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Abstract. Algorithms based on Nested Generalized Exemplar (NGE) theory (Salzberg, 1991) classify new data 
points by computing their distance to the nearest "generalized exemplar" (i.e., either a point or an axis-parallel 
rectangle). They combine the distance-based character of nearest neighbor (NN) classifiers with the axis-parallel 
rectangle representation employed in many rule-learning systems. An implementation of NGE was compared to 
the k-nearest neighbor (kNN) algorithm in I 1 domains and found to be significantly inferior to kNN in 9 of them. 
Several modifications of NGE were studied to understand the cause of its poor pefformance. These show that its 
performance can be substantially improved by preventing NGE from creating overlapping rectangles, while still 
allowing complete nesting of rectangles. Performalace can be further impr.oved by modifying the distancemetric to 
allow weights on each of the features (Salzberg, 1991). Best results Were obtained in this study when the weights 
were computed using mutual information between the features and the output class. The best version of NGE 
developed is a batch algorithm (BNGE FWMI ) that has no user-tunable parameters. BNGE FWMI'S performance 
is comparable to the first-nearest neighbor algorithm (also incorporating feature weights). However, the k-nearest 
neighbor algorithm is still significantly superior to BNGE F~VMI in 7 of the 11 domains, and inferior to it in 
only 2. We conclude that, even with our improvements, the NGE approach is very sensitive to the shape of the 
decision boundaries in classification problems. In domains where the decision boundaries are axis-parallel, the 
NGE approach can produce excellent generalization with interpretable hypotheses. In all domains tested, NGE 
algorithms require much less memory to store generalized exemplars than is required by NN algorithms. 

Keywords: exemplar-based learning, instance-based learning, nested generalized exemplars, nearest neighbors, 
feature weights 

1 Introduct ion  

Salzberg  (1991) descr ibes  a family  of  learning algori thms based on nested genera l ized 

exemplars  (NGE) .  In NGE,  an exemplar  is a single training example,  and a genera l ized ex- 

emplar  is an axis-paral lel  hyperrec tangle  that may  cover  several training examples .  These  

hyperrec tangles  may  over lap or nest. The  N G E  algor i thm grows the hyperrectangles  incre- 

menta l ly  as t raining examples  are processed.  

Once  the genera l ized  exemplars  are learned, a test example  can be classified by comput ing  

the Euc l idean  dis tance be tween  the example  and each of  the genera l ized exemplars .  If  

an example  is conta ined inside a genera l ized exemplar,  the dis tance to that genera l ized 

exemplar  is zero. The  class o f  the nearest  genera l ized exemplar  is output  as the predicted 

class o f  the test example .  

The  N G E  approach can be  v iewed  as a hybrid o f  nearest  ne ighbor  methods  and proposi-  

t ional Horn  c lause  rules. L ike  nearest  ne ighbor  methods,  Eucl idean distance is applied to 

match  test examples  to training examples .  But  like Horn  clause rules, the training examples  
can be genera l ized  to be axis-paral lel  hyperrectangles .  
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Salzberg reported promising classification results in three domains. However, as we 
report below, when NGE is tested in 11 additional domains, it gives less accurate predictions 
in many of these domains when compared to the k-nearest neighbor (kNN) algorithm. 
The goal of this paper is to demonstrate this performance, understand its causes, and test 
algorithm modifications that might improve NGE's performance. 

The first part of the paper is devoted to a study that compares NGE and kNN.1 To compare 
these algorithms fairly, it is necessary to find optimal settings for various parameters and 
options in NGE and kNN. Hence, we first describe a series of experiments that study how 
the performance of NGE (and to a lesser extent, kNN) is determined by several key param- 
eters and options including the number of starting seeds, the treatment of un-generalized 
exemplars, and the treatment of nominal feature values. We then present results showing 
that NGE (under the best parameter settings) is substantially inferior to kNN in 9 of the 11 
domains we tested and superior to kNN in 2 of these domains. 

The second part of the paper attempts to diagnose and repair the causes of this perfor- 
mance deficit. We present several hypotheses including (a) inappropriateness of the nested 
hyperrectangle bias, (b) inappropriateness of the overlapping of hyperrectangle bias, and 
(c) poor performance of the search algorithm and heuristics for constructing hyperrectan- 
gles. Experiments are then presented that test each of these hypotheses. A version of NGE 
(called NONGE) that disallows, overlapping rectangles while retaining nested rectangles 
and the same search procedure is uniformly superior to NGE in all 11 domains and sig- 
nificantly better in 6 of them. A batch algorithm (OBNGE) that incorporates an improved 
search algorithm and disallows nested rectangles (but still permits overlapping rectangles) 
is only superior to NGE in one domain (and worse in two). These and other experiments 
lead us to conclude that a major source of problems in NGE is the creation of overlapping 
rectangles. 

We also present a batch version of NONGE, called BNGE, that is very efficient and 
requires no user tuning of parameters. We recommend that BNGE be employed in domains 
where batch learning is appropriate. 

The third part of the paper takes up the issue of learning feature weights for a weighted 
Euclidean distance. Salzberg (1991) proposed an online weight adjustment algorithm. 
Data are presented showing that this algorithm often performs poorly and erratically. An 
alternative feature weight algorithm, based on mutual information, is shown to work well 
with NN, NGE, and BNGE. 

The final part of the paper compares the best version of NGE (BNGE FWMI) to the 
best version of kNN (kNNcv FWMI). The comparison shows that despite the improve- 
ments in NGE, it still is significantly inferior to kNN in 7 domains and significantly su- 
perior in 2 domains. When compared to single nearest neighbor (NN), the best version 
of NGE fares better: it is significantly superior in 3 domains and significantly inferior 
in 4. 

The ideal behavior for a hybrid algorithm like NGE is that in domains where axis-parallel 
rectangles are appropriate, NGE should take advantage of them to find concise, interpretable 
representations of the learned knowledge. However, in domains where axis-parallel rectan- 
gles are not appropriate, NGE should behave more like a nearest neighbor algorithm. The 
versions of NGE that we have developed do take advantage of hyperrectangles, but they 
perform poorly in domains where hyperrectangles are inappropriate. Further research is 
needed to develop an NGE-like algorithm that can be robust in situations where axis-parallel 
hyperrectangles are inappropriate. 
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Bu i ld  an  N G E  classif ier  ( i npu t :  n u m b e r  s of seeds) :  
hfitialization: /* assume training examples ere given in raxtdom order */  

for each of the first s training examples E s call  createHyperrectang]e(EÕ 

Training: 

for each remaining training example E: 
find the two H j with D ( E ,  H J )  minimal 

/* in case of ties, choose the two H j with minimal area */  
call these hyperTectangles H cl°sest  and H sec°nd close~t 

if (compare(H c/ . . . .  t ,E)  ) genera f i ze (  HCI . . . .  t ,E  ) 

else if (compere(H . . . . .  d ct . . . .  t ,E )  ) generafize(H . . . . .  d et . . . .  t , E  ) 

else creat eHyperrect ~mgle(E) 

C o m p a r e  classes of a h y p e r r e c t a n g l e  and  an example :  

compere (H, E) 
if (class(E) = =  class(H)) return true else return false 

G e n e r a l i z e  a h y p e r r e c t a n g l e :  

generalize(H, E) 
for all features of E do: 

Hupper , f i  = l n a x ( H u p p e r , f l ,  E i l )  

Hlower ,y  i : m i n (  Hlower ,y  i , E y i) 

replMissFeatures(H,E) 

21. C r e a t e  a h y p e r r e c t a n g l e :  
22. createHyperrectangle(E) 

23. Hupper  = Æ 

24. Hlowe r -= E 

25. Harea  : 0 

26. rep1MissFeatures(H, E) 

27. R e p l a c e  miss ing  f e a t u r e s  in a h y p e r r e c t a n g l e :  
28. replMissFeatures (H,E) 

29. for all features of E do: 

30. if (feature i of E is missing) 

31. Hupper , f i  ---- 1 

32. Hlower ,  y i = 0 

33. Class i f ica t ion  of a t e s t  e x a m p l e :  
34. classify(E) 
35. output: class(H ~) with j = ergminl D(E,H i) 

36. /* in case of ties, choose H 3 out of aU des with minimal area */ 

Figure 1. Pseudo-code describing construction of an NGE classifier and classification of test examples. 
H generally denotes a hyperrectangle and E an example. 

