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Abstract. The relationship between “learning” in adaptive layered
networks and the fitting of data with high dimensional surfaces is
discussed. This leads naturally to a picture of “generalization” in
terms of interpolation between known data points and suggests a ra-
tional approach to the theory of such networks. A class of adaptive
networks is identified which makes the interpolation scheme explicit.
This class has the property that learning is equivalent to the solution
of a set of linear equations. These networks thus represent nonlinear
relationships while having a guaranteed learning rule.

1. Introduction

The strong resurgence of interest in “self-learning machines”, whose ances-
tors include the perceptrons of the 1960%s, is at least partly driven by the
expectation that they will provide a new source of algorithms/architectures
for the processing of complex data. This expectation is based on an anal-
ogy with connectionist models of information processing in animal brains.
The brain is able to cope with sophisticated recognition and inductive tasks
far beyond the capabilities of systems based on present computing logic and
architectures.

An example of an everyday task for the human brain which illustrates this
point, is the recognition of human speech. For automatic speech recognition
one wishes to deduce properties (the implied message) from the statistics of
a finite input data set even though the speech will be subject to nonlinear

*Electronic mail address from USA: dsb¥rsre.mod.uk@relay.mod.uk; electronic mail
address from the UK: dsbY%rsre.mod.uk@uk.ac.ucl.cs.nss.

fElectronic mail address from USA: d1%rsre.mod.ukerelay.mod.uk; electronic mail
address from the UI(: d1%rsre.mod.uk@uk.ac.ucl.cs.nss.

© 1988 Complex Systems Publications, Inc.



322 D. S. Broomhead and David Lowe

distortions due to noise, sex, age, health, and accent of the speaker. This
has proved to be notoriously difficult. Over the past decade, one of the
most successful techniques developed for speech recognition has been based
around Hidden Markov Models (see for instance [1,2,3]). In this scheme,
speech is modelled as a sequence of causal stationary stochastic processes
determined by a finite number of allowable states, state transitions, a ma-
trix of stationary transition probabilities and an initial state distribution.
There is, in addition, a learning algorithm (Baum-Welch iteration) to fine
tune the parameters of the model which increases the likelihood that each
model produces its associated data. However, one of the problems with this
approach involves the a priori assumptions made regarding the topology of
the Hidden Markov model (e.g., number of states, allowable transitions). As
long as the total possible input data is consistent with the assumptions made
in the original model, then one can expect a faithful representation of the
data. This unfortunately presupposes that we already know how to model
speech adequately.

In an attempt to circumnvent this problem, self-learning machines have
been employed. The virtue of these is that no explicit model of speech is
required. For instance, the multilayer perceptron (which is a layered nonlin-
ear network) embodies a set of nonlinear, “hidden” units whose task is to
encode the higher-order constraints of the input data [4]. This is achieved
by varying weights governing the strengths of connections between the units
in order to minimize the error in relating known input-output pairs (the
“training” set). This process has become known as “learning.” The ability
of the network to give subsequently reasonable (in some sense) outputs for
inputs not contained in the training set is termed “generalization.” In effect,
a multilayer perceptron of given geometry with given nonlinear responses of
the units constitutes an M-parameter family of models (where M is the total
number of weights which are varied). It is currently an act of faith, based on
encouraging practical results, that such families are broad enough to include
models of speech which are adequate for the purposes of classification. This
means, however, that the design of a multilayer perceptron for a specific task
remains an empirical art. In particular, how many hidden units should be
employed and in what configuration, how much training data is needed, and
what initial interconnection strengths have to be assigned? Some experimen-
tal work has been performed which addresses these problems (for instance,
[5,6]) although it is fair to comment that an understanding of these issues is
still lacking. The source of the difficulty is the implicit relationship between
these externally controllable factors, and the model ultimately represented
by the network.

The present paper investigates the implicit assumptions made when em-
ploying a feed-forward layered network model to analyze complex data. The
approach will be to view such a network as representing a map from an n-
dimensional input space to an n’-dimensional output space, say s : IR" —
R™. This map will be thought of as a graph I' € IR™ x R™ (in the same way
that s : IR — IR, where s(2) = 2* may be thought of as a parabola drawn
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in IR?). From this point of view, “error free” training data presented to the
network in the form of input-output pairs represent points on the graph, I'
and the learning phase of an adaptive network constitutes the optimization
for a fitting procedure for I based on the known data points. Generalization
is therefore synonymous with interpolation between the data points with the
interpolation being along the constrained surface generated by the fitting
procedure as the optimum approximation to I'. In this picture the implicit
assumptions made when using a multilayer perceptron concern the nature
of the fitting procedure, and clearly relate directly to the way in which the
network generalizes. Thus, we are led to the theory of multivariable inter-
polation in high dimensional spaces. In subsequent sections, we shall exploit
some of the mathematics of this expanding field of research to develop a new
type of layered network model in which the nature of the fitting procedure
is explicit. This class of layered network model will be shown to be of con-
siderable interest in itself. In addition, however, it is hoped that the explicit
nature of the fitting procedure will allow us to develop a better understand-
ing of the general properties of layered nonlinear networks which perform an
equivalent function.

2. Multivariable functional interpolation using radial basis func-
tions

This section introduces briefly the method of Radial Basis Functions, a tech-
nique for interpolating in a high dimensional space which has recently seen
important developments. Further details may be obtained from the review
article of Powell [7] and the important contribution of Micchelli [8].

In the cited references the radial basis function approach is applied to the
strict interpolation problem which may be summarized as follows:

Problem. Given a set of m distinct vectors (data points), {z;; 1 = 1, 2,
..., m} in R™ and m real numbers {f;;i = 1,2,...,m}, choose a function
s: IR" — IR which satisfies the interpolation conditions

sz =Ff +=12...,m (2.1)

Note that the function, s, is constrained to go through the known data points.

There are clearly many criteria one could impose which would restrict
the possible functional form of s(z) (see for instance [9]). The Radial Ba-
sis Function approach constructs a linear function space which depends on
the positions of the known data points according to an arbitrary distance
measure. Thus, a set of m arbitrary (generally nonlinear) “basis” functions

é(llz — g,|I) is introduced, where z € IR" and ||...|| denotes a norm im-
posed on IR™ whiclr is usually taken to be Euclidean. The vectors y, € R"
4 =1,2,...,m are the centers of the basis functions and taken to be sam-

ple data points. In terms of these basis functions, we consider interpolating
functions of the form:
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2= Aéllle—yll) zeR (2:2)

J=1

Inserting the interpolation conditions, equation (2.1) into equation (2.2),
gives the following set of linear equations for the coefficients {A;},
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where

Given the existence of the inverse to matrix A with elements Aij, equation
(2.3) uniquely defines the coefficients \; through A = A~ f.

