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Simultaneous Design of Membership 
Functions and Rule Sets for Fuzzy 

Controllers Using Genetic Algorithms 
Abdollah Homaifar and Ed McCormick, Member, ZEEE 

Abstract- This paper examines the applicability of genetic 
algorithms (GA’s) in the simultaneous design of membership 
functions and rule sets for fuzzy logic controllers. Previous work 
using genetic algorithms has focused on the development of 
rule sets or high performance membership functions; however, 
the interdependence between these two components suggests a 
simultaneous design procedure would be a more appropriate 
methodology. When GA’s have been used to develop both, it has 
been done serially, e.g., design the membership functions and 
then use them in the design of the rule set. This, however, means 
that the membership functions were optimized for the initial rule 
set and not the rule set designed subsequently. GA’s are fully 
capable of creating complete fuzzy controllers given the equations 
of motion of the system, eliminating the need for human input 
in the design loop. This new method has been applied to two 
problems, a cart controller and a truck controller. Beyond the 
development of these controllers, we also examine the design of a 
robust controller for the cart problem and its ability to overcome 
faulty rules. 

I. INTRODUCTION 
ENETIC algorithms (GA’s) are search procedures based G on the mechanics of natural selection. They use op- 

erations found in natural genetics to guide itself through 
the paths in the search space. GA’s provide a means to 
search poorly understood, irregular spaces. Because of their 
robustness, GA’s liave been successfully applied to a variety 
of function optimizations, self-adaptive control systems, and 
learning systems. 

Fuzzy systems arose from the desire to describe complex 
systems with linguistic descriptions [ 11. While Boolean sys- 
tems allow an item to have a membership of either one or 
zero in a set, fuzzy systems allow for degrees of membership 
over the range [0, 11. This imitates the linguistic, nonprecise 
approach to describing conditions (i.e., cold, very warm) used 
in everyday life. 

Fuzzy controllers allow for a simpler, more human approach 
to control design and do not demand the mathematical model- 
ling knowledge of more conventional control design methods. 
As systems become more complex, the ability to describe 
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them mathematically becomes more difficult. For this reason, 
fuzzy controllers provide reasonable, effective alternatives to 
classical or state-space controllers. 

By using a linguistic approach, fuzzy theory can be 
integrated into control theory using rules of the form 
ZF{condition} THEN{action}. Using enough of these rules, 
one can create a functional controller. In this same way 
the input variables can be partitioned into overlapping 
sets which have a linguistic correlation (i.e., cold, warm, 
hot) to form a membership function. These fuzzy sets are 
most often triangular in shape but trapezoids and Gaussian 
functions have also been used. The membership values 
control the degree to which each rule “fires”, illustrating 
the interdependent relationship between the rule set and the 
membership functions. 

This study investigates the use of genetic algorithms in 
the design and implementation of fuzzy logic controllers. 
Previously, generation of membership functions had been a 
task mainly done either iteratively, by trial-and-error, or by 
human experts. A task such as this is a natural candidate 
for a GA since GA’s attempt to create membership functions 
that will cause the controller to perform optimally. In much 
the same manner, a GA can be used to generate the rules 
which use these membership functions. Recently, work has 
been done using GA’s to do each of these tasks separately. 
Kam, for example, has used a GA to generate membership 
functions for a pH control process [2] and the cart-pole 
problem [3]. Such work has shown GA’s ability to successfully 
create the individual parts of a fuzzy controller, but since 
membership functions and rule sets are co-dependent, using 
a hand-designed rule set with a GA designed membership 
functions or hand-designed membership functions with a GA 
designed rule set does not use the GA to its full advantage. 
Thus, the use of GA’s to determine both membership functions 
and rule sets simultaneously for an optimal or near-optimal 
controller is the main objective of this work. 

l k o  problems are examined to check the effectiveness of 
this method. The first is centering and stopping a cart located 
on a one-dimensional track as described by Thrift [4]. Given 
an initial velocity and location on the track, the objective is to 
determine a controller which will bring the cart to zero velocity 
and zero location in minimum time. Different controllers were 
designed for this problem by dividing the input and output 
spaces into different partition sizes. 
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The second controller comes from the truck-backing system 
described by Nguyen and Widrow [5] and repeated by Kosko 
[6]. This controller is used to guide a truck from a given 2 
and y location on a 100 x 100 grid and at a specific angle to 
the horizontal (4) to the location of the “loading dock.” A 
controller was designed which performed this task in minimum 
time, and a comparison was made with the one designed by 
Kosko. 

As cited earlier, GA’s have been used in varying degrees to 
assist in designing the individual parts of a fuzzy controller. 
In the design of membership functions, GA’s have been used 
not only to determine the base lengths of the fuzzy sets but the 
location of their peaks also. In this work, a GA has been used 
to determine only the base lengths of triangular fuzzy sets and 
not the location of the peaks. Combining this task with the 
determination of the rule sets has provided proof of a GA’s 
ability to solve this problem. 

