
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 2, MAY 1995 129

Simultaneous Design of Membership
Functions and Rule Sets for Fuzzy

Controllers Using Genetic Algorithms
Abdollah Homaifar and Ed McCormick, Member, ZEEE

Abstract- This paper examines the applicability of genetic
algorithms (GA’s) in the simultaneous design of membership
functions and rule sets for fuzzy logic controllers. Previous work
using genetic algorithms has focused on the development of
rule sets or high performance membership functions; however,
the interdependence between these two components suggests a
simultaneous design procedure would be a more appropriate
methodology. When GA’s have been used to develop both, it has
been done serially, e.g., design the membership functions and
then use them in the design of the rule set. This, however, means
that the membership functions were optimized for the initial rule
set and not the rule set designed subsequently. GA’s are fully
capable of creating complete fuzzy controllers given the equations
of motion of the system, eliminating the need for human input
in the design loop. This new method has been applied to two
problems, a cart controller and a truck controller. Beyond the
development of these controllers, we also examine the design of a
robust controller for the cart problem and its ability to overcome
faulty rules.

I. INTRODUCTION
ENETIC algorithms (GA’s) are search procedures based G on the mechanics of natural selection. They use op-

erations found in natural genetics to guide itself through
the paths in the search space. GA’s provide a means to
search poorly understood, irregular spaces. Because of their
robustness, GA’s liave been successfully applied to a variety
of function optimizations, self-adaptive control systems, and
learning systems.

Fuzzy systems arose from the desire to describe complex
systems with linguistic descriptions [11. While Boolean sys-
tems allow an item to have a membership of either one or
zero in a set, fuzzy systems allow for degrees of membership
over the range [0, 11. This imitates the linguistic, nonprecise
approach to describing conditions (i.e., cold, very warm) used
in everyday life.

Fuzzy controllers allow for a simpler, more human approach
to control design and do not demand the mathematical model-
ling knowledge of more conventional control design methods.
As systems become more complex, the ability to describe

Manuscript received May 3, 1993; revised May 27, 1994. This work was
supported in part by grants from Honeywell Inc. under Grant 48057 and the
NASA Center of Research Excellence at North Carolina A&T State University
under Grant NAGW-2924.

A. Homaifar is with the Electrical Engineering Department, North Carolina
A&T State University, Greensboro, NC 27411 USA.

E. McCormick is with the Center for Digital Systems Engineering, Research
Triangle Institute, Research Triangle Park, NC 27709 USA.

IEEE Log Number 9406657.

them mathematically becomes more difficult. For this reason,
fuzzy controllers provide reasonable, effective alternatives to
classical or state-space controllers.

By using a linguistic approach, fuzzy theory can be
integrated into control theory using rules of the form
ZF{condition} THEN{action}. Using enough of these rules,
one can create a functional controller. In this same way
the input variables can be partitioned into overlapping
sets which have a linguistic correlation (i.e., cold, warm,
hot) to form a membership function. These fuzzy sets are
most often triangular in shape but trapezoids and Gaussian
functions have also been used. The membership values
control the degree to which each rule “fires”, illustrating
the interdependent relationship between the rule set and the
membership functions.

This study investigates the use of genetic algorithms in
the design and implementation of fuzzy logic controllers.
Previously, generation of membership functions had been a
task mainly done either iteratively, by trial-and-error, or by
human experts. A task such as this is a natural candidate
for a GA since GA’s attempt to create membership functions
that will cause the controller to perform optimally. In much
the same manner, a GA can be used to generate the rules
which use these membership functions. Recently, work has
been done using GA’s to do each of these tasks separately.
Kam, for example, has used a GA to generate membership
functions for a pH control process [2] and the cart-pole
problem [3]. Such work has shown GA’s ability to successfully
create the individual parts of a fuzzy controller, but since
membership functions and rule sets are co-dependent, using
a hand-designed rule set with a GA designed membership
functions or hand-designed membership functions with a GA
designed rule set does not use the GA to its full advantage.
Thus, the use of GA’s to determine both membership functions
and rule sets simultaneously for an optimal or near-optimal
controller is the main objective of this work.

l k o problems are examined to check the effectiveness of
this method. The first is centering and stopping a cart located
on a one-dimensional track as described by Thrift [4]. Given
an initial velocity and location on the track, the objective is to
determine a controller which will bring the cart to zero velocity
and zero location in minimum time. Different controllers were
designed for this problem by dividing the input and output
spaces into different partition sizes.

10634706/95$04.00 0 1995 IEEE ’

-

130 IEEE TRANSACTIONS ON FTJZZY SYSTEMS. VOL. 3, NO. 2, MAY 1995

The second controller comes from the truck-backing system
described by Nguyen and Widrow [5] and repeated by Kosko
[6]. This controller is used to guide a truck from a given 2
and y location on a 100 x 100 grid and at a specific angle to
the horizontal (4) to the location of the “loading dock.” A
controller was designed which performed this task in minimum
time, and a comparison was made with the one designed by
Kosko.

As cited earlier, GA’s have been used in varying degrees to
assist in designing the individual parts of a fuzzy controller.
In the design of membership functions, GA’s have been used
not only to determine the base lengths of the fuzzy sets but the
location of their peaks also. In this work, a GA has been used
to determine only the base lengths of triangular fuzzy sets and
not the location of the peaks. Combining this task with the
determination of the rule sets has provided proof of a GA’s
ability to solve this problem.

