
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 28, NO. 1, FEBRUARY 1998 67

Multiple-Prototype Classifier Design
James C. Bezdek,Fellow, IEEE, Thomas R. Reichherzer, Gek Sok Lim, and Yianni Attikiouzel,Fellow, IEEE

Abstract—Five methods that generate multiple prototypes from
labeled data are reviewed. Then we introduce a new sixth ap-
proach, which is a modification of Chang’s method. We compare
the six methods with two standard classifier designs: the 1-
nearest prototype (1-np) and 1-nearest neighbor (1-nn) rules. The
standard of comparison is the resubstitution error rate; the data
used are the Iris data. Our modified Chang’s method produces
the best consistent (zero errors) design. One of the competitive
learning models produces the best minimal prototypes design (five
prototypes that yield three resubstitution errors).

Index Terms— Competitive learning, Iris data, modified
Chang’s method (MCA), multiple prototypes, nearest neighbor
(1–nn) rule.

I. INTRODUCTION

PERHAPS the most basic idea in pattern recognition is the
class label. There are four types of labels—crisp, fuzzy,

probabilistic, and possibilistic. Let integerdenote the number
of classes and define three sets of label vectors in

, as follows:

(1a)

(1b)

(1c)

is the canonical (unit vector) basis of Euclidean-space.
The th vertex of , , is the

crisp label for class . , a piece of a hyperplane,
is the convex hull of . The vector is
a fuzzy or probabilistic label vector; its entries lie between
zero and one and sum to one. , the unit hypercube in ,
excluding the origin,contains possibilistic label vectors, such
as . Note that .

Object data are represented as in feature
space . The th object (a ship, patient, stock market report,
pixel, etc.) has as its numerical representation; is
the th characteristic (or feature) associated with object.
Examples of alternating optimization (AO) algorithms that

Manuscript received May 17, 1996; revised December 3, 1996 and July 5,
1997. This research was supported by ONR Grant N00014-96-1-0642.

J. C. Bezdek and T. R. Reichherzer are with the Department of Computer
Science, University of West Florida, Pensacola, FL 32514 USA (e-mail:
jbezdek@ai.uwf.edu).

G. S. Lim and Y. Attikiouzel are with the Center for Intelligent Information
Processing Systems, Department of Electrical and Electronic Engineering,
University of Western Australia, Nedlands, Perth, 6009 Western Australia.

Publisher Item Identifier S 1094-6977(98)01528-4.

generate each of the four kinds of labels as well as a set
of point prototypes (or cluster

centers) for clusters in from unlabeled object data are
(HCM), Duda and Hart [1];

FCM), Bezdek [2]; probabilistic mixtures (EM), Titterington
et al. [3]; and (PCM), Krishnapuram
and Keller [4].

A classifier, any function , specifies decision
regions in . Training a classifier means identification of the
parameters of if it is explicit or representing the boundaries
defined by algorithmically if it is implicit. The value

is the label vector for in . is acrisp classifier
if . New, unlabeled object data that enter
feature space aftercrisp decision regions are defined simply
acquire the label of the region they land in. If the classifier is
fuzzy, probabilistic, or possibilistic, labelsassigned to object
vectors during the operational (i.e., classification) phase are
almost always converted to crisp ones through the hardening
of with the function

(2)

In (2), the distance is Euclidean,
, and ties are resolved arbitrarily. If the

design data are labeled (that is, if we have training data
that possess class label vectors in), finding is called
supervised learning. In supervised classifier design, is
usually crisply partitioned into adesign(or training) set
with label matrix and atest set with label
matrix . Columns of and are label vectors in .

Testing a classifier designed with means finding its
error rate (or estimated probability of misclassification). The
standard method for doing this is to submit to and count
mistakes (must have crisp labels for data in in order
to do this). This yields theapparenterror rate ;
our notation indicates that was trained with and tested
with . is often the performance index by which is
judged because it measures the extent to whichgeneralizes
to the test data.

When , the error rate is called
the resubstitutionerror rate. Some authors call a consistent
classifier if and only if . Resubstitution uses
the same data for training and testing, so it usually produces
an optimistic error rate. That is, is not as reliable
as for assessing thegeneralizationability of ,
but this is not an impediment to using as a basis for
comparisonof different designs. Moreover, unlessis very
large compared to and (an often used rule of thumb is

), the credibility of either error rate is questionable.

1094–6977/98$10.00 1998 IEEE

68 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 28, NO. 1, FEBRUARY 1998

Fig. 1. Editing by selection of labeled data inXtr.

Fig. 2. Editing by replacement ofXtr with labeled prototypesV.

Although the implicit use of the methods we discussis for
classification (and hence, good generalization potential), the
data used in our examples does not justify worrying about the
difference between and .

Classifier performance is largely dependent on the quality
of . If is large enough and its substructure is well
delineated, we expect classifiers trained with it to yield small
error rates. On the other hand, when the training data are large
in dimension and/or number , classifiers such as the-
nn (-) rule [5] can require too much storage and CPU
time for efficient deployment. To circumvent time and storage
problems caused by very large data sets, many authors have
studied ways to transform the original data into a smaller,
but equally useful data set, say, , so that

. The -nn classifier - is often used
to decide whether this objective has been met.

Two common editing schemes areselection and replace-
ment. Selection finds aproper subset . Replacement
uses a transformation to find . The
process of subset selection is a special case of replacement.
Replacements are almost always labeled prototypes, such as

produced by . In this paper, is any one of seven
prototype generation algorithms, all of which are compared
to one selection algorithm.

Fig. 1 depicts selection. The density of labeled data over
each cluster in the left side of Fig. 1 is high. A selected
subset (or skeleton) of the original data are shown on the right.
This approach has many variants and is well summarized in
Devijver and Kittler [6]. The aim is to condense , while
approximately preserving the shape of the decision boundaries
set up by training with it.

