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Multiple-Prototype Classifier Design

James C. Bezdelgellow, IEEE Thomas R. Reichherzer, Gek Sok Lim, and Yianni AttikiouZeljow, IEEE

Abstract—Five methods that generate multiple prototypes from generate each of the four kinds of labels as well as a set
labeled data are reviewed. Then we introduce a new sixth ap- v = {v1, va, ---, v} C R of point prototypes (or cluster
proach, which is a modification of Chang’s method. We compare centers) for clusters in¥ from unlabeled object data are

the six methods with two standard classifier designs: the 1- A . A
nearest prototype (1-np) and 1-nearest neighbor (1-nn) rules. The /147d é—means (HCM), Duda and Hart [1]fuzzy ¢ —means

standard of comparison is the resubstitution error rate; the data FCM), Bezdek [2]; probabilistic mixtures (EM), Titterington
used are the Iris data. Our modified Chang’s method produces et al. [3]; and possibilisticé — means (PCM), Krishnapuram
the best consistent (zero errors) design. One of the competitive and Keller [4].

learning models produces the best minimal prototypes design (five A classifier any functiorD: R — N,,;, specifies: decision

prototypes that yield three resubstitution errors). regions inR?. Training a classifier means identification of the

Index Terms— Competitive learning, Iris data, modified parameters oD if it is explicit or representing the boundaries
Chang's method (MCA), multiple prototypes, nearest neighbor gefined by D algorithmically if it is implicit. The value
(1-nn) rule. v = D(z) is the label vector fog in *?. D is acrisp classifier

if D3] = Npe. New, unlabeled object data that enter

|. INTRODUCTION feature space aftasrisp decision regions are defined simply

ERHAPS the most basic idea in pattern recognition is ti¢eduire the label of the region they land in. If the classifier is
class label. There are four types of labels—crisp, fuzz{}!ZZY. probabilistic, or possibilistic, labejsassigned to object
probabilistic, and possibilistic. Let integédenote the number vectorsz during the operational (i.e., classification) phase are

of classesl < ¢ < n and define three sets of label vectors iRIMOSt always converted to crisp ones through the hardening
R¢, as follows: of y with the function

Np={y e Ry €[0,1] Vi, 5 >03 i} H[D(z)] =H(y) = e; & [ly — e
=[0, 1J° = {(0, 0, ---, 0)T} (1a) <ly-ellev>y, Ji#i ()

© In (2), the distance is Euclideatg(y, e) = ||y — e|| =
Nye = {y € Npe: Z Yi = 1} (1b) (y —e)T(y —e), and ties are reéolve)d arbHitrarin.|| If the
i=1 g design data are labeled (that is, if we have training data
Npe =iy € Nye yi € [0, 1]V} that possess class label vectorsiNp,), finding D is called
={er, ez, -+, e} (1c) supervised learningIn supervised classifier desigdy is
_ ) ) _ i usually crisply partitioned into aesign(or training) set X,
Ny is the canonical (unit vector) basis of Eucllde@;qpace. with label matrix L., and atest setX. = (X — Xy, ) with label
The ith vertex of Ny, e; = (0,0 -+, N 0)*, is the  matrix Lye. Columns ofL;, and L. are label vectors imV,;.
. . A i Testing a classifieD designed withX;, means finding its
crisp label for class, 1 < i < ¢. Ny, a piece of a hyperplane,error rate (or estimated probability of misclassification). The

i ol = T i . . .
is the convex hull Q.fo“’ The vectory. ) (0.1, 9'6’ (.)'3) IS standard method for doing this is to subdiit. to D and count
a fuzzy or probabilistic label vector; its entries lie between .

zero and one and sum to on¥,., the unit hypercube iR, mistakes L;. must have crisp labels for data i, in order

excluding the origincontains possibilistic label vectors, SuChf)ou:jzotthaiiz).n-l-iglgicyeﬁclaist:gpvs;\;et? ;ei::(; \rlaiféD (;f:é'fétsrt)e; q
asz = (0.7, 0.2, 0.7)T. Note thatV;. C Ny C Npe. tr

with X... Fp is often the performance index by whidb is

Object data are represented¥is= {x;, - - -, X, } in feature . . .
spaceR?. The kth object (a ship, patient, stock market reporJrudged because it measures the extent to wiilcheneralizes

pixel, etc.) hasx; as its numerical representatios; is Owﬁe;e;[ Ea;?. — X,., the error ratefip(X]X) is called
the jth characteristic (or feature) associated with object o T e D

Examples of alternating optimization (AO) algorithms thattheresubstitutionerror rate. Some authors cdll a consistent
P g op 9 classifier if and only if£p(X|X) = 0. Resubstitution uses
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LVQ models called GLVQ-F [8], [9], 3) the deterministic

e 0t0, .

::.:,:0” ;" 3 ., o« o v ° + , dog-rabbit(DR) model of Limetal.[10], [11],* 4) a determin-

2 ir RS * Xy . istic hierarchical clumping model due to Chang [12], 5) our
. o:‘o:‘.‘ . . ; modification of Chang’s algorithm, and 6) a modification of

", 0“0300:3 Q=> , . batch fuzzyé-means [13]. These six schemes will be compared
o .“‘% » .0’0‘0 : ’ . L . to the standard nearest prototype (1-np) and nearest neighbor
0:.0 0.00 N (2—nn) rule classifiers.

Fig. 1. Editing by selection of labeled data Ity . II. 1-NP CLASSIFIERS

Synonyms for the word prototype includector quantizer

,‘o‘::o:::: :} . O I:ID I:ID o (VQ), signature, template, codevector, paradigm, centroid, apd
f.o X, ‘{». O Qg O g exemplar. There are many approaches to prototype generation.
3 e o’ V=X_ o A nonexhaustive list includesequentialcompetitive learning
o 'o:.:o:’: Q o o models, such as crisp (adaptivejneans [1], LVQ [7], GLVQ-
‘0:"0"0’. b —> 0o © o F [8], GLVQ [9], the DR model [10], [11], and probabilistic
:,0 ’t‘ 0:0”.00 e o o o schemes such as SCS [1BJatch prototype generator models
* * e o o include crisp and fuzzg-means [2], possibilistié¢-means [4],

