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Abstract 

The synthesis of genetics-based machine learning and fuzzy logic is beginning to show promise as a potent tool in 
solving complex control problems in multi-variate non-linear systems. In this paper an overview of current research 
applying the genetic algorithm to fuzzy rule based control is presented. A novel approach to genetics-based machine 
learning of fuzzy controllers, called a Pittsburgh Fuzzy Classifier System # 1 (P-FCS1) is proposed. P-FCS1 is based on 
the Pittsburgh model of learning classifier systems and employs variable length rule-sets and simultaneously evolves 
fuzzy set membership functions and relations. A new crossover operator which respects the functional linkage between 
fuzzy rules with overlapping input fuzzy set membership functions is introduced. Experimental results using P-FCS l are 
reported and compared with other published results. Application of P-FCS1 to a distributed control problem (dynamic 
routing in computer networks) is also described and experimental results are presented. 
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1. Introduction 

Fuzzy control has been employed with success in 
many diverse practical applications: control of a 
cement kiln [8], 2-dimensional motion control [9], 
traffic control [22] and temperature control of air 
streams [18] to name but a few. Based on Zadeh's 
theory of fuzzy sets [32], a typical fuzzy controller 
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[16] maintains a rule-base of fuzzy rules and asso- 
ciated fuzzy sets for mapping real-numbered inputs 
to outputs. 

In most existing real application fuzzy control- 
lers, the rule-base is populated with rule-of-thumb 
fuzzy relations and linguistic fuzzy sets elicited from 
human experts who have acquired their knowledge 
through experience. These fuzzy rules and sets are 
often then fine-tuned by engineers to produce effec- 
tive fuzzy controllers. A good measure of interest is 
currently being directed at discovering fuzzy rela- 
tions and sets automatically using machine learn- 
ing. Research utilising supervised and unsupervised 
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learning using neural networks ['12, 13] has 
achieved a great deal of success in learning fuzzy 
relations and sets using known input/output data 
sets. A major challenge in current fuzzy control 
research is learning good controllers for large-scale, 
non-linear systems with many input and output 
variables where no training data are available from 
an expert. Genetics-based machine learning is one 
possible candidate for meeting this challenge. 

This paper describes an approach to genetic 
algorithm (GA) based reinforcement learning in 
fuzzy control based on the Pittsburgh model of 
learning classifier systems. The method proposed 
builds upon a wide base of reported work inves- 
tigating genetic operations and representations for 
both fuzzy and discrete classifier systems, using 
Pittsburgh and Michigan approaches. In the ap- 
proach presented, genetic operations (selection, 
recombination and replacement) and credit assign- 
ment are carried out at the level of the complete 
fuzzy rule-set (i.e. Pittsburgh-style) and the number 
of rules in each rule-set is allowed to vary. The 
representation employed allows the GA to operate 
on both fuzzy set membership functions and fuzzy 
relations (rules). Together, these features endow the 
classifier system with an ability to evolve rule-sets 
with economical coverage of the input/output 
space where the coverage of fuzzy rules and accom- 
panying fuzzy set membership functions is auto- 
matically adapted to the complexity of the 
underlying input/output mapping. This is a useful 
characteristic if the method is to scale well to 
complex problems with high dimension input and 
output spaces. 

The paper is organised as follows. Section 2 
focuses on different approaches to learning classi- 
fier systems and the role of the genetic algorithm in 
learning. The section also discusses a number of 
hybrid Pittsburgh-Michigan systems which have 
been employed with some success in overcoming 
the deficiencies of each. Sections 3 and 4 lay the 
foundations on which our current work is built by 
reporting research already carried out in the field of 
fuzzy classifier systems using both Pittsburgh and 
Michigan approaches. In Section 5 we present a 
detailed description of the representation and gen- 
etic operators used in our Pittsburgh-style fuzzy 
classifier system. In particular, we discuss the role 

of crossover in the generation of new fuzzy rule-sets 
and introduce a new crossover operator for use 
with variable-size fuzzy classifier systems. Section 
6 presents and analyses results we have obtained in 
applying the system to three tasks: firstly, a one- 
input, one-output function identification task; sec- 
ondly a two-input, one-output control task; and 
thirdly a four-input, two-output distributed control 
problem. Finally, in Section 7 we conclude and 
recommend areas where future work on genetics- 
based machine learning applied to fuzzy control 
may be fruitful. 

2. The role of the genetic algorithm in learning 
classifier systems 

In this section we summarise and discuss two 
alternative ways in which the genetic algorithm 
(GA) may be applied to learning classifier systems. 
These two methods, Michigan and Pittsburgh ap- 
proaches, were first described as long ago as 1978 
and 1980, respectively. It should be stated that both 
approaches are the subject of ongoing research and 
many significant extensions have been devised and 
used as the basis for successful learning systems. We 
begin our discussion by outlining the Michigan 
approach, since this was employed in the first pub- 
lished report of a learning classifier system. 

The first Michigan-style classifier system was 
Cognitive System One (CS-1) devised by Holland 
and Reitman [7]. CS-I maintains a population of 
classifiers with genetic operations and credit assign- 
ment applied at the level of the individual rule. 
Each classifier in the population has an associated 
strength, which is used to store an accumulation of 
credit. The original CS-1 credit apportionment 
algorithm is epoch-based, where classifiers ac- 
tivated since the last payoff event share the reward 
collected from the environment at the next. Since 
CS-1, a large number of alternative credit assign- 
ment schemes have been proposed, most notably 
the bucket-brigade [6] and Q-learning [26, 30, 21] 
for dealing with environments where reward may 
be infrequent and/or delayed. These proposed 
credit assignment schemes have achieved a great 
deal of success, although many problems regarding 
their use remain the focus of research. The GA in 
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a Michigan-style classifier system operates at the 
level of the individual classifier with selection of 
parent classifiers for mating based on strengths 
(and in some cases other parameters such as clas- 
sifier age or relevance). In addition, classifier 
strengths in discrete Michigan-style systems are 
commonly used in controlling the dynamic behav- 
iour of the classifier system by forming the basis 
for conflict resolution between simultaneously 
matched classifiers. In the fuzzy case, some practi- 
tioners use classifier strengths as weights which 
influence the level of contribution of rule conse- 
quents. 

In 1980, Smith [25] published results of an alter- 
native learning classifier system, LS-1, in which the 
unit of genetic manipulation is a suitably encoded 
genotype representing a complete set of classifiers. 
Credit is assigned to complete sets of rules via 
interaction with the environment. This typifies so- 
called "Pittsburgh"-style classifier systems. Since 
the complete rule-set is the basis of credit appor- 
tionment, Pittsburgh-style classifier systems side- 
step completely the potentially knotty problem of 
sharing out credit to individual rules. The GA in 
LS-1 operates at different levels: at the highest level, 
complete rule-sets are selected as the basis for 
reproduction to generate new rule-sets; at the 
lowest level individual rules are chosen by the GA 
to generate new rules. For the purposes of this 
discussion we are primarily concerned with the 
highest of these levels of reproduction. LS-1 uses 
variable-length classifier sets, and employs modi- 
fied genetic operators for dealing with these vari- 
able-length, position independent (as far as 
phenotypic expression is concerned) genomes. We 
will examine these operators in greater detail in 
Section 5. 

Clearly the role of the genetic algorithm in 
Pittsburgh and Michigan approaches is rather dif- 
ferent, and the distinction arises from the difference 
in level at which the genetic algorithm is applied. 
Both approaches, at least in their simplest forms, 
suffer from distinct, known problems which arise 
from the different way in which the genetic algo- 
rithm is applied. 

The major problem in the Michigan approach is 
that of resolving the conflict between the individual 
and collective interests of classifiers within the sys- 

tem. The ultimate aim of a learning classifier system 
is to evolve a set of co-adapted rules which act 
together in solving some problem. In a Michigan 
style system, with selection and replacement at the 
level of the individual rule, rules which cooperate to 
effect good actions and receive payoff also compete 
with each other under the action of the genetic 
algorithm. Such a conflict between individual and 
collective interests of individual classifiers does not 
arise with Pittsburgh-style classifier systems, since 
reproductive competition occurs between complete 
rule-sets rather than individual rules. However, 
maintenance and evaluation of a population of 
complete rule-sets in Pittsburgh-style systems can 
often lead to a much greater computational burden 
(in terms of both memory and processing time}. 
Wilson and Goldberg [31] propose a classifier sys- 
tem which clusters classifiers into "corporations". 
Classifiers belonging to the same corporation do 
not compete with each other under the action of the 
GA and corporations form and break up under the 
action of a modified crossover operator. A success- 
ful implementation of this approach is Shu and 
Schaeffer's [24] "hierarchical" classifier system in 
which classifiers are grouped into "families" which 
form the basic units of selection by the GA. Such 
approaches represent a middle ground between 
Michigan-style and Pittsburgh-style classifier 
systems. 