11. GENETIC ALGORITHMS 
Genetic algorithms are general purpose optimization algo- 

rithms with a probabilistic component that provide a means to 
search poorly understood, irregular spaces. John Holland orig- 
inally developed GA’s and provided its theoretical foundation 
in his book, Adaptation in Natural and Art$cial Systems [7]. 
Holland developed GA’s to simulate some of the processes ob- 
served in natural evolution. Evolution is a process that operates 
on chromosomes (organic devices for encoding the structure 
of living beings) rather than on living beings. Natural selection 
links chromosomes with the performance of their decoded 
structure. The processes of natural selection cause those chro- 
mosomes that encode successful structures to reproduce more 
often than those that do not. Recombination processes create 
different chromosomes in children by combining material from 
the chromosomes of the two parents. Mutation may cause the 
chromosomes of children to be different from those of their 
parents. 

GA’s appropriately incorporate these features of natural 
evolution in computer algorithms to solve difficult problems 
in the way that nature has done-through evolution. GA’s 
require the problem of maximization (or minimization) to be 
stated in the form of a cost (objective) function. In a GA, a 
set of variables for a given problem is encoded into a string 
(or other coding structure), analogous to a chromosome in 
nature. Each string, therefore, contains a possible solution to 
the problem. To determine how well a chromosome solves the 
problem, it is first broken down into the individual substrings 
which represent each variable and these values are then used 
to evaluate the cost function, yielding a “fitness”. GA’s 
select parents from a pool of strings (population) according 
to the basic criteria of “survival of the fittest”. It creates 
new strings by recombining parts of the selected parents in a 
random manner. In this manner, GA’s are able to use historical 
information as a guide through the search space. 

The repopulation of the next generation is done using 
three methods: reproduction, crossover, and mutation [8]. 
Through reproduction, strings with high fitnesses receive mul- 
tiple copies in the next generation while strings with low 

fitnesses receive fewer copies or even none at all. Crossover 
refers to taking a string, splitting it into two parts at a randomly 
generated crossover point and recombining it with another 
string which has also been split at the same crossover point. 
This procedure serves to promote change in the best strings 
which could give them even higher fitnesses. Mutation is the 
random alteration of a bit in the string which assists in keeping 
diversity in the population. 

GA’s work through function evaluation, not through differ- 
entiation or other such means. Because of this trait, a GA does 
not care what type of problem it is asked to maximize, only 
that it be properly coded. Thus GA’s are able to solve a wide 
range of problems: linear, nonlinear, discontinuous, discrete, 
etc. 

111. FUZZY CONTROLLERS 

The development of fuzzy theory came from the inability to 
describe some physical phenomena with the exact mathemat- 
ical models dictated by more conventional Boolean models. 
Fuzziness describes event ambiguity. It measures the degree 
to which an event occurs, not whether it occurs. The fact 
that fuzziness is lacking in precision has led to its dismissal 
by some researchers. Others, however, see fuzzy theory as a 
powerful tool in the exploration of complex problems because 
of its ability to determine outputs for a given set of inputs 
without using a conventional, mathematical model. As Jain 
notes [9], the basic motivation behind fuzzy set theory is the 
fact that the conventional methods had become so complex 
that researchers trying to apply them had to make a choice 
between a complex system and a complex tool. 

Fuzzy theory owes a great deal to human language. As 
explained by Leung [lo], daily languages cannot be precisely 
characterized on either the syntactic or semantic level. When 
we speak of temperature in terms such as “hot” or “cold” 
instead of in physical units such as degrees Fahrenheit or 
Celsius, we can see language becomes a fuzzy variable whose 
spatial denotation is imprecise. In this sense, fuzzy theory 
becomes easily understood because it can be made to resemble 
a high level language instead of a mathematical language. 
To describe a universe of discourse, fuzzy sets with names 
such as “hot” and “cold” are used to create a membership 
function. By determining the degree of membership of an input 
in the fuzzy sets of this membership function, one can see 
the role membership functions play in decoding the linguistic 
terminology to the values a computer can use. Of course 
in most respects these membership functions are subjective 
in nature. What determines the ranges for these fuzzy-set 
values or the shape of these membership functions? In most 
cases, membership functions are designed by experts with a 
knowledge of the system being analyzed. However, human 
experts cannot be expected to provide optimal membership 
functions for a given system. Often, these functions are mod- 
ified iteratively while trying to obtain optimality. 

How are these membership functions used in fuzzy con- 
trollers? In its simplest form a fuzzy logic controller is simply 
a set of rules describing a set of actions to be taken for a 
given set of inputs. It is easiest to think of these rules as if- 
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then statements of the form IF{ set of inputs} THEN{ outputs}. 

As an example, consider a fuzzy controller used in the cart 
controller problem. One rule might be ZF{distance from 0 very 
far in positive z-direction} and {velocity >> 0) THEiV{apply 
a force <O}. Another rule may be ZF{distance from 0 near in 
negative z-direction} and (velocity = 0) THEN{apply a force 
> 0). Since “very far” applies to a range of distances which 
also may belong to another fuzzy-set variable (i,e., “far”) 
which has rules of its own, the output which results from 
“defuzzification” of the application of these rules must take 
into account how much each rule applies before determining 
how much output must be applied. Usually a centroid method 
is used to account for the influence of each rule on the output. 