statistical models such as mixture decomposition [3], and VQ
approaches such as the generalized Lloyd algorithm [15].
The common denominator in most point prototype gener-
Although the implicit use of the methods we discussor ation schemes is a mathematical definition of how well
classification (and hence, good generalization potential), tigpresents a crisp subs&t of X. Any measure of similarity
data used in our examples does not justify worrying about th@%” can be used. The usual choice is distance (dissimilarity),
difference betweerp (X |X) and Ep (Xe| X )- while the most convenient is squared Euclidean distance. Local
Classifier performance is largely dependent on the quali§ethods attempt to optimize some function of thequared
of Xi,. If X,, is large enough and its substructure is weMlistances{||x; — v;||*: 1 < ¢ < ¢} at eachx,, in X;. Global
delineated, we expect classifiers trained with it to yield smanethods seek extrema of some function of @il distances
error rates. On the other hand, when the training data are lafglecr — vill*: 1 <@ < é¢and1 < k < n}. Once the prototypes
in dimensionp and/or numbem, classifiers such as the- V are found (and possibly relabeled if the data have physical
nn (Dj-n) rule [5] can require too much storage and cplpbels), they can be used to define the crisp 1-np classifier
time for efficient deployment. To circumvent time and storage'v, s- - .
problems caused by very large data sets, many authors hav&he 1-np Classifier:Givenany ¢ prototypesV = {v;: 1 <
studied ways to transform the original da¥a, into a smaller, J < ¢}, SO there is one ;/class, andny dissimilarity measure
but equally useful data set, sa¥;,, SO thatEp (Xo|X,) ~ ¢ On R foranyz € R
ED(Xt-e|Xtr). The k—r)n clgssmerD = Dyj-nn is often used pecidez € classi & Dy 5(z) = e; © 8(z, v;) < 6(z, v;),
to decide whether this objective has been met. Vit ’ 3
Two common editing schemes aselection and replace- i (3)
ment Selection finds groper subsetY, CX:,. Replacement Ties in (3) are arbitrarily resolved. The crisp 1-np design can
uses a transformatioft: % — P to find X, = Q[X,]. The be implemented by using prototypes frany algorithm that
process of subset selection is a special case of replacemprdduces them. Equation (3) defines a crisp classifier even
Replacements are almost always labeled prototypes, suchwé®&n V comes from a fuzzy, probabilistic, or possibilistic
V produced byS2. In this paper, is any one of seven algorithm. It would be careless to cdlly_ s a fuzzy classifier,
prototype generation algorithms, all of which are compargdr example, just because fuzzymeans produce® .
to one selection algorithm. The geometry oD s is shown in Fig. 3 usingg, for é in
Fig. 1 depicts selection. The density of labeled data ov¢3). This 1-np design erects a linear boundary betweeritthe
each cluster in the left side of Fig. 1 is high. A selectednd jth classes, viz., the hyperplane HP through the midpoint
subset (or skeleton) of the original data are shown on the rigbf.and perpendicular tov, —v;). Fig. 3 illustrates the labeling
This approach has many variants and is well summarizeddacision in (3);z is assigned to classbecause it is closest
Devijver and Kittler [6]. The aim is to condensE;,, while to theith prototype. Be careful not to confuse 1-np’s, which
approximately preserving the shape of the decision boundarigs new vectors madigom the data, with 1-nn’s, which are
set up by trainingD with it. labeled pointdn the data. In Fig. 3, the prototype nearest to
Fig. 2 illustrates replacement by multiple prototypes. In this is v; and the neighbor nearest #ois x,, € X;.
scheme X is replacedby V, a set of labeled prototypes for All 1-np designs that use inner-product norms erect (piece-
classes 1[{) and 2 (O). Note that there is more than onewise) linear decision boundaries. Thus, theometryof 1-
prototype per class. np classifierboundariesis fixed by the way distances are

We discuss six ml'!ltipl_e'prOtOtype generatiqn schemes: 1)In [10] and [11], the input vectors are called “rabbits” and the prototypes
learning vector quantizatiofLVQ) [7], 2) a family of fuzzy trying to catch them are the “dogs’—hence, DR for dog-rabbit.

Fig. 2. Editing by replacement oX, with labeled prototype¥ .
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design—of the input dath.Sequentialcompetitive learning
(CL) models are a natural choice for finding multiple pro-
totypes. Usually, upon presentation of g from X, updated
estimates of the{v;} at iteratet (one iteration is one pass
through X) are computed as

Vit = Vi t—1+ ik, +(Xp— Vi t—1), i=1,2,---,c (4)

2

In (4), {ou,+} is the learning rate distributionover thec
prototypes for inputx; at iteratet. The principle difference
between various competitive learning models lies in 1) the
subset of prototypes that get updated at each iterate and 2)
measured in the feature space adby geometric properties the values of the{es ;}. It is always possible to define the

of the model that produces the cluster prototypes. The Iocati{)@ik’t} to include the update neighborhood, so this is usually
in ) of the prototypes determines the location and orientatigéhat is specified. Unsupervised LVQ updates only the winner
of the ¢(¢ — 1)/2 hyperplanes that separate each pair of prgre., thev, closest tox;) at each input, whereas GLVQ-F
totypes. Thegeometryof the prototypesdoesdepend on both and the DR algorithm may update allprototypes for each

the clustering model and data used to produce them. Henggssentation of an input. The learning rate distribution for
1-np designs based on different prototype generating schemgsg) is
can certainly be expected to yield different performance as

Fig. 3. Geometry of the 1-np classifier for the Euclidean norm.

1-np classifiers, even though they all share the same type of oy ¢ = arg min {||xx — v +—1||}
- vQ _ ——
decision surface structure. U M )
When one or more classes have multiple prototypes, as 0; r=1,2 " -cr#£i
shown in Fig. 2, there are two ways to extend the 1-np design. 1<i<e. (5)

We can simply use (3), recognizing thdtcontains more than

one prototype for at least one of tlieclasses. Or we can |, (5), a is usually initialized at some value in (0, 1) and
extend the 1-np design to/anp rule, wherein the: np’s are  decreases with. Kohonen [8] gives conditions under which
used to conduct a vote about the label that should be assigneg) terminates at a fixed point of the iterate sequence, defined
to input z. This amounts to operating thienn rule by using yig (4) and (5), that requires a nonlinear decreasexjn
prototypes (points built from the data) instead of neighbofg ¢. o, (1/t)]. Termination occurs without comparison
(points in the data). We opt here for the simpler choice, whigl} syccessive estimates . Since we usé{V, — V,_1|| for

is formalized in the following. termination control, we chose to decreaselinearly with ¢.