In general, one might expect that for an arbitrary chmce of ¢ the matrix
A could be singular. However, the results of Micchelli prove that for all
positive integers m,n and for a large class of functions ¢, the matrix A is
non-singular if the data points are all distinct .

This discussion readily generalizes to maps s : IR® — IR™. In this case
the m distinct data points in IR® are associated with m vectors f. € R™.
The interpolation condition of equation (2.1) thus generalizes to

silz)=Tfs 1=12,0..m k=12...0 (2.5)

which leads to interpolating functions of the form

m

Z qus( |$_y%| QG]R,“ ;{:1,2,...,11’ (26)

g=1

The expansion coefficients A;; are obtained using the inverse of the same
matrix A defined in equation (2.4).

Once a suitable choice of the function ¢ is made, and a convenient dis-
tance measure imposed, the above relations exactly specify the interpolation
problem which has a guaranteed solution.

However, for certain classes of problem, the above analysis may not be
a good strategy for the following reason. A basic consideration when fitting
data is the number of degrees of freedom required. That is, the minimum
number of basis functions needed to generate an acceptable fit to the data.
In the situation where the number of data points far exceeds the number
of degrees of freedom there will be redundancy since we are constrained to
use as many radial basis functions as data points. In this case the strict
interpolation conditions generally result in this redundancy being used to fit
misleading variations due to imprecise, or noisy data.

It is possible to avoid this difficulty by weakening the interpolation con-
ditions. We suggest the following generalizations to the conventional radial
basis function approach. First, it may be necessary to distinguish between
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the data points, (z;, ¢ = 1,2,...,m) and the radial basis function centers,
(.31," 7i=1,2,...,n9 ng<m)l. The problem thus becomes overspecified,
the matrix A is not square, a unique inverse no longer exists, and the previ-
ous exact problem becomes one of linear optimization. In the following, we
shall adopt a minimum norm least squares method by introducing the Moore-
Penrose pseudo-inverse, A" of matrix A. For the case where rankA = ng,
this has the property that A*A= 1 where 1 denotes the ny x ng identity
matrix. More generally, the pseundo-inverse provides a unique solution to the
linear least squares problem [10] in the following sense,

Of all the vectors A which minimize the sum of squares ||AA — f||?, the
one which has the smallest norm (and hence minimizes ||A||?) is given by
A=A%].

For this particular solution set, an expression may be derived for the
normalized error €, specifically,

T lls(z:) — LI
\ 2L L - (NP

i || o (AAY), £ — LI
\ = I = (DIP

where (f) is the mean value of the response vector over all the training data
points. Note that if the pseudo-inverse equals the exact inverse, then the left
and right inverses are the same and hence the matrix product AA™ is the
m-dimensional identity matrix, and this error is zero.

An additional modification, which is useful particularly when f(z) has a
large z-independent component, is to incorporate constant offsets {Aox} into
the form of the interpolating functions

2.7)

i

Sk(.x.)=/\nk+zljk¢(”£ﬂ_*gj”) zeR' k=12,...,1 (2.8)

=1

These coefficients enter the least squares formalism through an additional
column in A

A,‘o:l é=1,2,...,m (2.9)

In this form, the radial basis function approach to multivariable functional
interpolation has a close resemblance to adaptive network theory. This will
be discussed in the following sections. An important consequence of this ap-
proach which should be emphasized is that the determination of the nonlinear
map s(z) has been reduced to a problem in linear algebra. The coefficients
Ajk appear linearly in the functional form of the mapping, therefore the prob-
lem of determining the precise values, even in an overdetermined situation,

In particular, we do not necessarily require that the radial basis function centers
correspond to any of the data points.
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has been reduced to one of a linear least squares optimization which has a
“guaranteed learning algorithm” through the pseudo-inverse technique ?. Of
course, this reduction has assumed suitable choices for the centers, {25} and
the function ¢. It may be argued, therefore, that the restriction of the opti-
mization by fixing these quantities is excessive and must limit the range of
applicability of the approach. In the case of the strict interpolation this does
not seem to be the case, at least as far as the choice of ¢ is concerned [11].
There is evidence to show [12], again for strict interpolation, that the effect
of a suboptimal choice of the {gj} is to reduce the rate of convergence of the
expansion given in equation (2.6). For the least squares extensions described
here, much less is known.

3. The radial basis function method viewed as a layered network

Much of the power and attraction of current adaptive network models is
contained in the nonlinear aspects of the hidden units so that nonlinear
input-output relationships may be modelled. Unfortunately, since the error
criterion, or cost function, depends on the response of the nonlinear elements,
the problem of finding a globally optimum solution becomes one of uncon-
strained nonlinear least squares minimization. Such problems can be solved
usually only by iterative techniques. For instance, “error back-propagation”
is a first-order (only depends on the gradient of the function of interest) steep-
est descent technique which suffers from slow convergence properties due to
its tendency to zig-zag about the true direction to a minimum. More so-
phisticated iterative schemes derived from second-order approximations have
been proposed which improve convergence properties (the quasi-Newton, or
variable metric algorithms-see for instance [13], Chapter 15 and [14]). Re-
cent works of note which have considered more general iterative strategies
and found them to be orders of magnitude superior to back-propagation
when applied to specific layered network problems are those of Lapedes and
Farber [15] (conjugate gradients) and Watrous [16] ( Davidon-Fletcher-Powell
and Broyden-Fletcher-Goldfarb-Shanno). In spite of this effort, the difficulty
remains that the solution obtained by such methods is not guaranteed to be
the global optimum since local minima may be found. There is no reason
in the current iterative schemes why a least squares minimization solution
obtained, will necessarily have the required form. Even choosing a good ini-
tial starting point for the iteration schemes will not necessarily imply that a
good approximation to the global minimum will be obtained. It is important
to know how “good” a solution is obtained by settling for a local minimum,
and under what conditions the solution at such a minimum has to be deemed
unsatisfactory.

In the previous section it was shown that because of the linear dependence
on the weights in the radial basis function expansion, a globally optimum

?As a technical numerical point, the solution will not generally be obtained from the
normal equations (which may be ill-conditioned), but would be obtained via the efficient
procedure of singular valued decomposition.



Multivariable Functional Interpolation and Adaptive Networks 327

Input layer Hidden layer Qutput layer

Figure 1: A schematic diagram of the feed-forward layered network
model represented by the radial basis function expansion.

least squares interpolation of nonlinear maps can be achieved. The relevance
of this to layered network models is that the mapping produced by the radial
basis function expression equation (2.6), has the form of a weighted sum
over nonlinear functions. There is thus a natural correspondence with the
following general three-layer network system, in which the layers are fully
interconnected with adjacent layers, but there are no interconnections within
the layers (see figure 1).