11. GENETIC ALGORITHMS
Genetic algorithms are general purpose optimization algo-

rithms with a probabilistic component that provide a means to
search poorly understood, irregular spaces. John Holland orig-
inally developed GA’s and provided its theoretical foundation
in his book, Adaptation in Natural and Art$cial Systems [7].
Holland developed GA’s to simulate some of the processes ob-
served in natural evolution. Evolution is a process that operates
on chromosomes (organic devices for encoding the structure
of living beings) rather than on living beings. Natural selection
links chromosomes with the performance of their decoded
structure. The processes of natural selection cause those chro-
mosomes that encode successful structures to reproduce more
often than those that do not. Recombination processes create
different chromosomes in children by combining material from
the chromosomes of the two parents. Mutation may cause the
chromosomes of children to be different from those of their
parents.

GA’s appropriately incorporate these features of natural
evolution in computer algorithms to solve difficult problems
in the way that nature has done-through evolution. GA’s
require the problem of maximization (or minimization) to be
stated in the form of a cost (objective) function. In a GA, a
set of variables for a given problem is encoded into a string
(or other coding structure), analogous to a chromosome in
nature. Each string, therefore, contains a possible solution to
the problem. To determine how well a chromosome solves the
problem, it is first broken down into the individual substrings
which represent each variable and these values are then used
to evaluate the cost function, yielding a “fitness”. GA’s
select parents from a pool of strings (population) according
to the basic criteria of “survival of the fittest”. It creates
new strings by recombining parts of the selected parents in a
random manner. In this manner, GA’s are able to use historical
information as a guide through the search space.

The repopulation of the next generation is done using
three methods: reproduction, crossover, and mutation [8].
Through reproduction, strings with high fitnesses receive mul-
tiple copies in the next generation while strings with low

fitnesses receive fewer copies or even none at all. Crossover
refers to taking a string, splitting it into two parts at a randomly
generated crossover point and recombining it with another
string which has also been split at the same crossover point.
This procedure serves to promote change in the best strings
which could give them even higher fitnesses. Mutation is the
random alteration of a bit in the string which assists in keeping
diversity in the population.

GA’s work through function evaluation, not through differ-
entiation or other such means. Because of this trait, a GA does
not care what type of problem it is asked to maximize, only
that it be properly coded. Thus GA’s are able to solve a wide
range of problems: linear, nonlinear, discontinuous, discrete,
etc.

111. FUZZY CONTROLLERS

The development of fuzzy theory came from the inability to
describe some physical phenomena with the exact mathemat-
ical models dictated by more conventional Boolean models.
Fuzziness describes event ambiguity. It measures the degree
to which an event occurs, not whether it occurs. The fact
that fuzziness is lacking in precision has led to its dismissal
by some researchers. Others, however, see fuzzy theory as a
powerful tool in the exploration of complex problems because
of its ability to determine outputs for a given set of inputs
without using a conventional, mathematical model. As Jain
notes [9], the basic motivation behind fuzzy set theory is the
fact that the conventional methods had become so complex
that researchers trying to apply them had to make a choice
between a complex system and a complex tool.

Fuzzy theory owes a great deal to human language. As
explained by Leung [lo], daily languages cannot be precisely
characterized on either the syntactic or semantic level. When
we speak of temperature in terms such as “hot” or “cold”
instead of in physical units such as degrees Fahrenheit or
Celsius, we can see language becomes a fuzzy variable whose
spatial denotation is imprecise. In this sense, fuzzy theory
becomes easily understood because it can be made to resemble
a high level language instead of a mathematical language.
To describe a universe of discourse, fuzzy sets with names
such as “hot” and “cold” are used to create a membership
function. By determining the degree of membership of an input
in the fuzzy sets of this membership function, one can see
the role membership functions play in decoding the linguistic
terminology to the values a computer can use. Of course
in most respects these membership functions are subjective
in nature. What determines the ranges for these fuzzy-set
values or the shape of these membership functions? In most
cases, membership functions are designed by experts with a
knowledge of the system being analyzed. However, human
experts cannot be expected to provide optimal membership
functions for a given system. Often, these functions are mod-
ified iteratively while trying to obtain optimality.

How are these membership functions used in fuzzy con-
trollers? In its simplest form a fuzzy logic controller is simply
a set of rules describing a set of actions to be taken for a
given set of inputs. It is easiest to think of these rules as if-

HOMAIFAR AND MCCORMICK. MEMBERSHIP FUNCTIONS AND RULE SETS FOR FUZZY CONTROLLERS

~

131

then statements of the form IF{ set of inputs} THEN{ outputs}.

As an example, consider a fuzzy controller used in the cart
controller problem. One rule might be ZF{distance from 0 very
far in positive z-direction} and {velocity >> 0) THEiV{apply
a force <O}. Another rule may be ZF{distance from 0 near in
negative z-direction} and (velocity = 0) THEN{apply a force
> 0). Since “very far” applies to a range of distances which
also may belong to another fuzzy-set variable (i,e., “far”)
which has rules of its own, the output which results from
“defuzzification” of the application of these rules must take
into account how much each rule applies before determining
how much output must be applied. Usually a centroid method
is used to account for the influence of each rule on the output.

IV. ALGORITHM DESCRIPTION

The basis for the software used in this paper is the Simple
Genetic Algorithm (SGA) program developed by Goldberg [8].
The SGA program allows the user to define the values for
population size, maximum number of generations, probability
of crossover, and probability of mutation. Their respective
values are 100, 100, 0.7, and 0.03. In order to select the
individuals for the next generation, tournament selection was
used instead of SGA’s roulette wheel selection. In tournament
selection, two or more members of the population are selected
at random and their fitness compared. The member with the
highest fitness advances to the next generation.