IV. ALGORITHM DESCRIPTION 

The basis for the software used in this paper is the Simple 
Genetic Algorithm (SGA) program developed by Goldberg [8]. 
The SGA program allows the user to define the values for 
population size, maximum number of generations, probability 
of crossover, and probability of mutation. Their respective 
values are 100, 100, 0.7, and 0.03. In order to select the 
individuals for the next generation, tournament selection was 
used instead of SGA’s roulette wheel selection. In tournament 
selection, two or more members of the population are selected 
at random and their fitness compared. The member with the 
highest fitness advances to the next generation. 

The Simple Genetic Algorithm uses binary strings to encode 
the parameters which are to be optimized. While this method 
could also be used in the determination of the fuzzy controller 
design, a more representative method was chosen. To illustrate 
this method, consider the cart centering problem. First, the 
number of alleles (individual locations which make up the 
string) was determined from the size of the rule set plus 
the number of fuzzy sets used to partition the spaces of the 
input and output variables. In the cart problem, the bases 
of the triangles which formed the output space were fixed 
to ease the computational burden (reduction of string length 
and simplification of the defuzzification process), while the 
input variables, z-location and velocity, had base lengths that 
were determined by the GA. In this example five triangular 
fuzzy sets were used to partition the input and output spaces: 
negative medium (NM), negative small (NS), zero (ZE), 
positive small (PS), and positive medium (PM). The rule set, 
then, contains twenty-five (5 x 5) rules to account for every 
possible combination of input fuzzy sets. The rules are of the 
form, ZF(z is {NM, NS, ZE, PS, or PM}) and (w is {NM, NS, 
ZE, PS, or PM}) THEiV{output}, where output is one of the 
fuzzy sets used to partition the output space. The two input 
spaces use a total of ten triangles, so the string to represent 
a given rule set and membership function combination would 
have thirty-five alleles (25 + 10). No additional alleles are 
needed for the output triangles because their base lengths are 
fixed. Note that the term alleles is used instead of bits, because 
the value of each location in the string contains either the 
number of the output fuzzy set to be used for a given rule 
(the first twenty-five alleles where NM = 1, NS = 2, etc.) or 
the value which will be converted to the length of the base 

String: 14321524321245143122113454525234124 
1432152432124514312211345 45252 34124 i x-location 1 velocity 1 

locations locations 
1 rule set  

x 

velocity 

Fig. 1. Example of string fuzzy controller conversion. 

of the triangles which make up the input spaces (the last ten 
alleles). The calculation of the triangle bases from the allele 
values (1-5) were done as follows (the values are specific to 
the cart-centering controller described above): 

1) Subtract 1 from the allele value and divide by 10 
(malung the range now 04.4). 

2) Subtract this value from one (whch is the fixed distance 
between the peaks of each triangle). 

3) Doubling this value gives the base length for each 
particular triangle. This value can be anywhere from 1.2 
m to 2.0 m. A base length of 2.0 m means the end point 
of the triangle extends to the peak of the surrounding 
triangle while if two adjacent triangles had the smallest 
possible base lengths (1.2 m), they would be assured of 
having a 0.2 m overlap. 

Following this method, the string representing the controller is 
integer-based instead of binary-based. The alleles representing 
the rule sets have values in the set { 1,2, + . , Number of Output 
Sets} while the alleles representing the bases of the triangles 
are in the set { 1,2, . . . ,5}. This change in structure does not 
change the basic functioning of the GA. In fact, the only 
difference occurs within mutation, since an allele was allowed 
to change into any value other than its present value. Thus, 
the two main ingredients of a fuzzy controller, the rule set and 
the membership functions, are incorporated into a single string 
which the GA will seek to optimize. An example of how each 
sting is broken down is given in Fig. 1. 

A problem which comes to light in the optimization is the 
use of mathematical models to evaluate the fitness of a given 
string. One of the strong points of fuzzy controllers is the fact 
that they do not require mathematical models. However, to 
obtain a fitness for a given controller, the GA must have a 
method to evaluate the controller’s performance. In this sense 
we have negated one of the fuzzy controllers advantages in 
order to use the power of GA’s to optimize this controller. 

V. APPLICABILITY OF GAS TO FUZZY CONTROLLERS 

The application of genetic algorithms to fuzzy logic con- 
trollers holds a great deal of promise in overcoming two of 
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the major problems in fuzzy controller design, design time 
and design optimality. Previous work has been done mainly in 
two areas: learning the fuzzy rules and learning membership 
functions. A GA’s robustness enables it to cover a complex 
search space in a relatively short period of time while ensuring 
an optimal or near-optimal solution. Because of this capability, 
GA’s are a natural match for fuzzy controllers. 

Thrift’s paper [4] examines the feasibility of using GA’s to 
find fuzzy rules. In this paper, fuzzy control synthesis is done 
in decision table form. The problem examined is centering a 
cart of mass m on a one dimensional track. The objective is to 
move the cart from a given initial position and velocity to zero 
position and velocity in minimum time. This is done through 
the application of a force F from the controller. For 100 runs 
with random starting points, the average number of time steps 
for the hand-designed fuzzy controller to bring the cart to zero 
position and velocity was 164. In comparison, a GA designed 
controller using the same starting points had an average of 
143 time steps. As Thrift notes, while the GA based fuzzy 
rules perform reasonably well, work could be done to further 
improve its performance, such as letting the GA determine the 
endpoints of the membership functions. 
Karr [3] examined the feasability of using a GA to find 

high performance membership functions for a controller for a 
pole-cart system. The task for the controller is as follows: 

A wheeled cart has a rigid pole hinged to its top. The 
cart is free to move right or left along a straight bounded 
track and the pole is free to move within the vertical 
plane parallel to the track. The cart is to be kept within 
the predefined limits of the track and the pole should 
be prevented from falling beyond a predefined vertical 
angle by applying a force of fixed magnitude to the left 
or right of the base of the cart. 