2 Algorithms and experimental methods 

2 . 1  T h e  N G E  a l g o r i t h m  

Figure  1 summar izes  the N G E  algor i thm fo l lowing  c losely  Salzberg ' s  defini t ion of  NGE.  

N G E  constructs  hyperrec tangles  by process ing the training examples  one at a time. It 

is ini t ia l ized by randomly  select ing a user-defined number  of  seed training examples  and 

const ruct ing  trivial (point) hyperrectangles  for each seed. Each new training example  is 

first classif ied according  to the exis t ing set of  hyperrectangles  by comput ing  the dis tance 

f rom the example  to each hyperrectangle .  I f  the class o f  the nearest  hyperrec tangle  and 

the t raining example  coincide,  then the nearest  hyperrectangle  is extended to include the 
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training example, otherwise the second nearest hyperrectangle is tried. (This is called 
the second match heuristic.) Should both the first and second nearest hyperrectangles 
have different classes than the training example, then the training example is stored as 
a new (trivial) hyperrectangle. A query is classified according to the class of the nearest 
hyperrectangle. Distances are computed as follows: Ifan example lies outside of all existing 
hyperrectangles, a weighted Euclidean distance is computed. If the example falls inside a 
hyperrectangle, its distance to that hyperrectangle is zero. If the example is equidistant to 
several hyperrectangles, the smallest of these is chosen. 

In out implementation of NGE, we first make a pass over the training examples and 
normalize the values of each feature into the interval [0,1] (linear normalization, Aha 1990). 
Features of values in the test set are normalized by the same scaling factors (but note that 
they may fall outside the [0,1] range). Aside from this scaling pass, the basic algorithm is 
entirely incremental. 

Each hyperrectangle H j is labeled with an output class. The hyperrectangle is represented 
by its lower left corner (H/~w~r) and its upper right c o r n e r  (Hüpper)- The distance between 
H j and an example E with features f l  through fnFeatures is defined as follows: 

[ nFeatures 

D(E,  H J ) = w H J  × ~  i~=l (wfi ×df,-(E, HJ) 2) 

where: 
Efl - Hupper, f/ i f  Efi >- Hüpper, f,. 

dfe(E, H j) J " J = Hlower, f, - E f ,  i f  Hlower,¢) > E~ 

0 otherwise 

w f, weight of feature i (see Section 6) 

w/tJ weight of hyperrectangle j ,  computed as: 

number of times compare(H i, Ex) was called 
W Hi --~ 

number of times compare(HJ, Ex) returned true 

The original NGE algorithm was designed for continuous features only. Discrete and 
symbolic features require a modification of thedistance and area computation for NGE. We 
adopted for NGE the policy that for each symbolic or discrete feature the set of covered 
feature values is stored for each hyperrectangle (analogous to storing the range of feature 
values for continuous features). A hyperrectangle then covers a certain feature value if that 
value is a member of the covered set. If  a hyperrectangle is generalized to include a missing 
discrete or symbolic feature, then a flag is set such that the corresponding feature of the 
hyperrectangle will cover any feature value in the future. 
The area of non-trivial hyperrectangles is then computed as follows: 2 

nFeatures 

a r e a ( H ) =  1-I size(Hf~) 
i=1 

with size(Hfi) computed as follows: 

37. if (H~ has been generalized to include a missing feature) size(Hf~ ) = 1 
38. else if (.?) is continuous) 
39. if(Hupper, fi = =  Hlower, Ji)size(Hfl) = 1 
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40. else size(Hfl ) = Hupper.h -- Hlower.f,. 
41. else /* f/is a discrete or symbolic feature ./ 
42. size(Hfi ) = number of values of .fi covered by H 

number of possible values of f/ 
Note that the maximum possible size of a hyperrectangle is therefore 1. Furthermore, 

the probability of line 39 being executed should be very low, since it is unlikely that two 
continuous feature values match exactly. We therefore deemed it unnecessary to adjust the 
area of hyperrectangles for this case. 

The original NGE paper also did not specify a policy for handling examples containing 
missing features. In the context of nearest neighbor algorithms, Aha (1990, Section 5.2.1) 
evaluated three methods for distance computation with missing features. We adopted his 
Ignore method. This is one of the simplest methods for dealing with missing features: If  a 
feature of an example is missing, then the distance for that feature is 0. Furthermore, the 
total distance over all features is divided by the number of known features to distinguish a 
perfect match from a missing feature (both have distance 0). 

We incorporated this methodology into the generalization procedure of NGE as follows: 
Whenever a hyperrectangle in NGE is extended to include an example with missing features 
then the range of the hyperrectangle is extended for each missing feature to cover the entire 
input spacefor that feature (see lines 20, 26; and 27-32 in Fig. 1). 

2.2 The nearest neighbor algorithm 

One of the most venerable algorithms in machine learning is the nearest neighbor algorithm 
(NN, see Dasarathy 1991 for a survey of the literature). The entire training set is stored in 
memory. To classify a new example, the Euclidean distance (possibly weighted) is computed 
between the example .and each stored training example and the new example is assigned 
the class of the nearest neighboring example. More generally, the k nearest neighbors are 
computed, and the new example is assigned the class that is most frequent among these 
k neighbors (we will denote this as kNN), Aha (1990) describes several space-efficient 
variations of nearest-neighbor algorithms. 

As with NGE, we adopted Aha's Ignore method for handling training examples with 
missing features. The reader should note that the performance of both NGE and NN may 
change substantially if a different missing-values policy is used. 

2.3 Data sets 

In our study, we have employed eleven data sets, of which three are synthetic and the 
remaining eight are drawn from the UC-Irvine repository (Murphy & Aha, 1994, Aha 
1990) of machine learning databases. 

The synthetic data sets were constructed to test the sensitivity of NGE to the shape of the 
decision boundaries and to the number of classes (Fig. 2). Tasks A and C have axis-parallel 
decision boundaries, while Task B has a diagonal decision boundary. Tasks A and Ba re  
2-class problems, while Task C has 10 classes. 

The eight Irvine data sets are summarized in Table 1. There area few important points to 
note: (a) the Waveform-40 domain is identical to the Waveform-21 domain with the addition 
of 19 irrelevant features (having random values), (b) the Cleveland database (Detrano 
et al., 1989) contains some missing features, and (c) many input features in the Hungarian 
database (Detrano et al., 1989) and the Voting Record database are missing. 
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Figure 2. Artificial data sets. In A and B, + (-) indicates the location of a positive (negative) example. In C, 
digits indicate locations of examples from each class, The number of examples in each decision region is shown 
in the lower left corner of each region. 

Table 1. Domain characteristics (modifled from Aha (1990)). B = Boolean, C = Continuous, N = Nominal. 