The Nearest Multiple-Prototype (1-nmp) Classifiggiven  The model underlying GLVQ-F contains LVQ as a subcase
any c prototypesV = {v;;: 1 <i <& 1 < j < nyi}, Where  gpnq js discussed extensively elsewhere [8]. GLVQ-F is based
np; is the number of prototypes for clagsc = 3>°7_ 7,5, on minimizing a sum of squared errors associated with re-
andany dissimilarity measuré on R?, for anyz € ®? placing unlabelediata setX;, by the ¢ prototypesV. The

function to be minimized is

Decidez € classi & Dy s(z) =e; & 3Is € {1, ---, ny}
such that .
oy L(x3 V) = > |z — vo|?
6(Z7 Vis) < 6(Z7 Vﬁ)? Vi#i and te€ {17 M) TLPJ} r=1
3) -

I = |2/

“2\% [nxk =[]

As in (3), ties in (3) are resolved arbitrarily. We use the — |z
same notation for the 1-np and 1-nmp classifiers, relying on

2
context to identify which one is being discussed. Now we turn P = v 6)
to methods for finding multiple prototypes. .
g pie profolyp In (6), the vectoru = (uy, ug, -+, u.)t € Ny is a fuzzy
label vector; its entries are thmembershipof x; in each
lll. THREE COMPETITIVE LEARNING of the ¢ classes represented by the prototypés The real
MODELS FORMULTIPLE PROTOTYPES numberm > 1 in (6) is a parameter that affects the quality

When labeled data are crisply partitioned irtosubsets, Of representation and speed of termination of the GLVQ-F
X = XU Xe with X; nX; = 0 for all i # 3, the algorithm, which is just steepest descent applied to the function

natural choice forV in the 1-np design is to compute thein (6). The GLVQ-F update rule for the prototyp¥sat iterate
cluster or subsample mean vectdfs= (¥4, - - -, ¥;), where %, in the special (and simple) case = 2, uses the following
Vi = > xex, X/|1Xi[; 1 <4 < é Dy 4, is the only single
prototype cléssifier discussed here.’ 2Good prototypes for classifier design are not necessarily the same (even
N K ltiol _ in form) as those used for other purposes. For example, good prototypes for
ow we seek multiple prototype¥V = {'Vlv Ve C __compression, transmission, and reconstitution of images may be quite poor as

NP, ¢ < ¢ < n that are good representatives—for classifieepresentatives of classes for the purpose of pixel labeling in the same image.
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and aninhibition constantA > 0. Now supposev; ,_; to be
the winning prototype with||x; — v;_1|| > Ry, as shown

in Fig. 4. All ¢ prototypes are updated by using (8) in (4).
Following this, the distancéix; — v; || is compared taR;.

If ||xx — vi || < Ry, the closest dog is now inside the
fence aroundk; and is slowed down by increasing its fatigue
fik.t — fir,t—1 + Af. This inhibits future motion of this
prototype a little (relative to the other prototypes), and it also
encourages nonwinners, suchas,, to look for other data

Fig. 4. Control of learning rates in the DR algorithm. to chase.
When the winning prototype gets very close to (a group
learning rate distribution in (4): of) inputs, we want it to stop moving altogether, so we also
. s ]2 check the current value ¢f;, ;. againstf,;. Movement of (i.e.,
4 BLVQ-Fom=2 _, 3 <||Xk = vie—1l| ) updating) theith prototype ceases whefy. , > fa;. Thus,
ikt ¢ =\ xw = v 1|2 ’ termination of updating is done prototype by prototype, and
— ~ DR stops when all of the prototypes are “close enough”—as
Uik im measured by their rates of change of fatigue exceeding the
1<i<e (7)  maximum—to the subset of data for which they are the winner.

The dependency of {aPk!:‘:} on the parameters
a{r{tfik:t}’ Af, fu, Ry, A} is complicated by the functional
(2c) is absorbed in it without loss. Limiting properties ofo'™M Of (8). However, we can say that these rates ensure that
GLVQ-F are [8] 1) asn approaches infinity, alt prototypes the_ winning p'rototyp'e receives the largest (_fracthn)agtyt.
receive equal updates and thgs all converge to the grand at |teratet l_Jntll the winning prototype closes in on its rabbits.
mean of the data, whereas 2) as approaches one from At tk_ns point, other prototypes may start receiving a larger
above, only the winner is updated and GLVQ-F reverts {6act|on of the update even though they are nonwinners. The
LVQ. Finally, we mention that the winning prototype inDR learning rates do not satisfy any additional constraints. A
GLVQ-F for m = 2 receives the largest (fraction) of ; at brief specification of LVQ, GLVQ-F forn = 2, and the DR

iteratet, that other prototypes receive a share thanversely algorlthmsf, ahs used in orl]erexa_\mpI%s, ar_ebgglen in Tr;:blel ﬂ |
proportional to their distance from the input and that the None of the CL methods just described uses the labels

GLVQ-F learning rates satisfy the additional constraint th&f POINtS inX., during training to guide iterates toward a
S ke < 1 whenm = 2. good V. Consequently, at. the_ end of the learning phase,
The third sequential CL model used here is the determinisffé€ ¢ Prototypes havealgorithmic labels that may or may

DR algorithm [10], [11]. The basic idea for our implementatioﬁmt c_orresp_ond to thehysicallabels OfX“'_The relabeling
can be found in [10]; an alternate implementation is discussB@Orithm discussed next uses the labelslin to attach the
in [11]. Like GLVQ-F, the DR algorithm may update al most_llkely (as measured by a percentage of labeled neighbors)
prototypes for each input. Unlike GLVQ-F, the DR algorithnPlysical label to eaclv;. _
is not based on an optimization problem. Rather, its authors ys&€call thaté is the number of classes iX;, labeled
intuitive arguments to establish the learning rate distributid®y the crisp vect9r§{e1, e, -, e} = Nye. Now define
for (4) that is used by the DR model, as shown in (8) at tH&i: ¢ =1 2, -+~ & j=1,2, .-, cto be the percentage (as
bottom of the page. a decimal) of tralnmg data from f:lassclosest tov, \{la the
In (8), A > 0 is a user-specified constant that inhibits movet P fuleDv s, Define the matrix?” = [p;;]. P hasé rows
ment of the nonwinning prototypes towasd; and { fi,, > 1 #Vse and ¢ columnsp; in N,.. We assign labeb; to v;
1} is a user-specified distribution détigue factorsfor the when H(p;) = e
DR algorithm. In our implementation, the fatigue factors are  |abel; — v; & H(p;) = e;, i=1,2,--, ¢
not necessarily updated at the same time acipssd may J=1,2, -, ¢ @)
not be functions of iterate number Rather, control of these T
exponents depends on circumstances at individual prototypeswe illustrate the labeling algorithm in (9). SuppaXeg, has
Fig. 4 illustrates how the learning rates are controlled. ¢ = 3 classes labeled with the crisp vectdrs;, es, ez} =
The DR user must specify an initial distribution for theV;s. Let V = (vy, v4, v, v4) be four prototypes found by
{fi,+ = 1} and four constants: gate of change of fatigue some algorithm. Lef’ be the 3x 4 percentage matrix shown
factorAf > 0, amaximum fatigug,,, afence radiusk; > 0, in Table I. Labeling algorithm (9) assigng, to class 1,v,

ay in (7)—now one componentof the learning rates
{1 }—is treated the same way as in (5), and the const

2||Xk - Vi,t—l” P . .
R N oy o ey ¢ =gz min gl = v e}
Yik,t = 7 T (8)
{ [k = Vi, i1 ]| } { 2[x1 = Vi, e—1]] P=1,2, 0 A
(A llxk = vi,e—a D ] LA+ lIxp = Vi e [) /42 | T
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Fig. 5. (a) Effect of the merger formula and (b) illustration of both models.