The objective is to bring the cart to rest at the center of the 
track with the pole balanced, much the same as in Thrift’s 
paper. Also, he examined the use of micro-GA, a small 
population GA developed by Krishnakumar [ 1 11, to determine 
an adaptive real-time controller for the same problem where 
system parameters may be time varying. In determining the 
membership functions, the GA was used to determine the 
anchor points for each of the linguistic variables used. In the 
nonadaptive problem, the GA designed fuzzy logic controller 
consistently outperformed the controller he had hand-designed. 

For the adaptive controller, the micro-GA controller had the 
best performance. The nonadaptive author-designed controller 
always became unstable while being used in the adaptive 
case while the nonadaptive GA controller and the micro-GA 
designed adaptive controller were always able to complete the 
task. The difference between the two GA designed controllers 
was in their convergence times; the micro-GA controller 
consistently balanced the system faster than the nonadaptive 
GA controller, whose performance was deemed unacceptable. 

Others have sought to optimize fuzzy controllers using other 
methods. For example, Procyk and Mamdani [12] iteratively 
designed membership functions. While all these methodologies 
have provided improvements in fuzzy controller design, they 
have a major limitation; how can an optimal design be obtained 

when one of the two main components is designed using 
a nonoptimizing method. Logically, to obtain an optimal 
rule set and set of membership functions, the two must be 
designed together so the links between them can be fully 
exploited. This process is now beginning to be explored by 
researchers. Previous work done by Homaifar and McCormick 
[13] examined the initial applicability of GA to solving the 
cart-centering problem and laid the foundation for this more in- 
depth study. Also, Nomura et al. [ 141, examined using a GA to 
determine both the membership function and optimum number 
of rules for a single input, single output nonlinear system. 
Since the two systems had only one input, the number of fuzzy 
sets for that input was also the number of rules. They used 
a binary string structure for the GA where each bit location 
mapped to a corresponding location in the input space. If a bit 
representing a given location in the input space were a one, that 
meant there was the peak of a fuzzy set located there. While 
able to successfully optimize both the membership function 
and the rule set, there may be a disadvantage in the fact that the 
endpoints of a given fuzzy set were always located at the peaks 
of the adjacent fuzzy sets. This may not necessarily be the case 
in an optimal membership function. Lee and Takagi [ 151 have 
also used GA to approach simultaneous membership function 
and rule set design. They developed a four rule controller 
which was able to control the inverted pendulum problem. 
The GA was given more flexibility in designing the rule set 
and membership functions for this difficult nonlinear problem. 
This flexibility, however, led to solving for 360 parameters 
which was encoded into strings 2880 bits long! Additional 
information concerning those doing work in this area can be 
found in papers by Nishiyama et al. [16], Qian et al. [17], 
and Tsuchiya et al. [18]. These examples show that by using 
GA’s to design both simultaneously, the two elements of fuzzy 
controllers can be fully integrated to deliver a more finely 
tuned, high performance controller. 

VI. CART-CENTERING PROBLEM 

A common problem used in literature is the centering of 
a cart of mass m, on a one-dimensional track. The input 
variables for this problem are the cart’s location on the track, 
x, and the cart’s velocity, W .  The objective is to find a controller 
which can provide a force F which will bring the cart to x = 0 
and v = 0 from an arbitrary initial condition (20 and vo) in 
minimum time. The equations of motion for the cart are 

x ( t  + T )  = 2( t )  + rv ( t )  
F ( t )  v ( t  + T )  = v( t )  + 7- 
m 

where T is the time step. The values for the constants and the 
ranges for the variables are given in Table I. 

Three controllers were developed for the cart-centering 
problem. They will be referred to by the number of fuzzy sets 
that partition the z-location, velocity, and output. For example, 
the controller which had the z-location divided into five fuzzy 
sets, the velocity divided into five fuzzy sets, and the output 
divided into seven fuzzy sets was called the 557 controller. In 
all cases, the locations of the peaks of the triangles forming 
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TABLE I 
CONSTANTS AND RANGES FOR CART PROBLEM 

Evoluibn Stage Refinement Stage 

Fig. 2. Evolution and refinement stage fitness functions for cart controller. 

the fuzzy sets were evenly spaced. For example, if the 2- 

location was partitioned into five fuzzy sets, the peaks were 
at -2, - 1 , O )  1, and 2. As stated earlier, GA was allowed 
to determine the location of the triangle bases for the input 
variables only, while the output fuzzy set locations were fixed. 