The Simple Genetic Algorithm uses binary strings to encode
the parameters which are to be optimized. While this method
could also be used in the determination of the fuzzy controller
design, a more representative method was chosen. To illustrate
this method, consider the cart centering problem. First, the
number of alleles (individual locations which make up the
string) was determined from the size of the rule set plus
the number of fuzzy sets used to partition the spaces of the
input and output variables. In the cart problem, the bases
of the triangles which formed the output space were fixed
to ease the computational burden (reduction of string length
and simplification of the defuzzification process), while the
input variables, z-location and velocity, had base lengths that
were determined by the GA. In this example five triangular
fuzzy sets were used to partition the input and output spaces:
negative medium (NM), negative small (NS), zero (ZE),
positive small (PS), and positive medium (PM). The rule set,
then, contains twenty-five (5 x 5) rules to account for every
possible combination of input fuzzy sets. The rules are of the
form, ZF(z is {NM, NS, ZE, PS, or PM}) and (w is {NM, NS,
ZE, PS, or PM}) THEiV{output}, where output is one of the
fuzzy sets used to partition the output space. The two input
spaces use a total of ten triangles, so the string to represent
a given rule set and membership function combination would
have thirty-five alleles (25 + 10). No additional alleles are
needed for the output triangles because their base lengths are
fixed. Note that the term alleles is used instead of bits, because
the value of each location in the string contains either the
number of the output fuzzy set to be used for a given rule
(the first twenty-five alleles where NM = 1, NS = 2, etc.) or
the value which will be converted to the length of the base

String: 14321524321245143122113454525234124
1432152432124514312211345 45252 34124 i x-location 1 velocity 1

locations locations
1 rule set

x

velocity

Fig. 1. Example of string fuzzy controller conversion.

of the triangles which make up the input spaces (the last ten
alleles). The calculation of the triangle bases from the allele
values (1-5) were done as follows (the values are specific to
the cart-centering controller described above):

1) Subtract 1 from the allele value and divide by 10
(malung the range now 04.4).

2) Subtract this value from one (whch is the fixed distance
between the peaks of each triangle).

3) Doubling this value gives the base length for each
particular triangle. This value can be anywhere from 1.2
m to 2.0 m. A base length of 2.0 m means the end point
of the triangle extends to the peak of the surrounding
triangle while if two adjacent triangles had the smallest
possible base lengths (1.2 m), they would be assured of
having a 0.2 m overlap.

Following this method, the string representing the controller is
integer-based instead of binary-based. The alleles representing
the rule sets have values in the set { 1,2, + . , Number of Output
Sets} while the alleles representing the bases of the triangles
are in the set { 1,2, . . . ,5}. This change in structure does not
change the basic functioning of the GA. In fact, the only
difference occurs within mutation, since an allele was allowed
to change into any value other than its present value. Thus,
the two main ingredients of a fuzzy controller, the rule set and
the membership functions, are incorporated into a single string
which the GA will seek to optimize. An example of how each
sting is broken down is given in Fig. 1.

A problem which comes to light in the optimization is the
use of mathematical models to evaluate the fitness of a given
string. One of the strong points of fuzzy controllers is the fact
that they do not require mathematical models. However, to
obtain a fitness for a given controller, the GA must have a
method to evaluate the controller’s performance. In this sense
we have negated one of the fuzzy controllers advantages in
order to use the power of GA’s to optimize this controller.

V. APPLICABILITY OF GAS TO FUZZY CONTROLLERS

The application of genetic algorithms to fuzzy logic con-
trollers holds a great deal of promise in overcoming two of

I32 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 2. MAY 1995

the major problems in fuzzy controller design, design time
and design optimality. Previous work has been done mainly in
two areas: learning the fuzzy rules and learning membership
functions. A GA’s robustness enables it to cover a complex
search space in a relatively short period of time while ensuring
an optimal or near-optimal solution. Because of this capability,
GA’s are a natural match for fuzzy controllers.

Thrift’s paper [4] examines the feasibility of using GA’s to
find fuzzy rules. In this paper, fuzzy control synthesis is done
in decision table form. The problem examined is centering a
cart of mass m on a one dimensional track. The objective is to
move the cart from a given initial position and velocity to zero
position and velocity in minimum time. This is done through
the application of a force F from the controller. For 100 runs
with random starting points, the average number of time steps
for the hand-designed fuzzy controller to bring the cart to zero
position and velocity was 164. In comparison, a GA designed
controller using the same starting points had an average of
143 time steps. As Thrift notes, while the GA based fuzzy
rules perform reasonably well, work could be done to further
improve its performance, such as letting the GA determine the
endpoints of the membership functions.
Karr [3] examined the feasability of using a GA to find

high performance membership functions for a controller for a
pole-cart system. The task for the controller is as follows:

A wheeled cart has a rigid pole hinged to its top. The
cart is free to move right or left along a straight bounded
track and the pole is free to move within the vertical
plane parallel to the track. The cart is to be kept within
the predefined limits of the track and the pole should
be prevented from falling beyond a predefined vertical
angle by applying a force of fixed magnitude to the left
or right of the base of the cart.

The objective is to bring the cart to rest at the center of the
track with the pole balanced, much the same as in Thrift’s
paper. Also, he examined the use of micro-GA, a small
population GA developed by Krishnakumar [1 11, to determine
an adaptive real-time controller for the same problem where
system parameters may be time varying. In determining the
membership functions, the GA was used to determine the
anchor points for each of the linguistic variables used. In the
nonadaptive problem, the GA designed fuzzy logic controller
consistently outperformed the controller he had hand-designed.

For the adaptive controller, the micro-GA controller had the
best performance. The nonadaptive author-designed controller
always became unstable while being used in the adaptive
case while the nonadaptive GA controller and the micro-GA
designed adaptive controller were always able to complete the
task. The difference between the two GA designed controllers
was in their convergence times; the micro-GA controller
consistently balanced the system faster than the nonadaptive
GA controller, whose performance was deemed unacceptable.

