
E L S E V I E R Fuzzy Sets and Systems 80 (1996) 273-293

FUZZY
sets and systems

Evolving fuzzy rule based controllers using genetic algorithms

B r i a n C a r s e a'*, T e r e n c e C. F o g a r t y b, A l i s t a i r M u n r o c

alntelligent Autonomous Systems Laboratory, Faculty of Engineering, University of the West of England, Bristol, Coldharbour Lane,
Frenchay, Bristol BS16 1QY, UK

b Bristol Transputer Centre, Faculty of Computer Studies and Mathematics, University of the West of England, Bristol,
Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK

c Centre for Communications Research, Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 ITR, UK

Received October 1994; revised May 1995

Abstract

The synthesis of genetics-based machine learning and fuzzy logic is beginning to show promise as a potent tool in
solving complex control problems in multi-variate non-linear systems. In this paper an overview of current research
applying the genetic algorithm to fuzzy rule based control is presented. A novel approach to genetics-based machine
learning of fuzzy controllers, called a Pittsburgh Fuzzy Classifier System # 1 (P-FCS1) is proposed. P-FCS1 is based on
the Pittsburgh model of learning classifier systems and employs variable length rule-sets and simultaneously evolves
fuzzy set membership functions and relations. A new crossover operator which respects the functional linkage between
fuzzy rules with overlapping input fuzzy set membership functions is introduced. Experimental results using P-FCS l are
reported and compared with other published results. Application of P-FCS1 to a distributed control problem (dynamic
routing in computer networks) is also described and experimental results are presented.

Keywords: Artificial Intelligence; Engineering; Control theory; Evolutionary computation; Genetic algorithms

1. Introduction

Fuzzy control has been employed with success in
many diverse practical applications: control of a
cement kiln [8], 2-dimensional motion control [9],
traffic control [22] and temperature control of air
streams [18] to name but a few. Based on Zadeh's
theory of fuzzy sets [32], a typical fuzzy controller

*Corresponding author. Tel.: + 44-117-9656261. E-mail:
b-carse@csd.uwe.ac.uk.

[16] maintains a rule-base of fuzzy rules and asso-
ciated fuzzy sets for mapping real-numbered inputs
to outputs.

In most existing real application fuzzy control-
lers, the rule-base is populated with rule-of-thumb
fuzzy relations and linguistic fuzzy sets elicited from
human experts who have acquired their knowledge
through experience. These fuzzy rules and sets are
often then fine-tuned by engineers to produce effec-
tive fuzzy controllers. A good measure of interest is
currently being directed at discovering fuzzy rela-
tions and sets automatically using machine learn-
ing. Research utilising supervised and unsupervised

0165-0114/96/$15.00 © 1996 Elsevier Science B.V. All rights reserved
SSDI 0165-01 14(95)00196-4

274 B. Carse et al. / Fuzzy Sets and Systems 80 (1996) 273 293

learning using neural networks ['12, 13] has
achieved a great deal of success in learning fuzzy
relations and sets using known input/output data
sets. A major challenge in current fuzzy control
research is learning good controllers for large-scale,
non-linear systems with many input and output
variables where no training data are available from
an expert. Genetics-based machine learning is one
possible candidate for meeting this challenge.

This paper describes an approach to genetic
algorithm (GA) based reinforcement learning in
fuzzy control based on the Pittsburgh model of
learning classifier systems. The method proposed
builds upon a wide base of reported work inves-
tigating genetic operations and representations for
both fuzzy and discrete classifier systems, using
Pittsburgh and Michigan approaches. In the ap-
proach presented, genetic operations (selection,
recombination and replacement) and credit assign-
ment are carried out at the level of the complete
fuzzy rule-set (i.e. Pittsburgh-style) and the number
of rules in each rule-set is allowed to vary. The
representation employed allows the GA to operate
on both fuzzy set membership functions and fuzzy
relations (rules). Together, these features endow the
classifier system with an ability to evolve rule-sets
with economical coverage of the input/output
space where the coverage of fuzzy rules and accom-
panying fuzzy set membership functions is auto-
matically adapted to the complexity of the
underlying input/output mapping. This is a useful
characteristic if the method is to scale well to
complex problems with high dimension input and
output spaces.

The paper is organised as follows. Section 2
focuses on different approaches to learning classi-
fier systems and the role of the genetic algorithm in
learning. The section also discusses a number of
hybrid Pittsburgh-Michigan systems which have
been employed with some success in overcoming
the deficiencies of each. Sections 3 and 4 lay the
foundations on which our current work is built by
reporting research already carried out in the field of
fuzzy classifier systems using both Pittsburgh and
Michigan approaches. In Section 5 we present a
detailed description of the representation and gen-
etic operators used in our Pittsburgh-style fuzzy
classifier system. In particular, we discuss the role

of crossover in the generation of new fuzzy rule-sets
and introduce a new crossover operator for use
with variable-size fuzzy classifier systems. Section
6 presents and analyses results we have obtained in
applying the system to three tasks: firstly, a one-
input, one-output function identification task; sec-
ondly a two-input, one-output control task; and
thirdly a four-input, two-output distributed control
problem. Finally, in Section 7 we conclude and
recommend areas where future work on genetics-
based machine learning applied to fuzzy control
may be fruitful.

2. The role of the genetic algorithm in learning
classifier systems

In this section we summarise and discuss two
alternative ways in which the genetic algorithm
(GA) may be applied to learning classifier systems.
These two methods, Michigan and Pittsburgh ap-
proaches, were first described as long ago as 1978
and 1980, respectively. It should be stated that both
approaches are the subject of ongoing research and
many significant extensions have been devised and
used as the basis for successful learning systems. We
begin our discussion by outlining the Michigan
approach, since this was employed in the first pub-
lished report of a learning classifier system.

The first Michigan-style classifier system was
Cognitive System One (CS-1) devised by Holland
and Reitman [7]. CS-I maintains a population of
classifiers with genetic operations and credit assign-
ment applied at the level of the individual rule.
Each classifier in the population has an associated
strength, which is used to store an accumulation of
credit. The original CS-1 credit apportionment
algorithm is epoch-based, where classifiers ac-
tivated since the last payoff event share the reward
collected from the environment at the next. Since
CS-1, a large number of alternative credit assign-
ment schemes have been proposed, most notably
the bucket-brigade [6] and Q-learning [26, 30, 21]
for dealing with environments where reward may
be infrequent and/or delayed. These proposed
credit assignment schemes have achieved a great
deal of success, although many problems regarding
their use remain the focus of research. The GA in

B. Carse et al. / Fuzzy Sets and Systems 80 (1996) 273-293 275

a Michigan-style classifier system operates at the
level of the individual classifier with selection of
parent classifiers for mating based on strengths
(and in some cases other parameters such as clas-
sifier age or relevance). In addition, classifier
strengths in discrete Michigan-style systems are
commonly used in controlling the dynamic behav-
iour of the classifier system by forming the basis
for conflict resolution between simultaneously
matched classifiers. In the fuzzy case, some practi-
tioners use classifier strengths as weights which
influence the level of contribution of rule conse-
quents.

In 1980, Smith [25] published results of an alter-
native learning classifier system, LS-1, in which the
unit of genetic manipulation is a suitably encoded
genotype representing a complete set of classifiers.
Credit is assigned to complete sets of rules via
interaction with the environment. This typifies so-
called "Pittsburgh"-style classifier systems. Since
the complete rule-set is the basis of credit appor-
tionment, Pittsburgh-style classifier systems side-
step completely the potentially knotty problem of
sharing out credit to individual rules. The GA in
LS-1 operates at different levels: at the highest level,
complete rule-sets are selected as the basis for
reproduction to generate new rule-sets; at the
lowest level individual rules are chosen by the GA
to generate new rules. For the purposes of this
discussion we are primarily concerned with the
highest of these levels of reproduction. LS-1 uses
variable-length classifier sets, and employs modi-
fied genetic operators for dealing with these vari-
able-length, position independent (as far as
phenotypic expression is concerned) genomes. We
will examine these operators in greater detail in
Section 5.

Clearly the role of the genetic algorithm in
Pittsburgh and Michigan approaches is rather dif-
ferent, and the distinction arises from the difference
in level at which the genetic algorithm is applied.
Both approaches, at least in their simplest forms,
suffer from distinct, known problems which arise
from the different way in which the genetic algo-
rithm is applied.

The major problem in the Michigan approach is
that of resolving the conflict between the individual
and collective interests of classifiers within the sys-

tem. The ultimate aim of a learning classifier system
is to evolve a set of co-adapted rules which act
together in solving some problem. In a Michigan
style system, with selection and replacement at the
level of the individual rule, rules which cooperate to
effect good actions and receive payoff also compete
with each other under the action of the genetic
algorithm. Such a conflict between individual and
collective interests of individual classifiers does not
arise with Pittsburgh-style classifier systems, since
reproductive competition occurs between complete
rule-sets rather than individual rules. However,
maintenance and evaluation of a population of
complete rule-sets in Pittsburgh-style systems can
often lead to a much greater computational burden
(in terms of both memory and processing time}.
Wilson and Goldberg [31] propose a classifier sys-
tem which clusters classifiers into "corporations".
Classifiers belonging to the same corporation do
not compete with each other under the action of the
GA and corporations form and break up under the
action of a modified crossover operator. A success-
ful implementation of this approach is Shu and
Schaeffer's [24] "hierarchical" classifier system in
which classifiers are grouped into "families" which
form the basic units of selection by the GA. Such
approaches represent a middle ground between
Michigan-style and Pittsburgh-style classifier
systems.