Fig. 2 illustrates replacement by multiple prototypes. In this
scheme, is replacedby , a set of labeled prototypes for
classes 1 () and 2 (). Note that there is more than one
prototype per class.

We discuss six multiple-prototype generation schemes: 1)
learning vector quantization(LVQ) [7], 2) a family of fuzzy

LVQ models called GLVQ-F [8], [9], 3) the deterministic
dog–rabbit(DR) model of Limet al. [10], [11],1 4) a determin-
istic hierarchical clumping model due to Chang [12], 5) our
modification of Chang’s algorithm, and 6) a modification of
batch fuzzy -means [13]. These six schemes will be compared
to the standard nearest prototype (1–np) and nearest neighbor
(1–nn) rule classifiers.

II. 1-NP CLASSIFIERS

Synonyms for the word prototype includevector quantizer
(VQ), signature, template, codevector, paradigm, centroid, and
exemplar. There are many approaches to prototype generation.
A nonexhaustive list includessequentialcompetitive learning
models, such as crisp (adaptive)-means [1], LVQ [7], GLVQ-
F [8], GLVQ [9], the DR model [10], [11], and probabilistic
schemes such as SCS [14].Batchprototype generator models
include crisp and fuzzy-means [2], possibilistic-means [4],
statistical models such as mixture decomposition [3], and VQ
approaches such as the generalized Lloyd algorithm [15].

The common denominator in most point prototype gener-
ation schemes is a mathematical definition of how well
represents a crisp subset of . Any measure of similarity
on can be used. The usual choice is distance (dissimilarity),
while the most convenient is squared Euclidean distance. Local
methods attempt to optimize some function of the-squared
distances at each in . Global
methods seek extrema of some function of all distances

and . Once the prototypes
are found (and possibly relabeled if the data have physical

labels), they can be used to define the crisp 1-np classifier
.

The 1-np Classifier:Givenany prototypes
, so there is one /class, andanydissimilarity measure

on : for any

Decide class

(3)

Ties in (3) are arbitrarily resolved. The crisp 1-np design can
be implemented by using prototypes fromany algorithm that
produces them. Equation (3) defines a crisp classifier even
when comes from a fuzzy, probabilistic, or possibilistic
algorithm. It would be careless to call a fuzzy classifier,
for example, just because fuzzy-means produced .

The geometry of is shown in Fig. 3 using for in
(3). This 1-np design erects a linear boundary between theth
and th classes, viz., the hyperplane HP through the midpoint
of and perpendicular to (). Fig. 3 illustrates the labeling
decision in (3); is assigned to class because it is closest
to the th prototype. Be careful not to confuse 1-np’s, which
are new vectors madefrom the data, with 1-nn’s, which are
labeled pointsin the data. In Fig. 3, the prototype nearest to

is and the neighbor nearest tois .
All 1-np designs that use inner-product norms erect (piece-

wise) linear decision boundaries. Thus, thegeometryof 1-
np classifierboundaries is fixed by the way distances are

1In [10] and [11], the input vectors are called “rabbits” and the prototypes
trying to catch them are the “dogs”—hence, DR for dog-rabbit.

BEZDEK et al.: MULTIPLE-PROTOTYPE CLASSIFIER DESIGN 69

Fig. 3. Geometry of the 1-np classifier for the Euclidean norm.

measured in the feature space andnot by geometric properties
of the model that produces the cluster prototypes. The location
in of the prototypes determines the location and orientation
of the hyperplanes that separate each pair of pro-
totypes. Thegeometryof the prototypesdoesdepend on both
the clustering model and data used to produce them. Hence,
1-np designs based on different prototype generating schemes
can certainly be expected to yield different performance as
1-np classifiers, even though they all share the same type of
decision surface structure.

When one or more classes have multiple prototypes, as
shown in Fig. 2, there are two ways to extend the 1-np design.
We can simply use (3), recognizing thatcontains more than
one prototype for at least one of theclasses. Or we can
extend the 1-np design to a-np rule, wherein the np’s are
used to conduct a vote about the label that should be assigned
to input . This amounts to operating the-nn rule by using
prototypes (points built from the data) instead of neighbors
(points in the data). We opt here for the simpler choice, which
is formalized in the following.

The Nearest Multiple-Prototype (1-nmp) Classifier:Given
any prototypes , where

is the number of prototypes for class; ,
and any dissimilarity measure on , for any

Decide class

such that

and

(3)

As in (3), ties in (3) are resolved arbitrarily. We use the
same notation for the 1-np and 1-nmp classifiers, relying on
context to identify which one is being discussed. Now we turn
to methods for finding multiple prototypes.

III. T HREE COMPETITIVE LEARNING

MODELS FOR MULTIPLE PROTOTYPES

When labeled data are crisply partitioned intosubsets,
with for all , the

natural choice for in the 1-np design is to compute the
cluster or subsample mean vectors , where

. is the only single
prototype classifier discussed here.

Now we seek multiple prototypes
that are good representatives—for classifier

design—of the input data.2 Sequentialcompetitive learning
(CL) models are a natural choice for finding multiple pro-
totypes. Usually, upon presentation of an from , updated
estimates of the at iterate (one iteration is one pass
through) are computed as

(4)

In (4), is the learning rate distributionover the
prototypes for input at iterate . The principle difference
between various competitive learning models lies in 1) the
subset of prototypes that get updated at each iterate and 2)
the values of the . It is always possible to define the

to include the update neighborhood, so this is usually
what is specified. Unsupervised LVQ updates only the winner
(i.e., the closest to) at each input, whereas GLVQ-F
and the DR algorithm may update allprototypes for each
presentation of an input. The learning rate distribution for
LVQ is

(5)

In (5), is usually initialized at some value in (0, 1) and
decreases with. Kohonen [8] gives conditions under which
LVQ terminates at a fixed point of the iterate sequence, defined
via (4) and (5), that requires a nonlinear decrease in
[e.g.,]. Termination occurs without comparison
of successive estimates of. Since we use for
termination control, we chose to decreaselinearly with .