Domain Training set size Test set size Number and kind of features Number of classes 

Iris 105 45 4 c 3 
Led-7 Display 200 500 7 B 10 
Waveform-21 300 100 21 C 3 
Waveform-40 300 100 40 C 3 
Cleveland 212 91 5 C, 3 B, 5 N 2 
Hungarian 206 88 5 C, 3 B, 5 N 2 
Voting 305 130 16 B 2 
LeRer recognition 16000 4000 16 C 26 

2.4 Experimental methods 

To measure the performance of the NGE and nearest neighbor algorithms, we employed the 
training set/test set methodology. Each data set was randomly partitioned into a training 
set containing approximately 70% of the patterns and a test set containing the remaining 
patterns (see also Table 1). After training on the training set, the percentage of correct 
classifications on the test set was measured. The procedure is repeated a total of 25 times 
to reduce statistical variation. In each experiment, the algorithms being compared were 
trained (and tested) on identical data sets to ensure that differences in performance were 
due entirely to the algorithms. To generate learning curves, we follow the same procedure 

except that only a subset of the training set was used. The test set along each learning curve 
was constant, while each larger training set contained all smaller ones. 

We report the average percentage of correct classifications and its standard error. Two- 
tailed paired t-tests were conducted to determine at what level of significance one algorithm 
out-performs the other. We conclude that one algorithm significantly outpefforms another 
algorithm if the p-values obtained from the t-test are smaller than 0.05. 

3 Experiments on parameter sensitivity 

We explored the sensitivity of NGE and kNN to their user-specified parameters. For NGE, 
the parameters of interest are (a) the number of starting seeds, (b) the treatment of un- 
generalized exemplars, and (c) order of presentation of the exarnples. For kNN, the only 
parameter of interest is the number of nearest neighbors (k). 
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Figure 3. Performance of NGE relative to NN when NGE is initialized with varying numbers of seeds (cv: leave- 
one-out cross-validation). Base performance for NN is 97.6% correct in Task A, 97.0% in Task B, and 82.4% in 
Task C. Datapoints represent means over 25 replications with 350 training examples and 150 test examples. See 
Table A1 in appendix for detailed numbers. 

3.1 Number of starting seeds 

Figure 3 shows the performance of NGE on Tasks A, B, and C, for several different numbers 
of starting seeds. The performance is shown relative to the performance of simple nearest 
neighbor. For Tasks A and B, where the number of classes is small, NGE's performance is 
particularly poor for small numbers of seeds. This contradicts Salzberg's findings (1991, 
page 257, first paragraph), where he states that the performance of NGE was not found to 
be sensitive to the size of the seed set. 

Figure 3 also shows, not surprisingly, that NGE performs better on Tasks C and A, where 
the decision-boundaries are axis-parallel, than on Task B, where the boundary is diagonal. 
On Task B, simple NN outperforms NGE. 

At the right end of the figure (over the label "cv"), we show the performance that is 
obtained if leave-one-out cross-validation (Weiss & Kulikowski, 1991) is employed to 
determine the optimal number of seeds. This strategy worked very well, so we adopted it 
in all subsequent experiments (unless otherwise noted). 3 The following number of seeds 
was tested during each leave-one-out cross-validation run: 3, 5, 7, 10, 15, 20, and 25. 
Cross-validation is inherently non-incremental, so a cost of using cross-validation is that it 
destroys the incremental nature of NGE. 

Note that if NGE is given a sufficiently large number of seeds, the algorithm becomes 
the simple nearest-neighbor algorithm. In the limit, there is one seed for every data point. 
This limit is not reached in these three tasks, however. NGE needed only approximately 
6% (Task A), 13% (Task B), and 28% (Task C) of the storage that was required by NN to 
store the entire training set (detailed numbers are provided in Table A1 in the appendix). 

3.2 Treatment of ungeneralized exemplars 

In NGE, hyperrectangles are initialized to points in the input space and should therefore 
have size 0 before they are generalized to non-trivial hyperrectangles (see pseudo-code in 
Fig. 1, lines 7 & 25). We have found that in the Led-7 domain, however, initialization 
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Table 2. Performance of NGE on one specific training/test set partition. Numbers shown indicate the performance 
of NGE when run on 25 random permutations of the same training set. 

Domain Mean Median Min Max 
Iris 91.8 4- 0.8 93.3 84.4 97.8 
Hungarian 78.0 4- 0.5 77.3 71.6 83.0 
Voting 93.3 4- 0.4 93.1 89.2 96.2 

of the size of hyperrectangles to 1 led to a significant performance improvement (from 
43.0 + 1.4% correct to 59.8 -t- 1.0%). This is an artifact of the Led-7 domain. (Specifically, 
it results from the fact that Led-7 has large numbers of training examples with identical 
feature vectors belonging to different classes.) The initial size of hyperrectangles had no 
effect on NGE's performance in any of the other domains. In the experiments reported in 
the remainder of the paper, we chose to initialize the size of the hyperrectangles to 0, except 
in the Led-7 domain, where we initialized the size to 1. 

3.3 Order of presentation of training data 

NGE is sensitiveto the order in which'ttie training examples are presented. Table 2 shows 
the results of an experiment in which the training set/test set partitions were fixed while 
the order of presentation of the training set was randomly varied. We can see that the 
performance varies widely across these domains. This is a serious drawback of the NGE 
algorithm. 1 

Unfortunately, it is difficult to choose a "good" order for the training set. We could not 
find an effective way t o apply cross-validation methods, for example, to select a good order. 
In the results 'réported below, a random order was selected for each run of NGE, and (as 
with all of the other algorithms) the mean of 25 runs is reported. 

3.4 Value of k for the k-nearest neighbor algorithm 

It is well-established that in noisy domains, the k-nearest neighbor algorithm performs 
better than simple nearest neighbor. Hence,  we chose k to optimize the leave-one-out 
cross-validation performance of the algorithm on the training set. We tried all possible 
values of k (this can be done relatively efficiently). Ties were broken in favor of the smaller 
value of k. 

4 Comparison of NGE and kNN 

Figure 4 compares the performance of the k-nearest neighbor algorithm (kNN), NGEcv 
(number of seeds chosen via leave-one-out cross-validation), NGE with 3 seeds (NGE3 see«s), 4 
and NGE when the number of seeds was increased to at most 50% of the training data 
(NGE~mit). The rationale behind NGElimit is that the amount of storage required for each hy- 
perrectangle is twice the amount of storage required to store a single data point. Hence, when 
the number of seeds equals 50% of the training data, the total space required by NGE equals 
the space required by kNN (assuming that similar methods for dealing with ties and missing 
features are used). Beyond that point, NGE has no data compression advantage over kNN. 5 
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numbers. 

K-nearest neighbor outperforms NGE~v by a statistically significant amount in all of the 
eight non-constructed domains as displayed in Fig. 4. In all domains, NGEov achieved a 
significant (i.e. between 60% and.85%) compress!qri of thedata. By significantly increas- 
ing the number of seeds (NGElimit in Fig. 4), it  was possible to significantly improve the 
performance of NGEcv in Task B, and in the Led-7, Cleveland, Hungarian, and Letter recog- 
nition domains. However, NGElimit is still significantly inferior to kNN in performance in 
all but one non-constructed domain. The drop in performance in the Voting domain and 
Task A is due to the fact that in these domains, leave-one-oüt cross-validation over a small 
number of different seed set sizes is more beneficial than increasing the size of the seed 
set. 6 However, the improvement in performance by NGElimit comes at a high cost: In all 
cases where NGE's performance improved, it also used more memory than kNN. 