The input layer of this network model is a set of n-nodes waiting to accept
the components of the n-dimensional vector z. These input nodes are directly
connected to all of the hidden nodes. Associated with each connection is a
scalar (y;; for the link between the ! input node and the 7** hidden node)
such that the fan-in to a given node has the form of a hypersphere, i.e. in
the case of a Buclidean norm, the input to the node is 0; = 3% {(z; — yi;)?
where the z; are components of z. The “hidden layer” consists of a set of
ng nodes, one for each radial basis function center. The output of each of
these is a scalar, generally nonlinear function of #;. The hidden layer is
fully connected to an output layer corresponding to the n’-components of
the n'-dimensional response vector s(z) of the network. The input value
received by each output unit is a weighted sum of all the outputs of the
hidden units, where the strengths of connections from the j'" hidden unit to
the k'™ output unit are denoted by ;. The response of each output unit is
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a linear function of its net input which may include the bias Agr. A natural
extension is to allow for nonlinearity in the response of the output units.
Clearly, if the transfer function of these units is invertible, then it can be
accounted for by a suitable modification of the interpolation conditions used
to derive the weights {);x}. This specifies, as a layered network model, the
radial basis function expansion, equation (2.8), which produces a mapping
from an n-dimensional input space to an n'-dimensional target space.

This type of network falls within the general class of nonlinear layered
feedforward networks. In particular we have specialized the geometry to a
single hidden layer and fixed the fan-in and fan-out to the hidden units as
indicated. The choice of hyperspherical fan-in to the hidden units has the
effect of sectioning the decision space into hyperspherical regions rather than
hyperplanes which result from the more usual choice of a scalar product type
of fan-in. This has the advantage of allowing disjoint regions in the deci-
sion space, but which pertain to the same classification, to be satisfactorily
resolved by the single “hidden” adaptive layer. Problems without simple
connectivity would traditionally require two hidden adaptive layers, as dis-
cussed in [17], whereas the approach described in this paper can deal with
such problems by employing a single hidden layer.

It is interesting to compare the radial basis function network with the
traditional multilayer perceptron and the linear perceptron as discussed by
Minsky and Papert [18]. The “learning scheme” of conventional multilayer
perceptrons consists of an unconstrained nonlinear least squares optimiza-
tion process and as such there are no global theorems regarding convergence
to the correct minimum error solution. In contrast, the radial basis func-
tion network has a guaranteed learning procedure since there is only a single
layer of adjustable weights which may be evaluated according to linear op-
timization techniques for which global existence theorems are known. In
this sense, the radial basis function networks are more closely related to the
early linear perceptrons. However, in contrast to these early networks, the
radial basis function network is capable of representing arbitrary nonlinear
transformations as determined by a finite training data set of input-output
patterns, since the results of Micchelli show that the radial basis function
approach can produce an interpolating surface which exactly passes through
all the pairs of the training set. Of course, in application the exact fit is
neither useful nor desirable since it may produce anomalous interpolation
properties. In practical situations a regularization, equivalent to assuming
the existence of a smooth interpolation between known data pairs, is im-
posed. One such regularization is the least squares construction introduced
in section 2. The ability of radial basis function networks to explicitly model
nonlinear relationships will be demonstrated in subsequent sections by ap-
plication to specific problems which demand the construction of a nonlinear
mapping in order to produce the correct solution.

Our radial basis function strategy may be applied to the general multi-
layer perceptron for which the output units have an invertible nonlinear-
ity. In particular, when extended to allow for variation in the input-hidden
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Input Number of “ON” Output
Pattern bits in input Pattern
00 — 0 — 0
01 — 1 — 1
10 — 1 - 1
11 — 2 = 0

Table 1: Symbolic mapping of the exclusive-OR problem.

weights, this method provides an interesting picture of learning. The hidden-
output weights may be visualized as evolving on a different “time scale” to
the input-hidden weights. Thus, as the input-hidden weights evolve slowly
by some nonlinear optimization strategy, the hidden-output weights adjust
themselves rapidly through linear optimization so as to always remain in the
global minimum of an evolving error surface over the hidden-output weights
which is parametrically controlled by the input-hidden weights. The hidden-
output weights are “slaved” to the behavior of the input-hidden weights.
The rest of this paper is concerned with various simple applications of
the radial basis function network. The total set of adjustable parameters
include the set of ng-radial basis function centers, y ., as well as the set of
(no + 1) x n’ weights, A;i. However, only the latter are included in the least
squares analysis in this paper in order to preserve the linearity of the learning
procedure. In the absence of any a priori knowledge, the centers, {_311.} are
either distributed uniformly within the region of IR" for which there is data,
or they are chosen to be a subset of the training points by analogy with strict
interpolation. We expect that with additional knowledge of the surface to
be fitted, the ffeedom to position the centers may be used to advantage
to improve the convergence of the expansion (although not necessarily to
improve the “fit” to the unseen data). Evidence for this as well as insight into
the significance of the centers follows from the work of Powell [11] who showed
that for strict interpolation when n = n’ = 1 and when ¢(r) = r?**, (k =
0,1,...), the radial basis function method is equivalent to interpolation with
natural splines. In this case the {gj} are the knots of the spline fit. Naturally,
when the strict interpolation is weakened to give a least squares interpolation,
the significance of the “knots” in constraining the surface is also weakened.
In what follows, we shall attempt to be as general as possible in the analytic
work by assuming an arbitrary form of ¢. Where numerical work necessitates
a specific choice, we have chosen to employ either a Gaussian form (¢(r) =

exp[—r?]) or a multiquadric (¢(r) & /2 + r?).

4. Specific example (i): the exclusive-OR problem and an exact
solution

The exclusive-OR problem defined by the symbolic mapping in table 1 has
been considered interesting because points which are closest (in terms of the
Hamming distance) in the input space, map to regions which are maximally



330 D. S. Broomhead and David Lowe

apart in the output space. This is a classic example of a logic function that
cannot be represented by a linear perceptron. Clearly, a function which
interpolates between the points given in Table 1 must oscillate, and may be
hard to represent using a subset of data points unless there is some built in
symmetry in the radial basis functions.

In what follows, we initially take one radial basis function center deter-
mined by each piece of input data, so that both Y, &; are selections of the
four ordered input patterns of table 1. We choose to number the four possible
input patterns as (0,0) — 1, (0,1) — 2, (1,1) — 3, (1,0) — 4 which we
visualize to be the cyclically ordered corners of a square. The action of the
network may be represented by

s(z) =3 Aiéllz - y,1l)

j=1

so that the set {);} may be found from

4
=3 Ao() |z —23-“)
=1
i.e.
A= AT

For the ordering we have chosen, the vector f and the matrix A take the
specific forms

0
1
4= 0 (4.1)
1
and
f;o ﬁl ¢¢ﬁ fl
- 1 0 1 bs
E=lde & # 2)
¢ bz 1 o

where a labeling notation has been introduced so that ¢, denotes the value
of ¢(||z; — z;||), ¢1 denotes the value ¢(||z; — z;44]|) and ¢ 5 represents
&(l|lz; — zi42l]), 2ll counting being performed cyclically around the square.
Note that this is a labeling device and we will not exploit the properties
of any particular distance function at this stage (although the notation ¢ 5
indicates that we have in mind a FEuclidean metric as an example).