The model underlying GLVQ-F contains LVQ as a subcase
and is discussed extensively elsewhere [8]. GLVQ-F is based
on minimizing a sum of squared errors associated with re-
placing unlabeleddata set by the prototypes . The
function to be minimized is

(6)

In (6), the vector is a fuzzy
label vector; its entries are themembershipsof in each
of the classes represented by the prototypes. The real
number in (6) is a parameter that affects the quality
of representation and speed of termination of the GLVQ-F
algorithm, which is just steepest descent applied to the function
in (6). The GLVQ-F update rule for the prototypesat iterate
, in the special (and simple) case , uses the following

2Good prototypes for classifier design are not necessarily the same (even
in form) as those used for other purposes. For example, good prototypes for
compression, transmission, and reconstitution of images may be quite poor as
representatives of classes for the purpose of pixel labeling in the same image.

70 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 28, NO. 1, FEBRUARY 1998

Fig. 4. Control of learning rates in the DR algorithm.

learning rate distribution in (4):

GLVQ-F

(7)

in (7)—now one componentof the learning rates
—is treated the same way as in (5), and the constant

(2c) is absorbed in it without loss. Limiting properties of
GLVQ-F are [8] 1) as approaches infinity, all prototypes
receive equal updates and the’s all converge to the grand
mean of the data, whereas 2) as approaches one from
above, only the winner is updated and GLVQ-F reverts to
LVQ. Finally, we mention that the winning prototype in
GLVQ-F for receives the largest (fraction) of at
iterate , that other prototypes receive a share that isinversely
proportional to their distance from the input and that the
GLVQ-F learning rates satisfy the additional constraint that

when .
The third sequential CL model used here is the deterministic

DR algorithm [10], [11]. The basic idea for our implementation
can be found in [10]; an alternate implementation is discussed
in [11]. Like GLVQ-F, the DR algorithm may update all
prototypes for each input. Unlike GLVQ-F, the DR algorithm
is not based on an optimization problem. Rather, its authors use
intuitive arguments to establish the learning rate distribution
for (4) that is used by the DR model, as shown in (8) at the
bottom of the page.

In (8), is a user-specified constant that inhibits move-
ment of the nonwinning prototypes toward ; and

is a user-specified distribution offatigue factorsfor the
DR algorithm. In our implementation, the fatigue factors are
not necessarily updated at the same time across, and may
not be functions of iterate number. Rather, control of these
exponents depends on circumstances at individual prototypes.
Fig. 4 illustrates how the learning rates are controlled.

The DR user must specify an initial distribution for the
and four constants: arate of change of fatigue

factor , amaximum fatigue , a fence radius ,

and aninhibition constant . Now suppose to be
the winning prototype with , as shown
in Fig. 4. All prototypes are updated by using (8) in (4).
Following this, the distance is compared to .
If , the closest dog is now inside the
fence around and is slowed down by increasing its fatigue

. This inhibits future motion of this
prototype a little (relative to the other prototypes), and it also
encourages nonwinners, such as , to look for other data
to chase.

When the winning prototype gets very close to (a group
of) inputs, we want it to stop moving altogether, so we also
check the current value of against . Movement of (i.e.,
updating) the th prototype ceases when . Thus,
termination of updating is done prototype by prototype, and
DR stops when all of the prototypes are “close enough”—as
measured by their rates of change of fatigue exceeding the
maximum—to the subset of data for which they are the winner.

The dependency of DR on the parameters
is complicated by the functional

form of (8). However, we can say that these rates ensure that
the winning prototype receives the largest (fraction) of
at iterate until the winning prototype closes in on its rabbits.
At this point, other prototypes may start receiving a larger
fraction of the update even though they are nonwinners. The
DR learning rates do not satisfy any additional constraints. A
brief specification of LVQ, GLVQ-F for , and the DR
algorithms, as used in our examples, are given in Table XI.

None of the CL methods just described uses the labels
of points in during training to guide iterates toward a
good . Consequently, at the end of the learning phase,
the prototypes havealgorithmic labels that may or may
not correspond to thephysical labels of . The relabeling
algorithm discussed next uses the labels in to attach the
most likely (as measured by a percentage of labeled neighbors)
physical label to each .

Recall that is the number of classes in labeled
by the crisp vectors . Now define

to be the percentage (as
a decimal) of training data from classclosest to via the
1-np rule . Define the matrix . has rows
in and columns in . We assign label to
when

label

(9)

We illustrate the labeling algorithm in (9). Suppose has
classes labeled with the crisp vectors

. Let be four prototypes found by
some algorithm. Let be the 3 4 percentage matrix shown
in Table I. Labeling algorithm (9) assigns to class 1,

DR (8)

BEZDEK et al.: MULTIPLE-PROTOTYPE CLASSIFIER DESIGN 71

(a) (b)

Fig. 5. (a) Effect of the merger formula and (b) illustration of both models.

TABLE I
EXAMPLE OF THE MULTIPLE-PROTOTYPE LABELING ALGORITHM

and to class 3, and to class 2. Whenever , we will
have more than one prototype for at least one of the labeled
classes and will use the 1-nmp rule at (3) instead of the 1-np
rule at (3).