Problems with the Pittsburgh approach have
proved to be at least equally as challenging.
Although the approach avoids the problem of ex-
plicit competition between classifiers, large
amounts of computing resources are required to
evaluate a complete population of rule-sets. A fur-
ther problem with the approach is the small band-
width of reinforcement information, usually
a single scalar fitness value for each complete rule-
set. If information about the performance of
individual rules happens to be derivable from the
pattern of environmental payoffs using some credit
apportionment method, this information is not
explicitly exploited in the Pittsburgh approach. The
disruptive threat to good collections of cooperating
rules comes from a different source in Pittsburgh-
style systems compared to Michigan-style systems.
In the latter, competition at the level of selection
and replacement of individual rules can destroy

276 B. Carse et aL / Fuzzy Sets and Systems 80 (1996) 273-293

good rule associations. In a Pittsburgh-style sys-
tem, although selection and replacement will auto-
matically favour co-adapted rule-sets, crossover
can be a major cause of disruption of cooperating
collections of rules since the operator is blind to
such associations between rules. An elegant solu-
tion to both the problems of coarse-grained credit
assignment and the disruptive effects of crossover
in Pittsburgh systems is proposed by Grefenstette
[5] using hierarchical credit assignment. With this
method, credit is assigned to individual rules as well
as to complete rule-sets. Prior to crossover, the
genome encoding the rule-set is ordered so that
high strength rules occupy neighbouring loci on the
genome. If the underlying assumption that co-
adapted rules accrue similar strengths is valid, then
crossover is less likely to disrupt these rule associ-
ations than if an unordered genome is employed.
We shall return to the subject of ordering of rules
on the genome prior to crossover in Section 5.

3. Pittsburgh-style fuzzy classifier systems

A number of researchers have investigated the
automatic generation of fuzzy relations and fuzzy
membership functions using evolutionary algo-
rithms. In this section we present a summary of
work applying the GA in the Pittsburgh style,
where the complete fuzzy rule-set is the unit
for selection and credit assignment. We have
attempted to classify this work in decreasing order
of constraint (i.e. increasing order of number of
parameters to adapt) of the learning system. The
categories we have used are:

1. Learning fuzzy set membership functions
only, with a fixed set of rules set by hand.

2. Learning fuzzy rules only, with a fixed set of
fuzzy membership functions set by hand.

3. Learning both fuzzy rules and fuzzy set mem-
bership functions but in stages i.e. first evolving
good fuzzy rule-sets using fixed membership func-
tions, then fine tuning membership functions using
fixed good fuzzy rule-sets.

4. Learning both fuzzy rules and fuzzy set mem-
bership functions simultaneously (possibly with
fine tuning of membership functions as a final
stage).

3.1. Learning fuzzy membership functions
with fixed fuzzy rules

Karr [10] applied GAs to fuzzy controller design
by evolutionary adaptation of fuzzy membership
functions for a fixed rule-set. This work demon-
strated the success of the approach in generating
both non-adaptive and adaptive fuzzy controllers
for the four-input, one-output cart-pole balancing
problem. Using three input fuzzy sets for each input
and seven output fuzzy sets, a rule-base of eighty
one rules is set by hand and the GA is then used to
modify the endpoints of the fuzzy membership
functions which are encoded on a binary string.
Fitness of each individual is evaluated by running
a number of simulations with different initial
conditions. Karr's system was able to discover
membership functions which controlled the cart-
pole system significantly better than membership
functions designed by hand. In addition, using
a micro-GA, the author reports an adaptive fuzzy
controller which was able to successfully cope with
changing cart mass by genetically adapting fuzzy
membership functions in real-time.

3.2. Learning fuzzy rules with fixed fuzzy
membership functions

Thrift [28] describes the design of a two-input,
one-output fuzzy controller for centring a cart on
a frictionless one-dimensional track. Fixed, tri-
angular input sets Negative-Medium (NM),
Negative-Small (NS), Zero (Z), Positive-Small (PS)
and Positive-medium (PM) are set by hand for each
input variable. Individual control strategies are
represented as 5 × 5 tables with each table entry
encoding an output fuzzy set taken from {NM, NS,
Z, PS, PM, _ } (the _ symbol indicates no fuzzy set
entry at this position) for each of the 25 combina-
tions of input fuzzy sets. An individual control
strategy's fitness is determined by running
simulations of the cart. The GA mutation operator
changes a fuzzy code (encoding an output fuzzy set
membership function) either up or down a level, or
to the blank code. Using a population size of 31,
Thrift's system was able to evolve a fuzzy control
strategy after 100 generations which compares well
with the optimal "bang-bang" control rule.

B. Carse et al. / Fuzzy Sets and Systems 80 (1996) 273 293 277

Pham and Karaboga [20] describe the use of
genetic algorithms to optimise the relation matrix
of a fuzzy logic controller. This system learns fuzzy
rules and output membership functions simulta-
neously using fixed input membership functions.
Optimisation of the controller is carried out in two
stages. In the first stage, different populations of
controllers are independently evolved (using differ-
ent initial random seeds) to produce "preliminary"
designs. The second stage combines the best indi-
viduals from the first stage into a single population
to which the GA is applied to evolve a "detailed"
design. The authors use the fuzzy logic controller to
control a simulated time-delayed second-order
plant with one input (the controlled system error)
and one control output. Seven input membership
fuzzy membership functions (NB, NM, NS, ZE, PS,
PM, PB), set by hand, are employed. The relation
matrix consists of a 7 x 11 table (in general, m x n).
Each of the seven rows corresponds to one of the
input membership functions, and each of the eleven
columns corresponds to a quantised value of the
output in the interval [- 5 , + 5-], thus permitting
general shape output membership functions. The
experimental results presented convincingly dem-
onstrate that good fuzzy controllers can be evolved
using a simple GA, and that substantial improve-
ment in controller performance can be gained using
a two-stage evolution process.

3.3. Learning.fi~zzy rules and membership functions
in stages

Kinzel et al. [l l] describe an evolutionary
approach to designing fuzzy controllers, and apply
the technique to the cart-pole problem. The
authors argue that learning fuzzy rules and mem-
bership functions simultaneously, while possible, is
difficult due to the complex interactions between
the two. Using this premise as a basis, Kinzel et al.
describe a three stage task solving process, namely:
(1) seed a "good" initial rule-base, (2) apply the
GA to rules keeping membership functions fixed,
then (3) apply the GA to membership functions.
The authors argue against the use of bit-string
encoded genomes, due to the destructive action of
crossover, and use a non-binary table-based repres-
entation which preserves individual table entries

(membership functions) under the action of cross-
over. In experiments, Kinzel et al.'s system dis-
covers good fuzzy rule-sets for balancing the pole
after 33 generations using a population size of 200,
although it is reported that the membership tuning
stage had relatively little effect on the goodness of
rule-sets discovered by the GA.

3.4. Learning fuzzy rules and membership[unctions
simultaneously

Lee and Takagi [14] employ the genetic
algorithm to simultaneously optimise a variable
size fuzzy rule base and fuzzy set membership
functions of a Takagi-Sugeno [27] controller.
This type of controller differs from a traditional
fuzzy controller in that fuzzy values are involved
only in the condition (antecedent) part of a rule; the
consequent is a linear function of the inputs. The
output of an n-rule Takagi-Sugeno controller is
calculated as

Output = ~ ~'i.[i,
i - 1

where

E T = 1Wi ' . i=1 i = 1 "

In these equations, A~- is the input fuzzy set mem-
bership function for thej th input variable in the ith
rule, X the vector of inputs to the fuzzy controller,
wi is interpreted as the firing weight of the ith rule.
Parameters ¢ and qli are rule-consequent para-
meters and determine the linear mapping of input
values to output values. Lee and Takagi's system
learns rule input membership functions and rule-
consequent parameters simultaneously using bit
strings to represent the left base, centre and right
base of triangular membership functions. Bit-
oriented mutation and crossover are used, and the
system is applied with success to the pole-balancing
problem. Reproductive fitness of chromosomes
depends on phenotypic performance but is also
reduced for chromosomes encoding large rule-sets
as an attempt to prevent the formation of over-
large rule-sets.