TABLE | When there is a merger, the child inherits the class label
EXAMPLE OF THE MULTIPLE-PROTOTYPE LABELING ALGORITHM of its parents and it replaces them in the current prototype
vy \D) vy vy set. Especially important is that thestdata arefixed (all of
0.57 0.10 0.13 0.20 X). Continue this procedure until further merging produces
0.15 0.10 0.15 0.60 an error, and at this point stop, having foundorototypes
0.05 0.40 0.40 0.15 V. that replace then labeled dataX and that preserve a
T T T 7 resubstitution error rate of zero, i.ép,,_, (X[V.)=0.An
H(p)=e, Hipy)=e; H(pj)=e; Hi(pj=e, implementation of this scheme, based on minimal spanning

trees is given by Chang.
R . We modified Chang’s approach, here called the MCA, in
ﬁndv:», to claﬁs 3, andr4 to classf2. Whlenever> c,wa vv||IIb ItW ways. First, instead of using the weighted meap —
ave more than one prototype for at least one of the labe i + Nx;)/(M + N) to merge prototypes we used the
classes and will use the 1-nmp rule at)(@stead of the 1-np . LA ;
rle at (3). simple ar|thmet|q mean [see Fig. 5(a)]. Sggon_d, we alte_red the
search for candidates to merge by partitioning the distance
matrix into ¢ submatrices blocked by common labels, and
we always looked for the minimum only in each block [see
Fig. 5(b)]. This eliminates consideration of candidate pairs
Now we discuss three methods that are not based with different labels. Like Chang, we attempt to merge the
sequential competitive learning: Chang’s algorithm [12], aminimum of label-matched pairs. If this fails (because the
improved version of it, and a batch method due to Yen amsiototype produced by the merger yields an error), we look
Chang [13]. at the next best candidates, and so on. Search continues in
Chang [13] discussed one of the earliest multiple-prototypgcending order of distance until either 1) a merger can be done
classifier schemes. The method begins by assuming every peinR) no merger is possible in any class. The MCA algorithm
in a labeled data seX is its own prototype; so leV,, = X. terminates when 2) occurs. This is more effective than Chang’s
Consequently, the 1-np rule at (8 the 1-nmp rule at (3 approach because merging the closest points of the same label

IV. THE CHANG AND MODIFIED
CHANG ALGORITHMS (MCA'’S)

error rate is zeroEp,,, , (X[V,) = 0. Now find (i, j) = may be sufficient, but is not necessary, to preserve the zero
arg min {||x; — x¢||}. Tentativelymerge these two points error rate.
st X0 X0 EVi, Fig. 5 illustrates the operation of and highlights differences

by using the weighted mean;; = (Mx; + Nx;)/(M + N), between the Chang and MCA models. Using the number of
whereM, N are the number of merger parentsxpfandx;, merger parents as weights guarantees that Chang’s prototypes
respectively. Initially,A/ and N have the value one. Whenare either isolated singletons or true centroids of the points they
two data points; andx; are mergedy;; = (x; +x;)/2 and represent. Using simple averaging instead results in the points
v,; has two merger parents. Subsequentlyy;if andx; are that are not close to each other drawing MCA prototypeay
merged, them/ =2, N = 1, v = (2v4; + xx)/3, etc. from points that are close to each other. Fig. 5(a) shows the
Next, update the prototypes by setting,—; «— X — effect of changing the merger formula from Chang’s weighted
{xi, x;} + vi;, and calculateébp,, _ , (X|Vn_1) by using mean to the simple arithmetic mean.
the 1-nmp rule at (3. If the error rate is still zero and i; In Fig. 5(a), the six points labelea to f are increasingly
andx; have the same label, accept the merger and continuedigtant from each other as — f. The centroid ofa to f in
either 1) the error rate increases or2)andx; have different Fig. 5(a) is Chang's prototypec = (a+b+c+d+e+
labels, do not merge; andx;. In this case, Chang regargs f)/6. Each point has equal weight, regardless of the relative
andx; as currently nonmergeable prototypes and continueslistances between pairs of points. For the MCA prototype,
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VMCA = a/32+b/32+c/164+d/8+e/4+f/2. The points 5= Virgica
closest together are merged first (in this casandb by both 25 A Xa=Potal Width e T
methods; but in MCA, these points have taastoverall effect £ - ean of case N .
on the final position of the prototype). This enables MCA S - Mean of class 2 y
prototypes to (have a better chance) to correctly label points * T gl = Mcan of class 3 T
in their own classes that afdOT located near the central ‘
tendency of the clusters. sk ~

Fig. 5(b) illustrates the Chang and MCA approaches. Let
dg, denote the (Euclidean) distance betwegerand b and
likewise for other distances in the diagram. Suppose the closest

¢
L4+ \

2 = Versicolor

existing clasg prototype in the neighborhood is shown to be 1 = Sestosa
ves and thatd,, is the minimum distance in the currentnode ;| 77,2
set. Both Chang and MCA will consider replacimgand b Vot
with the clasg prototypev,,;, and neither will do so. Chang’s \;i‘,’: x5 = Petal Length

method applies two tests: are the labelsacindb the same? 0 t ; ; f t t +»
(yes) and will this prototype cause an error for the new 1-np ° ! ? 8 4 5 5 7
classifier? (yes). Since the distance fro), to ¢ is smaller Fig. 6. Iris data: feature three versus feature four.

than the distance from., to ¢, the pointv,; will misclassify

¢, so the proposed merger is rejected by both algorithms. TABLE Il

At this point, Chang’s method will next inspect possible SussampLE (MEAN) PrOTOTYPEST” IN R FOR IRIS
mergers betweem and ¢ and thenb and c; both will be Symbol | Name X X, X5 X,
rejected, due to a failure to have the same class labels. MCA ﬁ v, 5.01 3.43 1.46 0.25
skips these calculations, since the minimum distance search ‘A' v, 5.04 277 1.26 1.33
is constrained to submatrices for the same class within the o T 555 5G7 =S 503

current distance matrix. Then, both algorithms will consider
merginga andd, and both will do this.