IV. THE CHANG AND MODIFIED

CHANG ALGORITHMS (MCA’ S)

Now we discuss three methods that are not based on
sequential competitive learning: Chang’s algorithm [12], an
improved version of it, and a batch method due to Yen and
Chang [13].

Chang [13] discussed one of the earliest multiple-prototype
classifier schemes. The method begins by assuming every point
in a labeled data set is its own prototype; so let .
Consequently, the 1-np rule at (3)or the 1-nmp rule at (3)
error rate is zero, . Now find

. Tentativelymerge these two points

by using the weighted mean ,
where , are the number of merger parents ofand ,
respectively. Initially, and have the value one. When
two data points and are merged, and

has two merger parents. Subsequently, if and are
merged, then , , , etc.

Next, update the prototypes by setting
, and calculate by using

the 1-nmp rule at (3). If the error rate is still zero and if
and have the same label, accept the merger and continue. If
either 1) the error rate increases or 2)and have different
labels, do not merge and . In this case, Chang regards
and as currently nonmergeable prototypes and continues.

When there is a merger, the child inherits the class label
of its parents and it replaces them in the current prototype
set. Especially important is that thetest data arefixed (all of

). Continue this procedure until further merging produces
an error, and at this point stop, having foundprototypes

that replace the labeled data and that preserve a
resubstitution error rate of zero, i.e., . An
implementation of this scheme, based on minimal spanning
trees is given by Chang.

We modified Chang’s approach, here called the MCA, in
two ways. First, instead of using the weighted mean

to merge prototypes we used the
simple arithmetic mean [see Fig. 5(a)]. Second, we altered the
search for candidates to merge by partitioning the distance
matrix into submatrices blocked by common labels, and
we always looked for the minimum only in each block [see
Fig. 5(b)]. This eliminates consideration of candidate pairs
with different labels. Like Chang, we attempt to merge the
minimum of label-matched pairs. If this fails (because the
prototype produced by the merger yields an error), we look
at the next best candidates, and so on. Search continues in
ascending order of distance until either 1) a merger can be done
or 2) no merger is possible in any class. The MCA algorithm
terminates when 2) occurs. This is more effective than Chang’s
approach because merging the closest points of the same label
may be sufficient, but is not necessary, to preserve the zero
error rate.

Fig. 5 illustrates the operation of and highlights differences
between the Chang and MCA models. Using the number of
merger parents as weights guarantees that Chang’s prototypes
are either isolated singletons or true centroids of the points they
represent. Using simple averaging instead results in the points
that are not close to each other drawing MCA prototypesaway
from points that are close to each other. Fig. 5(a) shows the
effect of changing the merger formula from Chang’s weighted
mean to the simple arithmetic mean.

In Fig. 5(a), the six points labeled to are increasingly
distant from each other as . The centroid of to in
Fig. 5(a) is Chang’s prototype

. Each point has equal weight, regardless of the relative
distances between pairs of points. For the MCA prototype,

72 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 28, NO. 1, FEBRUARY 1998

MCA . The points
closest together are merged first (in this case,and by both
methods; but in MCA, these points have theleastoverall effect
on the final position of the prototype). This enables MCA
prototypes to (have a better chance) to correctly label points
in their own classes that areNOT located near the central
tendency of the clusters.

Fig. 5(b) illustrates the Chang and MCA approaches. Let
denote the (Euclidean) distance betweena and b and

likewise for other distances in the diagram. Suppose the closest
existing class prototype in the neighborhood is shown to be

and that is the minimum distance in the current node
set. Both Chang and MCA will consider replacingand
with the class prototype , and neither will do so. Chang’s
method applies two tests: are the labels ofand the same?
(yes) and will this prototype cause an error for the new 1-np
classifier? (yes). Since the distance from to is smaller
than the distance from to , the point will misclassify

, so the proposed merger is rejected by both algorithms.
At this point, Chang’s method will next inspect possible

mergers between and and then and ; both will be
rejected, due to a failure to have the same class labels. MCA
skips these calculations, since the minimum distance search
is constrained to submatrices for the same class within the
current distance matrix. Then, both algorithms will consider
merging and , and both will do this.

In the terminology of Section I, the Chang and MCA
models are both consistent designs—that is, they are defined
to maintain zero resubstitution errors. Both of these designs
are replacement classifiers in the sense of Fig. 2. In the next
section, we compare these two designs to the standard 1-nn
rule.

V. NUMERICAL COMPARISON OFTHREECONSISTENTDESIGNS

The standard 1-nn rule classifier is specified as follows.
The 1-nn Classifier:Given a crisply labeled data set in ,

for , and any
dissimilarity measure on , for any

Decide class

and

(10)

Ties in (10) are arbitrarily resolved. Dasarathy [17] recently
discussed a method for selecting a consistent subset fromfor
use with the 1-nn rule . His method is based on finding nearest
unlike neighbor subsets in . Dasarathy calls his scheme the
MCS method, in which MCS stands forminimal consistent set.
Although the term minimal implies that MCS finds the smallest
consistent subset of for the 1-nn rule, Dasarathy admits the
possibility that it is not, since no proof of minimality is given.

The important point here is that MCS is to Fig. 1 as the
Chang and MCA methods are to Fig. 2: the former is a
selection method, while the latter are replacement methods.
All three methods use the labels during training, and they all
guarantee consistency (zero resubstitution error rate). Thus, the
results of Dasarathy are very useful for comparing selection to

Fig. 6. Iris data: feature three versus feature four.

TABLE II
SUBSAMPLE (MEAN) PROTOTYPESV IN <4 FOR IRIS

replacement or, equivalently, comparing an edited 1-nn design
to the 1-nmp designs based on the Chang and MCA models.