Problems with the Pittsburgh approach have 
proved to be at least equally as challenging. 
Although the approach avoids the problem of ex- 
plicit competition between classifiers, large 
amounts of computing resources are required to 
evaluate a complete population of rule-sets. A fur- 
ther problem with the approach is the small band- 
width of reinforcement information, usually 
a single scalar fitness value for each complete rule- 
set. If information about the performance of 
individual rules happens to be derivable from the 
pattern of environmental payoffs using some credit 
apportionment method, this information is not 
explicitly exploited in the Pittsburgh approach. The 
disruptive threat to good collections of cooperating 
rules comes from a different source in Pittsburgh- 
style systems compared to Michigan-style systems. 
In the latter, competition at the level of selection 
and replacement of individual rules can destroy 
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good rule associations. In a Pittsburgh-style sys- 
tem, although selection and replacement will auto- 
matically favour co-adapted rule-sets, crossover 
can be a major cause of disruption of cooperating 
collections of rules since the operator is blind to 
such associations between rules. An elegant solu- 
tion to both the problems of coarse-grained credit 
assignment and the disruptive effects of crossover 
in Pittsburgh systems is proposed by Grefenstette 
[5] using hierarchical credit assignment. With this 
method, credit is assigned to individual rules as well 
as to complete rule-sets. Prior to crossover, the 
genome encoding the rule-set is ordered so that 
high strength rules occupy neighbouring loci on the 
genome. If the underlying assumption that co- 
adapted rules accrue similar strengths is valid, then 
crossover is less likely to disrupt these rule associ- 
ations than if an unordered genome is employed. 
We shall return to the subject of ordering of rules 
on the genome prior to crossover in Section 5. 

3. Pittsburgh-style fuzzy classifier systems 

A number of researchers have investigated the 
automatic generation of fuzzy relations and fuzzy 
membership functions using evolutionary algo- 
rithms. In this section we present a summary of 
work applying the GA in the Pittsburgh style, 
where the complete fuzzy rule-set is the unit 
for selection and credit assignment. We have 
attempted to classify this work in decreasing order 
of constraint (i.e. increasing order of number of 
parameters to adapt) of the learning system. The 
categories we have used are: 

1. Learning fuzzy set membership functions 
only, with a fixed set of rules set by hand. 

2. Learning fuzzy rules only, with a fixed set of 
fuzzy membership functions set by hand. 

3. Learning both fuzzy rules and fuzzy set mem- 
bership functions but in stages i.e. first evolving 
good fuzzy rule-sets using fixed membership func- 
tions, then fine tuning membership functions using 
fixed good fuzzy rule-sets. 

4. Learning both fuzzy rules and fuzzy set mem- 
bership functions simultaneously (possibly with 
fine tuning of membership functions as a final 
stage). 

3.1. Learning fuzzy membership functions 
with fixed fuzzy rules 

Karr [10] applied GAs to fuzzy controller design 
by evolutionary adaptation of fuzzy membership 
functions for a fixed rule-set. This work demon- 
strated the success of the approach in generating 
both non-adaptive and adaptive fuzzy controllers 
for the four-input, one-output cart-pole balancing 
problem. Using three input fuzzy sets for each input 
and seven output fuzzy sets, a rule-base of eighty 
one rules is set by hand and the GA is then used to 
modify the endpoints of the fuzzy membership 
functions which are encoded on a binary string. 
Fitness of each individual is evaluated by running 
a number of simulations with different initial 
conditions. Karr's system was able to discover 
membership functions which controlled the cart- 
pole system significantly better than membership 
functions designed by hand. In addition, using 
a micro-GA, the author reports an adaptive fuzzy 
controller which was able to successfully cope with 
changing cart mass by genetically adapting fuzzy 
membership functions in real-time. 

3.2. Learning fuzzy rules with fixed fuzzy 
membership functions 

Thrift [28] describes the design of a two-input, 
one-output fuzzy controller for centring a cart on 
a frictionless one-dimensional track. Fixed, tri- 
angular input sets Negative-Medium (NM), 
Negative-Small (NS), Zero (Z), Positive-Small (PS) 
and Positive-medium (PM) are set by hand for each 
input variable. Individual control strategies are 
represented as 5 × 5 tables with each table entry 
encoding an output fuzzy set taken from {NM, NS, 
Z, PS, PM, _ } (the _ symbol indicates no fuzzy set 
entry at this position) for each of the 25 combina- 
tions of input fuzzy sets. An individual control 
strategy's fitness is determined by running 
simulations of the cart. The GA mutation operator 
changes a fuzzy code (encoding an output fuzzy set 
membership function) either up or down a level, or 
to the blank code. Using a population size of 31, 
Thrift's system was able to evolve a fuzzy control 
strategy after 100 generations which compares well 
with the optimal "bang-bang" control rule. 
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Pham and Karaboga [20] describe the use of 
genetic algorithms to optimise the relation matrix 
of a fuzzy logic controller. This system learns fuzzy 
rules and output membership functions simulta- 
neously using fixed input membership functions. 
Optimisation of the controller is carried out in two 
stages. In the first stage, different populations of 
controllers are independently evolved (using differ- 
ent initial random seeds) to produce "preliminary" 
designs. The second stage combines the best indi- 
viduals from the first stage into a single population 
to which the GA is applied to evolve a "detailed" 
design. The authors use the fuzzy logic controller to 
control a simulated time-delayed second-order 
plant with one input (the controlled system error) 
and one control output. Seven input membership 
fuzzy membership functions (NB, NM, NS, ZE, PS, 
PM, PB), set by hand, are employed. The relation 
matrix consists of a 7 x 11 table (in general, m x n). 
Each of the seven rows corresponds to one of the 
input membership functions, and each of the eleven 
columns corresponds to a quantised value of the 
output in the interval [ - 5 ,  + 5-], thus permitting 
general shape output membership functions. The 
experimental results presented convincingly dem- 
onstrate that good fuzzy controllers can be evolved 
using a simple GA, and that substantial improve- 
ment in controller performance can be gained using 
a two-stage evolution process. 

3.3. Learning.fi~zzy rules and membership functions 
in stages 

Kinzel et al. [l l] describe an evolutionary 
approach to designing fuzzy controllers, and apply 
the technique to the cart-pole problem. The 
authors argue that learning fuzzy rules and mem- 
bership functions simultaneously, while possible, is 
difficult due to the complex interactions between 
the two. Using this premise as a basis, Kinzel et al. 
describe a three stage task solving process, namely: 
(1) seed a "good" initial rule-base, (2) apply the 
GA to rules keeping membership functions fixed, 
then (3) apply the GA to membership functions. 
The authors argue against the use of bit-string 
encoded genomes, due to the destructive action of 
crossover, and use a non-binary table-based repres- 
entation which preserves individual table entries 

(membership functions) under the action of cross- 
over. In experiments, Kinzel et al.'s system dis- 
covers good fuzzy rule-sets for balancing the pole 
after 33 generations using a population size of 200, 
although it is reported that the membership tuning 
stage had relatively little effect on the goodness of 
rule-sets discovered by the GA. 

3.4. Learning fuzzy rules and membership[unctions 
simultaneously 

Lee and Takagi [14] employ the genetic 
algorithm to simultaneously optimise a variable 
size fuzzy rule base and fuzzy set membership 
functions of a Takagi-Sugeno [27] controller. 
This type of controller differs from a traditional 
fuzzy controller in that fuzzy values are involved 
only in the condition (antecedent) part of a rule; the 
consequent is a linear function of the inputs. The 
output of an n-rule Takagi-Sugeno controller is 
calculated as 

Output = ~ ~'i.[i, 
i - 1  

where 

E T =  1Wi ' . i=1 i = 1  " 

In these equations, A~- is the input fuzzy set mem- 
bership function for thej th input variable in the ith 
rule, X the vector of inputs to the fuzzy controller, 
wi is interpreted as the firing weight of the ith rule. 
Parameters ¢ and qli are rule-consequent para- 
meters and determine the linear mapping of input 
values to output values. Lee and Takagi's system 
learns rule input membership functions and rule- 
consequent parameters simultaneously using bit 
strings to represent the left base, centre and right 
base of triangular membership functions. Bit- 
oriented mutation and crossover are used, and the 
system is applied with success to the pole-balancing 
problem. Reproductive fitness of chromosomes 
depends on phenotypic performance but is also 
reduced for chromosomes encoding large rule-sets 
as an attempt to prevent the formation of over- 
large rule-sets. 
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Cooper and Vidal [1] use a variable length 
genome to represent a fuzzy rule-set and accom- 
panying membership functions, thus allowing the 
GA to automatically adapt the number of rules. 
The authors point out that domain-based repre- 
sentations which imply complete coverage of the 
input space and have been employed in most work 
carried out to date on GA-designed fuzzy control- 
lers, cannot be expected to scale well to high- 
dimensional problems. To overcome this problem, 
they propose a "compact encoding scheme" where- 
by each rule of the genome string encodes (using 
binary encoding) the centres and widths of mem- 
bership functions pertaining to that rule. Using 
variable-size rule-sets (i.e. variable-length genomes) 
in conjunction with rule creation and deletion 
operators, allows the GA to evolve economical 
rule-sets which do not include superfluous or un- 
necessary rules. Furthermore, the representation 
permits particular rule conditions to be ignored, 
allowing the evolution of generalised rules in cases 
where the appropriate action depends on a small 
subset of the input variables. Prior to genetic cross- 
over, rules on parents selected for recombination 
are ordered according to similarity in input vari- 
able centres. Cooper and Vidal apply their system 
to the jointed cart-pole problem and obtain good 
results, with the controller successfully maintaining 
the cart-pole system after around 30 generations 
using a population size of 200 using randomly 
assigned initial rule-sets. 

