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Feature Selection via Discretization

Huan Liu, Member, IEEE, and Rudy Setiono

Abstract —Discretization can turn numeric attributes into discrete
ones. Feature selection can eliminate some irrelevant and/or
redundant attributes. Chi2 is a simple and general algorithm that uses

the c
2
 statistic to discretize numeric attributes repeatedly until some

inconsistencies are found in the data. It achieves feature selection via
discretization. It can handle mixed attributes, work with multiclass data,
and remove irrelevant and redundant attributes.

Index Terms —Discretization, feature selection, pattern classification.

————————   ✦   ————————

1 INTRODUCTION

FEATURE selection can eliminate some irrelevant and/or redun-
dant attributes. By using relevant features, classification algo-
rithms can in general improve their predictive accuracy, shorten
the learning period, and form simpler concepts. There are abun-
dant feature selection algorithms. Some use methods like princi-
ple component to compose a smaller number of new features
[11], [12]; some select a subset of the original attributes [1], [5].
This paper considers the latter since it not only has the above
virtues, but also serves as an indicator on what kind of data
(along those selected features) should be collected. In the latter
category of feature selection, the algorithms can be further di-
vided in terms of data types. The two basic types of data are
nominal (e.g., attribute color may have values of red, green, yel-
low) and ordinal (e.g., attribute winning position can have values
of 1, 2, and 3, or attribute salary can have 22,345.00, 46,543.89,
etc., as its values). Many feature selection algorithms [1], [3], [5],
[10] are shown to work effectively on discrete data or even more
strictly, on binary data (and/or binary class value). In order to
deal with numeric attributes, a common practice for those algo-
rithms is to discretize the data before conducting feature selec-
tion. This paper provides a way to select features directly from
numeric attributes while discretizing them. Numeric data are
very common in real world problems. However, many classifi-
cation algorithms require that the training data contain only
discrete attributes, and some would work better on discretized
or binarized data [2], [4]. If those numeric data can be automati-
cally transformed into discrete ones, these classification algo-
rithms would be readily at our disposal. Chi2 is our effort to-
wards this goal: discretize the numeric attributes as well as se-
lect features among them.

The problem to attack is: Given data sets with numeric attrib-
utes (some of which are irrelevant and/or redundant and the
range of each numeric attribute could be very wide), find an algo-
rithm that can automatically discretize the numeric attributes as
well as remove irrelevant/redundant ones.

This work is closely related to Kerber’s ChiMerge [4], which
discretizes numeric attributes based on the c

2 statistic. ChiMerge
consists of an initialization step and a bottom-up merging proc-
ess, where intervals are continuously merged until a termination
condition, which is determined by a significance level a (set
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manually), is met. It is an improvement from the most obvious
simple methods such as equal-width-intervals, which divides the
number line between the minimum and maximum values into N
intervals of equal size; or equal-frequency-intervals, in which the
interval boundaries are chosen so that each interval contains
approximately the same number of training examples. Instead of
defining a width or frequency threshold (which is not easy until
scrutinizing each attribute and knowing what it is), ChiMerge
requires a to be specified (ideally one a for each attribute). Nev-
ertheless, too big or too small an a will over- or under-discretize
an attribute. An extreme example of under-discretization is the
continuous attribute itself. Over-discretization will introduce many
inconsistencies1 nonexistent before and, thus, change the charac-
teristics of the data. In short, it is not easy to find a proper a for
ChiMerge. It is thereby ideal to let the data determine what value
a should take. This leads to our Chi2 algorithm. Naturally, if we
let the discretization continue as long as no more inconsistencies
generated than in the original data, each attribute is discretized
to the maximum, and some attributes may be discretized into
one interval. Hence, these attributes can be removed without
affecting the discriminating power of the original data.

In the following, we describe the Chi2 algorithm, the experi-
ments, and its various aspects in turn.

2 CHI2 ALGORITHM

The Chi2 algorithm (summarized below) applies the c
2 statistic

which conducts a significance test on the relationship between the
values of an attribute and the categories. It consists of two phases.
In the first phase, it begins with a large significance level (a), e.g.,
0.5, for all numeric attributes to be discretized. Each attribute is
sorted according to its values. Then, for each attribute, the follow-
ing is performed:

1) calculate the c2 value as in (1) for every pair of adjacent in-
tervals (at the beginning, the number of intervals equals the
number of distinct values of an attribute);

2) merge the pair of adjacent intervals with the lowest c2 value
being the critical value.