It will be convenient to construct A~! from the eigenvalue decomposition
(see Appendix A for further details)

A=vVpv?
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Since A is real symmetric, V is an orthogonal matrix with columns composed
out of the orthogonal eigenvectors; in this case,

1 1 V2 0
11 -1 0 —V/2

¥=5l1 1 8 3 (42)
1 =0 0 —2

and g is the real, diagonal matrix

where
pa = (do+2¢1+9.3) (4.4)
p = (%o —2¢1 +dy3)
pe = (60— dy3)

Note that at this stage it is possible to decide how well posed the original
problem was, by seeing under what conditions an inverse matrix A~! exists.
It is clear from the form of the derived eigenvalues of the problem, that an
inverse exists as long as

bo # ¢z (4.5)

or

$ # £ (%) (4.6)

are satisfied. Thus far, the analysis has been carried out for an arbitrary
choice of nonlinear radial basis function and metric, therefore the above con-
ditions can be taken to be restrictions on the various combinations of radial
basis function and metric that may be reasonably employed for this problem.
It is interesting to point out two situations where an inverse does not exist:

¢(z) = mz + ¢ combined with a city-block metric
and ¢(z) = az® + ¢ combined with a Euclidean distance function,

(llzll = /Zi=?)

as may be easily verified by direct substitution into equation (4.6). These
instances correspond to the network structure of a linear perceptron and are
thus unable to represent the exclusive-OR function.
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Given the inverse of A, we may proceed to obtain the “weights” of the
network as

A= A% (@1
Vi'Vif
= V'V (u4 - 28)

where we have exploited the fact that the response vector f, equation (4.1),
may be decomposed into the difference of the basis vectors v, and vg derived
in the appendix (Appendix A). Performing the above operations (which is
simplified since vectors orthogonal to v4, vz do not contribute) gives the final
result that

e s M

T R
A=>

(4.8)
Ha' = HE' M

Kz + pg' Ay
where, explicitly
Ay = —2% 4.9
: [fo+o 5] —a8 (49)
D dot+é 5
2T [porba] a6t

Equation (4.8) specifies the choice of network weights which exactly solves
the exclusive-OR problem. The weights are still dependent on the precise
choice of radial basis function and distance measure. Clearly we are free
to choose these subject to condition (4.6) without affecting the solution of
exclusive-OR.. This choice does however influence the output of the network
for arbitrary, real-valued inputs.

Figure 2 illustrates the solution for the specific choice of a Euclidean
distance function and Gaussian radial basis functions (¢(z) = exp[—z?/o]).
Similarly, figure 3 shows the output using the same distance function, but em-
ploying multiquadric radial basis functions (¢(z) = /1 + z%/¢). In both in-
stances, the mapping surfaces have two planes of reflection symmetry through
the diagonals of the unit square. The difference is that the Gaussian choice
produces two maxima near to the odd parity inputs and two shallow minima
close to the even parity inputs. The multiquadric does not have these max-
ima and moreover diverges rapidly outside the unit square. This distinction
is of no relevance to the exclusive-OR function itself. It would however, be
significant were it attempted to give meaning to input and output values
other than those represented by zero and unity. Clearly, the details of the
generalization would then be dependent on the specific interpolation scheme
represented by the network.
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Figure 2: The exclusive-OR solution (i). Obtained using a Euclidean
distance function and Gaussian radial basis functions centered at the

corners of the unit square.
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Figure 3: The exclusive-OR. solution (ii). Obtained using a Euclidean
distance function and multiquadric radial basis functions centered at

the corners of the unit square.
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At

Figure 4: Equivalent network for exclusive-OR with A set to zero.

We conclude this section with a discussion on the number of “hidden
units” employed to solve the problem. Note that the problem has been
solved exactly; given the weights as determined by equation (9) and a specific
choice of a radial basis function, applying any of the input pattern pairs will
guarantee to get the correct output answer. On preliminary inspection this
may not seem so surprising since each possible input data point was used as
a center for a radial basis function and so a “dictionary” of possibilities could
be encoded.?

One can exploit the symmetry of the solution however, to show how it
is still possible to solve the exclusive-OR problem exactly without explicitly
specifying the response of the whole set of input states. Specifically, from
equation (9) and by a judicious or “fortuitous” choice of nonlinear function
¢ (for instance if ¢; = 0 or ¢o = —¢,5) then two of the four possible weights
would be zero. This uncouples the corresponding pair of hidden units from
the system, with the result that the remaining network satisfies the exclusive-
OR function without being explicitly “trained” on the entire possible set of
input/output pairs.

For the case that ¢; = 0 (figure 5) the two identical weights connecting
the two hidden units to the output unit have a value of 1/[¢g + ¢, 5]. In
this case, the hidden units centered on the patterns (0,0),(1,1) have no
connections to the output and hence cannot contribute. Thus, when these
patterns are presented to the network, the two units which would react most
strongly to their presence have been disconnected from the output unit while
the remaining two respond with ¢; = 0 as expected. Alternatively, if the
patterns (0,1),(1,0) are presented, one hidden unit contributes a value of
@0 and the other a value of ¢ 5. Since their sum is just 1/A; the result of
the network is to give the answer 1 as it should. A similar argument may be
presented for the case when ¢y = —¢ 5.

In either case, the surfaces shown in figure 2 and figure 3 are constrained

3Mowever, note that this scheme has achieved a fit with four adjustable parameters, the
weights );, whereas the standard 2-2-1 multilayer perceptron would employ nine adjustable
parameters.
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Figure 5: Equivalent network for exclusive-OR with Ay set to zero,

sufficiently for the specification of just two points to fix the remaining pair
of output values. Here we have, by a suitable choice of ¢, adjusted the
form of the fitting algorithm to admit a network which “generalizes” the
incomplete training data to give the entire exclusive-OR function. This sort
of procedure can of course be employed by a multilayer perceptron . However,
it should be clear that for a strongly folded surface such as represents the
exclusive-OR function (or the more general n-bit parity function shown in
Appendix B) the presence or absence of redundant points which may be
omitted from the training set must depend sensitively on the implicit fitting
procedure employed by the network. Moreover, the question of which points
are redundant must also require detailed specific knowledge of the network
and the relationship it is being used to represent. As a rule, one can expect a
network to be capable of “correctly” generalizing, only when there is sufficient
training data appropriately distributed to enable an adequate fit to significant
turning points of the underlying graph. Clearly, the more folded this graph
is, the more demanding will be the requirement on the data.