Liska and Melsheimer [15] use a GA for simul- 
taneously discovering fuzzy rules and membership 
functions, with a final stage of fine-tuning member- 
ship functions using conjugate gradient descent. As 
with Cooper and Vidal's system, the representation 
used by Liska and Melsheimer allows both active 
conditions within a rule and the number of rules 
within a rule-set to vary dynamically during genetic 
search. A further similarity between the two sys- 
tems, and the Pittsburgh-style fuzzy classifier sys- 
tem presented later in this article, is the use of 
ordering according to the centres of membership 
functions on the genome prior to GA crossover. 
However, an important difference between Liska 
and Melsheimer's system and the other two is that 
global sets of input and output membership func- 
tion centres and widths used by all rules, are 

encoded on separate substrings of a composite 
genome which also includes a substring represent- 
ing rules using these membership functions. In 
Cooper and Vidal's system and the system pre- 
sented later, membership functions used in indi- 
vidual rules are encoded as part of those rules, 
rather than globally, introducing additional de- 
grees of freedom for the learning system. 

Liska and Melsheimer apply their system to 
learning a dynamic model of plant using known 
input-output data. After the GA approaches con- 
vergence, conjugate gradient descent is employed 
to further improve good solutions by fine-tuning 
membership function parameters. The results 
obtained compare well with those achieved using 
a 3-layer feedforward neural network, and in addi- 
tion, as the authors state, the solutions found pro- 
vide linguistic descriptions of their operation. 

4. Michigan-style fuzzy classifier systems 

In this section we summarise previous work 
which has demonstrated the potential of 
Michigan-style fuzzy classifier systems. Although 
the representation schemes and credit apportion- 
ment algorithms are different in their detail, all the 
systems outlined in this section reward or penalize 
individual rules by altering the rule strengths. Also, 
all the systems carry out genetic operations (selec- 
tion, replacement, recombination and mutation) at 
the level of the individual rule. 

4.1. Learning fuzzy rules with fixed fuzzy 
membership functions 

Valenzuela-Rend6n gives the first description of 
a fuzzy classifier system in [29]. Closely modelled 
on the discrete-valued Michigan-style classifier sys- 
tem, this system contains a fixed size rule-base of 
fuzzy classifiers, a fuzzy message list and employs 
credit assignment to individual classifiers. An in- 
idivual rule is represented as a binary string that 
encodes the membership functions of the fuzzy sets 
involved in the rule. These fuzzy sets (Gaussian in 
shape) are fixed at the outset to cover the complete 
input/output spaces; the number of fuzzy sets is set 
by hand by the designer for the precision required. 
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The system therefore learns fuzzy relations between 
these fixed fuzzy sets. Valenzuela-Rend6n applies 
the fuzzy classifier system, operating as a stimulus- 
response system, to one-input, one-output function 
identification. Credit is allocated to individual clas- 
sifiers according to how closely each classifier pre- 
dicts the correct output. The payoff distribution 
scheme is therefore, as the author states, not pure 
reinforcement learning. The fuzzy classifier system 
successfully learns straight line and parabola func- 
tions with relatively few learning cycles. 

Valenzuela-Rend6n's fuzzy classifier system dis- 
cussed above and Parodi and Bonelli's [19] fuzzy 
classifier system described below in Section 4.2 are, 
in principle, capable of supporting internal message 
passing although reported results pertain to stimu- 
lus-response one-input, one-output function identi- 
fication tasks. To learn complex behaviour which 
goes beyond simple stimulus-response, a classifier 
system may evolve internal reasoning processes 
based on chains of classifiers coupled by internal 
messages [2]. Valenzuela-Rend6n [29] identifies 
the need to investigate fuzzy rule-chaining and 
a fuzzy version of the bucket-brigade credit assign- 
ment algorithm. However, Furuhashi et al. [3] 
argue that fuzzy rule-chaining gives rise to a prob- 
lematic accumulation of fuzziness which, if un- 
checked, can seriously degrade system perfor- 
mance. To overcome this problem, Furuhashi et al. 
propose a method using multiple stimulus-response 
fuzzy classifiers operating in tandem. Message pas- 
sing between individual fuzzy classifier systems is 
via "crisp" values in order to control excessive 
fuzziness. In their experiments, the authors describe 
a multiple fuzzy classifier system for controlling 
a simulated ship which attempts to steer towards 
a goal while avoiding other moving ships. The 
fuzzy controller is decomposed into three separate, 
communicating fuzzy classifier systems, one for 
recognising danger of collision, one for making 
decisions as to which direction to steer, and 
one for acting on these decisions by considering 
the dynamics of the ship. In each fuzzy classifier 
system, the number of rules and the membership 
functions are set by hand, and the GA is used 
to evolve a population of good fuzzy relations. 
Each fuzzy classifier system uses two inputs and 
one output. 

In [17], Nakaoka et al. address the credit appor- 
tionment problem for large scale Michigan-style 
fuzzy classifier systems. In [17], the same ship- 
steering control problem as described above is 
tackled but this time with a single fuzzy classifier 
system with eight inputs and one output. However, 
as the authors state, coverage problems arise in 
moving to such high dimension input spaces be- 
cause out of the set of initial randomly generated 
rules, only a small proportion will be matched 
during the course of a simulation. This problem is 
dealt with by using two different measures of credit 
for an individual rule - the first is a more tradi- 
tional one, based on environmental payoff, while 
the second is based on an accumulation of the level 
of activation of rule during a simulation, irrespect- 
ive of the "goodness" of that rule's suggested action. 
This dual fitness measure provides selection pres- 
sure when the GA is applied which favours both 
high-reward rules and well-matched rules. Low-re- 
ward but well-matched rules might well go on, 
under the action of crossover and mutation, to 
produce well-matched high-reward offspring. The 
latter outcome is encouraged by the use of a rela- 
tively high (0.5) mutation rate for the consequent 
part of rules. The authors report that using a 100- 
rule fuzzy classifier system, with fixed triangular 
membership functions, the controller consistently 
steered the ship to the goal while avoiding other 
moving ships after 69 generations of the GA. 

4.2. Learning fuzzy rules and fitzzv membership 
functions simultaneously 

Parodi and Bonelli [19] present a Michigan- 
style fuzzy classifier system which automatically 
learns fuzzy relations, fuzzy membership functions 
and classifier weights. A real-numbered representa- 
tion for rules is used, with each rule encoding 
centres and widths of triangualar fuzzy set member- 
ship functions for each input and output variable. 
The GA crossover operator exchanges randomly 
selected fuzzy sets between pairs of rules. Mutation 
uses real number "creep" which modifies the 
centres and widths of membership functions within 
a rule. The classifier population consists of a fixed 
size list of such rules. Each rule has associated with 
it an "output weight" which is set equal to the 
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strength (fitness) of that rule. The rule strength 
therefore performs a dual function: firstly it forms 
the basis of selection and replacement for the GA 
and secondly it allows stronger rules to take a 
bigger part in decision making than weaker ones. 

The authors demonstrate that the fuzzy classifier 
system is capable of successfully approximating 
one-input, one-output function mappings. As with 
Valenzuela-Rend6n's system, a knowledge of the 
correct system output is used as the basis for credit 
assignment. Using this information, a "Measure of 
Goodness" is calculated for each rule which reflects 
not only the quality of the rule's conclusion fuzzy 
set, but also how well the rule's condition intervals 
are set for a particular input. 

The bracketed terms represent the centres and 
widths of fuzzy set membership functions over the 
range of input and output variables. The condition 
part of each rule comprises one fuzzy set member- 
ship function for each input variable and the action 
part comprises one fuzzy set membership function 
for each output variable. The genome representing 
a complete rule-set is a variable length concat- 
enated string of such fuzzy rules. This representa- 
tion allows genetic operators to work on both fuzzy 
rule-sets and membership functions. In addition 
since fuzzy set membership functions are encoded 
together with each rule (as opposed to using a glo- 
bal collection of fuzzy sets used by all rules), rules 
are permitted to evolve with different degrees of 
vagueness in the fuzzy sets they relate. 

5. A Pittsburgh-style fuzzy classifier system 
(P-FCS1) 

In this section, we describe in detail a 
Pittsburgh-style fuzzy classifier system called 
P-FCS1 and justify the choice of representation 
and genetic operators used. In summary, the main 
features of P-FCS1 are: 
• it is based on the Pittsburgh classifier system 

model; 
• it is rule-based as opposed to domain-based; 
• the number of rules in each rule-set is allowed 

to vary, under the action of crossover, rule creation 
and deletion operators, and a cover operator; 

• the system learns both fuzzy rules and fuzzy set 
membership functions; 

• rule and fuzzy set membership encodings are 
real-numbered rather than using bit strings; 

• a crossover operator is employed which respects 
the fact that genes representing rules with over- 
lapping fuzzy sets are epistatically linked. 