Figure 5 shows learning curves for all of  the domains. Generally, these curves have 
the shape that we expect from most inductive learning algorithms: Performance increases 
with the number of training examples and the increase levels oft after the training set has 
reached a certain size. In the Waveform, Led-7, and Letter Recognition domains, the 
performance of NGEcv levels oft much earlier than kNN's. Furthermore, the graphs for 
the Cleveland, Hungarian, and Voting domains show some erratic behavior for NGEov. In 
the Hungarian and Voting domains, NGEcv reaches its (near) peak performance after only 
25 training examples have been seen. For more than 25 training examples, performance of 
NGEcv varies within two standard errors in these domains. In the Cleveland domain, the 
performance of NGEcv peaks also at 25 examples with 72.6 -t- 1.9% correct, but then drops 
clown to 66.9 4- 1.8%. Through inspection of the number and sizes of hyperrectangles 
constructed by NGEcv in these domains we were able to determine the cause of this unusual 
behavior: The number of hyperrectangles stored by NGEcv does not grow linearly with 
the number of training examples. Although that is a desirable property of any machine 
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Figure 5. Performance of NGE and kNN for different numbers of training examples. Each data point denotes 
the mean of 25 experiments. Note the different scales on both axes of these graphs. 

learning algorithm, it may cause problems for NGEcv since existing hyperrectangles may 
be generalized (extended) too offen. This means that every time a hyperrectangle is enlarged 
it may actually become less relevant. We conclude that this behavior constitutes a serious 
deficiency in NGE's search and generalization procedure. 

5 Possible explanations for inferior performance of NGE 

Given the close relationship betwcen NGE and kNN, it is surprising that NGE performs so 
rauch worse than kNN. 
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rnean over 25 experiments. 

With any learning algorithm, there can be two fundamental sources of problems. First, 
the bias of the algorithm may be inappropriate for the application domains. Second, the im- 
plementation of that bias may be poor (e.g., because poor search algorithms are employed). 

Salzberg never formally defines the bias of NGE. Let us define it to be "find the minimum 
number of axis-parallel hyperrectangles (possibly nested or overlapping) that correctly 
classifies the training data." 

There is some evidence that this bias is inappropriate. We know that in Task B (non-axis- 
parallel decision boundary), the axis-parallel bias is inappropriate (see Fig. 3), but this is 
an artificially-constructed domain. However, Aha (1990) reports the performance of C4.5 
(Quinlan, 1992) in six of the domains which are also used in this paper. C4.5 also has a 
rectangular bias and performs, under similar conditions, significantly better than NGE in 
these six domains (Aha, 1990, Section 4.3.3). 7 This suggests that the axis-parallel bias is 
not the cause of NGE's poor performance. 

Examination of the learned hyperrectangles in several of the other domains suggests 
that permitting rectangles to nest and overlap is a problem. The most common form of 
nesting is that a large, generalized hyperrectangle is created and then many single-point 
rectangles are nested inside it as exceptions. This can be seen in Fig. 6, which plóts 
the number of hyperrectangles created and the number that are actuaIly generalized to be 
non-point rectangles. We can see that the overwhelming majority of hyperrectangles are 
never generalized. 

These single-point hyperrectangles are virtually never used for classifying new test ex- 
amples, because if a test example falls inside a large hyperrectangle, the distance to that 
hyperrectangle is zero. A single-point hyperrectangle will not be used unless either (a) the 
test example exactly coincides with the single-point rectangle or (b) the single-point rect- 
angle is not nested inside another rectangle. 

NGE also permits generalized rectangles to overlap, even if they don't nest. This may be 
a problem as well. One situation in which overlapping rectangles will be created is if the 
distributions of examples from two classes, A and B, overlap. The optimal decision rule 
(under a uniform loss function; cf. Duda & Hart, 1973) is to place the decision boundary 
at the point where the probability density of examples from class A equals the probability 
density of examples from class B. However, NGE instead arbitrarily assigns all examples 
in this overlapping region to one of the classes--the one which has the smaller rectangle. 

In addition to these hypotheses about the bias of NGE, there is considerable evidence 
that the bias is not implemented well by NGE's incremental heuristic procedure. From 
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Figure 7. Rectangles constructed by NGEcv in Tasks A, B, and C in one representative experiment. In A and 
B, dashed (solid) lines indicate the location of rectangles representing positive (negative) examples. In C, digits 
indicate the class each rectangle represents. Trivial (point) rectangles not displayed. Note that in Task A a single 
rectangle of class 0 covers the entire input space. 

the sensitivity experiments, we know that NGE is very sensitive to the order in which the 
training examples are presented. For some orders, it does very weil. 

In Tasks A and C, we can determine the optimal set of hyperrectangles by inspection (4 
and 10, respectively). NGE does not find thih optimal solution, but iristead' constructs an 
average of 10.8 4- 1~1 and 49.6 ± 1.2. In Task B, on the other hand, the optimal solution 
involves a large number of rather small, overlapping rectangles (one for every training 
example that lies near the decision boundary). However, NGE does not find this solution 
either. It constructs some rectangles that are too large, and then nests the smaller ones 
in it. Figure 7 displays the rectangles that were constructed by NGEcv in representative 
experiments in Tasks A, B, and C. 

In summary, we have three hypotheses that can explain why NGE is performing poorly 
relative to kNN: 

H1. nested rectangles, 
H2. overlapping rectangles, and 
H3. poor search algorithm. 

To test these hypotheses, we conducted a series of experiments in which we modified 
NGE to eliminate one or more of these suspected problems and measured the resulting 
change in performance. 

In the first experiment, we tested H1 by modifying NGE so that it produces relatively few 
nested rectangles but still permits overlapping rectangles. We did not otherwise change the 
search procedure. 

In the second experiment, we tested H2 by modifying NGE so that it produces no overlap- 
ping rectangles of different classes (with the exception of rectangles entirely nested inside 
one another). We did not otherwise change the search procedure. 

In the third experiment, we tested H3 by making a simple modification to incremen- 
tal NGE to improve upon the second-match heuristic, with the goal of finding fewer 
hyperrectangles. 

Finally, in the fourth experiment, we tested all of the hypotheses simultaneously by imple- 
menting an entirely different search procedure that completely eliminates nested rectangles 
and overlapping rectangles and also reduces the total number of rectangles constructed. 

We now describe these experiments and their results. 
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indicates that the performance difference between NGE and its modification is statistically significant (p < 0.05). 
See Table A2 in appendix for detailed numbers. 

5.1 Greedy NGE (avoid nesting) 

To test H1, we want to construct a variant of  NGE that avoids nesting rectangles. A major 
cause of  nested rectangles is the second match heuristic (line 9 in Fig. 1). I f  the nearest 
rectangle is of  the wrong class but the second nearest rectangle is of  the right class, then 
the second-nearest rectangle is expanded to cover the new example. In many cases, it will 
also cover the nearest rectangle (which could be a single point), and thus create nesting. 

Salzberg (1991, Section 3.5) introduced and tested a version ofNGE, called Greedy NGE, 
that does not have the second match heuristic. This greedy version stores an example as a 
new hyperrectangle whenever the closest previously stored hyperrectangle is of  a different 
class than the example. 

According to Salzberg, the second match heuristic in NGE is necessary to construct nested 
or overlapping hyperrectangles. This is not true: NGE may still construct overlapping or 
nested hyperrectangles even if its second match heuristic is disabled, because it can "grow" 
a hyperrectangle until it overlaps or covers another hyperrectangle. In fact, Greedy NGE 
did construct overlapping hyperrectangles (quite frequently) and nested hyperrectangles (in 
a few cases) in the experiments that we conducted. 