In the terminology of Section |, the Chang and MCAeplacement or, equivalently, comparing an edited 1-nn design
models are both consistent designs—that is, they are defingdhe 1-nmp designs based on the Chang and MCA models.
to maintain zero resubstitution errors. Both of these designsrollowing Chang [12] and Dasarathy [17], we use An-
are replacement classifiers in the sense of Flg 2. In the nerson’s Iris data [16] as the experimenta| data set . In the
section, we compare these two designs to the standard 1é9@mp|eS, we take Iris=s X = X, = X,.. Iris contains 50
rule. (physically labeled) vectors ii®* for each ofé = 3 classes of
Iris subspecies. Fig. 6 is a scatterplot of the third and fourth
features of Iris, which also shows the subsample mean for
each of the three classes in these two dimensions. Table I
lists the coordinates of the means. Class 1 is well separated
from classes 2 and 3 in these two dimensions; classes 2 and
3 show some overlap in the central area of the figure, and
this region contains the vectors that are usually mislabeled by
1-np designs. The dashed boundaries indicate the physically
labeled clusters.
and Chang reports that his method finds= 14 prototypes

8(z, x5) < 6(z, x,) < 8(z, X;), Vi #s. (10) that replace Iris and preserve a zero resubstitution error rate;
the prototypes are not listed in [12]. Dasarathy reports in

Ties in (10) are arbitrarily resolved. Dasarathy [17] recentj)l 7] that MCS finds 15 points in the Iris data that result
discussed a method for selecting a consistent subsetfréon  in zero resubstitution errors. If MCS is truly minimal, this
use with the 1-nn rule . His method is based on finding nearssiggests that Chang’s replacement method is, for Iris at least,
unlike neighbor subsets ifX. Dasarathy calls his scheme theslightly superior to MCS subset selection. The 15 points in
MCS method, in which MCS stands forinimal consistent set Iris found by MCS were not listed in [17]. Our modification
Although the term minimal implies that MCS finds the smallesif Chang’s method finds 11 prototypes built from Iris that yield
consistent subset of for the 1-nn rule, Dasarathy admits theconsistency for the 1-nmp design with which they were used.
possibility that it is not, since no proof of minimality is given.The 11 prototypes are listed in Table lll. This confirms that our

The important point here is that MCS is to Fig. 1 as thmodifications of Chang’s method serve as advertised; that is,
Chang and MCA methods are to Fig. 2: the former is BICA does reduce the number of nearest multiple prototypes
selection method, while the latter are replacement methodsgile preserving consistency.

All three methods use the labels during training, and they all Our implementation of MCA can probably be made more
guarantee consistency (zero resubstitution error rate). Thus, éffficient, and a different merger scheme might reduce the
results of Dasarathy are very useful for comparing selectiontamber of prototypes needed for consistency even more.

V. NUMERICAL COMPARISON OFTHREE CONSISTENTDESIGNS

The standard 1-nn rule classifier is specified as follows.

The 1-nn Classifier:Given a crisply labeled data set#f,
X =X,U---UXy X;nX; = 0for: # j, andany
dissimilarity measuré on R?, for anyz € R?

Decidez € classi < Di_p, 6(z) = e © %, € X;
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TABLE I
11 MCA PROTOTYPES THAT YIELD ZERO RESUBSTITUTION ERRORS WITH THE 1-NMP RULE ON IRIS
Class 1 Class 2 Class 3

494 336 1.38 0.28 569 233 388 1.16 490 250 450 1.70
6.70 298 482 156 629 271 501 168

586 3.08 455 154 583 286 498 1.88

6.15 260 500 155 6.05 240 530 145

6.19 3.00 533 231

702 309 6.14 2.18

Subsequent work [18] has shown that the MCS method is TABLE IV
not minimal, and this example shows that replacement can,  INITIAL PROTOTYPES FORIRIS AT ¢ = 6 COMPUTED WITH (14)
for the methods discussed, be more efficient than selection. v =(430 200 100 0.10)=m
v, =(502 248 2.18 0.58)
VI. NUMERICAL COMPARISON V50=(574 296 836 1.06)
OF FIVE INCONSISTENT DESIGNS v,=(646 344 454 154)
How do we use 1-np and 1-nmp classifiers to compare vio=(7.18 392 572 2.02)

unsupervised learning algorithms? The method employed here
is to first derive the prototypey” from labeled data X
without usingthe labels (that is, we pretend there are no labels)
during the training phase. Then, (9) is used to get class labgigee algorithms were

v60=(7.90 440 690 250) =M

for the prototypes. FinallyX is submitted to the classifier i1
and its resubstitution error rate is computed. Error counts are; o = m + <L ) (M — m), 1=1,2,.---,¢c (14)
conveniently tabulated by using thex ¢ confusion matrix c-1
C = [cij] = [# labeled clasg| but were really clasg| that Thus,vio = m = (my, ma, -+, mp)?; ve,o = M =
can be constructed during this process. The error rate (i, Mo, ---, M,)*; and the remaining o( — 2) initial
percent) is prototypes are uniformly distributed along the diagonal of
. hb(m, M). To illustrate, Table 1V shows the initial prototypes
Ep, ,(Xic|Xi:) =100 % [1 - <# ”ght)} produced by (14) with the Iris data at = 6. Algorithmic
’ | Xtel outputs reported for other values efwere obtained from
100 = [1 3 <tr(0)>} (11) similar initializations by using (14). The control parameters
| Xte| of each CL algorithm that we used are listed in Table XI;

o _some experimentation with them is discussed at the end of
For reference, the resubstitution error rate for the supervisgfs section.

1-np design that uses the class means of each subset of

Iris in (3), listed in Table Il and plotted in Fig. 6 as singleg Termination
prototypes, is 11 errors in 150 submissions by using the

Euclidean norm, i.e.Ep_ , (Iris|lris) = 7.33%. Next, we
discuss the computation’afE protocols used by the three
methods outlined in Section lIl.

The primary termination criterion is to compare successive
@timates of the prototypes with the 1-notfV., — V,_||, =

ret IVee = Vieaally = 200 20 [ e — v o1 ] S
compared to cutoff thresholel. If this fails, secondary ter-
mination occurs at the iterate limif' specified in Table XI.

A. Initialization We tested three thresholds:= 0.1, 0.01, and 0.001. The DR
The following method was used to generate an initial satgorithm has a third termination criterion (the prototype-by-
of prototypesVy: prototype cutoff) that can (and often does) occur inside the

main iteration, as shown in Table XI.