5.1. Rule-set encoding on genome 

We employ the same rule representation used by 
Parodi and Bonelli [19] in their Michigan-style 
fuzzy classifier system, with each rule, Rk, for an 
n-input, m-output system, expressed as: 

Rk :(Xclk, Xwlk); . . .  (Xcnk, Xwnk) 

(Yolk, Ywlk);... (Y,'mk, Ywmk) 

5.2. Choice of GA recombination operators 

In this section we introduce a new crossover 
operator for use in Pittsburgh-style fuzzy classifier 
systems. As background to the motivation behind 
the employment of a modified crossover operator, 
we first restate Holland's schema theorem and the 
building block hypothesis for GAs, and outline the 
operators used by Smith in the LS-1 discrete valued 
learning classifier system. 

5.2.1. Holland's schema theorem, 
the building-block hypothesis and LS-1 's 
genetic operators 

Holland's schema theorem provides a theoretical 
underpinning to the workings of the genetic algo- 
rithm. The theorem places a bound on the expected 
growth or decay of the number of schemata con- 
tained within a generation as follows: 

m,h t, f(h) I 6(h) 1 m(h,t+l)>~ t ,  ~--=-_ 1 - p c - f ~ i - p m o ( h  ) 
f 

where m(h, t) is the number of schemata h contained 
within a population at generation t, f(h) is the 
average fitness of strings containing the schema h in 
the population, f is the average fitness of the popu- 
lation, I is the string length, Pc is the probability of 
crossover, 6(h) is the defining length of the schema 
h, o(h) is the order of the schemata and Pm is the 
probability of mutation. 
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From this starting point, most GA researchers 
view good schemata as basic building blocks whose 
juxtaposition under action of GA operators pro- 
duces good problem solutions. Goldberg [4] points 
out that three conditions are necessary for 
a schema to be a successful building block for the 
GA: 

1. It should have above average fitness. 
2. It should be low order (to survive mutation). 
3. It should have a short length (to survive 

crossover). 
As Smith states in his Ph.D. Thesis [25], there 

are two implicit assumptions in the schema 
theorem and the hyperplane analysis which sup- 
ports it, namely, position dependence in the struc- 
tures being manipulated, and fixed structure length. 
In a Pittsburgh classifier system, the external be- 
haviour of a particular classifier set is independent 
of the order of individual rules within the encoded 
genome. However, the order of rules in classifier 
sets undergoing recombination is crucially impor- 
tant since rules which cooperate to good effect and 
which are far apart in the genome (effectively a long 
high-fitness schema) are likely to be split apart by 
crossover. In addition, in Smith's LS-1 system and 
the Pittsburgh-style fuzzy classifier system we de- 
scribe here, rule-set length is allowed to vary, 
implying variable length genomes. 

To address these issues, Smith designed modified 
genetic operators for dealing with position-inde- 
pendent variable length genomes, and performed 
a detailed analysis that demonstrates that these 
operators are capable of finding and exploiting 
good combinations of classifiers. The LS-1 cross- 
over operator [25] aligns two parent structures 
randomly, then exchanges attributes on either side 
of a randomly chosen crosspoint to yield child 
structures. An inversion operator provides the sys- 
tem with an ability to cluster good combinations of 
rules in neighbouring loci on the genome, thus 
forming tight building blocks which are more resis- 
tant to being disrupted by crossover. A similar 
approach is expounded by Goldberg et al. [4] in 
their Messy GA. 

5.2.2. Genetic operators used in P-FCS1 
In moving from the discrete to the fuzzy case, 

a further level of interaction between rules encoded 

on the genome is introduced. Any two or more 
rules whose input fuzzy set membership functions 
overlap are epistatically linked on the genome since 
the crisp output value over the range of overlap of 
the inputs is determined by the combined action of 
all matched rules. Indeed, the identification of ar- 
bitrary input/output functions using fixed shape 
membership functions relies on this overlap. 
A crossover operator which preserves rather than 
destroying these linkages is likely to be a good one. 
In the initial implementation of P-FCS1 we take 
this observation to its extreme conclusion and 
order rules on the genome according to input mem- 
bership function centres. A detailed description of 
the new crossover operator, first for single-input 
rule-sets and then for multiple-input rule-sets 
follows. 

For single-input rule-sets, the rules are sorted 
according to the centres of their input membership 
functions prior to crossover. This introduces an 
association between a rule's input membership 
function centre and its position on the genome. In 
the case of one-point crossover, a random number 
is selected within the range of the input variable (we 
assume this is known) with uniform probability 
density. This number forms the crosspoint. For 
example, consider two single-input rule-sets each 
containing five rules with the following centres of 
input membership functions: 

Parent 1: 0.10 0.30 0.40 0.90 1.50 

Parent 2: 0.00 0.05 0.15 0.70 1.00 

Suppose the number 0.35 (in the input space) was 
randomly chosen as the basis for crossover. The 
resulting offspring produced by applying the cross- 
over operator would be: 

Child 1: 0.10 0.30 0.70 1.00 

Child 2 : 0 . 0 0  0.05 0.15 0.40 0.9 1.50 

In the case of n-dimensional input spaces, a cross- 
point vector Ci, i~ { 1 . . . . .  n} is selected. After cross- 
over, Child 1 contains rules from Parent 1 such that 
Vi, X,.ik < C~, and rules from Parent 2 such that Vi, 
Xc~k > Ci. Child 2 contains the remaining rules from 
both rule-sets. Care must be taken in the probabil- 
ity distribution used in selecting the components 
of the n-dimensional crosspoint. For  example, 
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Parent 1 

P~ent 2 

Child 1 

°° • l i/. ' . .  

Child 2 

ii.i ... 

this figure, the centres of fuzzy rule membership 
functions are denoted as filled circles (Parent 1) and 
filled square (Parent 2) in the plane of the two input 
variables. The right-hand side of the diagram shows 
the rules inherited by each of the two offspring 
(Child 1 and Child 2) from each of the parents for 
the chosen crosspoint. 

The two-point version of the crossover operator 
involves the generation of two crosspoints C~i and 
C2i as follows: 

Cli  : M I N i  + ( M A X i  - M I N i ) . ( R I ~ )  1/" 

Fig. 1. Operation of one-point ordered crossover operator for 
2-inputs. 

choosing each crosspoint component independent- 
ly using a uniform probability density function 
between some known limits is not suitable when 
n > 1 since the average "hypervolume" containing 
rules being crossed over decreases as dimensional- 
ity increases. In this initial implementation of the 
crossover operator, we choose a random number, 
Rc in the range [0, 1] to represent the normalised 
"hypervolume" of rules being crossed over. The 
crosspoint vector is calculated as 

Ci = MI N i  + (MAXi  - MINi).(Rc) a/", 

where [MINi,  MAXi]  is the range of the input 
variable xi. This one-point ordered crossover oper- 
ator with two system inputs is depicted in Fig. 1. In 

C2i ~- Cli  -~ ( M A X i  - M I N i ) . ( R 2 c )  1In 

where R~c and R2c are selected randomly in the 
range [0, l] with uniform probability density. After 
crossover, Child 1 contains rules from Parent 
1 such that 

Vi, ((Xcik >Cli) AND(xcik <C2i)) or 

((Xci k "-I-MAXi - MINi )  < C2i ) 

together with rules from Parent 2 which do not 
satisfy this condition. Child 2 contains the remain- 
ing rules from both rule-sets. 

The mutation operator used in P-FCSI is con- 
siderably simpler and applies real-number creep to 
fuzzy set membership function centres and widths. 
Mutation is therefore used for fine tuning rather 
than for introducing radically different individuals 
into the population. 

Table 1 
Comparison of P-FCS1 with other Pittsburgh-style GA/Fuzzy approaches 

Attribute Reference 

[1] [10] [11] [14] [15] [20] [28] 

P-FCS 1 

Learns fuzzy sets Yes 
Learns fuzzy rules Yes 
Real (R), binary (B) or 

multi-valued (M) elements B 
Modified crossover Yes 
Variable number of rules Yes 
Global (G) or local (L) fuzzy sets L 

Yes Yes Yes Yes Yes No Yes 
No Yes Yes Yes Yes Yes Yes 

B M B B B M R 
No Yes No Yes No No Yes 
No No Yes Yes No No Yes 
G G L G L G L 
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5.3. Comparison of P-FCS1 with other 
Pittsburgh-style GA/Fuzzy approaches 

It is worthwhile comparing the representation 
and operators used in P-FCS1 with those of the 
Pittsburgh-style GA/Fuzzy approaches reviewed in 
Section 3. Table 1 summarises some of the key 
attributes of P-FCS1 and of each work described 
and referenced in Section 3. These attributes 
include the representation employed (binary, real- 
valued or discrete multi-valued genome elements; 
fixed or variable size rule-sets; global or local fuzzy 
sets) and the learning approach and GA operators 
used (learning fuzzy sets; learning fuzzy rules; using 
modified crossover operator). 

