relies on the qualities
of the measure ¢ used to quantify the relevance of the discretization. In this
section, we provide a list of properties that a measure must verify to be used in
the FUSINTER strategy.

Any discretization leads to a matrix T of m lines and k columns (k¥ > 1) and
(m > 2). If k = 1, it means that all the examples are gathered in a sarne interval
and that consequently, there is no discretization. The criterion ¢ we are trying

to build must be connected to the table T" generated by the discretization and
takes its values in IR*, hence :

¢ :R™ —» R*
T e R™ = o(T) e Rt

¢ must check the following axioms :

Axiom 1 (Minimality) ¢ must be minimal if, in each interval there are only
elements of a same class, that is :

Vie{l,...,k},Fie{l,... m}; P(y:/L;) = 1.
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As we are working on finite samples, it is achieved when :
Vi€ {1,. . .,k},ai e {1,.. .,m};n,-j # O,n(t;ﬁ)j =0.

In this case, the matrix T has the following shape :

0 0 ... 0
T=]a 0 ... v
0 8 ... 0

In each column, there is only one non-null number.

Axiom 2 (Maximality) ¢ must be mazimal if in each interval there is the
same number of elements in each of the m classes, that is :

VJ S {17 sy k}a P(yZ/IJ) = P(yt/I]),V(yz, yt) € {yll .. '7ym}2
As we are working on finite samples, the maximality is obtained when :
Vi=1,...,kV(,t) € {1,...,m},nij = ny

In this case, the table T has the following shape :

a B ... v
T=|a f ... v
« B ... v

Al] the values in a same column are equal.
Axiom 3 (Sensitiveness to the sample size) Let T be the matriz obtained
by a discretization. If we increase the the sample size by multiplying the elements
of the table T by a factor § > 1, the value of the ¢ criterion must decrease :

Vé > 1,¢(8T) < o(T)

Let us note that the strict inequality accepted here is taken in the wide
sense in the previous Zighed’s works® and this difference is very important in
the procedure of discretization whereas it is less so in the construction of the
decision graph.

Axiom 4 (Symmetry) Any permutation o of the columns of the table T has
no effect on the value of the criterion :

(T, ..., T;,.. ., Tk) = p(Tho,...,Tj0,...,T0)

11
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Axiom 5 (Merging) If3j,(j=1,...,k—1) and § > 0 such as
T; = 0T(j41
then

oI, T+ Ty - Te) < @(Tises T, Ty, -0 T)
\_.‘,__/ - T

If, in a discretization, two consecutive intervals (D; and Dj + 1) have the
same distribution classes, that is T; and T4, are proportional, so, if they are
merged together to make one, the value of the criterion should decrease.

In the SIPINA method 2, this axiom generally deals with any pair of columns
of table T. That is what allows us to build graphs. The restriction we are
introducing here and that we are limiting to the only case of adjacent intervals
is not compatible with the SIPINA method.

Axiom 6 (Independence) If we merge two intervals, the variation of the cri-
terion must depend only on the gathered intervals.

(T, T+ Tgenys - - Te) — (T, Ty, Tign), - - - T = (T3, Tigeny)-
e, s N o, e’

5.3. Measures

There is a family of measures that check the six previous axioms. They are
derived from uncertainty measure °. In what follows, we present two of them,
without giving the demonstrations which can be easily established from those
given in previous Zighed’s work?:

5.3.1. Criterion based on Shannon’s entropy

k m
5 nij+ A, ni; + A mA
Y= E —L 1 E 4 L - a)—
#1(T) * n ( n; +mA gzn.j+m/\) +(1 CY)n.j

=1

We note that if we define A = 0, we find the typical expression of Shannon’s
entropy.

5.3.2. Criterion based on quadratic entropy

k m
_ n,-j—i-/\ _ n,-j+>\ _ ln_):
w2(T) = 32;1 n (Zn +mA (1 n;+mA +tl-)
k

= Z oH;(h, A) +(1——a)m/\

j=1 nj
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5.4. Settling A and o parameters

Parameters a and X control the performances of the discretization procedure.
Their values can be defined by experiments using a cross validation procedure
and detect the best recognition rate ; but it is also possible to theoretically find
some extreme values for those parameters in order to force the behavior of the
discretization method in particular situations. We provide here some specific
problems and some desired behaviour of the method, and give the specific values
of @ and A for the measure ¢o. Of course, this approach is easily extensible to
other measures ¢.