Others have sought to optimize fuzzy controllers using other
methods. For example, Procyk and Mamdani [12] iteratively
designed membership functions. While all these methodologies
have provided improvements in fuzzy controller design, they
have a major limitation; how can an optimal design be obtained

when one of the two main components is designed using
a nonoptimizing method. Logically, to obtain an optimal
rule set and set of membership functions, the two must be
designed together so the links between them can be fully
exploited. This process is now beginning to be explored by
researchers. Previous work done by Homaifar and McCormick
[13] examined the initial applicability of GA to solving the
cart-centering problem and laid the foundation for this more in-
depth study. Also, Nomura et al. [141, examined using a GA to
determine both the membership function and optimum number
of rules for a single input, single output nonlinear system.
Since the two systems had only one input, the number of fuzzy
sets for that input was also the number of rules. They used
a binary string structure for the GA where each bit location
mapped to a corresponding location in the input space. If a bit
representing a given location in the input space were a one, that
meant there was the peak of a fuzzy set located there. While
able to successfully optimize both the membership function
and the rule set, there may be a disadvantage in the fact that the
endpoints of a given fuzzy set were always located at the peaks
of the adjacent fuzzy sets. This may not necessarily be the case
in an optimal membership function. Lee and Takagi [151 have
also used GA to approach simultaneous membership function
and rule set design. They developed a four rule controller
which was able to control the inverted pendulum problem.
The GA was given more flexibility in designing the rule set
and membership functions for this difficult nonlinear problem.
This flexibility, however, led to solving for 360 parameters
which was encoded into strings 2880 bits long! Additional
information concerning those doing work in this area can be
found in papers by Nishiyama et al. [16], Qian et al. [17],
and Tsuchiya et al. [18]. These examples show that by using
GA’s to design both simultaneously, the two elements of fuzzy
controllers can be fully integrated to deliver a more finely
tuned, high performance controller.

VI. CART-CENTERING PROBLEM

A common problem used in literature is the centering of
a cart of mass m, on a one-dimensional track. The input
variables for this problem are the cart’s location on the track,
x, and the cart’s velocity, W . The objective is to find a controller
which can provide a force F which will bring the cart to x = 0
and v = 0 from an arbitrary initial condition (20 and vo) in
minimum time. The equations of motion for the cart are

x (t + T) = 2(t) + rv (t)
F (t) v (t + T) = v(t) + 7-
m

where T is the time step. The values for the constants and the
ranges for the variables are given in Table I.

Three controllers were developed for the cart-centering
problem. They will be referred to by the number of fuzzy sets
that partition the z-location, velocity, and output. For example,
the controller which had the z-location divided into five fuzzy
sets, the velocity divided into five fuzzy sets, and the output
divided into seven fuzzy sets was called the 557 controller. In
all cases, the locations of the peaks of the triangles forming

HwMAIFAR AND MCCORMICK: MEMBERSHIP FUNCTIONS AND RULE SETS FOR FUZZY CONTROLLERS

~

133

TABLE I
CONSTANTS AND RANGES FOR CART PROBLEM

Evoluibn Stage Refinement Stage

Fig. 2. Evolution and refinement stage fitness functions for cart controller.

the fuzzy sets were evenly spaced. For example, if the 2-

location was partitioned into five fuzzy sets, the peaks were
at -2, - 1 , O) 1, and 2. As stated earlier, GA was allowed
to determine the location of the triangle bases for the input
variables only, while the output fuzzy set locations were fixed.

VII. TRUCK BACKING SYSTEM

The truck backing problem consists of a truck located
somewhere on a 100 x 100 grid at a given angle to the
horizontal, 4. The objective is to take the truck in minimum
time from this arbitrary initial condition (xi, y;, $;) to the
location of the “loading dock” (2 = 50 m, y = 100 m)
while making the truck vertical to the dock (4 =90 degrees).
The controller will provide a turning angle, 8, that moves the
wheels and in turn the truck every time step. The equations of
motion for the truck are given as

$ ’ = $ + e
2’ = 2 + T cos(4’)
y’ = y + T sin(4’)

where T is the fixed distance the truck backs each time step,
and $’)x’, and y’ are, respectively, the new truck angle, 2-
location, and y-location. The problem is illustrated in Fig. 2.
The values for the constants and the ranges for the variables
are given in Table II. Although y-location could be considered
a variable, it was assumed in this study that the truck was
sufficiently far from the loading dock in the y-direction that
the y-distance could be ignored. This assumption assists in
simplicity and is consistent with work the work first done by
Nguyen and Widrow [5] and later by Wang and Mendel [16].

The truck-backing system created a number of difficulties
that were not present in the cart controller. One of the first
differences encountered was the realization that instead of
the rule set being a flat matrix, it was more like a matrix
wrapped around a cylinder. This came from the fact that
the truck angle, $, was allowed to vary from -90 degrees
to +270 degrees, a circle. Therefore, the two fuzzy sets that

TABLE I1
CONSTANTS AND RANGFS FOR TRUCK-BACKING PROBLEM

1

.a 0.8
z?
2 0.6

10.4

0.2

0

r

E

Fig. 3. Possible base lengths in truck controller problem.

contained -90 degrees and +270 degrees must also be attached
meaning they wrapped around to form a cylinder as would
happen if the top and bottom of the rule set matrix were
connected together. This led to the necessity to dictate to
the GA more exactly how it should choose the locations for
the triangle endpoints making up 4’s membership function. In
part because of this complication and because of the desire to
allow the GA more flexibility in determining the endpoints,
a new method was developed for this part of the problem.
In solving the cart problem for the 555 controller, there were
five possible base lengths of the fuzzy partitions: 1.2, 1.4,
1.6, 1.8, and 2.0. For the truck-backing problem, however, the
GA was modified so the incrementation for a given triangle
depended on the location of the endpoint of the adjacent
triangle. This process allowed for a much greater variation of
the endpoints and ultimately better results. This is illustrated
in Fig. 3 where the ranges of possible base lengths for the
outside membership functions varies according to the base
length of the center fuzzy partition. Instead of fixed points,
the resolution of the possible base lengths changed according
to the adjacent triangle. Also included in this problem was
the determination of the output’s membership function by the
GA. This added additional alleles to the GA strings and made
complicated output centroid calculation more complex since
the centroid of a given output fuzzy set could no longer be
assumed to reside at the location of its peak.