278 B. Carse et al. / Fuzzy Sets and Systems 80 (1996) 273-293

Cooper and Vidal [1] use a variable length
genome to represent a fuzzy rule-set and accom-
panying membership functions, thus allowing the
GA to automatically adapt the number of rules.
The authors point out that domain-based repre-
sentations which imply complete coverage of the
input space and have been employed in most work
carried out to date on GA-designed fuzzy control-
lers, cannot be expected to scale well to high-
dimensional problems. To overcome this problem,
they propose a "compact encoding scheme" where-
by each rule of the genome string encodes (using
binary encoding) the centres and widths of mem-
bership functions pertaining to that rule. Using
variable-size rule-sets (i.e. variable-length genomes)
in conjunction with rule creation and deletion
operators, allows the GA to evolve economical
rule-sets which do not include superfluous or un-
necessary rules. Furthermore, the representation
permits particular rule conditions to be ignored,
allowing the evolution of generalised rules in cases
where the appropriate action depends on a small
subset of the input variables. Prior to genetic cross-
over, rules on parents selected for recombination
are ordered according to similarity in input vari-
able centres. Cooper and Vidal apply their system
to the jointed cart-pole problem and obtain good
results, with the controller successfully maintaining
the cart-pole system after around 30 generations
using a population size of 200 using randomly
assigned initial rule-sets.

Liska and Melsheimer [15] use a GA for simul-
taneously discovering fuzzy rules and membership
functions, with a final stage of fine-tuning member-
ship functions using conjugate gradient descent. As
with Cooper and Vidal's system, the representation
used by Liska and Melsheimer allows both active
conditions within a rule and the number of rules
within a rule-set to vary dynamically during genetic
search. A further similarity between the two sys-
tems, and the Pittsburgh-style fuzzy classifier sys-
tem presented later in this article, is the use of
ordering according to the centres of membership
functions on the genome prior to GA crossover.
However, an important difference between Liska
and Melsheimer's system and the other two is that
global sets of input and output membership func-
tion centres and widths used by all rules, are

encoded on separate substrings of a composite
genome which also includes a substring represent-
ing rules using these membership functions. In
Cooper and Vidal's system and the system pre-
sented later, membership functions used in indi-
vidual rules are encoded as part of those rules,
rather than globally, introducing additional de-
grees of freedom for the learning system.

Liska and Melsheimer apply their system to
learning a dynamic model of plant using known
input-output data. After the GA approaches con-
vergence, conjugate gradient descent is employed
to further improve good solutions by fine-tuning
membership function parameters. The results
obtained compare well with those achieved using
a 3-layer feedforward neural network, and in addi-
tion, as the authors state, the solutions found pro-
vide linguistic descriptions of their operation.

4. Michigan-style fuzzy classifier systems

In this section we summarise previous work
which has demonstrated the potential of
Michigan-style fuzzy classifier systems. Although
the representation schemes and credit apportion-
ment algorithms are different in their detail, all the
systems outlined in this section reward or penalize
individual rules by altering the rule strengths. Also,
all the systems carry out genetic operations (selec-
tion, replacement, recombination and mutation) at
the level of the individual rule.

4.1. Learning fuzzy rules with fixed fuzzy
membership functions

Valenzuela-Rend6n gives the first description of
a fuzzy classifier system in [29]. Closely modelled
on the discrete-valued Michigan-style classifier sys-
tem, this system contains a fixed size rule-base of
fuzzy classifiers, a fuzzy message list and employs
credit assignment to individual classifiers. An in-
idivual rule is represented as a binary string that
encodes the membership functions of the fuzzy sets
involved in the rule. These fuzzy sets (Gaussian in
shape) are fixed at the outset to cover the complete
input/output spaces; the number of fuzzy sets is set
by hand by the designer for the precision required.

B. Carse et al. / Fuzzy Sets and Systems 80 (1996) 273 293 279

The system therefore learns fuzzy relations between
these fixed fuzzy sets. Valenzuela-Rend6n applies
the fuzzy classifier system, operating as a stimulus-
response system, to one-input, one-output function
identification. Credit is allocated to individual clas-
sifiers according to how closely each classifier pre-
dicts the correct output. The payoff distribution
scheme is therefore, as the author states, not pure
reinforcement learning. The fuzzy classifier system
successfully learns straight line and parabola func-
tions with relatively few learning cycles.

Valenzuela-Rend6n's fuzzy classifier system dis-
cussed above and Parodi and Bonelli's [19] fuzzy
classifier system described below in Section 4.2 are,
in principle, capable of supporting internal message
passing although reported results pertain to stimu-
lus-response one-input, one-output function identi-
fication tasks. To learn complex behaviour which
goes beyond simple stimulus-response, a classifier
system may evolve internal reasoning processes
based on chains of classifiers coupled by internal
messages [2]. Valenzuela-Rend6n [29] identifies
the need to investigate fuzzy rule-chaining and
a fuzzy version of the bucket-brigade credit assign-
ment algorithm. However, Furuhashi et al. [3]
argue that fuzzy rule-chaining gives rise to a prob-
lematic accumulation of fuzziness which, if un-
checked, can seriously degrade system perfor-
mance. To overcome this problem, Furuhashi et al.
propose a method using multiple stimulus-response
fuzzy classifiers operating in tandem. Message pas-
sing between individual fuzzy classifier systems is
via "crisp" values in order to control excessive
fuzziness. In their experiments, the authors describe
a multiple fuzzy classifier system for controlling
a simulated ship which attempts to steer towards
a goal while avoiding other moving ships. The
fuzzy controller is decomposed into three separate,
communicating fuzzy classifier systems, one for
recognising danger of collision, one for making
decisions as to which direction to steer, and
one for acting on these decisions by considering
the dynamics of the ship. In each fuzzy classifier
system, the number of rules and the membership
functions are set by hand, and the GA is used
to evolve a population of good fuzzy relations.
Each fuzzy classifier system uses two inputs and
one output.

In [17], Nakaoka et al. address the credit appor-
tionment problem for large scale Michigan-style
fuzzy classifier systems. In [17], the same ship-
steering control problem as described above is
tackled but this time with a single fuzzy classifier
system with eight inputs and one output. However,
as the authors state, coverage problems arise in
moving to such high dimension input spaces be-
cause out of the set of initial randomly generated
rules, only a small proportion will be matched
during the course of a simulation. This problem is
dealt with by using two different measures of credit
for an individual rule - the first is a more tradi-
tional one, based on environmental payoff, while
the second is based on an accumulation of the level
of activation of rule during a simulation, irrespect-
ive of the "goodness" of that rule's suggested action.
This dual fitness measure provides selection pres-
sure when the GA is applied which favours both
high-reward rules and well-matched rules. Low-re-
ward but well-matched rules might well go on,
under the action of crossover and mutation, to
produce well-matched high-reward offspring. The
latter outcome is encouraged by the use of a rela-
tively high (0.5) mutation rate for the consequent
part of rules. The authors report that using a 100-
rule fuzzy classifier system, with fixed triangular
membership functions, the controller consistently
steered the ship to the goal while avoiding other
moving ships after 69 generations of the GA.

4.2. Learning fuzzy rules and fitzzv membership
functions simultaneously

Parodi and Bonelli [19] present a Michigan-
style fuzzy classifier system which automatically
learns fuzzy relations, fuzzy membership functions
and classifier weights. A real-numbered representa-
tion for rules is used, with each rule encoding
centres and widths of triangualar fuzzy set member-
ship functions for each input and output variable.
The GA crossover operator exchanges randomly
selected fuzzy sets between pairs of rules. Mutation
uses real number "creep" which modifies the
centres and widths of membership functions within
a rule. The classifier population consists of a fixed
size list of such rules. Each rule has associated with
it an "output weight" which is set equal to the

280 B. Carse et al. / Fuzzy Sets and Systems 80 (1996) 273 293

strength (fitness) of that rule. The rule strength
therefore performs a dual function: firstly it forms
the basis of selection and replacement for the GA
and secondly it allows stronger rules to take a
bigger part in decision making than weaker ones.

The authors demonstrate that the fuzzy classifier
system is capable of successfully approximating
one-input, one-output function mappings. As with
Valenzuela-Rend6n's system, a knowledge of the
correct system output is used as the basis for credit
assignment. Using this information, a "Measure of
Goodness" is calculated for each rule which reflects
not only the quality of the rule's conclusion fuzzy
set, but also how well the rule's condition intervals
are set for a particular input.

The bracketed terms represent the centres and
widths of fuzzy set membership functions over the
range of input and output variables. The condition
part of each rule comprises one fuzzy set member-
ship function for each input variable and the action
part comprises one fuzzy set membership function
for each output variable. The genome representing
a complete rule-set is a variable length concat-
enated string of such fuzzy rules. This representa-
tion allows genetic operators to work on both fuzzy
rule-sets and membership functions. In addition
since fuzzy set membership functions are encoded
together with each rule (as opposed to using a glo-
bal collection of fuzzy sets used by all rules), rules
are permitted to evolve with different degrees of
vagueness in the fuzzy sets they relate.

5. A Pittsburgh-style fuzzy classifier system
(P-FCS1)

In this section, we describe in detail a
Pittsburgh-style fuzzy classifier system called
P-FCS1 and justify the choice of representation
and genetic operators used. In summary, the main
features of P-FCS1 are:
• it is based on the Pittsburgh classifier system

model;
• it is rule-based as opposed to domain-based;
• the number of rules in each rule-set is allowed

to vary, under the action of crossover, rule creation
and deletion operators, and a cover operator;

• the system learns both fuzzy rules and fuzzy set
membership functions;

• rule and fuzzy set membership encodings are
real-numbered rather than using bit strings;

• a crossover operator is employed which respects
the fact that genes representing rules with over-
lapping fuzzy sets are epistatically linked.