Fixing fuzzy sets and learning rules [28] or fixing 
rules and learning fuzzy sets [10] can only be done 
when expert or heuristic knowledge is at hand, Of 
course when this knowledge is available from ex- 
perts or can be generated by engineers, this is the 
wisest approach. However, for control of complex 
systems with unknown characteristics and where 
no training data are available, it is often not pos- 
sible to decide on a simultaneously effective and 
efficient partitioning of the input/output spaces. 
Ascertaining fuzzy set membership functions is 
therefore difficult in such situations. Homogeneous 
partitioning of the input space when the input/out- 
put mapping varies in complexity within the space 
is inefficient and does not scale to high-dimensional 
spaces. P-FCS1 attempts to overcome this problem 
by allowing the GA to evolve fuzzy sets and rules 
simultaneously. While this feature offers a more 
powerful representation, it increases the size of the 
search space in that there are more parameters to 
adapt. This makes learning potentially more 
difficult. 

In much previous GA/Fuzzy work [1, 10, 14, 15] 
a binary representation is employed. The original 
GA and associated schema analysis rely on a 
binary string representation. However, an extensive 
body of evidence is accumulating which suggests 
that the floating-point representation is often faster, 
more consistent from run to run, and provides 
higher precision. At the same time, the floating- 
point representation permits special operators and 
is intuitively closer to the problem space of a fuzzy 
controller. 

P-FCS1 and the systems described in [1, 14, 
15] employ variable-length genomes encoding 
a variable number of fuzzy rules. By contrast, 
systems using a fixed number of rules require 
at least some knowledge of the underlying 
problem complexity which may not be known 
a priori. Allowing the number of rules in the 
rule-base to vary, under the action of suitably 
modified versions of genetic operators such 
as crossover and mutation, and other operators 
such as cover, rule creation and rule deletion, 
permits the learning system to automatically adapt 
the number of rules according to the complexity of 
the problem. 

P-FCS1 encodes fuzzy set membership functions 
locally within individual rules as opposed to 
using a global collection of fuzzy sets used 
by all rules. This approach is also proposed 
in [1, 14, 20]. The advantage of this representa- 
tion, once more, is expressive power for the 
learning of rules which possess their own specificity 
in terms of the fuzzy sets they relate. This is 
likely to be of benefit in tackling the ~'curse of 
dimensionality" when scaling to multi-dimensional 
systems. However, this advantage is at the cost of, 
once again, an increase of the search space for the 
GA. Whether or not the additional degree of 
freedom introduced by the use of local fuzzy sets 
complicates linguistic interpretation is open to 
debate. Certainly, rules no longer employ easily 
understood fuzzy sets such as '~NEGATIVE- 
LARGE", but then it is a fairly simple task to 
inspect the centres and widths of learned fuzzy set 
membership functions pertaining to a particular 
rule and perform a linguistic interpretation of that 
rule's operation. 

To summarise, P-FCS1 combines many 
of the best features of recent research applying 
the GA to learn fuzzy controllers in a new 
way, using an appropriate representation 
and novel genetic operators. As stated earlier, 
the simultaneous learning of fuzzy rules, localised 
fuzzy sets and the number of rules is a difficult 
task and the search space is potentially large due to 
the number of parameters to adapt. In the next 
section, we describe experimental results that 
demonstrate that the GA has the potential to rise to 
this challenge. 
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6. Experiments, results and interpretation 

The main objectives of the experiments conduc- 
ted with P-FCS1 were fourfold: 

1. To investigate the performance of different 
crossover operators in P-FCS1. 

2. To compare the performance of P-FCS1 with 
that of reported Michigan-style fuzzy classifiers sys- 
tems. 

3. To compare the performance of P-FCS1 with 
the Pittsburgh approach to learning fuzzy rule-sets 
using fixed membership functions. 

4. To evaluate P-FCS1 in a complex distributed 
control problem. 

To satisfy objectives 2 and 3 we chose two 
learning tasks. The first is one-input, one-output 
function identification, as tackled by Valenzuela- 
Rend6n [29], and Parodi and Bonelli [19] using 
Michigan-style fuzzy classifier systems. The second 
learning task chosen is the cart-centring control 
problem addressed by Thrift [28], using a Pit- 
tsburgh-style GA designed controller. For  both 
tasks, detailed experimental results have been re- 
ported which facilitate comparison. For  each task, 
we experimented with a variety of crossover oper- 
ators, thus accomplishing objective 1. To achieve 
the fourth objective, we applied P-FCS1 to distrib- 
uted routing control in a packet-switched network. 
Experimental details and results are presented be- 
low, together with a discussion of results. 

6.1. Function identification 

In this experiment P-FCS1 was given the task of 
learning one-input, one-output function identifica- 
tion for a number of different functions. The func- 
tions chosen were: 

FI: y = sin(20x2), 

F2: y = x, 

F3: y = 4(x -- 0.5) 2, 

F4: y = sin(20x), 

with x in the range [0, 1]. Function F1 was chosen 
because the local input-output  mapping becomes 
more complex with increasing x and we were inter- 

ested in how the fuzzy membership functions and 
rules evolved by P-FCS1 would cover the input and 
output spaces. Functions F2, F3, F4 were chosen 
since they were dealt with by Valenzuela-Rend6n, 
and Parodi and Bonelli using Michigan-style fuzzy 
classifier systems. 

6.1.1. Population initialisation 
A fixed population size of 100 rule-sets was used. 

Each rule-set in the population was initialised to 
contain 20 random rules (although under the action 
of crossover the number of rules in a rule-set 
is allowed to vary). Input membership function 
centres were selected randomly with uniform prob- 
ability density in the range [ - 0 . 2 ,  + 1.2]. Output 
membership function centres were selected ran- 
domly from the range [ -0 .2 ,  + 1.2] for F2 and F3 
and the range [ - 1.4, + 1.4] for F1 and F4. Extend- 
ing the range of initial membership function centres 
beyond the range of the input and output spaces is 
used to improve the performance of the system at 
the extremes of these spaces. Initial membership 
function widths were selected randomly with 
uniform probability density in the range 

I0, 2(Xmax ~ Xmin!], 
Ninit J 

where [-Xmin, Xmax] is the range of the input or 
output variable and Ntnlt is the initial number of 
rules in each rule-set. The range was chosen to 
encourage adequate coverage of input and output 
spaces for each initial rule-set. 

6.1.2. Evaluation function 
Each rule-set was presented with 50 equally 

spaced input values in the range [0, 1]. Using the 
same input values for each rule-set simplifies the 
learning process by removing noise from the evalu- 
ation function. The rule-set fitness was calculated 
as the inverse of the mean square error of the 
predicted outputs. 

6.1.3. Genetic algorithm details 
A generational strategy was adopted in which 

two new rule-sets were produced by the GA at each 
generation. Selection for reproduction was rank- 
based with s = 1.8. The replacement strategy used 
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was to replace the two weakest members of the 
population with the newly generated rules. A muta- 
tion rate of 0.1 was selected for each offspring 
rule-set. The mutation operator picks a single rule 
at random from the rule-set. Next, either the centre 
or width of one membership function within that 
rule is multiplied by a random number in the range 
[-0,9, 1.1]. Crossover operates at individual rule 
boundaries (i.e. complete rules are crossed over). 
The crossover rate was set to 0.8 and the following 
crossover operators were experimented with: 
straight one-point, straight two-point, ordered one- 
point, ordered two-point and Smith's crossover op- 
erator. In the latter case, an inversion operator was 
also applied with a probability of 0.5. The inversion 
operator selects two points at random within the 
rule-set genome (at rule boundaries) and inverts the 
order of those rules lying between the two chosen 
points. 

6.1.4. Results and interpretation 
For each crossover operator listed in the pre- 

vious paragraph P-FCS1 was run 10 times, using 
different initial random seeds, to learn the function 
F1. Fig. 2 shows the results of this experiment. This 
graph plots the error of the best population mem- 
ber (averaged over 10 runs) against generation 
number. The error is calculated as: 

1 - ( - 1 )  , l Y - y d d x '  

where y is the output predicted by the fuzzy classi- 
fier system and Yc is the correct output. The results 
displayed in Fig. 2 seem to indicate that, for this 
simple one-input, one-output function identifica- 
tion task, the two-point version of the new cross- 
over operator is able to learn good solutions faster 
and to produce better end solutions (given the run 
time allowed) than the other operators. 

The best solution discovered by P-FCS1 is 
shown in Fig. 3, which plots predicted and correct 
output over the input range. The error of this solu- 
tion, calculated as described above, is 2.3%. Fig. 4 
depicts the rules contained in this solution rule-set. 
Each rule is represented by a "diamond" in the 
figure with the centre of each diamond set by the 
centres of the input and output membership func- 
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tions of the corresponding rule. The width and 
height of each diamond are determined by the 
width of the input membership function and 
the width of the output membership function, 
respectively. 