VnI. RESULTS FOR CART CONTROLLER

A. Initial Conditions

To find a satisfactory controller, the controller must be able
to operate over the entire range of the input spaces. For a
GA to properly design fuzzy controllers, this fact must be

134 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 2, MAY 1995

TABLE 111
INITIAL CONDITIONS FOR CART CONTROLLER

integrated into the function evaluation. This was done by using
multiple initial conditions in the evaluation of each member
of the population. If a single initial condition were used, for
example xo = 0.7 m and W O = -0.5 m/s, then the GA would
find a controller which would work well around that particular
point but may fail elsewhere. This makes the choice of initial
conditions an important consideration. The points must be
chosen to sufficiently cover the input spaces, but at the same
time, more initial conditions leads to increased run time for
the program. This is done in much the same manner as Karr’s
use of four initial conditions in his pole-cart balancing fuzzy
controller [6]. These initial conditions are listed in Table 111.
In evaluating each member of the population, the total fitness
of the individual was the sum of the fitnesses at each initial
condition.

B. Fitness Function

The fitness function proved to be the most challenging
aspect of applying GA’s to fuzzy controller design. The
process was divided into two stages, an evolution stage and a
refinement stage. In the evolution stage, the GA was used to
find satisfactory controllers, while in the refinement stage, the
GA used the previously developed controllers and attempted to
minimize the amount of time needed to bring both x-location
and velocity to zero.

For the first stage, which lasted through generation 30,
the fitness function rewarded a member of the population
according to how well it came to the tolerance value, f 0 . 5 for
both z-location (x) and velocity (w). These tolerance values
provided sufficient proof that the controller was heading in
the correct direction and slowing down as it approached zero
velocity and z-location. As the absolute value of both x and
velocity become smaller, the steady-state rule ensures that
they will continue decreasing. The generation at which the
evolution stage ended, 30, was obtained experimentally by
examining various runs and monitoring when the population
average began to level off as it approaches the population
maximum. This gives a relatively good assurance that the
majority of the population can successfully complete the task.
This fitness function is shown in Appendix A. If the controller
succeeded in bringing x and U within the tolerance, it was
given a fitness relative to the time it took. The minimum fitness
the controller could have if it met the tolerances was 8 (since
175 was the time limit). If the controller “timed out” (i.e., did
not converge by 175 time steps), it was either slightly punished
with a negative fitness or slightly rewarded depending on x-
location and velocity (the maximum fitness for this condition
could only be 3.5 if one tolerance were 0 and the other 1). If
the controller diverged (i.e., z or w were greater than 5.0), the

Loading dock (x=50, y=100)
I

f r o n t

Fig. 4. Truck and loading dock illustration.

fitness was given a larger negative value. These values helped
ensure that the GA was rewarded for controllers that worked or
nearly worked and punished for those that didn’t. Through the
use of this reinforcementheward scheme, the GA was able to
develop controllers which could solve all the initial conditions.

The second stage, from generation 3 1 to generation 100, was
based almost completely on time. If the controller reached the
tolerance values it was rewarded according to how short a
time it took. If the controller “timed out,” it was punished
according to how much it missed the tolerance values, and
if the controller diverged, it was given a very large negative
fitness which would probably ensure its failure to continue on
to the next generation. This fitness function is also shown in
Appendix A.

As was done for the determination for the crossover from
evolution to refinement stage, the fitness functions were ob-
tained throughout experimentation. The ovemding qualifica-
tion for the evolution phase was to find controllers that worked,
no matter how long they took. Examining the fitness function
shows that the minimum fitness for a successful completion
of an initial condition is eight, while a time out within relaxed
tolerances yields a maximum fitness of 3.5 (say x = 0 and
velocity -1). If a timeout occurs and the controller has not
come within tolerance it is slightly punished as opposed to
the stronger punishment it receives if it diverges. Much the
same occurs in the refinement stage where the minimum
fitness of a successful run is zero (time = 175), while the
minimum punishment for not coming within tolerance values
is -21 and the maximum punishment is -300. These fitness
functions are shown in Fig. 4. The evolution stage figure
assumes the minimum possible fitness mentioned earlier. In the
refinement stage graph, the maximum fitness, 30, comes from
an assumption of 75 time steps for a given initial condition
to complete the simulation successfully. These values are for
illustrative purposes only as the completion times had a large
variation. Also, since the refinement stage graph shows x and
velocity values from -5 to +5, the -300 penalty value is not
illustrated. As the work progressed with the cart controller, it
was decided that the tolerance values were too great and would
be reduced as the truck controller was developed. This was
reasonable since the cart controller was used to develop the
premise of dual rule set and membership function optimization,
while the truck controller would be more elaborate proof of
the concept.

HOMAIFAR AND MCCORMICK: MEMBERSHIP FUNCTIONS AND RULE SETS F

X

velocity

Fig. 5. 555 fuzzy cart controller.

C. 555 Controller
In this section we present one of the controllers developed

using GA’s. The 555 controller used 25 rules and needed 10
alleles to determine the location of the bases of the fuzzy sets
covering the input spaces, giving a total string length of 35.
Considering that each allele could have a value between one
and five, this meant that if a binary string had been used, three
bits would be necessary to represent the same information.
This would yield a string length of 105. Using this value
for string length would indicate the need for a much larger
population than the one being used to ensure enough initial
population diversity. Therefore, we cannot be assured that
the GA will converge to an optimal or near-optimal solution.
Even using the relatively small population size of 100, run
times took between two and one-half to three hours. However,
the performance of the controller did indicate that the GA
was finding a near-optimal controller, when compared with
solutions such as the one by Thrift [4]. Fig. 5 shows the
resultant best controller determined by GA.