Minimum of featurej: m,; = @{xjk}: i=12 - p
k C. Iteration
(12) We drew samples randomly frooY without replacement.
and One iteration corresponds to one pass throdghEach algo-
Maximum of featurej: Af; :@{xjk}: j=1,2,---,p. rithm was run five times for each case discussed to see how
L different input sequences affected the terminal prototypes. For

(13) the less stringent termination criteria £ 0.1 and 0.01), we
sometimes obtained different terminal prototypes for different
The Cartesian produckb(m, M) = [m;, Mi] x --- x runs. Fore = 0.001, this effect was nearly (but not always)
[mp, Mp] is a hyperbox in R#P. The main diagonal of eliminated. Most of the runs using= 0.001 were completed
hb(m, M) connectsm and M with the line segment in less than 300 passes through DR, via its prototype-by-
{m+ oM —m); 0 < « < 1}. Initial prototypes for all prototype criterion, often terminated in less than 50 iterations.
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TABLE V
TypPiCAL PROTOTYPES CONFUSION MATRICES, AND ERROR RATES FOR Six PROTOTYPES ag = 0.4 AND
T = 500 FOR LVQ AND GLVQ-F; DR PARAMETERS {{ fik, ¢}, Af, far, Ry, A} IN TABLE XI

LVQ LvVQ GLV@-F GLVQ-F (m=2) DR DR
Labels prototypes Labels prototypes Labels prototypes
1 469 3.12 139 0.20 1 475 3.15 143 0.20 1 5,08 345 1.44 0.22
1 523 3.65 150 0.28 1 524 3.69 1.50 027 2 578 2.63 3.99 1.20
2 552 2.61 3.90 1.20 2 560 2.65 4.04 124 2 6.61 3.00 445 1.39
2 621 2.84 475 157 2 6.18 2.87 4.73 1.56 2 6.09 298 4.60 140
3 6.53 3.06 549 2.18 3 6.54 305 547 2.11 3 6.06 2.83 495 1.78
3 7.47 3.12 6.31 2.02 3 744 3.07 627 2.05 3 6.74 3.12 560 2.24
50 0 O 50 0 O 50 0 O
C=|0 50 O C=10 50 O C=10 47 3
0 14 36 0 14 36 0 1 49
Error rate = 9.33 % Error rate = 9.33 % Error ratec = 2.66 %

TABLE VI
TypicaL PROTOTYPES CONFUSION MATRICES, AND ERROR RATES FOR SEVEN PROTOTYPES g = 0.4
AND T' = 500 FOR LVQ AND GLVQ-F; DR PARAMETERS {{ fir,+}. AF, far, Ry, A} IN TaBLE XI

LVQ LvVg GLVQ-F GLVQ-F (m=2) DR DR
Labels prototypes Labels prototypes Labels prototypes

1 4,68 3.11 1.39 0.20 1 474 3.15 1.43 0.20 1 5.06 342 145 0.21
1 523 3.65 1.50 0.28 1 5.24 3.69 1.50 0.27 2 5.58 249 3.89 1.10
2 5.53 2.62 3.93 1.21 2 557 2.61 3.96 1.21 2 5.69 2.884.18 1.29
2 6.42 2.89 459 143 2 6.26 2.92 454 143 2 6.09 295 4.63 1.40
3 6.57 3.09 5.52 2.18 3 6.62 3.09 5.56 2.16 2 6.64 3.004.56 1.41
3 7.47 3.12 6.312.02 3 7.50 3.05 6.35 2.06 3 6.11 2.82 491 1.78
3 599 2.75 5.02 1.79 3 6.04 2.79 4.95 1.76 3 6.72 3.10 557 2.22

5 0 O 5 0 O 5 0 0

c=|{0 47 3 C={0 46 4 C=|0 47 3

0 1 49 0 1 49 0 1 49
Error rate = 2.66 % Error rate = 3.33 % Error rate = 2.66 %

TABLE VII
TypPicAL CONFUSION MATRICES AND CLASS
REPRESENTATIVES FOREIGHT TERMINAL PROTOTYPES

produce when used in {Bon all of IRIS. Each of the three
physical clusters is represented by two prototypes by both LVQ
and GLVQ-F, and the overall error rate produced by these

c = 8 prototypes two classifiers is 9.33%. The DR model performs much better,
50LVQO 5 g’;‘VQ(;F 5 50DR0 5 finding six prototypes that produce only four errors when used
C= [ 0 47 3 ] Cc= ( 0 47 3 J C= ( 0 47 3 ] with (3'). Note especially that DR uses only one prototype for
0 616 49 0 61 _ 49 0 1 49 class 1, three for class 2, and two for class 3.
E =2.66 % E=2.66 % E = 2.66 % ; o ;
% =15 e T T The prototypes in Table V are plottgd in Fig. 7 against a
Class 2 : 3 Class 2 : 3 Class 2: 4 background created by roughly estimating the convex hull of
Class 3. 3 Class 3. 3 Class 3. 3 each physical class in these two dimensions by eye. Some
of the prototypes are hard to see because their coordinates
D. Results

are very close in these two dimensions. We draw attention
The results shown in Tables V-VII are typical cases; tho¢e the LVQ and GLVQ-F prototypes that seem to lie on the
in Table VIII are the best case we saw in each instance. dyundary between classes 2 and 3 by enclosing these points
main objective is to compare the methods rather than obtaWth a jagged star. These prototypes are the ones that incur
an optimal design for Iris. Indeed, it may be that with enougmost of the misclassifications that are committed by the LVQ
experimentation, any of the CL models will yield best-casend GLVQ-F 1-nmp classifiers. Notice that there is no DR
(or better!) results. prototype in this region at = 6. Instead, DR opts for only
Table V exhibits terminal prototypes found by each algane class 1 prototype, thereby enabling it to better represent the
rithm atc = 6 as well as the resultant 1-nmp error rates thedyoundary region between classes 2 and 3 with the prototypes
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TABLE VI X4
NUMBER OF RESUBSTITUTION ERRORS OF THE A 0 7:1vQ
1-nmp CL DesiGNs BesTCAse ResuLTS 2.5 % 0 7:GIVQF
c STa[ 5] 6] 7] 8] 915130 @ 7:DR
VG 17] 24| 14| 14] 3] 4] 4] 4] 4 9 |
GLVQ-F 16 20 19 14 5 3 4 4 4
DR 10 13 3 3 3 4 3 6 3
1.5 L
X4
0O 6:LV
2.5 A © 14
0 6:GLVQ-F .
@ 6:DR ﬁ@
2 | © 05 |
//@ @ @
15 | -~
® 0E } } } P X
0 2 4 6 8

Fig. 8. Terminal prototypes for = 7.