5.1. Rule-set encoding on genome

We employ the same rule representation used by
Parodi and Bonelli [19] in their Michigan-style
fuzzy classifier system, with each rule, Rk, for an
n-input, m-output system, expressed as:

Rk :(Xclk, Xwlk); . . . (Xcnk, Xwnk)

(Yolk, Ywlk);... (Y,'mk, Ywmk)

5.2. Choice of GA recombination operators

In this section we introduce a new crossover
operator for use in Pittsburgh-style fuzzy classifier
systems. As background to the motivation behind
the employment of a modified crossover operator,
we first restate Holland's schema theorem and the
building block hypothesis for GAs, and outline the
operators used by Smith in the LS-1 discrete valued
learning classifier system.

5.2.1. Holland's schema theorem,
the building-block hypothesis and LS-1 's
genetic operators

Holland's schema theorem provides a theoretical
underpinning to the workings of the genetic algo-
rithm. The theorem places a bound on the expected
growth or decay of the number of schemata con-
tained within a generation as follows:

m,h t, f(h) I 6(h) 1 m(h,t+l)>~ t , ~--=-_ 1 - p c - f ~ i - p m o (h)
f

where m(h, t) is the number of schemata h contained
within a population at generation t, f(h) is the
average fitness of strings containing the schema h in
the population, f is the average fitness of the popu-
lation, I is the string length, Pc is the probability of
crossover, 6(h) is the defining length of the schema
h, o(h) is the order of the schemata and Pm is the
probability of mutation.

B. Carse et al. / Fuzzy Sets and Systems 80 (1996) 273 293 281

From this starting point, most GA researchers
view good schemata as basic building blocks whose
juxtaposition under action of GA operators pro-
duces good problem solutions. Goldberg [4] points
out that three conditions are necessary for
a schema to be a successful building block for the
GA:

1. It should have above average fitness.
2. It should be low order (to survive mutation).
3. It should have a short length (to survive

crossover).
As Smith states in his Ph.D. Thesis [25], there

are two implicit assumptions in the schema
theorem and the hyperplane analysis which sup-
ports it, namely, position dependence in the struc-
tures being manipulated, and fixed structure length.
In a Pittsburgh classifier system, the external be-
haviour of a particular classifier set is independent
of the order of individual rules within the encoded
genome. However, the order of rules in classifier
sets undergoing recombination is crucially impor-
tant since rules which cooperate to good effect and
which are far apart in the genome (effectively a long
high-fitness schema) are likely to be split apart by
crossover. In addition, in Smith's LS-1 system and
the Pittsburgh-style fuzzy classifier system we de-
scribe here, rule-set length is allowed to vary,
implying variable length genomes.

To address these issues, Smith designed modified
genetic operators for dealing with position-inde-
pendent variable length genomes, and performed
a detailed analysis that demonstrates that these
operators are capable of finding and exploiting
good combinations of classifiers. The LS-1 cross-
over operator [25] aligns two parent structures
randomly, then exchanges attributes on either side
of a randomly chosen crosspoint to yield child
structures. An inversion operator provides the sys-
tem with an ability to cluster good combinations of
rules in neighbouring loci on the genome, thus
forming tight building blocks which are more resis-
tant to being disrupted by crossover. A similar
approach is expounded by Goldberg et al. [4] in
their Messy GA.

5.2.2. Genetic operators used in P-FCS1
In moving from the discrete to the fuzzy case,

a further level of interaction between rules encoded

on the genome is introduced. Any two or more
rules whose input fuzzy set membership functions
overlap are epistatically linked on the genome since
the crisp output value over the range of overlap of
the inputs is determined by the combined action of
all matched rules. Indeed, the identification of ar-
bitrary input/output functions using fixed shape
membership functions relies on this overlap.
A crossover operator which preserves rather than
destroying these linkages is likely to be a good one.
In the initial implementation of P-FCS1 we take
this observation to its extreme conclusion and
order rules on the genome according to input mem-
bership function centres. A detailed description of
the new crossover operator, first for single-input
rule-sets and then for multiple-input rule-sets
follows.

For single-input rule-sets, the rules are sorted
according to the centres of their input membership
functions prior to crossover. This introduces an
association between a rule's input membership
function centre and its position on the genome. In
the case of one-point crossover, a random number
is selected within the range of the input variable (we
assume this is known) with uniform probability
density. This number forms the crosspoint. For
example, consider two single-input rule-sets each
containing five rules with the following centres of
input membership functions:

Parent 1: 0.10 0.30 0.40 0.90 1.50

Parent 2: 0.00 0.05 0.15 0.70 1.00

Suppose the number 0.35 (in the input space) was
randomly chosen as the basis for crossover. The
resulting offspring produced by applying the cross-
over operator would be:

Child 1: 0.10 0.30 0.70 1.00

Child 2 : 0 . 0 0 0.05 0.15 0.40 0.9 1.50

In the case of n-dimensional input spaces, a cross-
point vector Ci, i~ { 1 n} is selected. After cross-
over, Child 1 contains rules from Parent 1 such that
Vi, X,.ik < C~, and rules from Parent 2 such that Vi,
Xc~k > Ci. Child 2 contains the remaining rules from
both rule-sets. Care must be taken in the probabil-
ity distribution used in selecting the components
of the n-dimensional crosspoint. For example,

282 B. Carse et al. / Fuzzy Sets and Systems 80 (1996) 273-293

Parent 1

P~ent 2

Child 1

°° • l i/. ' . .

Child 2

ii.i ...

this figure, the centres of fuzzy rule membership
functions are denoted as filled circles (Parent 1) and
filled square (Parent 2) in the plane of the two input
variables. The right-hand side of the diagram shows
the rules inherited by each of the two offspring
(Child 1 and Child 2) from each of the parents for
the chosen crosspoint.

The two-point version of the crossover operator
involves the generation of two crosspoints C~i and
C2i as follows:

Cli : M I N i + (M A X i - M I N i) . (R I ~) 1/"

Fig. 1. Operation of one-point ordered crossover operator for
2-inputs.

choosing each crosspoint component independent-
ly using a uniform probability density function
between some known limits is not suitable when
n > 1 since the average "hypervolume" containing
rules being crossed over decreases as dimensional-
ity increases. In this initial implementation of the
crossover operator, we choose a random number,
Rc in the range [0, 1] to represent the normalised
"hypervolume" of rules being crossed over. The
crosspoint vector is calculated as

Ci = MI N i + (MAXi - MINi).(Rc) a/",

where [MINi, MAXi] is the range of the input
variable xi. This one-point ordered crossover oper-
ator with two system inputs is depicted in Fig. 1. In

C2i ~- Cli -~ (M A X i - M I N i) . (R 2 c) 1In

where R~c and R2c are selected randomly in the
range [0, l] with uniform probability density. After
crossover, Child 1 contains rules from Parent
1 such that

Vi, ((Xcik >Cli) AND(xcik <C2i)) or

((Xci k "-I-MAXi - MINi) < C2i)

together with rules from Parent 2 which do not
satisfy this condition. Child 2 contains the remain-
ing rules from both rule-sets.

The mutation operator used in P-FCSI is con-
siderably simpler and applies real-number creep to
fuzzy set membership function centres and widths.
Mutation is therefore used for fine tuning rather
than for introducing radically different individuals
into the population.

Table 1
Comparison of P-FCS1 with other Pittsburgh-style GA/Fuzzy approaches

Attribute Reference

[1] [10] [11] [14] [15] [20] [28]

P-FCS 1

Learns fuzzy sets Yes
Learns fuzzy rules Yes
Real (R), binary (B) or

multi-valued (M) elements B
Modified crossover Yes
Variable number of rules Yes
Global (G) or local (L) fuzzy sets L

Yes Yes Yes Yes Yes No Yes
No Yes Yes Yes Yes Yes Yes

B M B B B M R
No Yes No Yes No No Yes
No No Yes Yes No No Yes
G G L G L G L

B. Carse et al. / Fuzzy Sets and Systems 80 (1996) 273-293 283

5.3. Comparison of P-FCS1 with other
Pittsburgh-style GA/Fuzzy approaches

It is worthwhile comparing the representation
and operators used in P-FCS1 with those of the
Pittsburgh-style GA/Fuzzy approaches reviewed in
Section 3. Table 1 summarises some of the key
attributes of P-FCS1 and of each work described
and referenced in Section 3. These attributes
include the representation employed (binary, real-
valued or discrete multi-valued genome elements;
fixed or variable size rule-sets; global or local fuzzy
sets) and the learning approach and GA operators
used (learning fuzzy sets; learning fuzzy rules; using
modified crossover operator).