D. Comparison of Cart Controllers

Once the GA-designed controllers had been determined, a
study was made to determine their performance and stability.
Because there is no accepted method to determine stability
for fuzzy controllers as there is for classical and state-space
controllers, a “brute force” method was adopted. To examine
the controllers, the input space of each variable was divided
into 40 points. Then each point was examined, one by one,
to determine if the controller diverged anywhere in the input
space. For 40 points in the %-location space and 40 points in
the velocity space, this yields a total of 1600 points. While
the ability of a controller to satisfy all these points does not
necessarily guarantee its stability (since it only takes one point
to make a controller unstable), this did ensure some measure
of confidence in the procedure. While examining each point, it
was a simple task to also count the number of time steps used
to bring all these points within the tolerance values, and these
numbers are given in Table IV. Also shown in Table IV is
the 555* controller, which was designed with the membership
functions fixed a GA was used to design only a rule set, with

:OR FUZZY CONTROLLERS I35

TABLE IV
COMPARISON OF CART CONTROLLERS

velocity

X

Fig. 6. 555* fuzzy cart controller using fixed membership functions.

the membership function being done by hand. This controller,
shown in Fig. 6, was created for comparison purposes to
illustrate the importance of membership function selection. As
Table IV shows all the controllers were able to successfully
bring the system within the tolerance values.

Table IV shows that the best performance, on average,
came from the 555 controller. The 333 controller, while being
the simplest, did not have the flexibility to produce fast
response times. Also, the 557 controller, which had smaller
partitions of the output space, performed nearly as well as
the 555 controller. Finally, note that while the 555* controller
was able to bring the cart to equilibrium for all points, its
performance was clearly inferior, needing almost 1/3 longer
than the GA designed rule set and membership function
combination, showing the importance of proper membership
function design.

E. Robustness Examination of 555 Controller

So far we have developed a controller which is able to
effectively bring a cart of mass 20 kg to equilibrium. However,
a good controller should also be a robust controller. For this
case, we developed a controller which could handle carts
of mass 2 to 20 kilograms. This controller has the same
structure as the 555 controller and will be referred to as the
555** controller. To develop the 555** controller, a slight
modification was made to the fitness function. Essentially,
when fitness was evaluated, a simulation was made at the two
mass extremes for each initial condition, and the fitness was
the sum of the simulations at each weight. Also, the upper
and lower limits on the force was reduced as a compromise
between the two weight extremes. The new limits were f75N

136 IEEE TRANSACTIONS ON FUZZY SYSTEMS. VOL. 3, NO. 2, MAY 1995

Fig. 7. Robust 555** fuzzy cart controller.

65

p 60

t; 55

8 50
F
'CI 45

40

35
M
$ 30

25

Mass

1 - 1600 Initial Points - 6400 Initial Points I

Fig. 8. Performance of Robust 555** Fuzzy Cart Controller.

instead of the previous f150N. The 555** controller designed
by a GA is shown in Fig. 7.

To test the robust controller, a simulation was made from
masses ranging from 2 kg to 20 kg in lkg increments. As was
done before, the input spaces from -2 to +2 were divided in
increments of 0.1 m for z-location and 0.1 m/s for velocity,
yielding 1600 initial conditions for each mass. Also, another
run was made with the input spaces divided into 80 points
(0.05 increments). This gave 6400 initial conditions tested for
each cart mass. The average number of time steps for each
mass is shown in Fig. 8. The controller had no failures for any
of the initial conditions examined, showing its ability to deal
with changing masses. As the figure also shows, the average
number of time steps needed actually decreased when more
initial conditions were added, lending confidence to its ability
to handle any possible input combinations.

F. Injluence of Faulty Rules

While the 555 controller behaved well for the given ranges
for the input variables, it was desired to know how the
controller would perform if any one of the rules became faulty.
Would the system diverge because of the bad rule or would it
simply slow the controller down? Table V shows the results

TABLE V
EXAMINATION OF RULE CHANGE FOR 555 FUZZY CART CONTROLLER

TABLE VI
INITIAL CONDITIONS FOR TRUCK-BACKING SYSTEM

from changing some of the rules in the 555 controller. For
example, the rule at location (1, 1) in the rule set matrix was
initially 5 (indicating a positive medium output). This rule
was changed to 1, 2, 3, and 4 while noting the performance
on each of the 1600 initial points.

Table V makes many interesting points. In many instances,
the rules surrounding the bad rule can, in effect, overrule it
when the calculation of the output is determined. Even though
this occurs, there will be some degradation in response time
because a rule that is the complete opposite of the surrounding
rules will have a great influence on the output. This effect was
seen in the change of rule (3, 3), which is the steady-state rule,
IF (a = zero) and (v = zero) THEN (force = zero). When
the output was at the two extremes, 1 and 5, the controller
was not able to bring the final values within the tolerance
before "timing out". Rules along the edges and the corners
such as (1, l), however, did not have the luxury of having
rules completely surround them and able to compensate for
their mistakes. As can be seen from modifying (1, l), the
further the rule was from its original value, the more likely
the chance of divergence. Inner rules, such as (2, 2) did not
suffer from this problem.

Ix. RESULTS FOR TRUCK-BACKING PROBLEM

A. Initial Conditions

The controller used for this problem was a 757 controller.
These values were chosen so a comparison could be made
with the results illustrated by Kosko [6]. The initial conditions
used are shown in Table VI. These initial conditions include
four points added intentionally to prevent the wrapping around
effect of 4 mentioned earlier. Those four points are at (10,
22.5 degrees), (10, 157.5 degrees), (90, 22.5 degrees), and
(90, 157.5 degrees). Without these extra points, the GA might
try to wrap around to get to (z = 50 m, y = 100 m, 4 = 90
degrees) instead of taking the shorter, more direct route.