05 1 The experiments discussed so far led us to wonder how
) few prototypes were needed by the 1-nmp rule to achieve
good results. And conversely, going in the other direction, at
’ > what point does prototype representation become counterpro-
ductive? Table VIII reports the best-case results (as number
Fig. 7. Terminal prototypes at = 6. of resubstitution errors) we saw by using each algorithm for
various values of.
shown for it. This is a real difference between and decided ad-First, we can observe that on passing frers 3 to ¢ = 4,
vantage for the DR model compared to the two LVQ desigrgven the best-case error rate for all three models increased,
Table VI lists the same information as Table V for= 7. followed by a decrease on passing frem- 4 to ¢ = 5. One
There is a sharp drop in the error rate for the LVQ and GLv@un of DR (shaded in Table VIII) resulted in five prototypes
F 1-nmp designs. Be careful to note that the seventh prototyipat produced only three resubstitution errors when used in
is not “added” to the previous six; rather, new prototypel$)- These prototypes are shown in Table IX. This shows that
are found by each algorithm. The error rates in Table VI atBe Iris data can be well represented by five labeled prototypes.
very low for designs that are not based on using the labelsAt the other extreme, increasingabovec = 7 or 8 has
during training. Note that LVQ and GLVQ-F continue to usdttle effe_ct on the best-cage results. Taken together, these
two prototypes for each of classes 1 and 2, and add a thgservations suggest that Iris (and more gene_rally, any Iabgled
representative for class 3 at= 7. Contrast this to DR, which dat@ set) has some upper and lower bounds in terms of high-
still has one for class 1, four for class 2, and two for cladd@lity representation by multiple prototypes for classifier
3 prototypes. Adding a seventh prototype does not impr09§Si9”' There seems to be little hope, however, of discovering

the DR 1-nmp design because two of the seven prototypes EW@ ona better than case-by-case basis. i
almost identical to one used at= 6. It is also clear from Table VIII that the DR model provides

Fig. 8 shows that the crucial “boundary” prototypes frorme best results for every value of We conjecture that the
LVQ and GLVQ-F in thec = 6 case have roughly “divided” "€2S0n for this is that the control structure for this model is

. . . damentally very different from both LVQ and GLVQ-F.
into two sets of new prototypes, shown again by the jagg+ ; . .
star. LVQ and GLVO-F essentially “catch up” with DR in t'seems that DR rapidly closes in on a single prototype for

. . : class 1 (which, for Iris, is really all that is needed), terminates
the region of overlap by now representing class 3 with three . o :

) Updates for this prototype, and by its increased fatigue factors
prototypes instead of two.

. . encourages the remainin rototypes to seek other data to
When the three CL algorithms are instructed to seek8 9 gp yp

: . __represent, which they do. It would be a mistake to generalize
prototypes, the error rate for all three 1-nmp designs typlcalﬁms belief to other data without much more computational
remains at 2.66%, as shown in Table VII. At 9, the results

are quite similar to those shown for— 8 evidence; however, we believe that when a small number of
quite simi wn Tor= . errors can be tolerated in exchange for a small number of
We can conclude from Tables

V-VII that the replacemewiulti le prototypes, the DR algorithm will prove to be superior
of IRIS with eight or nine prototypes found by any ofto bO?[h EVQ gnpd éLVQ-F. g P P

the three CL algorithms results in a 1-nmp design that

is quite superior to the labeled 1-np design based on the

¢ = 3 subsample means. Moreover, the DR model yieldde Robustness

consistently better results than either LVQ or GLVQ-F in Finally, we comment on the sensitivity of each CL model to
almost every case we tested. changes in its control parameters. We did not experiment with
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TABLE IX
Five DR PROTOTYPES THAT YIELD THREE RESUBSTITUTION ERRORS WITH THE 1-nmp RULE ON IRIS
Class 1 Class 2 Class 3
503 3.38 1.50 031 559 2.70 4.02 128 6.12 2.88 506 1.82
645 2.88 460 146 695 3.05 583 2.12
TABLE X error is a desirable criterion, it appears that MCA is a better
SUMMARY OF THE BEST ERROR RATES ACHIEVED BY THE EIGHT METHODS  chpjce than Chang’s method, at least for the Iris data. Whether
Algorithm CloseTfer] M STror] | orpoms weed MCA is reliably better than either MCS or Chang's method
Type in 150 trie by the i . . .
Consistent designs requires an in-depth study with many data sets. We suspect
MCS 1- 0 15 . .
Chang Tams 5 T that data exist for which each of these methods produces a
MeA 1 lmmp 0 1 consistent classifier with the minimum number of selected or
Labeled means (V) T1p 1T 5 replacement points. All six 1-nmp designs use the labeled
e —_ 5 Z data more effectively in the sense of a smaller number of
e [k ; 5 resubstitution errors than the 1-np design, based on the labeled

sample means. This indicates that better classifier performance

changes inm for GLVQ-F. Certainly this parameter affectsiS certainly possible and very likely by using multiple proto-
terminal prototypes; however, we doubt that this will caud¥pPes. Our tests at low and high values ésuggest that there
radical changes in the results given above. We varigd IS probably an optimal range for the number of prototypes
from 0.4 to 0.6 in both LVQ and GLVQ-F without notice-that should be used to replace labeled training data. Since a
able changes in typical results. The DR algorithm has molfeeoretical derivation of the best number of prototypes seems
parameters to vary, and we Spent a little time experimentiﬁ@timistic, itis prObably the case that this must be discovered
with them before settling on the values listed in Table XRY the trial-and-error process illustrated by Table VIil. None
For example, we made runs of DR with ranging from 1 of the CL models produced a consistent design; the best 1-nmp
to 9 and found little difference in the average case outpued- model (DR) did realize the minimum number of errors with
at every value ofc shown in Table VIII. In particular, the the minimum number of prototypes.
average minimum number of DR errors occurredcat 6
prototypes forA = 1, 5, and9. All three CL algorithms are
sensitive—but not alarmingly so—to changes in their control If the determining criterion for choosing multiple proto-
parameters. Usually—but not always—when the number Bfoes is consistency then MCA might be the method of
errors was the same for competing designs, the vectors tB@eice. On the other hand, we can imagine applications (image
were misclassified were also identical. compression comes to mind) where it is very important to
The last method we discuss is due to Yen and Chang [18]d @ (possibly inconsistent) design that offers thmimum
who modified the (batch) fuzzy-means algorithm so that it "umber of prototypedf this is important enough, developers
can be used to produce multiple prototypes for each class my be WI"Ing to sacrifice a little accuracy to achieve this
an algorithm they called MFCM;, n = 1, 2, and 3. The Objective. In this case, the DR algorithm seems well suited
theory of their method is well discussed elsewhere, so we dfefinding multiple prototypes that yield a few errors with
content here to show their results on Iris. Specifically, Yen af@wer prototypes than the other multiple-prototype methods.
Chang compare four outputs: FCM= 3, 16 errors; MFCM- The tradeoff is clear: no errors with more prototypes versus
1, ¢ = 3, 16 errors; MFCM-2,¢c = 5 with (1, 2, 2) labeled some errors with fewer prototypes.
prototypes for classes (1, 2, 3), 14 errors; and their best resultYVe did not study the question of how to find an optimal path
MFCM-3, ¢ = 7, with (1, 3, 3) labeled prototypes for classe$or continuing our modification of Chang’s method to carry it
(]_7 2, 3), 8 errors. For convenience, we refer to MFCM as@yond zero errors, but the DR results (three errors with five
CL model in Table X (in fact, ifs a CL model, but it is batch, Prototypes) suggest that paths exist that might bring us close to