Merging continues until all pairs of intervals have c
2 values ex-

ceeding the parameter determined by a (if initially it is 0.5, its
corresponding c2 value is 0.455 if the degree of freedom is 1, more
below). The above process is repeated with a decreased a until the
discretized data’s inconsistency rate exceeds d . Phase 1 is, as a
matter of fact, a generalized version of ChiMerge of Kerber [4].
Instead of specifying a c2 threshold, Phase 1 of Chi2 wraps up
ChiMerge with a loop that automatically increments the c2 thresh-
old (or equivalently decreases a). A consistency checking is also
introduced as a stopping criterion to make sure that the discre-
tized data set accurately represents the original one. With these
two new features, Chi2 automatically determines a proper c

2

threshold that keeps the fidelity of the original data.
Phase 2 is a finer process of Phase 1. Starting with α0 deter-

mined in Phase 1, each attribute i is associated with a sigLvl[i], and
takes turns for merging. Consistency checking is conducted after
each attribute’s merging. If the inconsistency rate is not exceeded,
sigLvl[i] is decreased for attribute i ’s next round of merging; oth-
erwise attribute i will not be involved in further merging. This
process is continued until no attribute’s values can be merged. The
round-robin discretization achieves two objectives:

1) removal of irrelevant/redundant attributes; and
2) better coordination among the discretized attributes.

1. By inconsistency, we mean that two patterns match but belong to
different categories.

__________________________________________________________

Chi2 Algorithm:

Phase 1: (att - attribute)
set a  = .5;
do while (InConCheck(data) < d) {

for each numeric att {
Sort(att, data); /* sort data on att */
chi-sq-init(att, data); /* refresh data */

do {
chi-sq-calculation(att, data)

} while (Merge(data)) }
a0 = a;
a  =  decreSigLevel(a); }

Phase 2:
set all sigLvl[i] = a0 for att i;
do until no-att-can-be-merged {

for each mergeable att i {
Sort(att, data); /* sort data on att */
chi-sq-init(att, data); /* refresh data */
do {

chi-sq-calculation(att, data)
} while (Merge(data))

if (InConCheck(data) < d)
sigLvl[i] = decreSigLevel(sigLvl[i]);

else att i is not mergeable; } }
__________________________________________________________

Function InConCheck() returns an inconsistency rate found in
the discretized data. Function Merge() returns true or false de-
pending on whether the concerned attribute is merged or not.
Function decreSigLevel() decreases the significance level by one
level according to the implemented c2 table. Function chi-sq-init()

prepares for the c2 computation. The formula for computing the c2

value is:
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where

  k = number of classes,
Aij = number of patterns in the ith interval, jth class,

 Ri = number of patterns in the ith interval = Aijj

k

=
å 1

,

 Cj = number of patterns in the jth class = Aiji=å 1

2
,

 N = total number of patterns = Rii =∑ 1

2
,

Eij = expected frequency of Aij = Ri*Cj/N.

If either Ri or Cj is 0, Eij is set to 0.1. The degree of freedom of
the c2 statistic is one less the number of classes.

The inconsistency rate of a data set is calculated as follows:

1) two instances are considered inconsistent if they match ex-
cept for their class labels;

2) for all the matching instances (without considering their
class labels), the inconsistency count is the number of the in-
stances minus the largest number of instances of class labels;
for example, there are n matching instances, among them, c1
instances belong to label1, c2 to label2, and c3 to label3 where
c1 + c2 + c3 = n. If c3 is the largest among the three, the incon-
sistency count is (n - c3);

3) the inconsistency rate is the sum of all the inconsistency
counts divided by the total number of instances.

The purpose of the two-phase implementation of Chi2 is two-
fold:
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1) a direct comparison with ChiMerge. Since in a sense, Phase
1 of Chi2 is an automated version of ChiMerge; and

2) consideration of computational efficiency (to be discussed in
Section 4).

At the end of Phase 2, if an attribute is merged to only one value, it
simply means that this attribute is not needed in representing the
original data set. As a result, when discretization ends, feature
selection is accomplished.

3 EXPERIMENTS

Two sets of experiments are conducted. In the first set of experi-
ments, real-world data is used and the evaluation is done indi-
rectly, i.e., through/against a classifier. We want to establish that

1) Chi2 helps improve predictive accuracy; and
2) Chi2 properly and effectively discretizes data as well as

eliminates some irrelevant/redundant attributes (this ex-
plains why the predictive accuracy of a classifier is im-
proved). C4.5 [8] is used for these purposes.

The reasons for our choice are

1) C4.5 works well for many problems and is well known, thus
requiring no further description; and

2) C4.5 selects relevant features by itself in tree branching so it
can be used as a benchmark, as in [1], [5], [9], to verify the
effects of Chi2.

In the second set of experiments, we directly examine Chi2’s abil-
ity of discretizing and feature selection by introducing synthetic
data sets and adding noisy attributes to one real-world data set.
Through experiments on these controlled data sets, we can better
understand how effective Chi2 is.