VII. TRUCK BACKING SYSTEM 

The truck backing problem consists of a truck located 
somewhere on a 100 x 100 grid at a given angle to the 
horizontal, 4. The objective is to take the truck in minimum 
time from this arbitrary initial condition (xi, y;, $;) to the 
location of the “loading dock” (2  = 50 m, y = 100 m) 
while making the truck vertical to the dock (4 =90 degrees). 
The controller will provide a turning angle, 8, that moves the 
wheels and in turn the truck every time step. The equations of 
motion for the truck are given as 

$ ’ = $ + e  
2’ = 2 + T cos( 4’) 
y’ = y + T sin( 4’) 

where T is the fixed distance the truck backs each time step, 
and $’)x’, and y’ are, respectively, the new truck angle, 2- 
location, and y-location. The problem is illustrated in Fig. 2. 
The values for the constants and the ranges for the variables 
are given in Table II. Although y-location could be considered 
a variable, it was assumed in this study that the truck was 
sufficiently far from the loading dock in the y-direction that 
the y-distance could be ignored. This assumption assists in 
simplicity and is consistent with work the work first done by 
Nguyen and Widrow [5] and later by Wang and Mendel [16]. 

The truck-backing system created a number of difficulties 
that were not present in the cart controller. One of the first 
differences encountered was the realization that instead of 
the rule set being a flat matrix, it was more like a matrix 
wrapped around a cylinder. This came from the fact that 
the truck angle, $, was allowed to vary from -90 degrees 
to +270 degrees, a circle. Therefore, the two fuzzy sets that 

TABLE I1 
CONSTANTS AND RANGFS FOR TRUCK-BACKING PROBLEM 

1 

.a 0.8 
z? 
2 0.6 

10.4 

0.2 

0 

r 

E 

Fig. 3. Possible base lengths in truck controller problem. 

contained -90 degrees and +270 degrees must also be attached 
meaning they wrapped around to form a cylinder as would 
happen if the top and bottom of the rule set matrix were 
connected together. This led to the necessity to dictate to 
the GA more exactly how it should choose the locations for 
the triangle endpoints making up 4’s membership function. In 
part because of this complication and because of the desire to 
allow the GA more flexibility in determining the endpoints, 
a new method was developed for this part of the problem. 
In solving the cart problem for the 555 controller, there were 
five possible base lengths of the fuzzy partitions: 1.2, 1.4, 
1.6, 1.8, and 2.0. For the truck-backing problem, however, the 
GA was modified so the incrementation for a given triangle 
depended on the location of the endpoint of the adjacent 
triangle. This process allowed for a much greater variation of 
the endpoints and ultimately better results. This is illustrated 
in Fig. 3 where the ranges of possible base lengths for the 
outside membership functions varies according to the base 
length of the center fuzzy partition. Instead of fixed points, 
the resolution of the possible base lengths changed according 
to the adjacent triangle. Also included in this problem was 
the determination of the output’s membership function by the 
GA. This added additional alleles to the GA strings and made 
complicated output centroid calculation more complex since 
the centroid of a given output fuzzy set could no longer be 
assumed to reside at the location of its peak. 

VnI. RESULTS FOR CART CONTROLLER 

A. Initial Conditions 

To find a satisfactory controller, the controller must be able 
to operate over the entire range of the input spaces. For a 
GA to properly design fuzzy controllers, this fact must be 
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TABLE 111 
INITIAL CONDITIONS FOR CART CONTROLLER 

integrated into the function evaluation. This was done by using 
multiple initial conditions in the evaluation of each member 
of the population. If a single initial condition were used, for 
example xo = 0.7 m and W O  = -0.5 m/s, then the GA would 
find a controller which would work well around that particular 
point but may fail elsewhere. This makes the choice of initial 
conditions an important consideration. The points must be 
chosen to sufficiently cover the input spaces, but at the same 
time, more initial conditions leads to increased run time for 
the program. This is done in much the same manner as Karr’s 
use of four initial conditions in his pole-cart balancing fuzzy 
controller [6]. These initial conditions are listed in Table 111. 
In evaluating each member of the population, the total fitness 
of the individual was the sum of the fitnesses at each initial 
condition. 

B. Fitness Function 

The fitness function proved to be the most challenging 
aspect of applying GA’s to fuzzy controller design. The 
process was divided into two stages, an evolution stage and a 
refinement stage. In the evolution stage, the GA was used to 
find satisfactory controllers, while in the refinement stage, the 
GA used the previously developed controllers and attempted to 
minimize the amount of time needed to bring both x-location 
and velocity to zero. 

For the first stage, which lasted through generation 30, 
the fitness function rewarded a member of the population 
according to how well it came to the tolerance value, f 0 . 5  for 
both z-location (x) and velocity (w). These tolerance values 
provided sufficient proof that the controller was heading in 
the correct direction and slowing down as it approached zero 
velocity and z-location. As the absolute value of both x and 
velocity become smaller, the steady-state rule ensures that 
they will continue decreasing. The generation at which the 
evolution stage ended, 30, was obtained experimentally by 
examining various runs and monitoring when the population 
average began to level off as it approaches the population 
maximum. This gives a relatively good assurance that the 
majority of the population can successfully complete the task. 
This fitness function is shown in Appendix A. If the controller 
succeeded in bringing x and U within the tolerance, it was 
given a fitness relative to the time it took. The minimum fitness 
the controller could have if it met the tolerances was 8 (since 
175 was the time limit). If the controller “timed out” (i.e., did 
not converge by 175 time steps), it was either slightly punished 
with a negative fitness or slightly rewarded depending on x- 
location and velocity (the maximum fitness for this condition 
could only be 3.5 if one tolerance were 0 and the other 1). If 
the controller diverged (i.e., z or w were greater than 5.0), the 

Loading dock (x=50, y=100) 
I 

f r o n t  

Fig. 4. Truck and loading dock illustration. 

fitness was given a larger negative value. These values helped 
ensure that the GA was rewarded for controllers that worked or 
nearly worked and punished for those that didn’t. Through the 
use of this reinforcementheward scheme, the GA was able to 
develop controllers which could solve all the initial conditions. 