B. Discussion

so the competition is global, not local). this. Specifically, some sort of partial minimal-spanning-tree
technique might be used to extend our modification so that the
VII. CONCLUSIONS AND DISCUSSION best path beyond no errors could be found for one error, two

_errors, etc. A solution to this problem would provide users a

ITat.)Iﬁ X summarizes the best resul:]s achieved t:y the eigiity 16 find some (not necessarily) minimal number of proto-
algorithms discussed in our study. What does Table X enti es that guaranteed any prespecified resubstitution error rate

us to conclude? First, our result_s are of course specializedﬂli t the data would support. Perhaps a hybrid approach can be
just one data set, and generalizations to other data warggbe|oped to do this. For example, the DR algorithm could be
caution. used to find multiple prototypes that yield some resubstitution
error rate greater than zero. And then, MCA could be applied
to the DR prototypes in the hope of reducing their number,

The most effective classifier for a consistent design is MCAyhile not increasing the current error rate. We think this would
our modification of Chang’s algorithm. If zero resubstitutiomake an excellent follow-up study to this report.

A. Conclusions
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TABLE Xl
LVQ, GLVQ-F (m = 2) anD DR ALGORITHMS

Store w  Object Data X =X, € RP and crisp label matrix L, of X,

- Euclidean norm for similarity of data to prototypes :

Slx-v)=fx— v}, = (x-v)T(x-v)

@ number of prototypes : 3 <c¢ <30

<«  maximum number of iterations : T = 1000
Pick @«  termination criterion : &= 0.1, 0.01 and 0.001

. . 5 _ [ _ P c

<«  norm for termination : [V, -V,| = 2V, - vr'Hnl = jglr; Vit~ Vieta

- initial learning rate : oy = 0.6 (LVQ and GLVQ-F only)

@«  weighting exponent : m = 2 (GLVQ-F only)

o  fatigue distribution: {flk,o =1; lsiSc} (DR only)

o  ROCof {fy }:af=0.1 (DR only)

@«  maximum fatigue: f; =5 (DR only)

- fence radius: R; =0.2 (DR only)

L inhibition factor: A=5 (DR only)
Compute |  initial prototypes : V= (1, Vo, ..., Voo) € R with (14)

Fort=1toT:

Fork=1ton: Randomly select xe X ; X« X-{x}; x, «Xx

Iterate Find of'? with (5) fori=1, ..., c

(or) Find af;’(lij'F with (7} fori=1, ...,c

(or) Find offy with (8) fori=1, ..., c

Vi =V tog X -vy ) fori=l, o c
”xk - vl,t" <Ry=fy e L +AF (DR only)
fue > fy = Vi < v, (this prototype is locked) {DR only)
Next k
IfE =|V,~-V,_,, <e Stopand put V<V, Else
Adjust learning rate o, « ap(1-t/T)
Next t
Ift=T:put V<V

Another point worth mentioning concerns the possibility Finally, we comment on the results reported by Yen and
that one or more labeled classes may end up nithepresen- Chang [13]. Their best 1-nmp (batch-designed) classifier was
tative prototypes. This cannot happen with the MCS, Charigferior to the best results achieved by all of the sequential
and MCA methods, but it can happen with the CL modelSL models. We suspect that sequential updating encourages
(see [9] for an example). The most likely cause of this is vefjocalized” prototypes, which are able, when there is more
poor (unlucky) initialization. Since the data are labeled, thtban one per class, to position themselves better with respect
occurrence of some class being ignored will always be knowm subclusters that may be present within the same class.
to the user, and in this case, other initializations should Béis leads us to conjecture that batch algorithms are at their
tried. Indeed, any method that requires initialization is subjeloest when used to erect 1-np designs and that sequential
to problems of this kind, so more than one should be tried amdels are more effective for 1-nmp classifiers. There is
a matter of good development practice. A more problematidatle doubt that the DR model is the best of the three CL
reason for underrepresentation is that the labeled classesmethods tried for this data. We speculate that this is due to its
so mixed that neither selection nor replacement can effectivgisototype-by-prototype control structure, which providesy
reduce the original data. This can be the case, for examplecalized” behavior, a property that seems ideally suited to
when the data comprise concentric clusters. Again, the u$eiding multiple prototypes. The fact that DR never placed
will know that this has happened, and the failure of a methado prototypes in class 1 of Iris supports this, but we reserve
such as MCS or MCA to provide much reductionn, will  judgment until more experimental evidence exists. This will
signal the user that the entire data set should be used. be the subject of our next investigation.
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See Tables XI and XII.
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TABLE XIl

MobDIFIED CHANG ALGORITHM

Store [w  Labeled object data X = X'U...UX® = X, € %P ordered with ¢ classes as
X =Xp,0, Ky X, xf,é , where n, =|Xi|,i =12,...,¢.
class 1 class ¢
Pick |«  Euclidean norm for similarity of data to prototypes :
8(x.v) = Jx - vy =y(x-v)"(x-v)
Set -

V, <X Ey_; (XIV,)=0

While Ey_ 5 (XIV,)=0:

Class 1

® Find (k; Ij*) = arg min{
=g

1<kse ; s#t

j
compute D(Vn_l) ; continue.

h* h*} _
()=

arg min {

1gk<é ; s#t

Vi eV, vl v e vR I By (XIVG)=0

Terminate with V, 3 Ey_; (XIV }=0.

©® Compute the partitioned upper triangular distance matrix

v — v{‘”} Compute v*" = (v +v}")/2, and update

*

Vo,V

n-1-

Else return to D(Vn) and find the next pair (h* h*) that solves

k Lk h* h*
Vg —vt”} and (i,j

i)

J# (5 5)-

Attempt to merge v" = (v + v?*) /2. Repeat step ® until no merger is possible.

APPENDIX

(23]
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