5. An analytic solution to a non-exact problem: the exclusive-OR
problem with two centers

The previous section, with its related appendices, dealt with exact solutions
to strict interpolation problems. For strict interpolation the interpolating
surface is constrained to pass through all the training data points. This
is achieved by using the formalism described in the first part of section 2
which requires the use of a radial basis function (or hidden unit) for each
distinguishable data pair. It was noted that this rule may be relaxed in
special circumstances where the symmetry and other details of the problem
may be employed.

In this section, we shall consider a specific example of the more general ap-
proach discussed at the end of section 2 which relaxes the strict interpolation
of the data. Recall that sufficient scope was allowed in the variant of radial
basis function techniques to accommodate an approximateinterpolating sur-
face whereby this surface is not directly constrained to go through all (or
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any) of the training set. This is clearly an advantageous strategy when the
input data is corrupted in some fashion by external sources and it would not
be desirable to try and fit the noise added onto the (presumably) structured
data. In addition, where the true data actually represents a smooth map, it
allows the use of far fewer hidden units than data points.

We repeat the analysis of the exclusive-OR problem considered in the
previous section, but using just two radial basis function centers. It is clear
that there are two distinct choices how the two centers may be positioned:
either on opposing vertices, or adjacent vertices on the ordered corners of
the unit square. We choose the locations of the centers to be on opposing
vertices at (0,0) and (1,1). This choice allows us to exploit the symmetry of
the exclusive-OR function to allow its solution with fewer “training” points
than data points.

The total training data is the mapping depicted in Table 1. The calcu-
lations are performed using the pseudo-inverse technique with, and without,
the use of an adjustable bias on the output unit.

5.1 The approximate exclusive-OR without an output bias

Following section 2, we use the following form of interpolating functions:

s(@) = > Aid(llz - y,l) SN CRY
i=13
where y, = [0,0]", y, = [1,1]7. The set {);} is given by
fi= 3 Mdllle—y,l) i=1,2,3,4 (5.2)
j=13
so that
A= AT (5.3)

where f is the same response vector as in the exact case, equation (4.1), and
At is the pseudo-inverse of the (non-square) transformation matrix

do ¢z
6 &
A= 5.4
¢ bo (54)
6
From Appendix A, given the singular value decomposition of A
A =UsVT

the pseudo-inverse is obtained as

A* = V(s HuT (5.5)
V(s—l)?vTAT

The matrix V is composed of the normalized eigenvectors of the matrix
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Figure 6: Contours of the approximate exclusive-OR solution, without
an output bias.
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g - a b
ATA = ( b 4 ) (5.6)
where
a = ¢5+261+¢; (5.7)
b = 2¢]+2¢0¢

and the diagonal matrix (S™!)? is made up of the reciprocal of the eigenvalues
of the corresponding eigenvectors.
It is straightforward to verify that

v:%(} _i) (5.8)

132 1/a+ 0] 0
(87) = ( 0 1/[a —b] ) (5.9)

Substituting these matrices into the pseudo-inverse expression, equation
(5) and then into equation (5.3) gives,

e Gl) (5.10)

where

Al = 2¢1/[a+b] (5.11)
261/(4¢% + [0 + 6a]”)

This is the set of weights which minimizes the least mean squared error to
all the training data. In fact the error, £, may be analytically evaluated to
give

and

_ (o + ¢2)

282 1 (o + $alP/2
An interesting point about this error, is that it will be zero if the radial basis
functions are chosen to be such that ¢y = —d¢,. This is precisely the condi-
tion mentioned at the end of the previous section in the discussion of how
the exact exclusive-OR problem could be solved with only two radial basis
function centers. In both instances the error is zero and the interpolating
map manages to perfectly “learn” the training data. However, for general
choices of radial basis function the solution as derived, does not reproduce the
desired output of exclusive-OR satisfactorily. For instance, figure 6 depicts
this solution using Gaussian radial basis functions and a Euclidean norm.
The figure plots contours of equal “height” produced at the output of the
radial basis function mapping. The vertices of the unit square in the figure
represent the logical values 00, 01, 11, 10. As seen, although the output
discriminates between even and odd parity inputs, the relative magnitudes
have not been preserved (the output of 00 is greater than the output of 01
for instance).

(5.12)
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-.1811 d N\ -.1575
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Figure 7: Contours of the approximate exclusive-OR solution, includ-
ing an output bias.

5.2 The approximate exclusive-OR including an output bias

Consider the same situation as in the previous subsection, but where now
a data independent variable is allowed, effectively a weighted bias at the
output node through a connection to a node which gives a constant unit
output. The significance of the output bias is that the desired output states
of the exclusive-OR function have non-zero mean. The analysis without the
inclusion of bias achieves a minimum error solution which matches the output
in the mean. However, since positive weights are needed to achieve this,
the resulting s(z) naturally has maxima near to the centers (0,0), (1,1).
Therefore, s(z) does not reproduce the required qualitative details of the
exclusive-OR function. In contrast, one might expect the inclusion of a bias
to allow the whole surface s(z) to be “floated” to the correct mean level
while the remaining parameters adjust its qualitative form. Following this,
the interpolating function is taken to have the form

s(z) =X+ 3 Aid(llz— gl (5.13)

=13

where {A, 3} are as previously assumed.
The matrix of distances is now
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1 go 2
_|1 ¢ &

L 1 ¢2 ¢o @
1 ¢ &

Consequently, the singular value decomposition is determined by the
eigenvectors and eigenvalues of the matrix

4 ¢ ¢
ATA=1¢c a b (5.15)

c b a

where

= ¢ +24% + ¢ (5.16)
b= 261 +261
c = ¢o+2¢1 + ¢
Note that ¢ here has the interpretation of being proportional to the mean

value of radial basis functions evaluated at any training point.
Consider the eigenvalue equation

¥y oy
ATA ay | =p| o
Q3 Qa3

From the characteristic equation one finds that the eigenvalue problem
factorizes, giving

o = a—2b (5.17)

(a+b+4) % /(atb—4)+8¢2
Pk = 2

The normalized eigenvector corresponding to g = a — b is then

0
1

For the case p = g4, we have ay = a3, since the resulting eigenvectors
are orthogonal to ag. Setting ap = 1 without loss of generality implies that
the (unnormalized) component «; is

4 2¢

: =,u:|:w-fl

Thus the resulting orthonormal matrices V and (S7')* take the form

0 of A, a7 [A_
V= ( 12 1AL 1AL ) (5.19)
~1V2 1AL 1AL
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po 0 0
(s =|0 u 0 (5.20)
0 0 p_

where the normalization factors Ay are given explicitly by
(As)* =2+ (af)? (5.21)

Using these matrices to construct the pseudo-inverse of A results finally
in the set of weights,

Ao
A= X (5.22)
At
where
X o= —‘fii (af +261) + 25k (o7 +261) (5.23)
Moo= (el +260) + (o +24)

This result is shown in figure 7 and may be compared directly with that of
the previous subsection shown in figure 6. Note that the network now success-
fully discriminates states of opposite parity and moreover returns precisely
the correct magnitude for each corner of the unit square. However, the sym-
metry of placing the centers on the diagonal of the unit square, means that
the solution obtained in this case is exact. There are only three independent
equations we need to solve, and three adjustable parameters at our disposal.
In this sense the XOR problem is rather too simple.