Figure 8 shows that the predictive accuracy of Greedy NGE is significantly bettet than 
NGE's  in three domains (Cleveland, Hungarian, and Voting) and significantly worse in 
4 others (Task A, Task C, Waveform-21, and Waveform-40). The results in Task C and 
Waveforrn-40 are particularly poor. 

Based on these, there is not much evidence that nested rectangles a r ea  major problem 
for NGE. 
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Figure 9, Example showing that rectangle C can be extended to cover point P. 

5.2 NGE without overlapping hyperrectangles (NONGE) 

To test H2, we want to construct a variant of NGE that avoids overlapping rectangles. This 
can be accomplished as follows. Let us define P to be the potential new hyperrectangle that 
is constructed by the calls to "generalize" in lines 9 and 10 of Fig. 1. Rectangle P is the 
rectangle formed by extending either the first match or the second match reetangle so that 
it covers the training example. 

In No-Overlap NGE (NONGE), we eonstruct P and then check whether it would interseet 
with any hyperrectangle from any other elass. If P would intersect another rectangle, 
then we reject P and create a new, single-point rectangle instead. However, if P would 
be completely contained within another hyperrectangle, we accept E This way, nested 
rectangles are permitted, but overlapping (non-nesting) rectangles are forbidden. 

In Fig. 8, we see that NONGE is significantly better than NGE in 6 of the 11 domains, 
and it is never significantly worse than NGE. This strongly supports hypothesis H2 that 
overlapping rectangles cause problems for NGE. 

5.3 A better merge heuristic for NGE? 

NGE stores a training example as a new hyperrectangle whenever the two nearest hyper- 
rectangles have different output classes than the example. In some cases, however, this can 
create unnecessary new rectangles. Consider Fig. 9. Here, rectangle C is further away from 
point P than either rectangle A or rectangle B. However, because rectangle C has the same 
class as point P, it could be extended to cover point P without overlapping either of rect- 
angles A or B. By extending rectangle C in this way, we avoid creating a new generalized 
exemplar for point E 

We developed a modified version of NGE, called F2+NOC, that detects this situation. 
If the first two matches (to the nearest and second-nearest hyperrectangles) fail, F2+NOC 
finds the nearest hyperrectangle having the same class as the example. It then extends that 
nearest hyperrectangle to include the new example if the expanded hyperrectangle would 
not cover any hyperrectangles from any other classes. Otherwise it stores the example as 
a new hyperrectangle. This gives NGE another chance to generalize and should in general 
reduce the amount of memory required by NGE. 

F2+NOC can be considered as a weak test of hypothesis H3 (that the search algorithm 
of NGE needs improvement). Table A2 indicates that this additional matching heuristic 
indeed achieves a reduction in storage in most domains. Hence, it is a better implementation 
of the NGE bias. However, as shown in Fig. 8, F2+NOC performs significantly better than 
NGE only in Task C, while the reduction in storage is directly related to a loss in predictive 
accuracy in five domains. 

Hence, this improvement to NGE's search algorithm does not explain the poor perfor- 
mance of NGE relative to kNN. 
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5.4 Batch NGE 

To obtain a better test of H3, we constructed two batch algorithms (OBNGE and BNGE) 
for the NGE bias. These algorithms begin with all training examples in memory as point 
hyperrectangles and progressively merge them to form generalized hyperrectangles. At 
each step, the two hyperrectangles nearest to one another are merged subject to one of the 
following constraints: 
OBNGE Only merge if that merge would not cause misclassification of any training exam- 

ples. This algorithm requires testing of the entire training set for each potential merge. 
It permits overlapping but no nesting of rectangles. We call it OBNGE (Overlapping 
Batch NGE). 

BNGE Only merge if the new hyperrectangle does not cover (or overlap with) any hyper- 
rectangles from any other classes. This algorithm requires intersection of each potential 
merge with all hyperrectangles from all other classes. It does not permit overlapping or 
nesting. We call it BNGE (Batch NGE). 

The merging process in both algorithms is repeated until no more merges can be found. 
Note that these algorithms are somewhat dependent on the order in which potential merges 
are considered. They are greedy in that a merge is accepted as soon as the above mentioned 
conditions are satisfied. 

These algorithms are more conservative in generalizing beyond the training data than 
the original NGE algorithm, since they generate hyperrectangles only in those parts of the 
input space which clearly belong to a certain class. Furthermore, due to the fact that BNGE 
and OBNGE repeatedly pass over the training data, they may also significantly reduce the 
number of hyperrectangles that remain at the end. BNGE is also faster and easier to use 
than NGE, since no cross-validation of free parmneters is required. OBNGE, however, is 
not feasible for large training sets. 

Numbers displayed in Fig. 10 and Table A2 show that BNGE significantly outperforms 
NGE in 7 of the 11 domains tested. In all cases, the performance of BNGE is better than 
NGE. On the other hand, OBNGE is significantly better than NGE only in Task C, and it is 
significantly worse than NGE in three domains (Task A, Task B, and Hungarian). 

This provides additional strong evidence that overlapping rectangles are an inappropriate 
bias for these domains (H2). 

To test H3, we can examine first whether BNGE implements a better search algorithm. 
For Tasks A and C, BNGE attains the optimal solution (4 hyperrectangles in Task A, 10 in 
Task C). Furthermore, BNGE also uses only one hyperrectangle to cover the Iris Setosa class 
in the Iris domain. This is good evidence for the quality of the BNGE search procedure. 

The incremental version of NGE most similar to BNGE is NONGE (NGE without over- 
lapping rectangles). By comparing Figs. 8, 10, and Table A2, it can be seen that BNGE 
out-performs NONGE in four domains, while NONGE out-performs BNGE in two do- 
mains. This gives only weak evidence that the improved search algorithm of BNGE is 
responsible for the improved performance. Note that BNGE can also be trained incre- 
mentally at the cost of storing all training examples. Incremental 'BNGE' would split and 
re-build hyperrectangles whenever they cover a new example from a different class. 

5.5 Discussion 

From these experiments, we can see that there is weak support for H3 and strong support 
for H2 as explanations for the poor performance of NGE relative to the nearest neighbor 
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FigurelO. Performance of OBNGE and BNGE relative to NGE, Shown are percentage point differences between 
OBNGE and NGE and between BNGE and NGE. A * indicates that the perforrnance difference between NGE 
and its modification is statistically significant (p < 0.05). See Table A2 in appendix for detailed numbers. 

algorithm. There is no support for H1. Versions of NGE that do not permit overlapping 
rectangles perform consistently better than NGE in all domains tested. The batch algorithm, 
BNGE, that does not permit nested or overlapping rectangles of different classes, performs 
quite weil and avoids the need to choose the numbef of seeds for NGE by crosswalidation. 

6 Feature weights 

In all of the experiments we have conducted thus far, we have treated all features as equally 
important in computing the Euclidean distance to the nearest hyperrectangles (and nearest 
neighbors). However, many of the 11 domains involve noisy or completely random features. 
A way to improve performance of both NGE and kNN is to introduce some mechanism for 
learning which features are important and ignoring unimportant (or noisy) features in all 
distance computations. 

Salzberg (1991 [Section 3.3, last paragraph]) describes a method for online learning of 
feature weights in NGE. Assume that a new example E is misclassified by an exemplar 
H. For each input feature fi, if Efl matches H/~, the weight of fi (wf~) is increased by 
multiplying it by (1 + A f ) ;  if E~ does not match Hf,, the weight w~ is decreased by 
multiplying it by (1 - Af).  A f  is the global feature-adjustment rate (usually set to 0.2). If 
E is classified correctly by H, then the feature weights are adjusted in the opposite direction. 