We were interested in why Smith's crossover 
operator performed so poorly in this simple 
one-input, one-output fuzzy case when its good 
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Y 

Fig. 4. Coverage of rules for a learned mapping for function F1. 

performance for discrete-valued Pittsburgh-style 
classifier systems is undisputed. When rule-sets dis- 
covered using this operator were inspected they 
were found to contain multiple copies of identical 
rules. Smith points out this possibility in his thesis 
[28], and warns against using the genetic operators 
out of context in situations where the frequency of 
occurrence of a rule has an influence on perfor- 
mance. In LS-1 such redundancy does not affect the 
behaviour of the classifier system. However, in 
a fuzzy classifier system, clearly, duplication of rules 
does affect system behaviour. We have not experi- 
mented with a modified version of Smith's cross- 
over operator which deletes duplicate rules but 
suspect this modification would improve perfor- 
mance. Also, the simple one-input, one-output 
function identification task does not involve any 
performance linkage between rules whose fuzzy set 
membership functions do not overlap. We envisage 
situations in more complex problems where such 
linkage would exist. In some environments, taking 
an action for a particular set of inputs might only 
be a "good" action if an appropriate action is taken 
for a different set of inputs and vice versa. Also, if 
fuzzy rule chaining is required, Smith's crossover 
operator is likely to be more successful. A hybrid 
crossover operator which combines the ordered 

crossover operator introduced here and Smith's 
crossover operator might well prove to be 
worthwhile investigating. 

To compare the performance of P-FCS1 with 
reported results using Michigan-style classifier sys- 
tems, we experimented with learning the functions 
F2, F3 and F4. In the case of F2 and F3, the initial 
number of rules of all population rule-sets was set 
to 10; for F4 this was set to 20. Table 2 compares 
the results obtained using P-FCS1 over ten runs 
using different initial random seeds with those 
obtained by Parodi and Bonelli [19] using a 
Michigan-style fuzzy classifier system (M-FCS). 
For  functions F2 and F3, the error is calculated as 

| 1 

1 -Ofo ly-yddx 

where y is the predicted output and Yc is the correct 
output. In the case of P-FCS1 we show the range of 
the number of rules in the best rule-sets which were 
generated in the ten independent runs, and the 
mean and best error achieved by the system over 
these ten runs. 

The results shown in Table 2 indicate that a 
Pittsburgh-style classifier system using rein- 
forcement learning can be at least as good as 
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Table 2 
Performance comparison of P-FCS1 and a Michigan-style FCS [19] 

System Function Number of rules Error Number of cycles 

M-FCS F2 500 1.19°/,, 85 800 
(fixed) 

P-FCSI F2 6 11 Mean 0.96% 80000 
(variable) Best 0.15 % 

M-FCS F3 100 3.48% 103 700 
(fixed) 

P-FCS1 F3 7 14 Mean 2.50% 100000 
(variable) Best 1.50% 

M-FCS F4 1000 4.67% 197 500 
(fixed) 

P-FCS1 F4 14-30 Mean 4.55% 200000 
(variable) Best 3.23% 

a Michigan-style classifier system using supervised 
learning in attempting to solve this simple task. The 
granularity of rule coverage in the two systems is 
very different: P-FCS1 uses a large population of 
small but variable size rule-sets compared to 
Parodi and Bonelli's system which uses a single 
population comprising a large fixed size rule-set 
with attendant rule strengths. This raises a key 
question: how will the two systems scale up to higher 
dimensional spaces? The Michigan-style classifier sys- 
tem outlined by Parodi and Bonelli to learn function 
F4 uses 1000 rules for one-input, one-output function 
mapping; clearly there will be problems in scaling to 
higher dimensions. P-FCSI uses fewer rules per rule- 
base but as a result the optimisation problem is likely 
to become much harder in high-dimensional spaces. 
Further work is required to resolve this issue. 

6.2. Cart-centring control task 

In this task, a cart with mass m moves on a one- 
dimensional frictionless track (see Fig. 5). The ob- 
jective is, given an initial position and velocity, to 
move the cart to zero position and velocity in the 
minimum time. Inputs to the controller are posi- 
tion, x, and velocity, v. The controller output is the 
applied force, F. The cart is simulated by the fol- 
lowing equations of motion: 

x ( t  + ~) = x(t)  + ~v(t), 

v(t + T) = v(t) + F(t). 
m 

V 

[ m ~_=~F 

X 

Fig. 5. The cart centering problem. 

To enable comparison with Thrift's [28] experi- 
mental results, we chose r = 0.02 s and m = 2.0 kg. 
The maximum magnitude of the applied force was 
restricted to 2.0 N. 

6.2.1. Population initialisation 
A population of 100 rule-sets was used. Each 

rule-set in the population was initialised to contain 
25 random rules. Input membership function 
centres (position and velocity) were selected ran- 
domly with uniform probability density in the 
range [ -  5.0, + 5.0]. Output membership function 
centres (force) were chosen in the range 
E-2.5 ,  +2.5]. Initial membership function widths 
were selected randomly with uniform probability 
density in the range 

where rXmin, Xmax] is the range of the input or 
output variable and Ninit is the initial number of 
rules in each rule-set. 
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6.2.2. Evaluation function 
Fitness evaluation is identical to that used by 

Thrift [28]. A simulation of the cart is run for 500 
classifier steps (10 s with z = 0.02) with starting 
points (x0, v0) selected from 25 equally spaced posi- 
tions in the range ( - 2 . 5 , - 2 . 5 )  to (+2.5, +2.5). 
The fitness of each rule-set is measured as (10 - T)  
where T is the average time for the cart to reach 
a position in state-space (x,v) such that 
max(IM, lvJ) <0.5. If, for a given starting position 
(xO, vO) more than 10 s of simulated time are 
required, the fitness returned is zero. P-FCS1 is 
therefore, in this case, using pure reinforcement 
learning. 

6.2.3. Genetic algorithm details 
A generational strategy was adopted in which 

ten new rule-sets were produced by the GA at 
each generation. Selection for reproduction was 
rank-based with s = 1.8. The replacement 
strategy used was to replace the ten weakest 
members of the population with the newly gener- 
ated rule-sets. The following three crossover 
operators were experimented with: ordered one- 
point, ordered two-point and Smith's crossover 
(with inversion). 

6.2.4. Results and interpretation 
The cart simulation was run ten times with differ- 

ent crossover operators. Fig. 6 shows how the aver- 
age time to centre the cart for the best population 
member  varied with generation number  from 0 to 
100 for different crossover operators. This diagram 
also shows the average time taken to centre the cart 
using an optimal bang-bang controller using the 
same 25 initial starting points [20]. The optimal 
bang-bang control rule is defined as follows. The 
force applied to the cart, F (t), is chosen to be either 
F or - F ,  where F is some positive constant. F(t  ) is 
set equal to F if 

v2sgn(v) 

21F/ml 

and - F  otherwise. F is set to 2.0 N for comparison 
purposes. Fig. 7 shows a good input/output  
mapping learned by P-FCS1 using the ordered 
two-point crossover operator. 
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Fig. 7. Learned (position, velocity)- > force mapping for fuzzy 
controller in cart-centering problem. 

To compare the results using P-FCS1 with 
Thrift 's results [28], we evaluated the ten learned 
fuzzy controllers using the ordered two-point cross- 
over by running the cart simulation over 100 runs 
with random starting points in - 2 . 5  < x < +2.5, 
- 2 . 5  < v < +2.5. The cart was centred success- 

fully every time with a mean of 2.90 s (standard 
deviation 0.11s). Thrift's system achieved 3.28s, 
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and the optimal bang-bang controller achieved 
2.86s. The number of rule-set evaluations 
used for P-FCSI was 1100 (100 initial rule- 
et evaluations plus 10 evaluations per new 
generation for 100 generations), compared 
with 3000 rule-set evaluations by Thrift (popula- 
tion size of 31, elitist replacement strategy, 
100 generations). The results using P-FCS1 
therefore compare well. 

We repeated this simulation, using the same 
learned 10 rule-sets, but this time reduced the toler- 
ance on x and v to 0.2 s. Six of the rule-sets centred 
the cart every time within a mean time of 4.20 s 
(standard deviation 0.31). However, the remaining 
four rule-sets did not manage to centre the cart in 
around half of the simulations. When these unsuc- 
cessful simulations were displayed, it was observed 
that the cart was quickly centred to within the 
range - 0 . 5  <x,~" < +0.5, on which the system 
was trained, but once inside this region of the state 
space the cart showed small amplitude oscillations 
around a position offset from the centre of the 
track. A controller evolved by Thrift's system gen- 
eralised better to the new tolerance with a mean 
time to centre the cart of 4.8 s. The optimal bang- 
bang controller achieves a mean of 3.2 s. 

In a final experiment, we ran P-FCS1 again 10 
times using two-point ordered crossover but this 
time using the smaller tolerance - 0 . 2  < x,v < 
+0.2 during the learning period. In 100 simula- 

tions using random starting points and velocities, 
the resultant 10 rule-sets successfully managed to 
centre the cart every single time within an average 
time of 3.50 s (standard deviation 0.27 s). 

6.3. A network routing control task 

In this task a fuzzy controller is required to 
perform distributed routing control [23] in 
a simulated 3-node datagram packet switched net- 
work (see Fig. 8). The network is fully connected 
with bidirectional full duplex links between each 
node pair. Packets requiring transmission over 
a particular link are queued using a first-come 
first-served discipline. Packets arrive from outside 
the network at network source node i (i = A, B, C), 
to be delivered to destination node j (j = A, B, C), 
j va i, at an average rate of )~i~. 