It is interesting to repeat the calculation of section 5.1 using a response
vector [ = (—%, %, —%, %)T This allows one to study an equivalent problem
with the mean artificially removed without the introduction of an additional
parameter. This produces, again, two equal weight values (compare with

(11))

b= [do+ ¢a]/2
 8¢% + 2[¢o + u]?

i

The resultant fit clearly does not reproduce the training values as well
as the three parameter model given above. It does however have the correct
qualitative form.

In general, a bias parameter may be expected to provide a compensation
for a global shift which is hard to achieve through weighting the individual
basis functions. The consequences of this observation may also be noted
in conventional multilayer perceptron studies where the performance of the
network is enhanced if the input data is previously scaled to have zero mean.
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6. Numerical examples: the prediction of chaotic time series

Lapedes and Farber [15] have recently used multilayer perceptrons for the
prediction of time series data generated by nonlinear dynamical systems. Ex-
tensive comparisons with other prediction techniques showed that multilayer
perceptrons were more accurate than the classical (linear) methods and were
comparable with the locally linear approach of Farmer and Sidorowich [19].

In this section, we shall, following Lapedes and Farber, use nonlinear pre-
diction as a non-trivial example of the application of adaptive networks. We
note that in this application our approach is very close to that of Casdagli [12]
who has applied radial basis functions to the construction of nonlinear maps
from time series data. Unlike Casdagli who used strict interpolation, we shall
employ the least squares generalization given in section 2.

Specifically, consider Ty, an ordered sequence of iterates of the doubling
map:

Zp4 = 22, (modulo1) (6.1)
and T, a sequence of iterates of the quadratic map
Zasr = da(1 — ) (6.2)

These maps are known to be chaotic on the interval [0, 1]: in both cases the
iterates of generic initial conditions are distributed according to continuous
invariant measures. For T, the autocorrelation (zgz,) decays as 27" while
for T}, {zox,) =~ by, where §;; is the Kroenecker delta. Therefore, given
only the data T, second-order statistics would convey the impression that
the sequence is random broadband noise (see Appendix C for further de-
tails). Naively (and in fact, erroncously) one might expect from this that the
prediction of T} is harder than the prediction of 7).

A radial basis function network for predicting one time step into the fu-
ture was constructed as follows. The basis function centers {y;} were chosen
to be uniformly spaced on (0,1); the number of centers was an adjustable
parameter. A set of input values {z; € [0,1]]z = 1,2,...,250} was used to
calculate the matrix A using equation (2.4). The singular value decompo-
sition of A, calculated numerically by a Golub-Reinsch algorithm, was used
to form the pseudo inverse A* using equation (A.2). This was then applied
to the vector of outputs:

i = (f(.'Cl), vy f(xf)v Ty f(‘z%U))T

(where f(xz) is the map given by either equation (6.1), or equation (6.2))
to obtain the weights {A;} according to A = A*f. The accuracy of this
mapping were then analyzed for an extra 250 different “test” points.
Figures 8 and 9, which show the output of the networks as a function
of inputs, illustrate the relationship with curve fitting for these simple one-
dimensional problems. It is clear that the basis of the difference between
predicting T; and predicting T is that the doubling map is discontinuous and
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0

0 1

Figure 8: The Quadratic Map: A figure showing the actual (solid
line), and predicted (filled squares) outputs of the network over the
interval [0, 1] for one iterate.

therefore hard to fit. Multilayer perceptrons also have difficulty with trying
to find an appropriate set of weight values which allows a good fit to Ty (in
fact the overwhelming tendency is for the multilayer perceptron to get stuck
in an unsuitable local minimum, M.D. Bedworth, private communication).

For prediction further into the future, the situation is further exacerbated
and rapidly becomes hard even in the case of T,. The problem is now one
of fitting a graph of the n'" order iterate of equation (6.1) or (6.2). In
either case the graph has 2"' oscillations of unit amplitude. In terms of the
radial basis function network, this would require at least 2® hidden units with
centers appropriately positioned. An alternative to this strategy is to iterate
the one-step network. This however, is inaccurate since errors in chaotic
systems grow exponentially because of the local instability of the evolution.

The accuracy of the network can be quantified by the following index, Z:

_ ({zpredictcd(t) — Tegpected (t)]2>
I= J (@ 1)) (63)

This quantity is a measure of how well the network generalizes beyond the
training data. The error expression given in section 2 has the same form, but
since it is based on the training data, shows how well the network reproduces
the training data. It is of interest to compare the two since the difference
quantifies the degradation of the predictive power of the network when it is
required to generalize. The graphs shown in figures 10 and 11 summarize
both kinds of error analysis for networks trained on 1y, and 1.

The most obvious difference between these figures is the scale. It is clear
that prediction of T, whichever error criterion is used, is much easier than
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0 [
0 1

Figure 9: The Doubling Map: A figure showing the actual (solid line),
and predicted (filled squares) outputs of the network over the interval
[0,1] for one time step into the future for the doubling map.
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Figure 10: The Quadratic Map: The log normalized error showing
the training (solid circles) and recognition data (open circles) as a
function of the number of radial basis function centers. Euclidean
norm and a Gaussian radial basis function (¢ = exp[—2z?n3/16]) were
used.
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Figure 11: The Doubling Map: The log normalized error showing the
training (solid circles) and recognition data (open circles) as a function
of the number of radial basis function centers. Euclidean norm and a
Gaussian radial basis function (¢ = exp[—2?n2/16]) were used.
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the prediction of Ty by several orders of magnitude. Beyond this, we see in
both cases that the training error of section 2 has the same basic dependence
on the number of hidden units; that is, a fast improvement as ngy increases
to about 30 followed by a plateau region where the relative improvement is
small. As ng approaches the number of data points used in the training (250
in this example), the training error again drops rapidly as the problem ap-
proaches the strict interpolation limit. This drop is not, however, mirrored
by a drop in the recognition error. Although initially, the recognition error
follows the training error very closely, a saturation plateau is reached and ap-
proximately maintained irrespective of how many hidden units are employed.
This can be understood since the capability of the model to generalize, is con-
nected with the underlying “smoothness” of the true map and the level of
“smoothness” built into the model through the choice of metric and radial
basis function (and indeed the assumption that an arbitrary function may be
approximately represented by the radial basis function expansion). There-
fore one can surmise that in most instances, there will be a limiting accuracy
to which it is possible to model unseen data generated by a mapping. This
is not trie for the training points themselves, since it is possible by strict
interpolation to produce a mapping surface which exactly passes through all
the points. However, all that this accomplishes is a fit to the noise on the
training points which may oscillate wildly between the constraining “knots.”
It was for this very reason that we introduced the least squares solution of
the radial basis function construction in section 2.