HOMAIFAR AND MCCORMICK: MEMBERSHIP FUNCTIONS AND RULE SETS FOR FUZZY CONTROLLERS

B. Fimess Function

As was dune fur the cart controller, the fitness function
was divided into two stages, the first stage for develop-
ment of working controllers and the second stage for time
minimization. As before, the fitness function was of a re-
inforcementheward type. To promote better results from the
GA, the tolerance variables, xtol and q5tol, used to determine
if a simulation was successful, were allowed to decrease
linearly from generation 0 (where their respective values were
f 7 . 5 m and f18.0 degrees) to generation 30 (where their
respective values were f 0 . 5 m and f 1 . 3 degrees). Given that
x ranges over 100 m and c,h ranges over 360 degrees, the
final tolerance values represent errors of only 1% and 0.722%.
These tolerance values were compared to error values, x,,, and
$,,,, to determine if a simulation should end. The values for
z,,, and $,,, are given as

x,,, 50.0 - x

and

der, = 90.0° - 4.
The fitness for the first 30 generations is shown in Appendix
A. As was the case for the cart controller, the fitness function
was determined experimentally; however, the desire to keep
the fitness function simple led to a much more manageable
equation.

If the controller did not meet the tolerance requirements or
it “timed out,” it was punished with a negative fitness. In the
early stages, however, controllers that did meet the tolerance
requirements are highly valued, and are thus rewarded with a
fitness that would offset four failures.

For the second stage, the fitness function is totally time
dependent. The second fitness function, used from generation
31 to generation 100 is given in Appendix A.

maintained the values they obtained at
generation 30 (50.5 m and f 1 . 3 degrees, respectively). Since
the average time the controller took for a given initial condition
was approximately 50 time steps, one successful simulation
was approximately equal to one failed simulation.

Here ztol and

C, 757 Controller

The string length for the 757 controller problem was 54 (35
for the rule set, seven for the 4 membership function, five for
the z membership function, and seven for the 0 membership
function). The string resembles the example shown in Fig. 1
except for the change in variable names and the additional
alleles needed for the increased rules, added fuzzy sets, and
the inclusion of the output variable. The controller developed
by the GA is given in Fig. 9.

To see physically how the truck controller performed, a
program was written which would track the motion of the
truck from a given beginning point and angle. An example of
the truck controller’s behavior is given in Fig. 10.

D. Comparison with Reference Controller

Now that a GA had designed the entire controller, the true
test came in its comparison with another controller, the one

X

~

137

Fig. 9. 757 fuzzy truck controller.

used by Kosko. Kosko had compared his fuzzy controller
with a neural controller, and his results indicated the fuzzy
controller consistently outperformed it. The basis of judging
the performance was the same as for the cart controller, the
average number of time steps required when tested on a
given set of initial conditions. For this purpose, the z input
space was divided in increments of 1 from 5 to 95. The
c,h input space was divided in increments of 1 degree from
-90 degrees to 270 degrees. This means the total number of
initial conditions used was 32,400 (90 x 360). The results of
the GA-designed controller and the reference controller are
shown in Table VII. Dividing the number of time steps for
the reference controller by the number of time steps for the
GA-designed controller, we find that the reference controller
averaged 6.34% longer, showing the GA made a small, but
relevant improvement. As before, examining the input spaces
in this manner does not ensure the stability of the controller,
but given the large number of points considered, stability is
almost certain.

X. CONCLUSION
This paper clearly shows the potential for using genetic

algorithms to solve optimization problems. The ability of fuzzy
logic controllers to provide control where more conventional
methods become too complex has also been shown by re-
searchers. This work has shown these two, fairly new, methods
can be used together to form controllers without the previously
needed human expert. This methodology allows the complete
design of both major components of fuzzy controllers, the rule
sets and membership functions, leading to high performing
controllers which are completely computer-designed. We have
developed four different controllers for the cart problem, each
of which was able to bring the cart to equilibrium over the
entire ranges of the input spaces. Also, we have shown a GA’s
ability to design a robust controller which can work over a
wide parameter range. The GA designed controllers proved to
show the same degree of fault tolerance one would expect in

138 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 2, MAY 1995

Fig. 10. Motion of truck from zo = 20, $0 = -80 degrees.

TABLE VI1
COMPARISON OF GA-DESIGNED AND REFERENCE CONTROLLERS

a fuzzy controller. In addition, we have developed a truck-
backing controller which outperformed a reference controller.
While these results are encouraging, more work should be done
on refining the process. First, fitness functions are currently
a weak point; better methods need to be developed to find
the best fitness functions. Also, more work needs to be done
to ensure that the GA finds controllers which operate over
the entire space of the input variables. Also, as mentioned
earlier, the inclusion of finding the location of the peaks of
the triangles in the membership functions will yield even
higher performing controllers. Finally, controllers for still
more problems should be examined to show the effectiveness
of this method.