~,e^ ,Lec 

~-AB ~.AC kcA ~.eB 

Fig. 8. Three-node packet switched network used in simulation. 

A controller situated at each node must decide 
whether to route each packet directly to its destina- 
tion or via an intermediate node. Controller deci- 
sions are based on packet delay measurements over 
the different paths. The goal is to minimise average 
global packet delay (i.e. the average delay between 
packet arrival at the source node and packet deliv- 
ery to the destination node for all packets which 
arrive during the period of simulation irrespective 
of source and destination). Since the network topo- 
logy chosen is symmetrical, an identical routing 
controller is placed at each node. The learning 
system is therefore required to determine a routing 
controller, copies of which are deployed at each 
switching node and operate in parallel, which mini- 
mises global packet delay. 

Each routing controller is implemented as a vari- 
able size fuzzy classifier system with four inputs and 
two outputs. At each node the controller inputs are: 

DelayLeftDirect: The measured packet delay 
from the source node for packets destined for the 
node to the left of the source node and which are 
routed directly. 

DelayLeftlndirect: The measured packet delay 
from the source node for packets destined for the 
node to the left of the source node and which are 
routed indirectly (i.e. via the node to the right of the 
source node). 

DelayRightDirect: The measured packet delay 
from the source node for packets destined for the 
node to the right of the source node and which are 
routed directly. 

DelayRightlndirect: The measured packet delay 
from the source node for packets destined for the 
node to the right of the source node and which are 
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routed indirectly (i.e. via the node to the left of the 
source node). 

Packet delays are measured at the destination 
node (each packet is time-stamped on arrival in the 
system) and averaged over the last NMeasure packets 
for each route taken for each source node. In the 
simulation, we assume this information is transmit- 
ted without delay to source nodes once the 
averages have been taken and transmission of con- 
trol information does not consume network band- 
width. In a real network such information would be 
sent as control packets which would incur a finite 
delay and utilise network bandwidth. NMe, .... is 
a parameter we vary by hand in the experiments 
described later and determines the granularity of 
measurements. Also, in a real network, a trade-off 
would have to be made in choosing the value of 
NM ... . . .  . If too small a value is chosen, the 
network becomes swamped with control packets 
which compete with user data packets for 
use of the shared bandwidth. If too large a 
value is chosen, measurements become out 
of date and meaningless. The actual input 
variables presented to the fuzzy controller 
are the logarithm of measured delays muliplied by 
a constant scaling factor. This heuristic affords the 
controller greater sensitivity at low and medium 
delays. For  simplicity, we neglect signal propaga- 
tion delays. 

At each node, the controller outputs are: 
PLeftDirect: The probability that a packet arriv- 

ing at the source node which is destined for the 
node to the left of the source node is routed directly. 
Hence (1 -PLeftDirect) is the probability that the 
packet takes the indirect route. 

PRightDirect: The probability that a packet 
arriving at the source node which is destined 
for the node to the right of the source node is 
routed directly. Hence (1-PRightDirect )  is the 
probability that the packet takes the indirect 
route. 

By dynamically adjusting local PLeftDirect and 
PRightDirect control outputs based on network 
delay measurements, the distributed assembly of 
controllers should attempt, in a cooperative 
fashion, to spread the network load to minimise 
global mean packet delay in response to changing 
traffic conditions in the network. 

6.3.1. Population initialisation 
A population of 80 rule-sets was used. Each rule- 

set in the population was initialised to contain 40 
random rules although this was allowed to vary 
during learning up to a maximum of 80 rules under 
the action of a cover operator and crossover. Output 
membership function centres were chosen in the 
range [0, 1]. Initial membership function widths were 
selected with uniform probability density in the range 

I0, 2 (Xmn x ~ ymin)] 
,/UTn , J 

where [-Xmin, Xmax" ] is the range of the input or 
output variable and Nini, is the initial number of 
rules in the rule-set. 

6.3.2. Evaluation function 
Each network simulation is run for a simulation 

time of 500 s. The data rates of all network links are 
set to 10000 bits per second. The variations in 
mean packet arrival rates with time for each source 
destination pair are shown in Fig. 9. These traffic 
patterns were chosen to exercise the dynamic capa- 
bilities of the routing controller in moving from 
relatively light network load, when direct routing is 
optimal, to heavy load when controllers must bal- 
ance the offered load between direct and indirect 
network paths. In the simulation, packets arriving 
at an intermediate node are always forwarded to 
the destination node to avoid a "ping-pong" effect. 
The evaluation function for each rule-set returns 
the inverse of the mean measured packet delay for 
all packets delivered during the simulation. 

Experiments were carried out with two types of 
traffic arrival process and packet size distribution. 
In the first, deterministic process, packet arrivals 
are equally spaced in time and packet sizes are fixed 
at 1000 bits. In the second, packet arrivals follow 
a Poisson distribution (with the same mean arrival 
rate as in the deterministic case), and packet sizes 
are exponentially distributed with the same mean 
size. In the latter case the system model becomes 
a distributed M/M/1 queuing system. 

6.3.3. Genetic algorithm details 
A generational strategy was used in which ten 

new rule-sets were produced by the GA at each 
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generation, using rank-based selection (s = 1.8) and 
replacing the ten weakest population members at 
each generation. The ordered two-point crossover 
operator was employed. Mutation rate and cross- 
over rate were 0.1 and 0.8, respectively. In addition, 
a cover operator was implemented as follows: if 
a set of inputs is encountered which does not match 
any rules in the rule-base, a new rule is created with 
input fuzzy set membership function centres set 
equal to the unmatched input vector; output mem- 
bership function centres are set randomly in the 
allowed range; and all membership function widths 
set as described in Section 6.3.1, above .  

6.3.4. Results and interpretation 

To evaluate the best controllers evolved by P- 
FCS l, we compared their performance with a shor- 
test-path routing algorithm [23] which routes all 
packets along the route whose measured delay is 
least between a particular source/destination pair. 
A range of measurement intervals, NM ... . . .  from 

2 packets to 100 packets were used. Experiments 
were conducted using both deterministic and prob- 
abilistic packet arrival processes and packet size 
distributions. In each case, 10 independent runs of 
P-FCS1 were conducted with different initial ran- 
dom seeds. In addition, different initial random 
seeds were also used for each of the network simu- 
lations used in evaluating a particular individual. 
The latter introduces noise in the evaluation func- 
tion and we were interested in whether the system 
could learn in the face of this potential difficulty. 
Each of the 10 learned fuzzy controllers using 
P-FCS1 were evaluated in 20 subsequent simula- 
tions and the result are presented in Table 3 where 
they are compared with the shortest path routing 
algorithm. This table shows mean packet delay 
over the complete simulation interval with stan- 
dard deviations shown in brackets. 

The results shown in Table 3 indicate that, 
when the measurement interval is small, the shor- 
test-path algorithm outperforms the learned fuzzy 
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Table 3 
Mean packet delay (in seconds) of fuzzy routing controllers learned by P-FCS1 compared with mean 
packet delay using shortest-path (SP) routing algorithm (standard deviations shown in brackets) 

Measurement SP-routing SP-routing Fuzzy control Fuzzy control 
interval (deterministic (probabilistic (deterministic (probabilistic 
(N M ...... ) arrivals) arrivals) arrivals) arrivals) 

2 0.58 (0,09) 1.14 (0.32) 0.73 (0.12) 1.06 (0.42) 
5 1.11 (0.22) 1.61 (0.29) 1.16 (0.16) 2.78 (0.41) 

10 1.96 (0.23) 2.46 (0.42) 1.31 (0.32) 2.98 (0.48) 
20 3.52 (0.39) 4.27 (0.75) 1.29 (0.28) 3.21 (0.45) 
50 6.14 (0.42) 6.48 (1.29) 1.38 (0.60) 3.66 (0.51) 

100 8.53 (3.00) 10.85 (1.49) 1.50 (0.38) 4.10 (0.65) 

controllers, although not by that large a margin. As 
the measurement interval increases, the learned 
fuzzy controllers begin to outperform the shortest 
path algorithm significantly. As mentioned earlier, 
an important characteristic of a routing algorithm 
is that routing control information should not con- 
sume excessive network bandwidth. A value of 
N~ .. . . . .  greater than 20 is realistic for a real net- 
work and the results using a GA-derived fuzzy 
controller appear to be better than the simple 
shortest-path algorithm in this region of rate of 
feedback. 

7. Conclusions and further work 

We have presented an overview of research into 
GA based machine learning applied to fuzzy con- 
trol and have described a fuzzy classifier system 
based on the Pittsburgh model. We conclude that 
the fusion of genetic algorithms and fuzzy logic, 
being a relatively new field of research, is still very 
much of an art. While this is so at the present time, 
it appears that the combination has the potential to 
become a powerful tool in the control of complex, 
multi-dimensional, non-linear systems. To achieve 
this potential, many problems have to be solved, 
perhaps the greatest being the problem of scalabil- 
ity to multi-dimensional spaces. Based on the work 
of others and our own experience, we suggest the 
following ways forward: 

1. Rule-based approaches appear to be more 
likely to scale up than domain-based approaches, 

particularly if the latter use homogeneous par- 
titioning of the input space. 