On a given data sample, more intervals in a discretization implies less exam-

ples in each intervals. This is precisely the effect of the term (1 — a)22 which
penalizes over-splitting. The measure ¢ is a compromlse between the purity
measure H;(h, ) and the splitting size measure 2. Following °®, an admissi-

bility threshold*t is chosen and A is optimized by mammlzmg the uncertainty
H(h, A) computed on the following distributions:

T(t+1)

t t+1
0 and 0
0 \ 0

We thus have: § = h (t_'_m)\, t+m,\,...> —h (t_:%}l-;mii»\’m’) Since A
is the quadratic entropy, J is given by

P t+ A (1 t+}\>
t+mA t

-+ mA
+Hm - t+mA ( t+m/\>

__t+l+A 1— t+14+ A
t+14+mi t+ 14 mA

A A
—(m—1 -
Sy gy (1 t+1+m,\>

When m =2 and ¢ = 2 for instance,

1 5\ + 6
o=A (2(1+A)2 (3+2/\)2>

which is maximized for A = 0.61.

In order to minimize the number of intervals having a too small size, we can
force the merging of two intervals in the following case:

*t corresponds to the minimum size under which the size penalty increases, it depends on data
set size, class distribution... and can be automatically computed!?
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?
T
o~ o[H]

o

Thus, o ({..., Tt-1+17,...)—e({.. ., Tt-1,T7, . . .}) must be strictly pos-
itive. This gives a value for o using the previously computed value for A.
Since the expression of ¢ is linear in «, this condition can be written as:
F(n,mA)a—g(n,mA)>0. With f(n,m,A) > 0, « is strictly greater than

g{nym, A
HERY N

For instance with t =2, m =2and A= 0.61, & can be set to 0.95.

Anyway, experiments showed that the discretization method is not very sen-
sitive to the values of o and A. So, from now on, we use the standard values
A =1 and o = 0.975 for the measure ¢5. Theses values are a good compromise
between purity search and intervals sizes.

6. Comparison and discussion

6.1. Illustrations

In that follows, we are going to present the results of the three methods on
illustrations of artificial data and real data.

1. : Let us consider an attribute X(.). The training examples are ordered
according to the increasing value of X(.). We note by ”x” or 70" the
belonging class of the example. Picture 7 shows the results of each of the
three methods.

Without appealing to a statistical criterion, it is obvious that the MDLPC
method has the worst discretization (figure 7a). Indeed, the series of
points (o) has not been detected. On the contrary, Chi-Merge (figure 7b)
detects it but has undesirable effects : intervals that contain only one
point. FUSINTER (figure 7c) provides the discretization that seems for
us most natural.

The undesirable effects which appear in the MDPLC and Chi-Merge are
even more intensified in picture 8.

There, we can note that, whereas FUSINTER refuses any discretiza-
tion (picture 8b), the two others propose an identical one (picture 8a)
where the intervals situated at the extremes contain only one example.
This result is not interesting in a training process whose final purpose is
generalization.
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2)

/Discmﬁsaﬁonpoinx
XOXXXXXXXXXXXX%OXOXOXOXOXOXOOOOOOOOOOOXOX
12345673901234;56739012345678901234567890
MDLPC

b) Discretisation points,

—

XOKXXXXXXXXXXXOXOXOXOXOXOXOOOOOOOOOOOXOX

12-345678901234567890123456»78901234567890
Chi-Merge (5%)

*» X

9 Discretisation poiats

D

XOXXXXXXXXXXXX!OXOXOXO XOXOX'OOOOOOOOOOO‘XOX

1234567890123456789012345678901234567‘890
Fasinter

Figure 7: Discretization obtained by the three methods a) MDLPC proposes
only one point of discretization. b) Chi-Merge extracts five points of discretiza-
tion. c) FUSINTER spots three points of discretization.

: In the following data set, we have generated two normal distributions
not superposing one another N(0,1), N(2,1). The discretization results
are given in picture 9. We note that, unlike the previous situations
MDLPC gives the same results as FUSINTER (picture 9a). Chi —
Merge (picture 9c) gives a less interesting discretization.