The second stage, from generation 3 1 to generation 100, was 
based almost completely on time. If the controller reached the 
tolerance values it was rewarded according to how short a 
time it took. If the controller “timed out,” it was punished 
according to how much it missed the tolerance values, and 
if the controller diverged, it was given a very large negative 
fitness which would probably ensure its failure to continue on 
to the next generation. This fitness function is also shown in 
Appendix A. 

As was done for the determination for the crossover from 
evolution to refinement stage, the fitness functions were ob- 
tained throughout experimentation. The ovemding qualifica- 
tion for the evolution phase was to find controllers that worked, 
no matter how long they took. Examining the fitness function 
shows that the minimum fitness for a successful completion 
of an initial condition is eight, while a time out within relaxed 
tolerances yields a maximum fitness of 3.5 (say x = 0 and 
velocity -1). If a timeout occurs and the controller has not 
come within tolerance it is slightly punished as opposed to 
the stronger punishment it receives if it diverges. Much the 
same occurs in the refinement stage where the minimum 
fitness of a successful run is zero (time = 175), while the 
minimum punishment for not coming within tolerance values 
is -21 and the maximum punishment is -300. These fitness 
functions are shown in Fig. 4. The evolution stage figure 
assumes the minimum possible fitness mentioned earlier. In the 
refinement stage graph, the maximum fitness, 30, comes from 
an assumption of 75 time steps for a given initial condition 
to complete the simulation successfully. These values are for 
illustrative purposes only as the completion times had a large 
variation. Also, since the refinement stage graph shows x and 
velocity values from -5 to +5, the -300 penalty value is not 
illustrated. As the work progressed with the cart controller, it 
was decided that the tolerance values were too great and would 
be reduced as the truck controller was developed. This was 
reasonable since the cart controller was used to develop the 
premise of dual rule set and membership function optimization, 
while the truck controller would be more elaborate proof of 
the concept. 
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velocity 

Fig. 5. 555 fuzzy cart controller. 

C. 555 Controller 
In this section we present one of the controllers developed 

using GA’s. The 555 controller used 25 rules and needed 10 
alleles to determine the location of the bases of the fuzzy sets 
covering the input spaces, giving a total string length of 35. 
Considering that each allele could have a value between one 
and five, this meant that if a binary string had been used, three 
bits would be necessary to represent the same information. 
This would yield a string length of 105. Using this value 
for string length would indicate the need for a much larger 
population than the one being used to ensure enough initial 
population diversity. Therefore, we cannot be assured that 
the GA will converge to an optimal or near-optimal solution. 
Even using the relatively small population size of 100, run 
times took between two and one-half to three hours. However, 
the performance of the controller did indicate that the GA 
was finding a near-optimal controller, when compared with 
solutions such as the one by Thrift [4]. Fig. 5 shows the 
resultant best controller determined by GA. 

D. Comparison of Cart Controllers 

Once the GA-designed controllers had been determined, a 
study was made to determine their performance and stability. 
Because there is no accepted method to determine stability 
for fuzzy controllers as there is for classical and state-space 
controllers, a “brute force” method was adopted. To examine 
the controllers, the input space of each variable was divided 
into 40 points. Then each point was examined, one by one, 
to determine if the controller diverged anywhere in the input 
space. For 40 points in the %-location space and 40 points in 
the velocity space, this yields a total of 1600 points. While 
the ability of a controller to satisfy all these points does not 
necessarily guarantee its stability (since it only takes one point 
to make a controller unstable), this did ensure some measure 
of confidence in the procedure. While examining each point, it 
was a simple task to also count the number of time steps used 
to bring all these points within the tolerance values, and these 
numbers are given in Table IV. Also shown in Table IV is 
the 555* controller, which was designed with the membership 
functions fixed a GA was used to design only a rule set, with 

:OR FUZZY CONTROLLERS I35 

TABLE IV 
COMPARISON OF CART CONTROLLERS 

velocity 

X 

Fig. 6.  555* fuzzy cart controller using fixed membership functions. 

the membership function being done by hand. This controller, 
shown in Fig. 6, was created for comparison purposes to 
illustrate the importance of membership function selection. As 
Table IV shows all the controllers were able to successfully 
bring the system within the tolerance values. 

Table IV shows that the best performance, on average, 
came from the 555 controller. The 333 controller, while being 
the simplest, did not have the flexibility to produce fast 
response times. Also, the 557 controller, which had smaller 
partitions of the output space, performed nearly as well as 
the 555 controller. Finally, note that while the 555* controller 
was able to bring the cart to equilibrium for all points, its 
performance was clearly inferior, needing almost 1/3 longer 
than the GA designed rule set and membership function 
combination, showing the importance of proper membership 
function design. 