Following Chang [12] and Dasarathy [17], we use An-
derson’s Iris data [16] as the experimental data set . In the
examples, we take Iris Iris contains 50
(physically labeled) vectors in for each of classes of
Iris subspecies. Fig. 6 is a scatterplot of the third and fourth
features of Iris, which also shows the subsample mean for
each of the three classes in these two dimensions. Table II
lists the coordinates of the means. Class 1 is well separated
from classes 2 and 3 in these two dimensions; classes 2 and
3 show some overlap in the central area of the figure, and
this region contains the vectors that are usually mislabeled by
1-np designs. The dashed boundaries indicate the physically
labeled clusters.

Chang reports that his method finds prototypes
that replace Iris and preserve a zero resubstitution error rate;
the prototypes are not listed in [12]. Dasarathy reports in
[17] that MCS finds 15 points in the Iris data that result
in zero resubstitution errors. If MCS is truly minimal, this
suggests that Chang’s replacement method is, for Iris at least,
slightly superior to MCS subset selection. The 15 points in
Iris found by MCS were not listed in [17]. Our modification
of Chang’s method finds 11 prototypes built from Iris that yield
consistency for the 1-nmp design with which they were used.
The 11 prototypes are listed in Table III. This confirms that our
modifications of Chang’s method serve as advertised; that is,
MCA does reduce the number of nearest multiple prototypes
while preserving consistency.

Our implementation of MCA can probably be made more
efficient, and a different merger scheme might reduce the
number of prototypes needed for consistency even more.

BEZDEK et al.: MULTIPLE-PROTOTYPE CLASSIFIER DESIGN 73

TABLE III
11 MCA PROTOTYPESTHAT YIELD ZERO RESUBSTITUTION ERRORS WITH THE 1-NMP RULE ON IRIS

Subsequent work [18] has shown that the MCS method is
not minimal, and this example shows that replacement can,
for the methods discussed, be more efficient than selection.

VI. NUMERICAL COMPARISON

OF FIVE INCONSISTENT DESIGNS

How do we use 1-np and 1-nmp classifiers to compare
unsupervised learning algorithms? The method employed here
is to first derive the prototypes from labeled data
without usingthe labels (that is, we pretend there are no labels)
during the training phase. Then, (9) is used to get class labels
for the prototypes. Finally, is submitted to the classifier
and its resubstitution error rate is computed. Error counts are
conveniently tabulated by using the confusion matrix

labeled class but were really class that
can be constructed during this process. The error rate (in
percent) is

right

(11)

For reference, the resubstitution error rate for the supervised
1-np design that uses the class means of each subset of
Iris in (3), listed in Table II and plotted in Fig. 6 as single
prototypes, is 11 errors in 150 submissions by using the
Euclidean norm, i.e., Iris Iris %. Next, we
discuss the computational protocols used by the three CL
methods outlined in Section III.

A. Initialization

The following method was used to generate an initial set
of prototypes :

Minimum of feature

(12)

and

Maximum of feature

(13)

The Cartesian product
is a hyperbox in . The main diagonal of

connects and with the line segment
. Initial prototypes for all

TABLE IV
INITIAL PROTOTYPES FORIRIS AT c = 6 COMPUTED WITH (14)

three algorithms were

(14)

Thus, ;
; and the remaining () initial

prototypes are uniformly distributed along the diagonal of
. To illustrate, Table IV shows the initial prototypes

produced by (14) with the Iris data at . Algorithmic
outputs reported for other values of were obtained from
similar initializations by using (14). The control parameters
of each CL algorithm that we used are listed in Table XI;
some experimentation with them is discussed at the end of
this section.

B. Termination

The primary termination criterion is to compare successive
estimates of the prototypes with the 1-norm.

is
compared to cutoff threshold. If this fails, secondary ter-
mination occurs at the iterate limit specified in Table XI.
We tested three thresholds: 0.1, 0.01, and 0.001. The DR
algorithm has a third termination criterion (the prototype-by-
prototype cutoff) that can (and often does) occur inside the
main iteration, as shown in Table XI.

C. Iteration

We drew samples randomly from without replacement.
One iteration corresponds to one pass through. Each algo-
rithm was run five times for each case discussed to see how
different input sequences affected the terminal prototypes. For
the less stringent termination criteria (0.1 and 0.01), we
sometimes obtained different terminal prototypes for different
runs. For 0.001, this effect was nearly (but not always)
eliminated. Most of the runs using 0.001 were completed
in less than 300 passes through. DR, via its prototype-by-
prototype criterion, often terminated in less than 50 iterations.

74 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 28, NO. 1, FEBRUARY 1998

TABLE V
TYPICAL PROTOTYPES, CONFUSION MATRICES, AND ERROR RATES FOR SIX PROTOTYPES. �0 = 0:4 AND

T = 500 FOR LVQ AND GLVQ-F; DR PARAMETERS ffik; tg; �f; fM ; Rf ; � IN TABLE XI

TABLE VI
TYPICAL PROTOTYPES, CONFUSION MATRICES, AND ERROR RATES FOR SEVEN PROTOTYPES. �0 = 0:4

AND T = 500 FOR LVQ AND GLVQ-F; DR PARAMETERS ffik; tg; �f; fM ; Rf ; � IN TABLE XI

TABLE VII
TYPICAL CONFUSION MATRICES AND CLASS

REPRESENTATIVES FOREIGHT TERMINAL PROTOTYPES

D. Results

The results shown in Tables V–VII are typical cases; those
in Table VIII are the best case we saw in each instance. Our
main objective is to compare the methods rather than obtain
an optimal design for Iris. Indeed, it may be that with enough
experimentation, any of the CL models will yield best-case
(or better!) results.