3. : We have taken the same file as % concerning the discrimination of Iris
varieties '®. We present below the result of the discretization obtained
by the three methods on the attribute Petal — length. For the other
attributes, the results are identical for the three methods. Picture 10
shows the distribution of the three classes of Iris Setosa, Versicolor and
Virginica according to the attribute Petal — length.

The results of the discretization are provided in a contingency table. We
can note that, again, the discretization provided by FUSINTER seems
more natural with a division into three classes with sufficient numbers for
a good prediction of classes.
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&

discretisation Points

X000 0000000000000 00X

12345678 9012345678 9i0

Chi-Merge (5%)

MDLFC

A 2

b)

no discrefisation points

X000000000000000000X

12345678 9012345678%790

Fusinter

A 4

Figure 8: Discretization obtained by the three methods a) Chi — Merge and

MDPLC provide three intervals among which two have a size of one.

b)

FUSINTER considers this is better not to discretize in this case.

Method MDLPC

Iris varieties discretization intervals

]...,2.45] | ]2.45,4.85] | 14.85,5.05] | 15.05,. ..]
Setosa 50 0 0 0
Versicolor 0 46 3 1
Virginica 0 3 6 41

Method Chi — Merge

Iris varieties discretization intervals

]...,3.00] ] 13.00,4.80] | 14.80,5.20] | 15.20,...]
Setosa 50 0 0 0
Versicolor 0 44 6 0
Virginica 0 1 15 34

We can see that, with FUSINTER, the last two intervals of the attribute
are gathered whereas Chi — Merge does not achieve the merging.
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2) Fusinter ,MDLPC

b) Chi-Merge TN "* i '

253

144
0.83 357

37400055
2065 005056 146

Figure 9: Discretization of a mixing of two classes with normal distributions
not superposing each other. a) FUSINTER and MDLPC give an identical
discretization in four intervals. b) Chi — Merge detects twelve intervals and
some of them are very close. '

Method FUSINTER
Iris varieties discretization intervals
].-.,3.00] | 13.00,4.90] | }4.90,...]
Setosa 50 0 - 0
Versicolor 0 46 4
Virginica 0 3 47

6.2. Discussion

To discretize a continuous attribute in the methods of induction by graphs,
the empirical results we have obtained particularly favor FUSINTER. An
essential reason for this is that the M DLPC and Chi-— Merge methods do not
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Figure 10: Distribution of the three classes of Iris : Setosa, Versicolor and
Virginica according to the attribute Petal — length.

take into account finite size samples explicitly.

FUSINTER has an additional advantage since it can be used in process
of induction by graphs to find the attribute that distinguishes best the classes,
whatever the nature of the attribute : numeric or symbolic.

On a strictly algorithmic level, the three methods work on O(nlogn). *
considers that dynamic discretization, as '° suggests as well, is not interesting.
In fact, all the attributes have to be discretized "a priori” according to one of
the methods presented. It should thus avoid to study again already analyzed
processes since any discretization point will be one of the already stocked can-
didates. This argument is totally valid in the induction tree processes, but it no
longer is in the SIPINA method since we admit the merging of sub-populations.

Before the discretization process, we can ask the question: is it interesting
to discretize the attribute X(.) ? The first solution is to try discretization and
verify if we find a one or more discretization points. If there is no one i.e we have
found no discretization points, we can conclude that the attribute X(.) is not
attractive for our prediction problem. The second one is the test of runs 2° that
allows us to provide a statistical response to this question. It lies on the number
of runs. If the classes are alternate as on picture 8, so the number of runs is
important and the conclusion of the test is non discretization. On the contrary,
if the number is low, then we conclude there are specific intervals belonging to
classes. In this case, the intervals are deducted from the runs as in picture 1.
So, in our experiments, using this test does not decrease the computation time
beside classical attribute reject by discretization point research failure.
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7. Conclusion

We do not think we have completely examined the problem of discretization

in this study. Although it is a performing one, the FUSINTER method should
be even more interesting if it could be integrated in a statistical way. Indeed, we
have considered the discretization procedure asan optimization procedure. But
it is also possible to consider it as an estimation problem so as to use inferential
statistic. A cutting point then becomes a parameter of the population we try
to generalize on a data set. Our goal could be then to reduce bias and variance
of this statistical estimation.

The three discretization methods that have been presented are available on

the software SIPINA-W that is accessible in free diffusion by "ftp://eric.univ-
lyon2.fr" under the directory "/pub/sipina'.
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