There are two problems with this heuristic. First, consider tasks in which one class is much 
more frequent than another. In such tasks, new examples will tend to be classified correctly 
by chance, and the feature weights will change exponentially: features that always match 
will have weights of zero, and features that are random will receive infinite weight. Salzberg 
(personal communication & 1991 [pseudo-code]) suggested adjusting feature weights only 
after both matches (i.e., to the nearest and second-nearest hyperrectangles) failed. We 
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Table 3. Percentage of  (non-seed) examples covered by at least one hyperrectangle when NGE was initialized 
with 3 (25) seeds. 

Training Testing 
Domain 3 seeds 25 seeds 3 seeds 25 seeds 

Iris 64 29 87 57 
Led-7 79 81 93 91 
Waveform-21 43 38 72 68 
Waveform-40 23 20 51 45 
Cleveland 80 62 97 91 
Hungarian 83 52 98 81 
Voting 97 93 100 100 
Letter recognition 79 79 95 94 

found empirically that with this policy, feature weights were adjusted quite infrequently. 
For example, in the Iris task, feature weights were adjusted for only 1% of the training 
e×.amples. In Waveform-40, feature weights were adjusted for 7% of the training examples. 

The second, more serious problem with the use of feature weights in NGE is that a high 
percentage of the test cases fall inside at least one hyperrectangle, which means that the 
distance to the nearest hyperrectangle is zero, and feature weights have no effect on the 
distance calculation. Table 3 shows the percentage of tes t and training Gases in Which this 
occurs. This suggests that there are limits to the performance improvement that can be 
obtained by using feature weights with nested hyperrectangles. 

In experiments with Salzberg's method for computing feature weights, we found that 
performance was almost always decreased (see below). We therefore considered another 
procedure for computing feature weights that has given promising results in other exemplar- 
based iearning methods (Bakiri, 1991). 

6.1 Determining weights by mutual information 

The purpose of a feature weight mechanism is to give low weight to features that provide 
no information for classification (e.g., very noisy or irrelevant features) and to give high 
weight to features that provide reliable information. Hence, a natural quantity to consider 
is the mutual information between the values of a feature and the class of the examples. If 
a feature provides no information ab»ot the ctass, the mutual information will be 0. If a 
feature completely determines the class~ ~he mutual information will be proportional to the 
log of the number of classes. Let 

P ( C  = c) be the probabilitv that the class of any training example equals c. 
® P ( f j  ~ Q(i))  be the proba~~.',i;y that the value of feature j of any example falls into the 

i-1 i (i 1 . . . .  nIntervals). interval Q(i)  = [ ~ ,  ~ 1  = . 

P (C = c/x  f j  ~ Q (i)) be the j oint probability of these two events. 

Then the mutual information between feature f j  and the classification C is 

nlntervalsnClasses P ( C  = c A f j  C Q(i))  

I ( f j ;  C) = ~ ~_, P ( C  = c A f j  C Q(i))  x log P ( C  = c) x P(fj ~ Q ( i ) )  
i=1 c=l 

For discrete features, nlntervals is equal to the number of possible distinct inputs. For 
continuous features, nlntervals was chosen to be 5. The probabilities were then estimated 
from the training data; missing values were ignored. The mutual information measure is 
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Figure 11. Perforrnance of NGE FWMI and NGE FW'Salzberg relative to NGE without feature weights. Shown 
are percentage point differences between NGE FWMI and NGE, and between NGE FV7"Salzberg and NGE. A * 
indicates significance of difference between NGE and its modifications. See Table A2 in appendix for detailed 
numbers. 

also known in the machine learning literature as the "information gain" used as a splitting 
criterion in ID3 and C4.5 (Quinlan, 1992). 

6.2 Experiments with feature weights 

Figure 11 (and Table A2) shows the effect of including feature weights and compares the two 
different procedures for computing the weights. Salzberg's method gives a statistically sig- 
nificant increase in performance in the Hungarian domain, a statistically significant decrease 
in Task C, and has no significant effect in any of the other domains. The mutual information 
feature weights general!y give slight, though statistically insignificant, improvements in do- 
mains without irrelevant features, while the improvements can be substantial in domains 
with irrelevant features. They give a statistically significant improvement in the Cleveland, 
Hungarian, Voting (p < 0.01), and Waveform-40 domains as weil as in Task C. A small 
(p < 0.05) decrease in performance is observed for mutual information feature weights in 
the Letter recognition domain. Mutual information feature weights had a similar positive 
effect on the performance of simple nearest neighbor and, to a lesser extent, kNN (see 
Table A2). The mutual information weights were very small for irrelevant inputs in all do- 
mains. Furthermore, feature weights did not differ substantially from one random partition 
of the data sets to another. In contrast, the weights computed by Salzberg's method differed 
substantially from one partition to another (varying by as much as a factor of 1000). Within 
a given training set/test set partition, the features were more or less equally weighted. 

From the experiments in Section 6, we conclude that Salzberg's weight procedure has 
no significant impact on NGE's behavior in most domains and that the mutual information 
weight procedure performs weil in dornains that have a large number of irrelevant features. 
Furthermore, since the mutual information weight procedure is independent of the algorithm 
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it is used for, it is a procedure that could be used effectively by many inductive learning 
algorithms to filter out irrelevant features. 

7 Comparison of  the best variants of NGE and kNN 

We have now developed several modifications to NGE that uniformly improve its perfor- 
mance. The algorithm that best combines these is batch NGE with mutual information 
feature weights (BNGE FWMI). The best corresponding version of  the nearest neighbor 
algorithm is k nearest neighbors (with cross-validation to determine k) and mutual infor- 
mation feature weights (kNN FWMI). In this section, we compare these two algorithms to 
determine whether the modifications to NGE make it competitive with kNN. 

Figure 12 shows the results of  this comparison. The main conclusion to draw is that BNGE 
FWMI is significantly inferior to kNN FWMI in 7 domains and significantly superior in only 
2. The two domains are both domains where we know that the axis-parallel rectangle bias 
is appropriate. This shows that when such hyperrectangles are appropriate, BNGE FWMI 
is able to exploit them. However, in domains where such rectangles are evidently not 
appropriate, BNGE FWMI'S performance suffers, while kNN FWMI is robust under these 
situations. This shows that further research is still needed to develop an NGE algorithm 
that is robust in such situations. 

8 Related work 

Simpson (Simpson, 1992) introduced an incremental algorithm which is extremely similar 
to NGE called Fuzzy Min-Max Neural Networks. The main differences between NGE and 
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a Fuzzy Min-Max Classifier (FMMC) are: (a) Hyperrectangles in FMMC are bounded in 
size, (b) FMMC always extends the nearest hyperrectangle of the same class as the given 
example to include the example as long the size of the new hyperrectangle is not larger 
than a user-defined value, and (c) FFMC shrinks hyperrectangles to eliminate overlap of 
hyperrectangles from different classes. 

Carpenter et al. (1992) introduced a neural network architecture based on fuzzy logic 
and adaptive resonance theory (ART) neural networks. The category boxes used by fuzzy 
ARTMAP with complement coding are comparable to hyperrectangles. Hyperrectangles 
in fuzzy ARTMAP with complement coding grow monotonically during learning; their 
maximum size is bounded by a vigilance parameter. See Carpenter et al. (1992) for a short 
comparison of NGE, FFMC, and Fuzzy ARTMAR Neither FMMC nor fuzzy ARTMAP 
use feature weights in the same sense as discussed in this paper. 