Table V exhibits terminal prototypes found by each algo-
rithm at as well as the resultant 1-nmp error rates they

produce when used in (3) on all of IRIS. Each of the three
physical clusters is represented by two prototypes by both LVQ
and GLVQ-F, and the overall error rate produced by these
two classifiers is 9.33%. The DR model performs much better,
finding six prototypes that produce only four errors when used
with (3). Note especially that DR uses only one prototype for
class 1, three for class 2, and two for class 3.

The prototypes in Table V are plotted in Fig. 7 against a
background created by roughly estimating the convex hull of
each physical class in these two dimensions by eye. Some
of the prototypes are hard to see because their coordinates
are very close in these two dimensions. We draw attention
to the LVQ and GLVQ-F prototypes that seem to lie on the
boundary between classes 2 and 3 by enclosing these points
with a jagged star. These prototypes are the ones that incur
most of the misclassifications that are committed by the LVQ
and GLVQ-F 1-nmp classifiers. Notice that there is no DR
prototype in this region at . Instead, DR opts for only
one class 1 prototype, thereby enabling it to better represent the
boundary region between classes 2 and 3 with the prototypes

BEZDEK et al.: MULTIPLE-PROTOTYPE CLASSIFIER DESIGN 75

TABLE VIII
NUMBER OF RESUBSTITUTION ERRORS OF THE

1-nmp CL DESIGNS: BEST-CASE RESULTS

Fig. 7. Terminal prototypes atc = 6.

shown for it. This is a real difference between and decided ad-
vantage for the DR model compared to the two LVQ designs.

Table VI lists the same information as Table V for .
There is a sharp drop in the error rate for the LVQ and GLVQ-
F 1-nmp designs. Be careful to note that the seventh prototype
is not “added” to the previous six; rather, new prototypes
are found by each algorithm. The error rates in Table VI are
very low for designs that are not based on using the labels
during training. Note that LVQ and GLVQ-F continue to use
two prototypes for each of classes 1 and 2, and add a third
representative for class 3 at . Contrast this to DR, which
still has one for class 1, four for class 2, and two for class
3 prototypes. Adding a seventh prototype does not improve
the DR 1-nmp design because two of the seven prototypes are
almost identical to one used at .

Fig. 8 shows that the crucial “boundary” prototypes from
LVQ and GLVQ-F in the case have roughly “divided”
into two sets of new prototypes, shown again by the jagged
star. LVQ and GLVQ-F essentially “catch up” with DR in
the region of overlap by now representing class 3 with three
prototypes instead of two.

When the three CL algorithms are instructed to seek
prototypes, the error rate for all three 1-nmp designs typically
remains at 2.66%, as shown in Table VII. At , the results
are quite similar to those shown for .

We can conclude from Tables V–VII that the replacement
of IRIS with eight or nine prototypes found by any of
the three CL algorithms results in a 1-nmp design that
is quite superior to the labeled 1-np design based on the

subsample means. Moreover, the DR model yielded
consistently better results than either LVQ or GLVQ-F in
almost every case we tested.

Fig. 8. Terminal prototypes forc = 7.

The experiments discussed so far led us to wonder how
few prototypes were needed by the 1-nmp rule to achieve
good results. And conversely, going in the other direction, at
what point does prototype representation become counterpro-
ductive? Table VIII reports the best-case results (as number
of resubstitution errors) we saw by using each algorithm for
various values of .

First, we can observe that on passing from to ,
even the best-case error rate for all three models increased,
followed by a decrease on passing from to . One
run of DR (shaded in Table VIII) resulted in five prototypes
that produced only three resubstitution errors when used in
(3). These prototypes are shown in Table IX. This shows that
the Iris data can be well represented by five labeled prototypes.

At the other extreme, increasingabove or has
little effect on the best-case results. Taken together, these
observations suggest that Iris (and more generally, any labeled
data set) has some upper and lower bounds in terms of high-
quality representation by multiple prototypes for classifier
design. There seems to be little hope, however, of discovering
this on a better than case-by-case basis.

It is also clear from Table VIII that the DR model provides
the best results for every value of. We conjecture that the
reason for this is that the control structure for this model is
fundamentally very different from both LVQ and GLVQ-F.
It seems that DR rapidly closes in on a single prototype for
class 1 (which, for Iris, is really all that is needed), terminates
updates for this prototype, and by its increased fatigue factors
encourages the remaining prototypes to seek other data to
represent, which they do. It would be a mistake to generalize
this belief to other data without much more computational
evidence; however, we believe that when a small number of
errors can be tolerated in exchange for a small number of
multiple prototypes, the DR algorithm will prove to be superior
to both LVQ and GLVQ-F.

E. Robustness

Finally, we comment on the sensitivity of each CL model to
changes in its control parameters. We did not experiment with

76 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 28, NO. 1, FEBRUARY 1998

TABLE IX
FIVE DR PROTOTYPESTHAT YIELD THREE RESUBSTITUTION ERRORS WITH THE 1-nmp RULE ON IRIS

TABLE X
SUMMARY OF THE BEST ERROR RATES ACHIEVED BY THE EIGHT METHODS

changes in for GLVQ-F. Certainly this parameter affects
terminal prototypes; however, we doubt that this will cause
radical changes in the results given above. We varied
from 0.4 to 0.6 in both LVQ and GLVQ-F without notice-
able changes in typical results. The DR algorithm has more
parameters to vary, and we spent a little time experimenting
with them before settling on the values listed in Table XI.
For example, we made runs of DR with ranging from 1
to 9 and found little difference in the average case outputs
at every value of shown in Table VIII. In particular, the
average minimum number of DR errors occurred at
prototypes for , , and . All three CL algorithms are
sensitive—but not alarmingly so—to changes in their control
parameters. Usually—but not always—when the number of
errors was the same for competing designs, the vectors that
were misclassified were also identical.