APPENDIX A
Fitness Functions for Cart and Truck Controllers Cart Con-

troller
Evolution Stage Fitness Function

x and v are within tolerance values }
if (1x1 < 0.5) and (]velocity] < 0.5) then {

fitness = 8 * 175hime
else if (time = 175) then
{ simulation times out before x and ‘U

if (1x1 < 1.0) and ((velocity1 < 1.0)

fitness = 3.5/sqrt(x2 + velocity’)

fitness = -1

then are within tolerance values}

else

else
x > 5.0 or v > 5.0)

fitness = -7
Refinement Stage Fitness Function

2 and v are within tolerance values)
if (1x1 < 0.5) and (Ivelocityl < 0.5) then {

fitness = 0.3 * (175 - time)

else if (time = 175) then
{ simulation times out before z and v

fitness = -42 * sqrt(x2 + velocity2)
are within tolerance values}

else
x > 5.0 or v > 5.0)

Truck Controller
fitness = -300

Evolution Stage Fitness Function
if (lxerr < ~ t o d and (14errI < h o d then

fitness = 2.0

fitness = -0.5
else

Refinement Stage Fitness Function
if (Ixerrl < x t o d and (I4err l < 4 t o d then

fitness = 100 - time

fitness = -50
else

REFERENCES

L. A. Zadeh, “Fuzzy sets,” Informa. Contr., vol. 8, pp. 338-353, 1965.
C. L. Karr and E. J. Gentry, “Fuzzy control of pH using genetic
algorithms,” IEEE Trans. Fuzzy Syst., vol. 1, no. 1, pp. 4 6 5 3 , Feb.
1993.
C. L. Karr, “Design of an adaptive fuzzy logic controller using a genetic
algorithm,” in Proc. the Fourth Int. Con$ Genetic Algorithms, 1991, pp.
450-457.
P. Thrift, “Fuzzy logic synthesis with genetic algorithms,” in Proc.
Fourfh Int. Con$ Genetic Algorithms, pp. 509-513, 1991.
D. Nguyen and B. Widrow, “The truck backer-upper: An example
of self-leaming in neural networks,” in Proc. Int. Joint Con& Neural
Networks (IJCNN-90). vol. 2, 1989, pp. 357-363.
B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems
Approach to Machine Intelligence. Englewood Cliffs, NJ: Prentice-
Hall, 1992.
J. H. Holland, Adaptafion in Natural and ArtGcial Systems. Ann
Arbor, MI: University of Michigan, 1975.
D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning.
R. Jain, “Fuzzyism and Real World Problems,” in Fuzzy Sets; Theory
and Applications to Policy Analysis and Information Systems, Wang, P.
P, and Chang, S. K., Eds.
Y . Leung, Spatial Analysis and Planning Under Imprecision. New
York, NY: Elsevier, 1988.
K. Krishnakumar, “Microgenetic algorithms for stationary and nonsta-
tionary function optimization,” in SPIE Proc. Intell. Contr. Adaprive
Syst., vol. 1196, 1989, pp. 289-296.
T. J. Procyk and E. H. Mamdani, “A linguistic self-organizing process
controller,” Aurumatica, vol. 15, no. 1, pp. 15-30, 1979.
A. Homaifar and V. E. McCormick, “Full design of fuzzy controllers
using genetic algorithms,” in SPIE Conf Neural Stochastic Methods
Image Signal Process., vol. 1766, 1992, pp. 393404.
H. Nomura, I. Hayashi, and N. Wakami, “A self-tuning method of fuzzy
reasoning by genetic algorithm,” in Proc. Int. Fuzzy Syst. Intell. Contr.
Con$ (IFSICC ’92). 1992, pp. 236-245.
M. A. Lee and H. Takagi, “Integrating design stages of fuzzy systems
using genetic algorithms,” in Proc. IEEE Int. Con$ Fuzzy Syst. (FUZZ-
lEEE ’93). 1993, pp. 612-617.
T. Nishiyama, T. Takagi, R. Yager, and S. Nakanishi, “Automatic
generation of fuzzy inference rules by genetic algorithms,” in Proc.
8th Fuzzy Sysr. Symp., 1992, pp. 237-240. (in Japanese)
Y. Qian, P. Tessier, and G. Dumont, “Fuzzy logic based modeling
and optimization,” in 2nd Inf. Con$ Fuzzy Logic and Neural Networks
(IIZUKA ’92). 1992, pp. 349-352.
T. Tsuchiya, Y. Matsubara, and M. Nagamachi, “Learning fuzzy rule
parameters using genetic algorithms,” in Proc. 8th Fuzzy Syst. Symp.,
1992, pp. 245-248. (in Japanese)
L. Wang and J. M. Mendel, “Generating fuzzy rules by learning
from examples,” IEEE Trans. Syst. Man, Cybern., vol. 22, no. 6, pp.
1414-1427, Nov.-Dec. 1992.

Reading, MA: Addison-Wesley, 1989.

New York: Plenum, 1980.

ROMAlFAR AND MCCORMICK: MEMBERSHIP €?UNCTIONS AND RULE SETS FOR FUZZY CONTROLLERS 139

Abdollah Homaifar received the B.S. and M.S.
degrees from State University of New York at Stony
Brook in 1979, and 1980, respectively, and the
Ph.D. degree from the University of Alabama in
1987, all in electrical engineering.

He is currently an Assistant Professor in the
Department of Electrical Engineering at the North
Carolina A&T State University. His current research
interests include the application of genetic algo-
rithms and fuzzy logic to the design of a controller
for a high speed civil transport vehicle as well as

machine learning, expert systems, adaptive control, optimal control, signal
processing, and fuzzy control and modeling.

Dr. Homaifar is an associate editor of the Joumal of Intelligent Automation
and Soft Computing. He is a member of IEEE Control Systems Society,
Sigma Xi, Tau Beta Pi, and Eta Kapa Nu.

Agency to increase AC
current research interests
and nonlinear control sq

Ed McCormick (M'94) received the B.S. degree in
aerospace engineering in 1987 from North Carolina
State University in Raleigh, N.C. He received the
M.S. degree in electrical engineering in 1992 from
North Carolina Agricultural and Technical State
University in Greensboro, N.C.

Through his advisor at North Carolina A&T, he
gained an interest in genetic algorithms and fuzzy
logic. Since 1992, he has been with Research Tri-
angle Institute in Research Triangle Park, N.C. He
is now working with the Environmental Protection
induction motor efficiency with fuzzy logic. His

include fuzzy systems, genetic algorithms, and linear
[stems.