Fixing fuzzy sets and learning rules [28] or fixing
rules and learning fuzzy sets [10] can only be done
when expert or heuristic knowledge is at hand, Of
course when this knowledge is available from ex-
perts or can be generated by engineers, this is the
wisest approach. However, for control of complex
systems with unknown characteristics and where
no training data are available, it is often not pos-
sible to decide on a simultaneously effective and
efficient partitioning of the input/output spaces.
Ascertaining fuzzy set membership functions is
therefore difficult in such situations. Homogeneous
partitioning of the input space when the input/out-
put mapping varies in complexity within the space
is inefficient and does not scale to high-dimensional
spaces. P-FCS1 attempts to overcome this problem
by allowing the GA to evolve fuzzy sets and rules
simultaneously. While this feature offers a more
powerful representation, it increases the size of the
search space in that there are more parameters to
adapt. This makes learning potentially more
difficult.

In much previous GA/Fuzzy work [1, 10, 14, 15]
a binary representation is employed. The original
GA and associated schema analysis rely on a
binary string representation. However, an extensive
body of evidence is accumulating which suggests
that the floating-point representation is often faster,
more consistent from run to run, and provides
higher precision. At the same time, the floating-
point representation permits special operators and
is intuitively closer to the problem space of a fuzzy
controller.

P-FCS1 and the systems described in [1, 14,
15] employ variable-length genomes encoding
a variable number of fuzzy rules. By contrast,
systems using a fixed number of rules require
at least some knowledge of the underlying
problem complexity which may not be known
a priori. Allowing the number of rules in the
rule-base to vary, under the action of suitably
modified versions of genetic operators such
as crossover and mutation, and other operators
such as cover, rule creation and rule deletion,
permits the learning system to automatically adapt
the number of rules according to the complexity of
the problem.

P-FCS1 encodes fuzzy set membership functions
locally within individual rules as opposed to
using a global collection of fuzzy sets used
by all rules. This approach is also proposed
in [1, 14, 20]. The advantage of this representa-
tion, once more, is expressive power for the
learning of rules which possess their own specificity
in terms of the fuzzy sets they relate. This is
likely to be of benefit in tackling the ~'curse of
dimensionality" when scaling to multi-dimensional
systems. However, this advantage is at the cost of,
once again, an increase of the search space for the
GA. Whether or not the additional degree of
freedom introduced by the use of local fuzzy sets
complicates linguistic interpretation is open to
debate. Certainly, rules no longer employ easily
understood fuzzy sets such as '~NEGATIVE-
LARGE", but then it is a fairly simple task to
inspect the centres and widths of learned fuzzy set
membership functions pertaining to a particular
rule and perform a linguistic interpretation of that
rule's operation.

To summarise, P-FCS1 combines many
of the best features of recent research applying
the GA to learn fuzzy controllers in a new
way, using an appropriate representation
and novel genetic operators. As stated earlier,
the simultaneous learning of fuzzy rules, localised
fuzzy sets and the number of rules is a difficult
task and the search space is potentially large due to
the number of parameters to adapt. In the next
section, we describe experimental results that
demonstrate that the GA has the potential to rise to
this challenge.

284 B. Carse et al. / Fuzzy Sets and Systems 80 (1996) 273-293

6. Experiments, results and interpretation

The main objectives of the experiments conduc-
ted with P-FCS1 were fourfold:

1. To investigate the performance of different
crossover operators in P-FCS1.

2. To compare the performance of P-FCS1 with
that of reported Michigan-style fuzzy classifiers sys-
tems.

3. To compare the performance of P-FCS1 with
the Pittsburgh approach to learning fuzzy rule-sets
using fixed membership functions.

4. To evaluate P-FCS1 in a complex distributed
control problem.

To satisfy objectives 2 and 3 we chose two
learning tasks. The first is one-input, one-output
function identification, as tackled by Valenzuela-
Rend6n [29], and Parodi and Bonelli [19] using
Michigan-style fuzzy classifier systems. The second
learning task chosen is the cart-centring control
problem addressed by Thrift [28], using a Pit-
tsburgh-style GA designed controller. For both
tasks, detailed experimental results have been re-
ported which facilitate comparison. For each task,
we experimented with a variety of crossover oper-
ators, thus accomplishing objective 1. To achieve
the fourth objective, we applied P-FCS1 to distrib-
uted routing control in a packet-switched network.
Experimental details and results are presented be-
low, together with a discussion of results.

6.1. Function identification

In this experiment P-FCS1 was given the task of
learning one-input, one-output function identifica-
tion for a number of different functions. The func-
tions chosen were:

FI: y = sin(20x2),

F2: y = x,

F3: y = 4(x -- 0.5) 2,

F4: y = sin(20x),

with x in the range [0, 1]. Function F1 was chosen
because the local input-output mapping becomes
more complex with increasing x and we were inter-

ested in how the fuzzy membership functions and
rules evolved by P-FCS1 would cover the input and
output spaces. Functions F2, F3, F4 were chosen
since they were dealt with by Valenzuela-Rend6n,
and Parodi and Bonelli using Michigan-style fuzzy
classifier systems.

6.1.1. Population initialisation
A fixed population size of 100 rule-sets was used.

Each rule-set in the population was initialised to
contain 20 random rules (although under the action
of crossover the number of rules in a rule-set
is allowed to vary). Input membership function
centres were selected randomly with uniform prob-
ability density in the range [- 0 . 2 , + 1.2]. Output
membership function centres were selected ran-
domly from the range [-0 .2 , + 1.2] for F2 and F3
and the range [- 1.4, + 1.4] for F1 and F4. Extend-
ing the range of initial membership function centres
beyond the range of the input and output spaces is
used to improve the performance of the system at
the extremes of these spaces. Initial membership
function widths were selected randomly with
uniform probability density in the range

I0, 2(Xmax ~ Xmin!],
Ninit J

where [-Xmin, Xmax] is the range of the input or
output variable and Ntnlt is the initial number of
rules in each rule-set. The range was chosen to
encourage adequate coverage of input and output
spaces for each initial rule-set.

6.1.2. Evaluation function
Each rule-set was presented with 50 equally

spaced input values in the range [0, 1]. Using the
same input values for each rule-set simplifies the
learning process by removing noise from the evalu-
ation function. The rule-set fitness was calculated
as the inverse of the mean square error of the
predicted outputs.

6.1.3. Genetic algorithm details
A generational strategy was adopted in which

two new rule-sets were produced by the GA at each
generation. Selection for reproduction was rank-
based with s = 1.8. The replacement strategy used

B. Carse et al. / Fuz~ Sets and Systems 80 (1996) 273 293 285

was to replace the two weakest members of the
population with the newly generated rules. A muta-
tion rate of 0.1 was selected for each offspring
rule-set. The mutation operator picks a single rule
at random from the rule-set. Next, either the centre
or width of one membership function within that
rule is multiplied by a random number in the range
[-0,9, 1.1]. Crossover operates at individual rule
boundaries (i.e. complete rules are crossed over).
The crossover rate was set to 0.8 and the following
crossover operators were experimented with:
straight one-point, straight two-point, ordered one-
point, ordered two-point and Smith's crossover op-
erator. In the latter case, an inversion operator was
also applied with a probability of 0.5. The inversion
operator selects two points at random within the
rule-set genome (at rule boundaries) and inverts the
order of those rules lying between the two chosen
points.

6.1.4. Results and interpretation
For each crossover operator listed in the pre-

vious paragraph P-FCS1 was run 10 times, using
different initial random seeds, to learn the function
F1. Fig. 2 shows the results of this experiment. This
graph plots the error of the best population mem-
ber (averaged over 10 runs) against generation
number. The error is calculated as:

1 - (- 1) , l Y - y d d x '

where y is the output predicted by the fuzzy classi-
fier system and Yc is the correct output. The results
displayed in Fig. 2 seem to indicate that, for this
simple one-input, one-output function identifica-
tion task, the two-point version of the new cross-
over operator is able to learn good solutions faster
and to produce better end solutions (given the run
time allowed) than the other operators.

The best solution discovered by P-FCS1 is
shown in Fig. 3, which plots predicted and correct
output over the input range. The error of this solu-
tion, calculated as described above, is 2.3%. Fig. 4
depicts the rules contained in this solution rule-set.
Each rule is represented by a "diamond" in the
figure with the centre of each diamond set by the
centres of the input and output membership func-

Mean Error

0.3 :t

0.25

0.15-

0.1

0.05

'i~ , \\

Legend

Smith Xover

Ordered-1 pt

One-Point
Two-Point

"--~ Ordered-2pt

O I -, I
IOK 20K

Generation Number

Fig. 2. M e a n e r ror for funct ion F1 for var ious crossover
operators .

0.8 i

O.6 !
0.4
0.2
o / ,/f

-0.2 ~

-0.4!

-0.6-

-0.8 4

-1.

/t

/
/

/
/

/

i i

i

Legend

-- ~ F n .
Target Fn.

X 1.0

Fig. 3. Best so lu t ion found for funct ion FI .

tions of the corresponding rule. The width and
height of each diamond are determined by the
width of the input membership function and
the width of the output membership function,
respectively.