E. Robustness Examination of 555 Controller 

So far we have developed a controller which is able to 
effectively bring a cart of mass 20 kg to equilibrium. However, 
a good controller should also be a robust controller. For this 
case, we developed a controller which could handle carts 
of mass 2 to 20 kilograms. This controller has the same 
structure as the 555 controller and will be referred to as the 
555** controller. To develop the 555** controller, a slight 
modification was made to the fitness function. Essentially, 
when fitness was evaluated, a simulation was made at the two 
mass extremes for each initial condition, and the fitness was 
the sum of the simulations at each weight. Also, the upper 
and lower limits on the force was reduced as a compromise 
between the two weight extremes. The new limits were f75N 
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Fig. 7. Robust 555** fuzzy cart controller. 
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Fig. 8. Performance of Robust 555** Fuzzy Cart Controller. 

instead of the previous f150N. The 555** controller designed 
by a GA is shown in Fig. 7. 

To test the robust controller, a simulation was made from 
masses ranging from 2 kg to 20 kg in lkg increments. As was 
done before, the input spaces from -2 to +2 were divided in 
increments of 0.1 m for z-location and 0.1 m/s for velocity, 
yielding 1600 initial conditions for each mass. Also, another 
run was made with the input spaces divided into 80 points 
(0.05 increments). This gave 6400 initial conditions tested for 
each cart mass. The average number of time steps for each 
mass is shown in Fig. 8. The controller had no failures for any 
of the initial conditions examined, showing its ability to deal 
with changing masses. As the figure also shows, the average 
number of time steps needed actually decreased when more 
initial conditions were added, lending confidence to its ability 
to handle any possible input combinations. 

F. Injluence of Faulty Rules 

While the 555 controller behaved well for the given ranges 
for the input variables, it was desired to know how the 
controller would perform if any one of the rules became faulty. 
Would the system diverge because of the bad rule or would it 
simply slow the controller down? Table V shows the results 

TABLE V 
EXAMINATION OF RULE CHANGE FOR 555 FUZZY CART CONTROLLER 

TABLE VI 
INITIAL CONDITIONS FOR TRUCK-BACKING SYSTEM 

from changing some of the rules in the 555 controller. For 
example, the rule at location (1, 1) in the rule set matrix was 
initially 5 (indicating a positive medium output). This rule 
was changed to 1, 2, 3, and 4 while noting the performance 
on each of the 1600 initial points. 

Table V makes many interesting points. In many instances, 
the rules surrounding the bad rule can, in effect, overrule it 
when the calculation of the output is determined. Even though 
this occurs, there will be some degradation in response time 
because a rule that is the complete opposite of the surrounding 
rules will have a great influence on the output. This effect was 
seen in the change of rule (3, 3), which is the steady-state rule, 
IF (a = zero) and (v = zero) THEN (force = zero). When 
the output was at the two extremes, 1 and 5, the controller 
was not able to bring the final values within the tolerance 
before "timing out". Rules along the edges and the corners 
such as (1, l), however, did not have the luxury of having 
rules completely surround them and able to compensate for 
their mistakes. As can be seen from modifying (1, l), the 
further the rule was from its original value, the more likely 
the chance of divergence. Inner rules, such as (2, 2) did not 
suffer from this problem. 

Ix. RESULTS FOR TRUCK-BACKING PROBLEM 

A. Initial Conditions 

The controller used for this problem was a 757 controller. 
These values were chosen so a comparison could be made 
with the results illustrated by Kosko [6]. The initial conditions 
used are shown in Table VI. These initial conditions include 
four points added intentionally to prevent the wrapping around 
effect of 4 mentioned earlier. Those four points are at (10, 
22.5 degrees), (10, 157.5 degrees), (90, 22.5 degrees), and 
(90, 157.5 degrees). Without these extra points, the GA might 
try to wrap around to get to (z = 50 m, y = 100 m, 4 = 90 
degrees) instead of taking the shorter, more direct route. 
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B. Fimess Function 

As was dune fur the cart controller, the fitness function 
was divided into two stages, the first stage for develop- 
ment of working controllers and the second stage for time 
minimization. As before, the fitness function was of a re- 
inforcementheward type. To promote better results from the 
GA, the tolerance variables, xtol and q5tol, used to determine 
if a simulation was successful, were allowed to decrease 
linearly from generation 0 (where their respective values were 
f 7 . 5  m and f18.0 degrees) to generation 30 (where their 
respective values were f 0 . 5  m and f 1 . 3  degrees). Given that 
x ranges over 100 m and c,h ranges over 360 degrees, the 
final tolerance values represent errors of only 1% and 0.722%. 
These tolerance values were compared to error values, x,,, and 
$,,,, to determine if a simulation should end. The values for 
z,,, and $,,, are given as 

x,,, 50.0 - x 

and 

der, = 90.0° - 4. 
The fitness for the first 30 generations is shown in Appendix 
A. As was the case for the cart controller, the fitness function 
was determined experimentally; however, the desire to keep 
the fitness function simple led to a much more manageable 
equation. 