7. Conclusion

The object of this paper has been to introduce a simple view of network
models as devices for the interpolation of data in multidimensional spaces.
The purpose of this is to allow the application of a large body of intuition and
knowledge from the theory of fitting and interpolation to the understanding
of the properties of nonlinear networks. Thus we associate the concept of
generalization in networks with the simple idea of interpolation (extrapola-
tion) between known data points. The details of the generalization are then
dependent upon the implicit interpolation scheme employed by a given net-
work. Generalization is hard where the relationship has strong oscillations
or discontinuities. This suggests that, particularly in the case of abstract
problems for which the topology of the input and output spaces may not be
clear a priori, it may be advantageous to attempt to code the data so as to
produce a relationship which is as smooth as possible. Further we expect the
training data, where possible, would best be distributed to give information
about all the turning points of the graph and need not be tightly clustered
where, for example, the relationship is smooth or monotone.

Motivated by this philosophy, we introduce a network model based on
the radial basis function approach to curve fitting. This model has two main
advantages. First, it is firmly attached to a well established technique for fit-
ting, but, since it is contained within a general class of nonlinear networks, it
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may be used as a source of “existence proofs” for such networks. For instance,
we know that networks of this form can be used to model relationships which
lie in the function space spanned by the chosen set of radial basis functions.
The characterization of this space and quantification of such things as the
rate of convergence of radial basis function expansions is currently receiving
much attention and is seen to be of direct relevance to the theory of networks.
The second advantage of this network is in practical application. The
basis of its simplicity is that it combines a linear dependence on the variable
weights with an ability to model explicitly nonlinear relationships such as
for example, the exclusive-OR function. Thus, in the least squares context,
training the network is equivalent to solving a linear matrix equation. If we
specialize to a minimum norm solution, the solution is unique and in this
sense the network may be said to have a guaranteed learning algorithm.
This general approach, whereby optimization is carried out on the subset
of the weights for which the problem is linear, may be taken with other
network models. It would be interesting to study how much this restricts their
generality. Work along these lines is currently in progress. In the present
case, on the other hand, the inclusion of the basis function centers into the
optimization calculation may be carried out using a nonlinear optimization
technique in conjunction with the linear analysis described above. By analogy
with spline fitting of curves, this may produce some advantage, perhaps
in the form of needing fewer hidden units, but it is questionable whether
this would compensate for the added complexity of performing the nonlinear
optimization. We have not approached here the general question of what form
of ¢ is best, or where and how many centers should be used in the expansion.
Work is currently in progress to assess the sensitivity of convergence of these
factors and the use of the error function given in equation (7) as a cost
function for nonlinear optimization using the basis function centers.
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Appendix A. Solving linear inverse problems

The appendix looks at linear inverse problems as they arise in the radial basis
function approach to nonlinear networks.

In applying the radial basis function method, we need to invert an m x
n (m > n) matrix with elements A;; = ¢(||z; — ﬁj”)' Since A may be rank
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Gl E G G
AT 1 1 1 1
B
E

1 = 1 =]
{1 1 —1 —i}
1 —i -1 1

Table 2: The character table for Cy

deficient, it is necessary to account for the possibility of ill-conditioning.
Consider the singular value decomposition of A

A =UsvT (A.1)

where V is an n X n orthogonal matrix, S is an n x n diagonal matrix of
singular values and U is an m X n matrix with orthonormal columns. The
pseudo inverse of A, At, may be constructed as

At =vsiyu? (A.2)

where St is obtained from S by reciprocating the non-zero diagonal elements.
Clearly if rankA= m then A*A = 1 where 1 is the m X m unit matrix. On
the other hand, AA+ = UUT a superposition of projections onto a subspace
of IR™ spanned by the columns of U. If rankA< m then A*A and AA™ give
projections onto subspaces of IR™ and IR" respectively.

In the case of the exact exclusive-OR function the question of ill-conditioning
does not arise. In this case it is convenient to calculate the inverse of A
through its eigenvalue decomposition since the symmetry of the problem
may be exploited to obtain the solution. Here

A=VpV? (A.3)

where, since in this case A is a real symmetric matrix, the matrix of eigen-
vectors 'V is orthogonal. It follows that

A =VuvT (A4)

assuming that A is full rank. The rest of the appendix deals with the cal-
culation of the eigenvectors and eigenvalues of A using the symmetry of the
exclusive-OR function.

Our choice of ordering of the input points in section 4 is somewhat arbi-
trary. It should be clear that we can perform a sequence of rotations on the
original orderings while retaining the same matrix A. In other words, A is
invariant to a certain class of transformations, in particular, it is invariant to
operations in the group C4 = {E, Cy, C3, C3}, where E is the identity trans-
formation, Cy denotes rotations by /2, C; by = and C3 rotations by 3= /2.
The character table for the group Cy is shown in table 2 (for an introduction
to the theory and application of groups see [20]).

The character table may be exploited to solve the eigenvalue problem for

A by obtaining a symmetry adapted basis. We can see this as follows. The
representation of the group operations using the standard basis,
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§4=

0
0
0

(=~ I =

1

is not irreducible since its dimension is four and the maximum dimension
of an irreducible representation of Cy4 is two. In fact this representation of
the group has the form I' = A + B + F and so the basis has irreducible
components A, B, E. From the character table , one can ascertain that the
appropriate symmetry adapted basis is just

1 1 1 1
1 -1 il o |
B=l &8 1 BT || 87| S
1 -1 —i i

or, by normalizing and replacing the degenerate vectors vz and vg by simple
linear combinations, we arrive at a symmetry adapted set of basis vectors,

1 1 V2
et [1] ot mlf
=51 B=3| 1| ET3| -2
1 i 0
\/9
1 )
2 _ = ¥4
EE_Q D (A‘E)
-2

It is clear that these basis vectors are orthogonal and they are eigenvectors
of the matrix A since, explicitly,

Avy = (do+201+d5)ua = pa=(do+2¢1+¢s)
Avg = (¢o—201+o s = pe=(do—261+0s) (A6)
Avp = (do—da)k =  pe=(%—9s)

These basis vectors and eigenvalues are employed in section 4 to obtain
a set of weights analytically, which exactly solves the exclusive-OR function.