2. Variable length rule-set representations 
(together with attendant operators for creating and 
deleting rules, perhaps implemented as cover oper- 
ators or mutation operators) have the desirable 
property of being able to grow or shrink according 
to the complexity of the problem space. 

3. The ability of the learning system to de-acti- 
vate one or more conditions in a fuzzy rule can also 
effectively reduce the size of the search space by 
permitting evolution of general rules, if such rules 
are appropriate, and perhaps a fuzzy form of 
default hierarchy. 

4. The genome representation and genetic 
operators should exploit the implicit cooperation 
between fuzzy rules with overlapping input fuzzy 
set membership functions. 

5. Learning both fuzzy rules and fuzzy set mem- 
bership functions is likely to be necessary for con- 
trol of complex systems with unknown dynamics 
and with high-dimensional input/output spaces. 
Whether it is better to learn these in stages or 
simultaneously requires further investigation. 
A number of authors argue that the complex non- 
linear interactions between changes in fuzzy sets 
and fuzzy rules render the problem of simulta- 
neously learning these extremely difficult. This is 
certainly true if an attempt is made to apply local 
gradient descent techniques as the basis of learning. 
Whether or not the genetic algorithm, with its glo- 
bal search characteristic, is powerful enough to 
overcome this problem remains an open question. 



B. Carse et al. / Fuzzy Sets and Systems 80 (1996) 273-293 293 

References 

[1] M.G. Cooper and J.J. Vidal, Genetic design of fuzzy con- 
trollers: the cart and jointed pole problem, in: Proc. Third 
IEEE lnternat. Conf on Fuzzy Systems, IEEE Piscataway, 
NJ (1994) 1332-1337. 

[2] S. Forrest and J.H. Miller, Emergent behaviour in classifier 
systems, in: S. Forrest, Ed., Emergent Computation 
(MIT Press, Cambridge, MA, 1991) 213-227. 

[3] T. Furuhashi, K. Nakaoka and Y. Uchikawa, Sup- 
pression of excessive fuzziness using multiple fuzzy 
classifier systems, in: Proc. Third IEEE lnternat. 
Con.[. on Fuzzy Systems, IEEE Piscataway, NJ (1994) 
411--414. 

[4] D.E. Goldberg, B. Korb and K. Deb, Messy genetic algo- 
rithms: motivation, analysis and first results, Complex Sys- 
tems 3 (1989) 493-530. 

[5] J.J. Grefenstette, Multilevel credit assignment in a genetic 
learning system, in: Genetic Algorithms and their Applica- 
tions: Proc. Second Internat. Conf. on Genetic Algorithms 
(Lawrence Erlbaum, Hillsdale, NJ 1987) 202-209. 

[6] J.H. Holland, Properties of the bucket brigade algorithm, in: 
Proc. First lnternat. Conf. on Genetic Algorithms and their 
Applications. (Lawrence Erlbaum, Hillsdale, NJ 1985) 1-7. 

[7] J.H. Holland and J.S. Reitman, Cognitive systems based 
on adaptive algorithms, in: D.A. Waterman and F. 
Hayes-Roth, Eds., Pattern-directed Inference Systems 
(Academic Press, New York, 1978). 

[8] J.J. Holmblad and L.P. Ostergaad, Control of a cement 
kiln by fuzzy logic, in: Fuzzy Information and Decision 
Processes (North-Holland, Amsterdam, 1982) 389-399. 

[9] L.J. Huang and M. Tomizuka, A self-paced fuzzy tracking 
controller for two-dimensional motion control, IEEE 
Tr.ans. Systems Man Cybernet. 20(5) (1990) 1 l l5  1124. 

[10] C. Karr, Design of an adaptive fuzzy logic controller using 
a genetic algorithm, in: R. Belew and L. Booker, Eds., Proc. 
Fourth Internat Conf. on Genetic Algorithms (Morgan 
Kaufmann, Los Altos, CA, 1991) 450-457. 

[ l l ]  J. Kinzel, F. Klawonn and R. Kruse, Modifications of 
genetic algorithms for designing and optimising fuzzy 
controllers, in: Proc. First IEEE Internat. Conf. on Evolu- 
tionary Computation (IEEE Piscataway, NJ, 1994) 28-33. 

[12] B. Kosko, Neural Networks and Fuzzy Systems (Prentice- 
Hall, Englewood Cliffs, N J, 1991). 

[13] B. Kosko and S. Isaka, Fuzzy Logic, Sci. Amer. 269(1) (July 
1993) 62 67. 

[14] M. Lee and H. Takagi, Integrating design stages of fuzzy 
systems using genetic algorithms, in: Proc. Second IEEE 
lnternat. Conf. on Fuzzy Systems (IEEE, San Francisco, 
1993) 612 617. 

[15] J. Liska and S.S. Melsheimer, Complete design of fuzzy 
logic systems using genetic algorithms, in: D. Schaffer, Ed., 
Proc. Third IEEE lnternat. Conf. on Fuzzy Systems (IEEE 
Piscataway, NJ, 1994) 1377 1382. 

[16] E.H. Mamdani, Applications of fuzzy algorithms for 
control of a simple dynamic plant, in: Proc. lEE 121(12) 
(1974) 1585 1588. 

[17] K. Nakaoka, T. Furuhashi and Y. Uchikawa, A study on 
apportionment of credits of fuzzy classifier system for 
knowledge acquisition of large scale systems, in: Proc. 
Third IEEE lnternat. Conf. on Fuzzy Systems {IEEE 
Piscataway, NJ, 1994) 1797--1800. 

[18] A. Ollero and A.J. Garcia-Cerezo, Direct digital control, 
auto-tuning and supervision using fuzzy logic, Fuzzy Sets 
and Systems 30 (1988) 135-153. 

[19] A. Parodi and P. Bonelli, A new approach of fuzzy classi- 
fier systems, in: S. Forrest, Ed., Proc. Fifth Internat. Conf. 
on Genetic Algorithms (Morgan Kaufmann, Los Altos, CA, 
1993) 223 230. 

[20] D.T. Pham and D. Karaboga, Optimum design of fuzzy 
logic controllers using genetic algorithms, J. Systems 
Engrg. 1 (1991) 114 118. 

[21] G. Roberts, Dynamic planning for classifier systems, in: 
S. Forrest, Ed., Proc. Fifth lnternat. Conf. on Genetic 
Algorithms (Morgan Kaufmann, Los Altos, CA, 1989) 
244 -255. 

[22] T. Saski and T. Akiyama, Traffic control process of 
expressway by fuzzy logic, Fuzzy Sets and Systems 26 
(1988) 165-178. 

[23] M. Schwartz, Telecommunication Networks: Protocols, 
Modelling and Analysis (Addison-Wesley, Reading, MA, 
1987). 

[24] L. Shu and J. Schaeffer, HCS: Adding hierarchies to classi- 
fier systems, in R.K. Belew and L.B. Booker, Eds., Proc. 
Fourth lnternat. Conf. on Genetic Algorithms {Morgan 
Kaufmann, Los Altos, CA, 1991) 339-345. 

[25] S.F. Smith, A learning system based on genetic 
adaptive algorithms, Ph.D. Thesis, University of 
Pittsburgh (1980). 

[26] R. Sutton, Reinforcement learning architecture for ani- 
mats, in: From Animals to Animats: Proe. First lnternat. 
Conf. on Simulation of Adaptive Behaviour (MIT Press, 
Cambridge MA, 1991) 188-296. 

[27] H. Takagi and M. Sugeno, Fuzzy identification of systems 
and its application to modelling and control, IEEE Trans. 
Systems Man and Cybernet. 15 (1985) 116-132. 

[28] P. Thrift, Fuzzy logic synthesis with genetic algorithms, in: 
R. Belew and L. Booker, Eds., Proc. Fourth lnternat. Conf. 
on Genetic Algorithms (Morgan Kaufmann, Los Altos, CA, 
1991) 509 513. 

[29] M. Valenzuela-Rend6n, The fuzzy classifier system: a clas- 
sifier system for continuously varying variables, in: 
R. Belew and L. Booker, Eds., Proc. Fourth lnternat. Conf. 
on Genetic Algorithms (Morgan Kaufmann, Los Altos, CA, 
1991) 346-353. 

[30] S.W. Wilson, ZCS: A zeroth level classifier system, Evolu- 
tionary Computation 2(1) (1994) 1 18. 

[31] S.W. Wilson and D.E. Goldberg, A critical review of classi- 
tier systems, in: D. Schaffer, Ed., Proc. Third Internat. Conf. 
on Genetic Algorithms (Morgan Kaufmann, Los Altos, CA, 
1989) 244--255. 

[32] L. Zadeh, Outline of a new approach to the analysis of 
complex systems and design processes, in: IEEE Trans. 
Systems Man Cybernet. SMC-3 (1973) 28-44. 