3.1 Real-World Data
Three data sets used in experiments are Iris, Wisconsin Breast
Cancer, and Heart Disease.2 They have different types of attrib-
utes. The Iris data are of continuous attributes, the breast cancer
data of ordinal discrete ones, and the heart disease data of mixed
attributes (numeric and discrete). The three data sets are de-
scribed below:

1) Iris data contains 50 patterns each of the classes Iris setosa,
Iris versicolor, and Iris virginica. Each pattern is described
using four numeric attributes: sepal-length, sepal-width, petal-
length, and petal-width. The originally odd-numbered data
are selected for training (75 patterns), the rest for testing (75
patterns).

2) Breast cancer data contains 699 samples of breast fine-
needle aspirates collected at the University of Wisconsin
Hospital. There are nine discrete attributes valued on a scale
from 1 to 10. The class value is either benign or malignant.
The data set is split randomly into two sets, 350 patterns for
training and 349 for testing.

3) Heart disease data contains medical cases of heart diseases.
It contains numerically valued features; there are eight
nominally valued and five numerically valued attributes.
Two class values are: healthy and diseased heart. Removing
patterns with missing attribute values, we use 299 patterns,
one third of which are randomly chosen for testing, and the
rest are for training.

3.2 Controlled Data
Three extra data sets are designed to test if various noisy attributes
can be removed. The first two are synthetic, the third one is the Iris
data added with noisy attributes.

2. They are all obtained from the University of California at Irvine
machine learning repository via anonymous ftp to ics.uci.edu.

The synthetic data, S1, consists of 600 items and is described
by four attributes among which only one attribute determines
each item’s class label. The values, v1 of attribute A1 are gener-
ated from a uniform distribution between the lower bound
(L = 0) and the upper bound (U = 75); each item’s class label is
determined as follows: v1 < 25 ® class 1, 25 £ v1 < 50 ® class 2,
50 £ v1 < 75 ® class 3. Then, we add irrelevant attributes3 A2, A3,
and A4. The values of A2 are generated from a normal distribu-
tion with mean m = U/2 (i.e., 37.5) and standard deviation s =
m/3. The values of A3 are generated from two normal distribu-
tions with m1 = U/3 (i.e., 25), m2 = 2 * U/3 (i.e., 50), and s1 =
m1/3, s2 = m2/3, respectively, 300 values from each distribution.
The values of A4 are generated from a uniform distribution
between L and U.

The synthetic data set, S2, contains both irrelevant and redun-
dant attributes, and is made up of 600 items. Attributes A1 and
A2 are similarly constructed as A1 and A2 in S1 with A2 being
irrelevant. A value of attribute A3 is obtained by multiplying the
corresponding value of A1 by a constant factor, 3. Thus, either A1
or A3 alone can determine an item’s class label, i.e., one of them
is redundant.

The third data set, S3, is a modified version of Iris data. Four
noisy attributes A5, A6, A7, and A8 are added to the Iris training
data corresponding to the four original attributes. The values of
each noisy attribute are determined by a normal distribution with
m = ave and s = (max - min)/6, where ave, max, and min are the
average, maximum, and minimum values of the original attribute.
Now, there are total eight attributes, still 75 items.

3.3 Empirical Results on Real-World Data
First, we show that after discretization, the number of attributes
decreases for the three data sets (see Table 1). For the Iris data, the
number of attributes is reduced from four to two (petal length and
petal width), each has three values. For the breast cancer data,
three attributes are removed from the original nine attributes. The
remaining six attributes have 2, 3, 3, 4, 2, and 2 discrete values,
respectively. For the heart disease data, the discrete attributes are
left out in discretization and feature selection although they are
used for consistency checking. Among the five continuous attrib-
utes (1, 4, 5, 8, and 10), only two attributes (5 and 8) remain as
suggested by Chi2, having seven and three discrete values, re-
spectively. For the breast cancer and heart disease data, d is set as
0, for the iris data, d is 5 percent.

TABLE  1
CHANGE IN NUMBER OF ATTRIBUTES

Iris Heart Breast

Before 4 13 9

After 2 10 6

Second, we run C4.5 on both the original data sets and the dis-
cretized ones. C4.5 is run using its default setting. Chi2 discretizes
the training data and generates a mapping table, based on which
the testing data are discretized.

Shown in Tables 2 and 3 are predictive accuracies and tree
sizes of C4.5 for the three data sets. Predictive accuracy im-
proves and tree size drops (by half) for the breast cancer and
heart disease data. As for the Iris data, accuracy, and tree size
remain the same by using two attributes only (with four values
each). In a way, it shows that C4.5 works pretty well without
Chi2 for this small data set.