The last method we discuss is due to Yen and Chang [13],
who modified the (batch) fuzzy-means algorithm so that it
can be used to produce multiple prototypes for each class by
an algorithm they called MFCM-, , and . The
theory of their method is well discussed elsewhere, so we are
content here to show their results on Iris. Specifically, Yen and
Chang compare four outputs: FCM, , 16 errors; MFCM-
1, , 16 errors; MFCM-2, with (1, 2, 2) labeled
prototypes for classes (1, 2, 3), 14 errors; and their best result,
MFCM-3, , with (1, 3, 3) labeled prototypes for classes
(1, 2, 3), 8 errors. For convenience, we refer to MFCM as a
CL model in Table X (in fact, itis a CL model, but it is batch,
so the competition is global, not local).

VII. CONCLUSIONS AND DISCUSSION

Table X summarizes the best results achieved by the eight
algorithms discussed in our study. What does Table X entitle
us to conclude? First, our results are of course specialized to
just one data set, and generalizations to other data warrant
caution.

A. Conclusions

The most effective classifier for a consistent design is MCA,
our modification of Chang’s algorithm. If zero resubstitution

error is a desirable criterion, it appears that MCA is a better
choice than Chang’s method, at least for the Iris data. Whether
MCA is reliably better than either MCS or Chang’s method
requires an in-depth study with many data sets. We suspect
that data exist for which each of these methods produces a
consistent classifier with the minimum number of selected or
replacement points. All six 1-nmp designs use the labeled
data more effectively in the sense of a smaller number of
resubstitution errors than the 1-np design, based on the labeled
sample means. This indicates that better classifier performance
is certainly possible and very likely by using multiple proto-
types. Our tests at low and high values forsuggest that there
is probably an optimal range for the number of prototypes
that should be used to replace labeled training data. Since a
theoretical derivation of the best number of prototypes seems
optimistic, it is probably the case that this must be discovered
by the trial-and-error process illustrated by Table VIII. None
of the CL models produced a consistent design; the best 1-nmp
CL model (DR) did realize the minimum number of errors with
the minimum number of prototypes.

B. Discussion

If the determining criterion for choosing multiple proto-
types is consistency, then MCA might be the method of
choice. On the other hand, we can imagine applications (image
compression comes to mind) where it is very important to
find a (possibly inconsistent) design that offers theminimum
number of prototypes. If this is important enough, developers
may be willing to sacrifice a little accuracy to achieve this
objective. In this case, the DR algorithm seems well suited
to finding multiple prototypes that yield a few errors with
fewer prototypes than the other multiple-prototype methods.
The tradeoff is clear: no errors with more prototypes versus
some errors with fewer prototypes.

We did not study the question of how to find an optimal path
for continuing our modification of Chang’s method to carry it
beyond zero errors, but the DR results (three errors with five
prototypes) suggest that paths exist that might bring us close to
this. Specifically, some sort of partial minimal-spanning-tree
technique might be used to extend our modification so that the
best path beyond no errors could be found for one error, two
errors, etc. A solution to this problem would provide users a
way to find some (not necessarily) minimal number of proto-
types that guaranteed any prespecified resubstitution error rate
that the data would support. Perhaps a hybrid approach can be
developed to do this. For example, the DR algorithm could be
used to find multiple prototypes that yield some resubstitution
error rate greater than zero. And then, MCA could be applied
to the DR prototypes in the hope of reducing their number,
while not increasing the current error rate. We think this would
make an excellent follow-up study to this report.

BEZDEK et al.: MULTIPLE-PROTOTYPE CLASSIFIER DESIGN 77

TABLE XI
LVQ, GLVQ-F (m = 2) AND DR ALGORITHMS

Another point worth mentioning concerns the possibility
that one or more labeled classes may end up withno represen-
tative prototypes. This cannot happen with the MCS, Chang,
and MCA methods, but it can happen with the CL models
(see [9] for an example). The most likely cause of this is very
poor (unlucky) initialization. Since the data are labeled, the
occurrence of some class being ignored will always be known
to the user, and in this case, other initializations should be
tried. Indeed, any method that requires initialization is subject
to problems of this kind, so more than one should be tried as
a matter of good development practice. A more problematical
reason for underrepresentation is that the labeled classes are
so mixed that neither selection nor replacement can effectively
reduce the original data. This can be the case, for example,
when the data comprise concentric clusters. Again, the user
will know that this has happened, and the failure of a method
such as MCS or MCA to provide much reduction in will
signal the user that the entire data set should be used.

Finally, we comment on the results reported by Yen and
Chang [13]. Their best 1-nmp (batch-designed) classifier was
inferior to the best results achieved by all of the sequential
CL models. We suspect that sequential updating encourages
“localized” prototypes, which are able, when there is more
than one per class, to position themselves better with respect
to subclusters that may be present within the same class.
This leads us to conjecture that batch algorithms are at their
best when used to erect 1-np designs and that sequential
models are more effective for 1-nmp classifiers. There is
little doubt that the DR model is the best of the three CL
methods tried for this data. We speculate that this is due to its
prototype-by-prototype control structure, which providesvery
“localized” behavior, a property that seems ideally suited to
finding multiple prototypes. The fact that DR never placed
two prototypes in class 1 of Iris supports this, but we reserve
judgment until more experimental evidence exists. This will
be the subject of our next investigation.

78 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 28, NO. 1, FEBRUARY 1998

TABLE XII
MODIFIED CHANG ALGORITHM

APPENDIX

See Tables XI and XII.