If the controller did not meet the tolerance requirements or 
it “timed out,” it was punished with a negative fitness. In the 
early stages, however, controllers that did meet the tolerance 
requirements are highly valued, and are thus rewarded with a 
fitness that would offset four failures. 

For the second stage, the fitness function is totally time 
dependent. The second fitness function, used from generation 
31 to generation 100 is given in Appendix A. 

maintained the values they obtained at 
generation 30 (50.5 m and f 1 . 3  degrees, respectively). Since 
the average time the controller took for a given initial condition 
was approximately 50 time steps, one successful simulation 
was approximately equal to one failed simulation. 

Here ztol and 

C, 757 Controller 

The string length for the 757 controller problem was 54 (35 
for the rule set, seven for the 4 membership function, five for 
the z membership function, and seven for the 0 membership 
function). The string resembles the example shown in Fig. 1 
except for the change in variable names and the additional 
alleles needed for the increased rules, added fuzzy sets, and 
the inclusion of the output variable. The controller developed 
by the GA is given in Fig. 9. 

To see physically how the truck controller performed, a 
program was written which would track the motion of the 
truck from a given beginning point and angle. An example of 
the truck controller’s behavior is given in Fig. 10. 

D. Comparison with Reference Controller 

Now that a GA had designed the entire controller, the true 
test came in its comparison with another controller, the one 

X 

~ 

137 

Fig. 9. 757 fuzzy truck controller. 

used by Kosko. Kosko had compared his fuzzy controller 
with a neural controller, and his results indicated the fuzzy 
controller consistently outperformed it. The basis of judging 
the performance was the same as for the cart controller, the 
average number of time steps required when tested on a 
given set of initial conditions. For this purpose, the z input 
space was divided in increments of 1 from 5 to 95. The 
c,h input space was divided in increments of 1 degree from 
-90 degrees to 270 degrees. This means the total number of 
initial conditions used was 32,400 (90 x 360). The results of 
the GA-designed controller and the reference controller are 
shown in Table VII. Dividing the number of time steps for 
the reference controller by the number of time steps for the 
GA-designed controller, we find that the reference controller 
averaged 6.34% longer, showing the GA made a small, but 
relevant improvement. As before, examining the input spaces 
in this manner does not ensure the stability of the controller, 
but given the large number of points considered, stability is 
almost certain. 

X. CONCLUSION 
This paper clearly shows the potential for using genetic 

algorithms to solve optimization problems. The ability of fuzzy 
logic controllers to provide control where more conventional 
methods become too complex has also been shown by re- 
searchers. This work has shown these two, fairly new, methods 
can be used together to form controllers without the previously 
needed human expert. This methodology allows the complete 
design of both major components of fuzzy controllers, the rule 
sets and membership functions, leading to high performing 
controllers which are completely computer-designed. We have 
developed four different controllers for the cart problem, each 
of which was able to bring the cart to equilibrium over the 
entire ranges of the input spaces. Also, we have shown a GA’s 
ability to design a robust controller which can work over a 
wide parameter range. The GA designed controllers proved to 
show the same degree of fault tolerance one would expect in 
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Fig. 10. Motion of truck from zo = 20, $0 = -80 degrees. 

TABLE VI1 
COMPARISON OF GA-DESIGNED AND REFERENCE CONTROLLERS 

a fuzzy controller. In addition, we have developed a truck- 
backing controller which outperformed a reference controller. 
While these results are encouraging, more work should be done 
on refining the process. First, fitness functions are currently 
a weak point; better methods need to be developed to find 
the best fitness functions. Also, more work needs to be done 
to ensure that the GA finds controllers which operate over 
the entire space of the input variables. Also, as mentioned 
earlier, the inclusion of finding the location of the peaks of 
the triangles in the membership functions will yield even 
higher performing controllers. Finally, controllers for still 
more problems should be examined to show the effectiveness 
of this method. 

APPENDIX A 
Fitness Functions for Cart and Truck Controllers Cart Con- 

troller 
Evolution Stage Fitness Function 

x and v are within tolerance values } 
if (1x1 < 0.5) and (]velocity] < 0.5) then { 

fitness = 8 * 175hime 
else if (time = 175) then 
{ simulation times out before x and ‘U 

if (1x1 < 1.0) and ((velocity1 < 1.0) 

fitness = 3.5/sqrt(x2 + velocity’) 

fitness = -1 

then are within tolerance values} 

else 

else 
x > 5.0 or v > 5.0) 

fitness = -7 
Refinement Stage Fitness Function 

2 and v are within tolerance values ) 
if (1x1 < 0.5) and (Ivelocityl < 0.5) then { 

fitness = 0.3 * (175 - time) 

else if (time = 175) then 
{ simulation times out before z and v 

fitness = -42 * sqrt( x2 + velocity2 ) 
are within tolerance values} 

else 
x > 5.0 or v > 5.0) 

Truck Controller 
fitness = -300 

Evolution Stage Fitness Function 
if (lxerr < ~ t o d  and (14errI < h o d  then 

fitness = 2.0 

fitness = -0.5 
else 

Refinement Stage Fitness Function 
if (Ixerrl < x t o d  and ( I4err l  < 4 t o d  then 

fitness = 100 - time 

fitness = -50 
else 
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