3. By which we mean that these attributes are not related to class
values.
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TABLE  2
CHANGE IN PREDICTIVE ACCURACY

Iris
(in percent)

Heart
(in percent)

Breast
(in percent)

Before 94.7 72.7 92.6

After 94.7 78.8 94.6

TABLE  3
CHANGE IN SIZE OF A DECISION TREE

Iris Heart Breast

Before 5 43 21

After 5 22 11

3.4 Empirical Results on Controlled Data
The purpose of experimenting on the controlled data is to verify
how effective Chi2 is in removing noisy attributes through discre-
tization. Therefore, it is only necessary to see if Chi2 can

1) discretize the relevant attribute(s) properly,
2) remove the irrelevant attributes, and
3) remove both irrelevant and redundant attributes.

For the synthetic data S1, Chi2 merged A1 into three discrete
values (1, 2, and 3) corresponding to three classes (1, 2, and 3);
merged the other three attributes A2, A3, and A4 into one value at
the end of Phase 1. That is, only A1 stays, and the noisy attributes
are removed.

For the synthetic data S2, Phase 1 of Chi2 merged A1 and A3
into three discrete values (1, 2, and 3), A2 (irrelevant attribute) into
one value. It is Phase 2 of Chi2 that merged A3 (redundant one)
into one value. At the end, both irrelevant and redundant attrib-
utes were removed.

For the modified Iris data S3, Phase 1 of Chi2 merged A1, A2,
A3, and A4 into 3, 2, 3, and 3 discrete values, and discretized at-
tributes A5, A6, A7 , and A8 into one value. Recall that the last four
attributes are added irrelevant attributes. In Phase 2, attributes A1
and A2 were further merged into one value only. Attributes A3 and
A4 remained with three discrete values, respectively identical to
those found in the experiment with the original data.

This set of controlled experiments has shown that Chi2 effec-
tively discretizes numeric attributes and removes irrelevant and
redundant attributes. Redundant attributes are removed in
Phase 2.

4 DISCUSSION AND CONCLUSIONS

Since each Merge in the Chi2 algorithm only reduces the number
of intervals by one, in the worst case (there are n different val-
ues, and all of them can be merged into one value), the inner-
most loop requires n - 1 times of calling the c2 function (n is the

number of patterns in the training data4), but each Sort needs
O(n log n). So for m attributes, the reimplemented ChiMerge re-
quires O(mn log n). Consider the worst case, checking data Con-
sistent or not (refer to the Chi2 algorithm) takes O(mn). The out-
ermost loop is determined by the number of incremental steps,
K, of the c2 value. Hence, the computational complexity of Phase
1 is O(Km(n + n log n)), i.e., O(Kmn log n). Similar complexity can
be obtained for Phase 2. The complexity result gives a guideline
on how long it would take to run Chi2 for a given data set.

The two-phase implementation is due to the concern of effi-
ciency. Phase 1 is mainly designed to improve efficiency, espe-

4. n is also the upper limit of the number of values an attribute can
take in the sample data.

cially when m is large. Due to the consistency checking which
takes O(n), the saving can be as much as (m - 1)n for each outer-
most loop by implementing the two phases.

Chi2 can only be used to discretize data and select features for
supervised learning tasks since class information is vital in the c2

statistic. Also, Chi2 works on ordinal attributes only. If there are
mixed (nominal and ordinal) attributes, Chi2 can be specified to
operate only on the ordinal attributes for discretization and feature
selection. Chi2 is only attempting to discover first-order (single
attribute-class) correlations and, thus, might not perform correctly
when there is a second-order correlation without a corresponding
first-order correlation. Some feature weighting methods as in [5],
[6] can be helpful when higher order correlation in the data has to
be considered.

Another issue is how to determine an initial a. Too large an a
will make Chi2 run longer. However, the final a values for nu-
meric attributes will remain the same for different initial a values
if a is not set too small (0.05 for instance) at the beginning. In ad-
dition to a, the only threshold required is the tolerable rate of in-
consistency, d. Its default value is 0 assuming that the data set is
consistent, and can be reset to any value between 0 and 1. A rea-
sonable approximation is the rate of inconsistency found in the
training data, which is not difficult to compute.

Chi2 is a simple and general algorithm that can automatically
select a proper critical value for the c2 test, determine the intervals
of a numeric attribute, as well as select features by removing ir-
relevant and redundant attributes according to the characteristics
of the data. By using the inconsistency criterion, it guarantees that
the fidelity of the training data can remain after Chi2 is applied.
The empirical results on both the real-world data and controlled
data have shown that Chi2 is a useful and reliable tool for discreti-
zation and feature selection of numeric attributes.
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