9 Summary and discussion 

An extensive study of the NGE algorithm has been conducted. The basic algorithm and a 
number of modifications were evaluated in. eleven domains. NGE was found tO be quite 
sensitive to the number of starting seeds and to the order of presentation of the examples. 

The performance of NGE was compared to the performance of the k-Nearest Neighbor al- 
gorithm and found to be substantially worse in several domains, even when cross-validation 
was applied to optimize the number of starting seeds in NGE. 

Three hypotheses were introduced to explain this difference in performance: (a) nested 
rectangles provide a poor bias, (b) overlapping rectangles provide a poor bias, and (c) the 
incremental searcb_ algorithm of NGE needs improvement. Experimental modifications 
of NGE were made in order to test these hypotheses. Two versions of NGE that avoid 
nested rectangles (but permit overlapping rectangles) did not perform substantially better 
than NGE itself. However, an algorithm, caUed NONGE, that permits nested rectangles but 
avoids overlapping rectangles performed uniformly better than NGE in all eleven domains 
(the improvement was statistically significant in 6 of the domains). A batch algorithm, 
BNGE, that implements a better search algorithm and does not allow nested or overlapping 
rectangles also performs uniformly better than NGE. It performs better than NONGE in 4 
domains and worse in 2. 

From these experiments, we conclude that overlapping rectangles are the primary source 
of difficulty for NGE and that BNGE was the best variant of NGE that we studied. Fur- 
ther experiments reported in Wettschereck (1994) show that BNGE commits most of its 
errors outside of all hyperrectangles. By using kNN to classify all test examples that 
fall outside any hyperrectangle, a hybrid method of BNGE and kNN attains classifica- 
tion accuracy comparable to kNN alone--but with a large improvement in classification 
speed. 

All versions of NGE were effective at compressing the data when compared to kNN. 
We also studied whether the NGE algorithms could be improved by incorporating feature 

weights into the distance metric computed by the algorithms. The feature weight mechanism 
introduced by S alzberg (1991) was shown never to provide a significant improvement over 
the performance of NGE without feature weights. Indeed, it was significantly worse than 
simple NGE in three of the domains. On the other hand, a feature weight mechanism based 
on computing the mutual information between each feature and the output class was shown 



NEAREST-HYPERRECTANGLE COMPARISON 25 

to be significantly better than NGE in five domains and significantly worse in only one. 
This mechanism is independent of NGE and can therefore be used as a pre-processing step 
for any inductive learning algorithm. 

10 Conclusions 

The data presented strongly support the conclusion that the NGE algorithm as described 
by Salzberg (1991) should be modified in a number of ways. First, construction of over- 
lapping hyperrectangles should be avoided. Second, if the entire training set is available 
at once and can be stored in memory, then the classifier should be trained in batch mode 
to eliminate computationalty expensive cross-validation on the number of initial seeds. 
Third, mutual information should be used to compute feature weights prior to running 

NGE. 
With these modifications, NGE gives superior performance in domains where the axis- 

parallel hyperrectangle bias is appropriate. However, in other domains, NGE does not 
perform as well as kNN. Hence, if generalization performance and robustness are critical, 
kNN is the algorithm of choice. If, on the other hand, understandability and memory 
compression are important, then NGE (as modified)can" be recommended as a fast, easy- 
to-use inductive learning algoritfim. 8 
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Appendix 

Table A1. Percent accuracy (-t- standard error) of nearest neighbor (NN) and NGE when trained on 350 examples 
and tested on 150 examples (25 replications). Numbers in parentheses show: number of seeds (first column, cv: 
leave-one-out cross-validation), average number of hyperrectangles constructed in all other columns. 

Task A Task B Task C 

Method Accuracy Num rect. Accuracy Num rect. Accuracy Num rect. 

Nge (3) 86.8 + 4.0 (4.4 ± 0.2) 75.6 -4- 1.7 (3.5 -4- 0.1) 87.4 ± 0.5 (47.4 ± 1.1) 
Nge (5) 97.2 q- 1.4 (7.0 -4- 0.3) 85.1 ± 1.3 (6.1 ± 0.2) 86.7 4- 0.5 (48.8 5: 1.0) 
Nge (7) 97.8 -4- 0.7 (8.5 -4- 0.3) 86.3 4- 1.3 (8.1 4- 0.3) 86.2 ± 0.5 (49.9 4- 1.0) 
Nge (I0) 98.8 4- 0.3 (11.6 -t- 0.3) 89.8 4- 0.7 (11.1 -4- 0.3) 86.1 4- 0.5 (49.8 ± 1.0) 
Nge (15) 98.0 -4- 0.4 (16.7 -4- 0.3) 92.4 4- 0.5 (16.5 -t- 0.3) 85.6 4- 0.5 (53.4 4- 1.3) 
Nge (20) 97.9 -4- 0.3 (21.8 4- 0.3) 93.2 4- 0.5 (21.6 ± 0.3) 86.1 -4- 0.5 (57.0 4- 1.1) 
Nge (25) 97.8 4- 0.3 (27.4 4- 0.3) 93.7 4- 0.6 (26.7 4- 0.3) 85.3 4- 0.5 (59.8 4- 1.1) 
Nge (cv) 99.3 4- 0.2 (10.8 4- 1.1) 94.1 4- 0.5 (22.6 -t- 1.0) 86.9 4- 0.5 (49.6 4- 1.3) 
NN 97.6 + 0.3 97.0 4- 0.2 82.4 4- 0.6 



Table A2. Percent accuracy (4- standard error) on test set. Shown is mean performance over 25 repetitions, 
standard error (S.E.), significance of difference to NN (,), NGEcv (*), NN FWM1 (o), and NGEcv FWMI (o) as 
well as amount of memory (in percent of training data, if less than 100%) required by NGE (M column). 

D o m a i n  

TaskA TaskB TaskC Iris 

Method Perf. ± S.E. M Perf. 4. S.E. M Perf. 3= S.E. M Perf. 4. S.E. M 

NN 97.6 4- 0.3 97.0 ± 0.2 82.4 ± 0.6 94.8 ± 0.5 
kNNcv 96.9 ± 0 q*** 96.4 ± 0.3,***~** 82.1 4. 0.6***** 95.4 ± 0.5** 
NGEcv 99.3 ±0.2"**** 6 94.1 -4- 0.5***** 13 86.9 ± 0.5 ***~ 28 93.7 ± 0.6 31 
NGE3seeds 86.8 4- 4.0**** 3 75.6 ± 1.7,**** 2 87.4 ± 0.5*'*** 27 92.0 3= 0.6~, ~*~ 9 
NGElimit 98.8 ± 0.3,*'~ 7 96.8 3= 0.2***** 87.4 + 0.5***** 27 94.4 ± 0.6 50 
Greedy NGEcv 98.1 4. 0.2~**** 15 94.5!0.4"**** 23 83.4 4.0.6,**** 60 94.7 4. 0.5 31 
F2 + NOCcv 99.2 ± 0.2***** 6 93.3 ± 0.6***** 12 93.4 4. 0.3,******~ 6 93.7 3= 0.7* 33 
NONGEcv 99.5 ± 0.2~***** 5 94.7 4. 0.4***** 18 86.9 ± 0.5 ~ 28 94.0 3= 0.6 33 

2***** OBNGE 97.3 ± 0.5***** 2 cj1 4 ± 0 5 ***'~ 12 93.3 4- 0. ***** 7 93.23= 0.6** 8 . . . .  ***** 