Appendix B. An analytic solution of the exact n-bit parity prob-
lem

The n-bit parity problem is a generalization of the exclusive-OR problem
discussed in section 4. It may be defined by the mapping depicted in table
3, that is, the output is unity if the total number of input bits having value
one is odd, otherwise the output is zero. Thus changing one bit in the input
pattern produces a maximal change in the output.

With the benefit of insight developed from the exclusive-OR problem,
this section obtains an exact representation of the n-bit parity problem as a
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Input Number of “ON” Output

Pattern bits in input Pattern
000 — 0 — 0
001 — 1 — 3;
010 — 1 — 1
100 — 1 — 1
011 — 2 — 0
101 — 2 - 0
110 - 2 — 0
111 — 3 — 1

Table 3: Symbolic mapping of the n-bit parity problem for the case
/== 3.

network based on radial basis functions. The network will have the general
form of n-inputs for an n-bit word, and 2" hidden units all connected to one
output. The centers of the 2" hidden units correspond to the possible input
patterns. Thus, an exact solution may be obtained once the 2"-dimensional
vector A of weights has been determined. All possible input states may be put
inal : 1 correspondence with the vertices of a unit n-dimensional hypercube.
This is conveniently achieved by aligning the hypercube with the Cartesian
basis so that one vertex resides at the origin. The Cartesian co-ordinates
of each vertex then directly maps to a unique binary sequence, for instance
(0,0,0) — 000, (0,1,0) — 010, (1,1,0) — 110, etc. The vertices may be
ordered by treating the set of sequences as a cyclic Grey code of the first
2" integers. Thus all nearest neighbors in this scheme correspond to points
of opposite parity and the use of the cyclic Grey code ensures that entries
across the rows of A represent points of alternating parity.

The rows of A are permutations of each other because of the symmetry
of the hypercube. It follows that there is a totally symmetric eigenvector,
vy = 27"2[1,1,..]" for which the corresponding eigenvalue is the sum of
the row elements of A

e =3 1"; (B.1)

=0

where p? is the number of 7' nearest neighbors to an arbitrary vertex.

A second eigenvector may be found using the division of the vertices
into two groups, differentiated by their parity. The form of this eigenvector
follows from the use of the cyclic Grey code in ordering the vertices: v_ =
2-%/2[1,~1,1,.. JT. This antisymmetric form distinguishes sites of opposite
parity and thus has a corresponding eigenvalue

pe= 3 Pidi— 2 P}o; (B.2)

j even j odd

since there are Y5; .yeq P} sites of the same parity, and }; 44 p] sites with
opposite parity.
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Figure 12: The hypercube of the three-bit parity problem.
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The coefficients p} may be obtained by comparing two arbitrary n-bit
sequences which differ in j-locations. The number of ways of permuting j-

locations within n-bits is just p? = (?) Note that 355 p? = 2", the total

number of vertices of the hypercube.

The response vector, s = [0,1,0,1,0,...] may be decomposed as the dif-
ference of the symmetric and antisymmetric eigenvectors. Thus, vy, v_ are
the only eigenvectors which are relevant in evaluating the weights. Conse-
quently, as in the exclusive-OR example, the vector of weights of the n-bit
parity problem may be evaluated as

pt —pZt
#;] + ﬂ:l
1 =1 =1
,\ = — — i
4=73 Byt — B

,u;l + p!

[ A1)
Az
M

Az

(B.3)
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where,
-E)m(?)é‘,
N o= . . (B.4)
R EESON
y Z(’;)«*

) )]

Equation (B.4) accomplishes what the section set out to obtain: an exact
solution to the n-bit parity problem in the sense that there is a guaranteed
set of values for the weights of the matrix which ensures that the result of the
network is to reproduce, at least, the values exhibited in table 3. It should
be noted that although this task has been achieved with a network involving
2™ hidden units, it is still possible to solve the problem exactly with fewer
than this number of hidden units. For instance, and by analogy with the
exclusive-OR problem, if the radial basis function and metric were chosen in
such a way that either of

5 (’.‘)gﬁ,- =0 (B.5)

j even J
%(5)e =0
jodd M

are satisfied, then an exact solution may be obtained with only 2*~' hidden
units.

Appendix C. The quadratic and doubling maps

This appendix lists a few details relevant to the chaotic maps discussed in
section 6 for time series prediction. The quadratic map, as discussed, deter-
mines the signal at time ¢ 4+ 1 in terms of the signal at time ¢ by the explicit
iteration scheme

Topr = 424(1 — z4) (C.1)

By a simple linear transformation, z — y, this map is transformed into the
form

Yny1 = 2 i —1 (0.2)

Since these two mappings are related by a linear transformation (z = 0.5[1 —
y]), the behavior of equation (C.2) determines the behavior of the quadratic
map. Equation (C.2) is interesting because it illustrates that the mapping is
explicitly given in terms of Chebyshev polynomials [21], specifically

Ynta ""—"Tz(yn) (CB)
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From this relationship and exploiting the property of Chebyshev polyno-
mials that

2T = Ty T (C.4)
or, specifically
o2 = Tp + T (C:5)

one finds that the n'" iterate, y,, is connected with the starting value ¥,
through the 2* Chebyshev polynomial,

Yn = Ton(yo) (C.6)

This just makes explicit the fact that the value of the map at any time
in the future is uniquely determined by the starting value. However, the
map is known to be ergodic, and thus time averages are equivalent to phase
averages. To obtain the phase average, one needs the fact that the invariant
measure of the map, equation (C.2), is

HS g
V=i

Therefore, the correlation function {y,yk.;) may be determined by the ex-
pectation value

(C.7)

v Tor(yo) Tor+s (90)
(Yk¥rts) =/ e
T om1-98

However, this is precisely the orthogonality relationship between Chebyshev
polynomials of the first kind, and hence the integral yields a Kroeneker delta,

dyo (C.8)

(Veyi+s) = %5:'.0 (C.9)
Consequently, as far as second-order statistics are concerned, the time
series generated by the quadratic map totally loses its memory between each
time step, and hence would appear to be an infinite bandwidth, noise signal
(this is of course not the case when higher-order correlations are taken into
account).
In the case of the doubling map, the value of the time series at time ¢+ 1
is determined by the time series at ¢ via

Ty = 22, mod 1 (C.10)
The correlation function may be expressed as
1
(zoz:) = A zo[2'zg] dz (C.11)
21 L(j+1)/2t
= f ’ z[2'z] dz
ilzt

=0
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where [z] denotes the fractional part of = (note that the invariant measure is
uniform in this case and the map is known to be chaotic so that time averages
and ensemble averages are equivalent). By a change of variables, y = 2'a — j
the above integral is readily performed to give:

/a iz;: {% + %} (C.12)

L1+
4 3

Thus, in contrast to the quadratic map, the correlation function for the
doubling map decays exponentially in time.

{Toz:)

I
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