We were interested in why Smith's crossover
operator performed so poorly in this simple
one-input, one-output fuzzy case when its good

286 B. Carse et al. / Fuzzy Sets and Systems 80 (1996) 273-293

Y

Fig. 4. Coverage of rules for a learned mapping for function F1.

performance for discrete-valued Pittsburgh-style
classifier systems is undisputed. When rule-sets dis-
covered using this operator were inspected they
were found to contain multiple copies of identical
rules. Smith points out this possibility in his thesis
[28], and warns against using the genetic operators
out of context in situations where the frequency of
occurrence of a rule has an influence on perfor-
mance. In LS-1 such redundancy does not affect the
behaviour of the classifier system. However, in
a fuzzy classifier system, clearly, duplication of rules
does affect system behaviour. We have not experi-
mented with a modified version of Smith's cross-
over operator which deletes duplicate rules but
suspect this modification would improve perfor-
mance. Also, the simple one-input, one-output
function identification task does not involve any
performance linkage between rules whose fuzzy set
membership functions do not overlap. We envisage
situations in more complex problems where such
linkage would exist. In some environments, taking
an action for a particular set of inputs might only
be a "good" action if an appropriate action is taken
for a different set of inputs and vice versa. Also, if
fuzzy rule chaining is required, Smith's crossover
operator is likely to be more successful. A hybrid
crossover operator which combines the ordered

crossover operator introduced here and Smith's
crossover operator might well prove to be
worthwhile investigating.

To compare the performance of P-FCS1 with
reported results using Michigan-style classifier sys-
tems, we experimented with learning the functions
F2, F3 and F4. In the case of F2 and F3, the initial
number of rules of all population rule-sets was set
to 10; for F4 this was set to 20. Table 2 compares
the results obtained using P-FCS1 over ten runs
using different initial random seeds with those
obtained by Parodi and Bonelli [19] using a
Michigan-style fuzzy classifier system (M-FCS).
For functions F2 and F3, the error is calculated as

| 1

1 -Ofo ly-yddx

where y is the predicted output and Yc is the correct
output. In the case of P-FCS1 we show the range of
the number of rules in the best rule-sets which were
generated in the ten independent runs, and the
mean and best error achieved by the system over
these ten runs.

The results shown in Table 2 indicate that a
Pittsburgh-style classifier system using rein-
forcement learning can be at least as good as

B. Carse et al. / Fuzzy Sets and Systems 80 (1996) 273 293 287

Table 2
Performance comparison of P-FCS1 and a Michigan-style FCS [19]

System Function Number of rules Error Number of cycles

M-FCS F2 500 1.19°/,, 85 800
(fixed)

P-FCSI F2 6 11 Mean 0.96% 80000
(variable) Best 0.15 %

M-FCS F3 100 3.48% 103 700
(fixed)

P-FCS1 F3 7 14 Mean 2.50% 100000
(variable) Best 1.50%

M-FCS F4 1000 4.67% 197 500
(fixed)

P-FCS1 F4 14-30 Mean 4.55% 200000
(variable) Best 3.23%

a Michigan-style classifier system using supervised
learning in attempting to solve this simple task. The
granularity of rule coverage in the two systems is
very different: P-FCS1 uses a large population of
small but variable size rule-sets compared to
Parodi and Bonelli's system which uses a single
population comprising a large fixed size rule-set
with attendant rule strengths. This raises a key
question: how will the two systems scale up to higher
dimensional spaces? The Michigan-style classifier sys-
tem outlined by Parodi and Bonelli to learn function
F4 uses 1000 rules for one-input, one-output function
mapping; clearly there will be problems in scaling to
higher dimensions. P-FCSI uses fewer rules per rule-
base but as a result the optimisation problem is likely
to become much harder in high-dimensional spaces.
Further work is required to resolve this issue.

6.2. Cart-centring control task

In this task, a cart with mass m moves on a one-
dimensional frictionless track (see Fig. 5). The ob-
jective is, given an initial position and velocity, to
move the cart to zero position and velocity in the
minimum time. Inputs to the controller are posi-
tion, x, and velocity, v. The controller output is the
applied force, F. The cart is simulated by the fol-
lowing equations of motion:

x (t + ~) = x(t) + ~v(t),

v(t + T) = v(t) + F(t).
m

V

[m ~_=~F

X

Fig. 5. The cart centering problem.

To enable comparison with Thrift's [28] experi-
mental results, we chose r = 0.02 s and m = 2.0 kg.
The maximum magnitude of the applied force was
restricted to 2.0 N.

6.2.1. Population initialisation
A population of 100 rule-sets was used. Each

rule-set in the population was initialised to contain
25 random rules. Input membership function
centres (position and velocity) were selected ran-
domly with uniform probability density in the
range [- 5.0, + 5.0]. Output membership function
centres (force) were chosen in the range
E-2.5 , +2.5]. Initial membership function widths
were selected randomly with uniform probability
density in the range

where rXmin, Xmax] is the range of the input or
output variable and Ninit is the initial number of
rules in each rule-set.

288 B. Carse et al. / Fuzzy Sets and Systems 80 (1996) 273-293

6.2.2. Evaluation function
Fitness evaluation is identical to that used by

Thrift [28]. A simulation of the cart is run for 500
classifier steps (10 s with z = 0.02) with starting
points (x0, v0) selected from 25 equally spaced posi-
tions in the range (- 2 . 5 , - 2 . 5) to (+2.5, +2.5).
The fitness of each rule-set is measured as (10 - T)
where T is the average time for the cart to reach
a position in state-space (x,v) such that
max(IM, lvJ) <0.5. If, for a given starting position
(xO, vO) more than 10 s of simulated time are
required, the fitness returned is zero. P-FCS1 is
therefore, in this case, using pure reinforcement
learning.

6.2.3. Genetic algorithm details
A generational strategy was adopted in which

ten new rule-sets were produced by the GA at
each generation. Selection for reproduction was
rank-based with s = 1.8. The replacement
strategy used was to replace the ten weakest
members of the population with the newly gener-
ated rule-sets. The following three crossover
operators were experimented with: ordered one-
point, ordered two-point and Smith's crossover
(with inversion).

6.2.4. Results and interpretation
The cart simulation was run ten times with differ-

ent crossover operators. Fig. 6 shows how the aver-
age time to centre the cart for the best population
member varied with generation number from 0 to
100 for different crossover operators. This diagram
also shows the average time taken to centre the cart
using an optimal bang-bang controller using the
same 25 initial starting points [20]. The optimal
bang-bang control rule is defined as follows. The
force applied to the cart, F (t), is chosen to be either
F or - F , where F is some positive constant. F(t) is
set equal to F if

v2sgn(v)

21F/ml

and - F otherwise. F is set to 2.0 N for comparison
purposes. Fig. 7 shows a good input/output
mapping learned by P-FCS1 using the ordered
two-point crossover operator.

6.5

6

5.5

5

4.5

4

3.5

Mean Time to Centre Cart

7 - ',

\

, \
", \2
., \

, \

• , \ .

%\
\

5O
Generatlon Number

Legend

- - Optimal Bang.Bang

- Smith)(over P-FCS

. . . . Orclered-lpt P-FCS

- - Ordered-2pt P-FCS

Fig. 6. Graph of mean time to centre the cart with x, v < 0.5
using Smith's, ordered 1-pt, and ordered 2-pt crossover
operators.

+~.~

I ? = r ~

o:K¢

Fig. 7. Learned (position, velocity)- > force mapping for fuzzy
controller in cart-centering problem.

To compare the results using P-FCS1 with
Thrift 's results [28], we evaluated the ten learned
fuzzy controllers using the ordered two-point cross-
over by running the cart simulation over 100 runs
with random starting points in - 2 . 5 < x < +2.5,
- 2 . 5 < v < +2.5. The cart was centred success-

fully every time with a mean of 2.90 s (standard
deviation 0.11s). Thrift's system achieved 3.28s,

B. Carse et aL / Fuzzy Sets and Systems 80 (1996) 273 293 289

and the optimal bang-bang controller achieved
2.86s. The number of rule-set evaluations
used for P-FCSI was 1100 (100 initial rule-
et evaluations plus 10 evaluations per new
generation for 100 generations), compared
with 3000 rule-set evaluations by Thrift (popula-
tion size of 31, elitist replacement strategy,
100 generations). The results using P-FCS1
therefore compare well.

We repeated this simulation, using the same
learned 10 rule-sets, but this time reduced the toler-
ance on x and v to 0.2 s. Six of the rule-sets centred
the cart every time within a mean time of 4.20 s
(standard deviation 0.31). However, the remaining
four rule-sets did not manage to centre the cart in
around half of the simulations. When these unsuc-
cessful simulations were displayed, it was observed
that the cart was quickly centred to within the
range - 0 . 5 <x,~" < +0.5, on which the system
was trained, but once inside this region of the state
space the cart showed small amplitude oscillations
around a position offset from the centre of the
track. A controller evolved by Thrift's system gen-
eralised better to the new tolerance with a mean
time to centre the cart of 4.8 s. The optimal bang-
bang controller achieves a mean of 3.2 s.

In a final experiment, we ran P-FCS1 again 10
times using two-point ordered crossover but this
time using the smaller tolerance - 0 . 2 < x,v <
+0.2 during the learning period. In 100 simula-

tions using random starting points and velocities,
the resultant 10 rule-sets successfully managed to
centre the cart every single time within an average
time of 3.50 s (standard deviation 0.27 s).