REFERENCES

[1] R. Duda and P. Hart,Pattern Classification and Scene Analysis.New
York: Interscience, 1973.

[2] J. C. Bezdek,Pattern Recognition with Fuzzy Objective Function Algo-
rithms. New York: Plenum, 1981.

[3] D. Titterington, A. Smith, and U. Makov,Statistical Analysis of Finite
Mixture Distributions. New York: Wiley, 1985.

[4] R. Krishnapuram and J. Keller, “A possibilistic approach to clustering,”
IEEE Trans. Fuzzy Syst.,vol. 1, pp. 98–110, May 1993.

[5] B. V. Dasarathy,Nearest Neighbor (NN) Norms: NN Pattern Classi-
fication Techniques. Los Alamitos, CA: IEEE Comput. Soc. Press,
1990.

[6] P. Devijver and J. Kittler,Pattern Recognition: A Statistical Approach.
Englewood Cliffs, NJ: Prentice-Hall, 1982.

[7] T. Kohonen, Self-Organization and Associative Memory,3rd ed.
Berlin, Germany: Springer-Verlag, 1989.

[8] N. Karayiannis, J. C. Bezdek, N. R. Pal, R. J. Hathaway, and P. Pai,
“Repairs to GLVQ: A new family of competitive learning schemes,”
IEEE Trans. Neural Networks,vol. 7, pp. 1062–1071, Sept. 1996.

[9] N. R. Pal, J. C. Bezdek, and E. C. Tsao, “Generalized clustering networks
and Kohonen’s self-organizing scheme,”IEEE Trans. Neural Networks,
vol. 4, July 1993.

[10] G. S. Lim, M. Alder, and P. Hadingham, “Adaptive quadratic neural
nets,” Pattern Recognit. Lett.,vol. 13, pp. 325–329, 1992.

[11] P. McKenzie and M. Alder, “Initializing the EM algorithm for use in
Gaussian mixture modeling,” inPattern Recognition in Practice IV;
Multiple Paradigms, Comparative Studies and Hybrid Systems, ecd, E.

S. Gelsema and L. N. Kanal, Eds. New York: Elsevier, pp. 91–105,
1994.

[12] C. L. Chang, “Finding prototypes for nearest neighbor classification,”
IEEE Trans. Comput.,vol. C-23, Nov. 1974.

[13] J. Yen and C. W. Chang, “A multi-prototype fuzzyc-means algorithm,”
in Proc. 2nd EUFIT,Aachen, Germany, 1994, pp. 539–543.

[14] E. Yair, K. Zeger, and A. Gersho, “Competitive learning and soft
competition for vector quantizer design,”IEEE Trans. Signal Processing,
vol. 40, pp. 294–309, Feb. 1992.

[15] A. Gersho and R. Gray,Vector Quantization and Signal Compression.
Boston, MA: Kluwer, 1992.

[16] E. Anderson, “The IRISes of the Gaspe peninsula,” inProc. Bull. Amer.
IRIS Soc.,vol. 59, 1935, pp. 2–5.

[17] B. V. Dasarathy, “Minimal consistent set (MCS) identification for
optimal nearest neighbor decision systems design,”IEEE Trans. Syst.,
Man, Cybern.,vol. 24, Mar. 1994.

[18] L. I. Kuncheva and J. C. Bezdek, “Nearest prototype classification: Clus-
tering, genetic algorithms or random search,” this issue, pp. 160–164.

James C. Bezdek(M’80–SM’90–F’92) received
the Ph.D. degree from Cornell University, Ithaca,
NY, in 1973.

His interests include pattern recognition, fish-
ing, computational neural networks, skiing, image
processing, blues music, medical computing, and
motorcycles.

Dr. Bezdek is the founding Editor of the IEEE
TRANSACTIONS ON FUZZY SYSTEMS.

BEZDEK et al.: MULTIPLE-PROTOTYPE CLASSIFIER DESIGN 79

Thomas R. Reichherzer received the Vordiplom
degree in computer science at the University of Ulm,
Ulm, Germany, and the M.S. degree in computer
science from both the University of West Florida,
Pensacola, and the University of Ulm, in 1996.

He is presently with the Institute of Human &
Machine Cognition (IHMC), University of West
Florida. His research interests include pattern recog-
nition, artificial intelligent agents, and natural lan-
guage processing.

Gek Sok Lim received the B.Sc. degree in computer
science from the University of Western Australia,
Perth, in 1991. She submitted her Ph.D. dissertation
to the Department of Electrical and Electronic En-
gineering, University of Western Australia, in early
1997.

She is currently with Lucent Technology. She
was a Research Officer with the Centre for In-
telligent Information Processing Systems (CIIPS),
Department of Electrical and Electronic Engineer-
ing, University of Western Australia, from 1992 to

1996. She worked with NEC, Singapore, in cooperation with the Institute of
Systems Science (ISS) and the Supercomputing Centre, National University
of Singapore, Singapore, from 1991 to 1992.

Yianni Attikiouzel (M’74–SM’90–F’97) received
the B.Sc. degree in electrical engineering with first-
class honors and the Ph.D. degree from the Uni-
versity of Newcastle-upon-Tyne, U.K., in 1969 and
1973, respectively

He is a Professor of Electrical and Electronic
Engineering and Director of the Centre for Intel-
ligent Information Processing Systems, Department
of Electrical and Electronic Engineering, University
of Western Australia, Perth. He has been active in
the areas of adaptive signal processing, information

technology, medical electronics, and artificial neural networks. His work has
been published in more than 200 refereed papers in international journals and
conferences. He is the author of two books, and he recently co-edited an IEEE
Press book on computational intelligence.

Dr. Attikiouzel is a Fellow of the Institute of Electrical Engineers, U.K.,
and IEAust.