***** 4*,e*-** BNGE 99.8 3= 0.1,*** 2 95.2 4- 0. *** 12 93.6 4. 0.5********** 3 94.7 ± 0.5 12 
NGEcv FWMI 99.0 3= 0.2 . . . . .  5 94.4 ± 0.5 . . . . .  13 94.9 4. 0.3.0'0'0,~, 10 94.7 4. 0.5, 34 
NGEcvFWs 9 9 . 3 ± 0 2  °°0°0 6 93.9±0.5 . . . . .  13 8 3 0 ± 0 7  °°00° 32 94.0 4.0.6 °° 35 . . . . .  ***** 

BNGEFWM~ 99.84-0.1°°,°,°° 2 95.54.0.4.0o'0 °o 12 95.43=0.2 . . . . .  6 94.74.0.6 11 
NN FWMI 97.2 ± 0.2~, , ,  97.0 ± 0.2 . . . . .  92.0 ± 0.4,,*'~,,, 95.9 ± 0.4~?, " ' '  
k N N c v  F W M I  96.7 4- 0.3 ~_ . . . .  96.7 3= 0.3 . . . . .  92.3 3= 0.4 . . . . .  95.1 ± 0.5 °° 

Led-7 Wave form-21 Wave form-40 Cleveland 

NN 71.0 ± 0.5 73.8 ± 0.7 69.5 ± 1.0 76.4 ± 0.9 

kNNcv 73.5 ± 0 4"**** 82.9 ± 0 8***'* °°°°° 80.2 4- 1.0 . . . . .  82.8 ± 0.7,~,;,;,~, ---***** - ***** 

NGEc-¢ 59.8 ± 1 . 0 ' " "  67 70.0 4- 0.9**"* 17 64.6 ± 1.2"**** 24 66.9 4- 1.8 ***'~ 29 
NGE3seeAs 56.0 ± 1.2", **** 61 69.3 ± 0.8 *'~** 9 64.2 3= 1.2"*"* 14 55.0 ± 1.2,******~ 5 

± ***~ 71.5 4. 0.9* 56 64.9 4. 1.2 *"-~ 14 76.3 ± 1.2,**** NGElimit 64.2 0.7***** 
-I-1 1"**** GreedyNGEcv 62.7-t-0q***** 87 68.14-16"*** 65 5 6 . 0 _ .  ***** 86 72.6±1.3",  ~ 63 

F2 + NOCc,, 57.6 ± 1 . 1 ' " "  50 70.3 ± 0.9**-** 10 65.1 -I- 1.1 *~* 15 64.5 ± 1.5"**** 23 
NONGEcv 62.7 ± 0 9***** 71 74.1 ± 1.0,*** 77 64.5 ± 1.4 **~ 23 78.5 ± 0.8,~*** 54 
OBNGE 62.1 ± 0.9 ""'~' 84 70.3 4. 0.9"*** 6 64.5 ± 1.2 ***~ 3 71.3 4. 1.2~ ~'* 59 
BNGE 69.5 ± 0  5***** 73 69.8 q- 1.5"*** 66.7 4. 1.4" 91 77.5 ± 1.1,**** 71 . ~ * * * * *  

NaEcv FAVMI 59.8 ± 1.1 . . . . .  64 70.0 4. 1.1 . . . . .  13 70.1 ± 1.0,.0'0'0~, 13 74.6 4. 1.4,°*** 34 
NGEcv FWs 61.9 4. 1.2 °°°°° 66 70.5 4. 0.8 . . . . .  16 62.6 ± 1.2'0'0 °°° 20 69.0 ± 1.3 °°°°° 33 
BNGEF3NMI 68.6 4- 0.4 . . . .  , 74 71.0 ± 1.1'O'O °° 97 69.2 4. 1.2 . . . . .  90 77.5 ± 0.9, 50 
NN FWMI 68.6 4- 0.4,*~,,*,, 76.3 ± 0.7,,*~,,, 78.3 ± 0.82,**,,'~, 77.9 ± 1.0,~,°,° 

kNNcv F-NVMI 70.8 ± 0.500,°0.0 82.6 ± 0.900°_0,O 82.4 ± 0.6"**~** 81.7 ± 0.6000,O0 

Hungarian Voting Letter recog. 

NN 76.5 ± 0.6 88.3 ± 0.8 
kNNcv ~q R 4. 0 ~'*** 94.0 ± 0.4,******'** . . . . . . .  *****  

NGEcv 76.5 4- 0.9 30 88.4 ± 1.2 
***** 2 . * * - ~  NGE3seeds 61.3 ± 2.4***** 7 64.5 4. 3. ***** 

NGElimit 79.3 ± 0.8***** 84.8 4- 1.1,,~, 
Greedy NGEcv 78.6 4.0.9,**~** 49 88.8 4. 1.2 34 
F2 + NOCcv 73.7 ± 1.1; 21 88.4 4. 1.2 14 
NONGEcv 79.3 4. 0.7~** 43 88.3 4. 1.6 22 
OBNGE 71.6 4. 1 4*** 40 88.8 4. 2.4 25 
BNGE 76.7 4. 1.0 36 93 .2±0  5 *~** 47 

- ***** 

N G E c v  F V ~ M I  78.1 ± 0.6** 28 90.8 4. 0.8'0*0, 15 
NGEcv FW'S 77.8 4. 1.0 30 88.7 4. 1.1 16 
BNGEFWM I 78.2 4. 0.8 31 94.7 ± 0.4_~00°, ~ 30 
NN FWMI 78.9 4. 0_6****-* 89.0 4. 0.8** 
kNNcv FWMI 82.2 4- 0.9,°,°,°°. ° 95.4 4. 0.4'0°'0,°'0 

95.8 3= 0.1 
95.8 4. 0.1,**** 

16 70.2±0.4  ***'~ 41 
13 68.6 4.0.4;,~** 43 
22 87.4 4. 0.2~%% 

70.1 4. 0.4 ***~ 63 
***** 

63.9 4. 0.4***** 24 
88.0 4. 0.2"***~, 39 

89.1 ± 0.1;***~*** 
69.2 ± 0.4'0 °°°° 
68.1 4. 0.5°,'0~,, 
91.3 ± 0.10000 ° 
96,6 4- 0.0",,.*'2~.o 
96.6 4. 0.0 . . . . .  

39 * * * * * p  < 0.001 
35 * * * * p  < 0.005 
45 *** p < 0.01 
32 **  p < 0.05 

* p  < 0.1 
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Notes 

1. The focus ofthis paper is classification accuracy. Issues such as incremental versns batch learning and training 
and classification speed are only touched on. 

2. The size of trivial point hyperrectangles is assumed to be 0. 

3. Leave-one-out cross-validation is computationally very expensive for NGE since even the smartest imple- 
mentation would have to process approximately n(n 2-1) examples for each cross-validation tun. 

4. The results for the Iris domain differ slightly from those reported by Salzberg, becanse he employed leave- 
one-out cross-validation rather than repeated traln/test partitions. The results with leave-one-out are 95.3% 
for nearest neighbor and 92.8% for NGE. 

5. One could improve on this by aUocating space for the lower and upper comer of each hyperrectangle only if 
the hyperrectangle is non-trivial. 

6. Leave-one-out cross-validation over more than, say, i0 different numbers of seeds is not computationally 
feasible. 

7. There are many other differences between NGE and C4.5. However, Aha's results indicate that a rectangular 
bias may be of no hindrance given the proper search algorithm. 

8. Source code for NGE and some ofits modifications is available on request from the first author. 
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