6.3. A network routing control task

In this task a fuzzy controller is required to
perform distributed routing control [23] in
a simulated 3-node datagram packet switched net-
work (see Fig. 8). The network is fully connected
with bidirectional full duplex links between each
node pair. Packets requiring transmission over
a particular link are queued using a first-come
first-served discipline. Packets arrive from outside
the network at network source node i (i = A, B, C),
to be delivered to destination node j (j = A, B, C),
j va i, at an average rate of)~i~.

~,e^ ,Lec

~-AB ~.AC kcA ~.eB

Fig. 8. Three-node packet switched network used in simulation.

A controller situated at each node must decide
whether to route each packet directly to its destina-
tion or via an intermediate node. Controller deci-
sions are based on packet delay measurements over
the different paths. The goal is to minimise average
global packet delay (i.e. the average delay between
packet arrival at the source node and packet deliv-
ery to the destination node for all packets which
arrive during the period of simulation irrespective
of source and destination). Since the network topo-
logy chosen is symmetrical, an identical routing
controller is placed at each node. The learning
system is therefore required to determine a routing
controller, copies of which are deployed at each
switching node and operate in parallel, which mini-
mises global packet delay.

Each routing controller is implemented as a vari-
able size fuzzy classifier system with four inputs and
two outputs. At each node the controller inputs are:

DelayLeftDirect: The measured packet delay
from the source node for packets destined for the
node to the left of the source node and which are
routed directly.

DelayLeftlndirect: The measured packet delay
from the source node for packets destined for the
node to the left of the source node and which are
routed indirectly (i.e. via the node to the right of the
source node).

DelayRightDirect: The measured packet delay
from the source node for packets destined for the
node to the right of the source node and which are
routed directly.

DelayRightlndirect: The measured packet delay
from the source node for packets destined for the
node to the right of the source node and which are

290 B. Carse et al. / Fuzzy Sets and Systems 80 (1996) 273-293

routed indirectly (i.e. via the node to the left of the
source node).

Packet delays are measured at the destination
node (each packet is time-stamped on arrival in the
system) and averaged over the last NMeasure packets
for each route taken for each source node. In the
simulation, we assume this information is transmit-
ted without delay to source nodes once the
averages have been taken and transmission of con-
trol information does not consume network band-
width. In a real network such information would be
sent as control packets which would incur a finite
delay and utilise network bandwidth. NMe, is
a parameter we vary by hand in the experiments
described later and determines the granularity of
measurements. Also, in a real network, a trade-off
would have to be made in choosing the value of
NM If too small a value is chosen, the
network becomes swamped with control packets
which compete with user data packets for
use of the shared bandwidth. If too large a
value is chosen, measurements become out
of date and meaningless. The actual input
variables presented to the fuzzy controller
are the logarithm of measured delays muliplied by
a constant scaling factor. This heuristic affords the
controller greater sensitivity at low and medium
delays. For simplicity, we neglect signal propaga-
tion delays.

At each node, the controller outputs are:
PLeftDirect: The probability that a packet arriv-

ing at the source node which is destined for the
node to the left of the source node is routed directly.
Hence (1 -PLeftDirect) is the probability that the
packet takes the indirect route.

PRightDirect: The probability that a packet
arriving at the source node which is destined
for the node to the right of the source node is
routed directly. Hence (1-PRightDirect) is the
probability that the packet takes the indirect
route.

By dynamically adjusting local PLeftDirect and
PRightDirect control outputs based on network
delay measurements, the distributed assembly of
controllers should attempt, in a cooperative
fashion, to spread the network load to minimise
global mean packet delay in response to changing
traffic conditions in the network.

6.3.1. Population initialisation
A population of 80 rule-sets was used. Each rule-

set in the population was initialised to contain 40
random rules although this was allowed to vary
during learning up to a maximum of 80 rules under
the action of a cover operator and crossover. Output
membership function centres were chosen in the
range [0, 1]. Initial membership function widths were
selected with uniform probability density in the range

I0, 2 (Xmn x ~ ymin)]
,/UTn , J

where [-Xmin, Xmax"] is the range of the input or
output variable and Nini, is the initial number of
rules in the rule-set.

6.3.2. Evaluation function
Each network simulation is run for a simulation

time of 500 s. The data rates of all network links are
set to 10000 bits per second. The variations in
mean packet arrival rates with time for each source
destination pair are shown in Fig. 9. These traffic
patterns were chosen to exercise the dynamic capa-
bilities of the routing controller in moving from
relatively light network load, when direct routing is
optimal, to heavy load when controllers must bal-
ance the offered load between direct and indirect
network paths. In the simulation, packets arriving
at an intermediate node are always forwarded to
the destination node to avoid a "ping-pong" effect.
The evaluation function for each rule-set returns
the inverse of the mean measured packet delay for
all packets delivered during the simulation.

Experiments were carried out with two types of
traffic arrival process and packet size distribution.
In the first, deterministic process, packet arrivals
are equally spaced in time and packet sizes are fixed
at 1000 bits. In the second, packet arrivals follow
a Poisson distribution (with the same mean arrival
rate as in the deterministic case), and packet sizes
are exponentially distributed with the same mean
size. In the latter case the system model becomes
a distributed M/M/1 queuing system.

6.3.3. Genetic algorithm details
A generational strategy was used in which ten

new rule-sets were produced by the GA at each

B. Carse et al.

M e a n P a c k e t
A r r i v a l R a t a

Fuz~ Sets and Systems 80 (1996) 273-293

S o u r c e /
D e s t i n a t i o n

P a i r

~AB
J

3t t A C

3t I BA

3t BC

3t CA

:l l ICB
1 2 5 2 5 0 3 7 5 5 0 0

T i m e (S e c o n d s)

Fig. 9. Mean packet arrival rates for each source/destination pair versus time.

291

generation, using rank-based selection (s = 1.8) and
replacing the ten weakest population members at
each generation. The ordered two-point crossover
operator was employed. Mutation rate and cross-
over rate were 0.1 and 0.8, respectively. In addition,
a cover operator was implemented as follows: if
a set of inputs is encountered which does not match
any rules in the rule-base, a new rule is created with
input fuzzy set membership function centres set
equal to the unmatched input vector; output mem-
bership function centres are set randomly in the
allowed range; and all membership function widths
set as described in Section 6.3.1, above .

6.3.4. Results and interpretation

To evaluate the best controllers evolved by P-
FCS l, we compared their performance with a shor-
test-path routing algorithm [23] which routes all
packets along the route whose measured delay is
least between a particular source/destination pair.
A range of measurement intervals, NM from

2 packets to 100 packets were used. Experiments
were conducted using both deterministic and prob-
abilistic packet arrival processes and packet size
distributions. In each case, 10 independent runs of
P-FCS1 were conducted with different initial ran-
dom seeds. In addition, different initial random
seeds were also used for each of the network simu-
lations used in evaluating a particular individual.
The latter introduces noise in the evaluation func-
tion and we were interested in whether the system
could learn in the face of this potential difficulty.
Each of the 10 learned fuzzy controllers using
P-FCS1 were evaluated in 20 subsequent simula-
tions and the result are presented in Table 3 where
they are compared with the shortest path routing
algorithm. This table shows mean packet delay
over the complete simulation interval with stan-
dard deviations shown in brackets.

The results shown in Table 3 indicate that,
when the measurement interval is small, the shor-
test-path algorithm outperforms the learned fuzzy

292 B. Carse et al. / Fuzzy Sets and Systems 80 (1996) 273 293

Table 3
Mean packet delay (in seconds) of fuzzy routing controllers learned by P-FCS1 compared with mean
packet delay using shortest-path (SP) routing algorithm (standard deviations shown in brackets)

Measurement SP-routing SP-routing Fuzzy control Fuzzy control
interval (deterministic (probabilistic (deterministic (probabilistic
(N M) arrivals) arrivals) arrivals) arrivals)

2 0.58 (0,09) 1.14 (0.32) 0.73 (0.12) 1.06 (0.42)
5 1.11 (0.22) 1.61 (0.29) 1.16 (0.16) 2.78 (0.41)

10 1.96 (0.23) 2.46 (0.42) 1.31 (0.32) 2.98 (0.48)
20 3.52 (0.39) 4.27 (0.75) 1.29 (0.28) 3.21 (0.45)
50 6.14 (0.42) 6.48 (1.29) 1.38 (0.60) 3.66 (0.51)

100 8.53 (3.00) 10.85 (1.49) 1.50 (0.38) 4.10 (0.65)

controllers, although not by that large a margin. As
the measurement interval increases, the learned
fuzzy controllers begin to outperform the shortest
path algorithm significantly. As mentioned earlier,
an important characteristic of a routing algorithm
is that routing control information should not con-
sume excessive network bandwidth. A value of
N~ greater than 20 is realistic for a real net-
work and the results using a GA-derived fuzzy
controller appear to be better than the simple
shortest-path algorithm in this region of rate of
feedback.

7. Conclusions and further work

We have presented an overview of research into
GA based machine learning applied to fuzzy con-
trol and have described a fuzzy classifier system
based on the Pittsburgh model. We conclude that
the fusion of genetic algorithms and fuzzy logic,
being a relatively new field of research, is still very
much of an art. While this is so at the present time,
it appears that the combination has the potential to
become a powerful tool in the control of complex,
multi-dimensional, non-linear systems. To achieve
this potential, many problems have to be solved,
perhaps the greatest being the problem of scalabil-
ity to multi-dimensional spaces. Based on the work
of others and our own experience, we suggest the
following ways forward:

1. Rule-based approaches appear to be more
likely to scale up than domain-based approaches,

particularly if the latter use homogeneous par-
titioning of the input space.

2. Variable length rule-set representations
(together with attendant operators for creating and
deleting rules, perhaps implemented as cover oper-
ators or mutation operators) have the desirable
property of being able to grow or shrink according
to the complexity of the problem space.

3. The ability of the learning system to de-acti-
vate one or more conditions in a fuzzy rule can also
effectively reduce the size of the search space by
permitting evolution of general rules, if such rules
are appropriate, and perhaps a fuzzy form of
default hierarchy.

4. The genome representation and genetic
operators should exploit the implicit cooperation
between fuzzy rules with overlapping input fuzzy
set membership functions.

5. Learning both fuzzy rules and fuzzy set mem-
bership functions is likely to be necessary for con-
trol of complex systems with unknown dynamics
and with high-dimensional input/output spaces.
Whether it is better to learn these in stages or
simultaneously requires further investigation.
A number of authors argue that the complex non-
linear interactions between changes in fuzzy sets
and fuzzy rules render the problem of simulta-
neously learning these extremely difficult. This is
certainly true if an attempt is made to apply local
gradient descent techniques as the basis of learning.
Whether or not the genetic algorithm, with its glo-
bal search characteristic, is powerful enough to
overcome this problem remains an open question.

B. Carse et al. / Fuzzy Sets and Systems 80 (1996) 273-293 293

References

[1] M.G. Cooper and J.J. Vidal, Genetic design of fuzzy con-
trollers: the cart and jointed pole problem, in: Proc. Third
IEEE lnternat. Conf on Fuzzy Systems, IEEE Piscataway,
NJ (1994) 1332-1337.

[2] S. Forrest and J.H. Miller, Emergent behaviour in classifier
systems, in: S. Forrest, Ed., Emergent Computation
(MIT Press, Cambridge, MA, 1991) 213-227.

[3] T. Furuhashi, K. Nakaoka and Y. Uchikawa, Sup-
pression of excessive fuzziness using multiple fuzzy
classifier systems, in: Proc. Third IEEE lnternat.
Con.[. on Fuzzy Systems, IEEE Piscataway, NJ (1994)
411--414.

[4] D.E. Goldberg, B. Korb and K. Deb, Messy genetic algo-
rithms: motivation, analysis and first results, Complex Sys-
tems 3 (1989) 493-530.

[5] J.J. Grefenstette, Multilevel credit assignment in a genetic
learning system, in: Genetic Algorithms and their Applica-
tions: Proc. Second Internat. Conf. on Genetic Algorithms
(Lawrence Erlbaum, Hillsdale, NJ 1987) 202-209.

[6] J.H. Holland, Properties of the bucket brigade algorithm, in:
Proc. First lnternat. Conf. on Genetic Algorithms and their
Applications. (Lawrence Erlbaum, Hillsdale, NJ 1985) 1-7.

[7] J.H. Holland and J.S. Reitman, Cognitive systems based
on adaptive algorithms, in: D.A. Waterman and F.
Hayes-Roth, Eds., Pattern-directed Inference Systems
(Academic Press, New York, 1978).

[8] J.J. Holmblad and L.P. Ostergaad, Control of a cement
kiln by fuzzy logic, in: Fuzzy Information and Decision
Processes (North-Holland, Amsterdam, 1982) 389-399.

[9] L.J. Huang and M. Tomizuka, A self-paced fuzzy tracking
controller for two-dimensional motion control, IEEE
Tr.ans. Systems Man Cybernet. 20(5) (1990) 1 l l5 1124.

[10] C. Karr, Design of an adaptive fuzzy logic controller using
a genetic algorithm, in: R. Belew and L. Booker, Eds., Proc.
Fourth Internat Conf. on Genetic Algorithms (Morgan
Kaufmann, Los Altos, CA, 1991) 450-457.

[l l] J. Kinzel, F. Klawonn and R. Kruse, Modifications of
genetic algorithms for designing and optimising fuzzy
controllers, in: Proc. First IEEE Internat. Conf. on Evolu-
tionary Computation (IEEE Piscataway, NJ, 1994) 28-33.

[12] B. Kosko, Neural Networks and Fuzzy Systems (Prentice-
Hall, Englewood Cliffs, N J, 1991).

[13] B. Kosko and S. Isaka, Fuzzy Logic, Sci. Amer. 269(1) (July
1993) 62 67.

[14] M. Lee and H. Takagi, Integrating design stages of fuzzy
systems using genetic algorithms, in: Proc. Second IEEE
lnternat. Conf. on Fuzzy Systems (IEEE, San Francisco,
1993) 612 617.

[15] J. Liska and S.S. Melsheimer, Complete design of fuzzy
logic systems using genetic algorithms, in: D. Schaffer, Ed.,
Proc. Third IEEE lnternat. Conf. on Fuzzy Systems (IEEE
Piscataway, NJ, 1994) 1377 1382.

[16] E.H. Mamdani, Applications of fuzzy algorithms for
control of a simple dynamic plant, in: Proc. lEE 121(12)
(1974) 1585 1588.

[17] K. Nakaoka, T. Furuhashi and Y. Uchikawa, A study on
apportionment of credits of fuzzy classifier system for
knowledge acquisition of large scale systems, in: Proc.
Third IEEE lnternat. Conf. on Fuzzy Systems {IEEE
Piscataway, NJ, 1994) 1797--1800.

[18] A. Ollero and A.J. Garcia-Cerezo, Direct digital control,
auto-tuning and supervision using fuzzy logic, Fuzzy Sets
and Systems 30 (1988) 135-153.

[19] A. Parodi and P. Bonelli, A new approach of fuzzy classi-
fier systems, in: S. Forrest, Ed., Proc. Fifth Internat. Conf.
on Genetic Algorithms (Morgan Kaufmann, Los Altos, CA,
1993) 223 230.

[20] D.T. Pham and D. Karaboga, Optimum design of fuzzy
logic controllers using genetic algorithms, J. Systems
Engrg. 1 (1991) 114 118.

[21] G. Roberts, Dynamic planning for classifier systems, in:
S. Forrest, Ed., Proc. Fifth lnternat. Conf. on Genetic
Algorithms (Morgan Kaufmann, Los Altos, CA, 1989)
244 -255.

[22] T. Saski and T. Akiyama, Traffic control process of
expressway by fuzzy logic, Fuzzy Sets and Systems 26
(1988) 165-178.

[23] M. Schwartz, Telecommunication Networks: Protocols,
Modelling and Analysis (Addison-Wesley, Reading, MA,
1987).

[24] L. Shu and J. Schaeffer, HCS: Adding hierarchies to classi-
fier systems, in R.K. Belew and L.B. Booker, Eds., Proc.
Fourth lnternat. Conf. on Genetic Algorithms {Morgan
Kaufmann, Los Altos, CA, 1991) 339-345.

[25] S.F. Smith, A learning system based on genetic
adaptive algorithms, Ph.D. Thesis, University of
Pittsburgh (1980).

[26] R. Sutton, Reinforcement learning architecture for ani-
mats, in: From Animals to Animats: Proe. First lnternat.
Conf. on Simulation of Adaptive Behaviour (MIT Press,
Cambridge MA, 1991) 188-296.

[27] H. Takagi and M. Sugeno, Fuzzy identification of systems
and its application to modelling and control, IEEE Trans.
Systems Man and Cybernet. 15 (1985) 116-132.

[28] P. Thrift, Fuzzy logic synthesis with genetic algorithms, in:
R. Belew and L. Booker, Eds., Proc. Fourth lnternat. Conf.
on Genetic Algorithms (Morgan Kaufmann, Los Altos, CA,
1991) 509 513.

[29] M. Valenzuela-Rend6n, The fuzzy classifier system: a clas-
sifier system for continuously varying variables, in:
R. Belew and L. Booker, Eds., Proc. Fourth lnternat. Conf.
on Genetic Algorithms (Morgan Kaufmann, Los Altos, CA,
1991) 346-353.

[30] S.W. Wilson, ZCS: A zeroth level classifier system, Evolu-
tionary Computation 2(1) (1994) 1 18.

[31] S.W. Wilson and D.E. Goldberg, A critical review of classi-
tier systems, in: D. Schaffer, Ed., Proc. Third Internat. Conf.
on Genetic Algorithms (Morgan Kaufmann, Los Altos, CA,
1989) 244--255.

[32] L. Zadeh, Outline of a new approach to the analysis of
complex systems and design processes, in: IEEE Trans.
Systems Man Cybernet. SMC-3 (1973) 28-44.

