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A b st r act . The relationship between "learning" in ad aptive layered
networks and the fit ting of data wit h high dimensional surfaces is
discussed . T his leads natu rally to a picture of "generalization" in
terms of interp olation between known data points and suggests a ra­
t ional approach to th e theory of such networks. A class of adaptive
networks is identified which makes the inte rpo lation scheme explicit.
This class has the property t ha t learning is equivalent to the solution
of a set of linear equations. T hese netwo rks t hus represent nonlinear
relati onships while ha ving a guaranteed learning rule.

1. I ntroduction

T he st rong resurgence of interest in "se lf-learning machines", whose ances­
tors include t he perceptrons of the 1960' s, is at least partly driven by the
expectation that they will provi de a new source of algor ithms/architectures
for the processing of complex data. This ex pectation is based on an anal­
ogy with connectionis t mo dels of informat ion processing in animal brains.
The brain is able to cope with sophisticated recog nit ion and inductive tasks
far beyond the capabilit ies of systems based on present computing logic and
ar chi tectures.

An example of an everyday task for the human brain which illustrates th is
point, is the recog nit ion of human speech . For automatic speech recognition
one wishes to deduce properties (the implied message) from t he statistics of
a finite input data set even though the speech will be subject to nonlinear
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distortions due to noise, sex, age, health , and accent of the speaker. This
has proved to he notor iously difficul t. Over t he past decade, one of the
most success ful tec hniques developed for speech recognition has been based
around Hidden Markov Models (see for instance [1,2,3]). In this scheme,
speech is modell ed as a. sequence of causal st at ionary stochast ic processes
determined by a finite number of allowable states, st ate t ransitions, a ma­
trix of stat ionary t ransit ion probabi lit ies and an initial state distribution.
There is, in addit ion, a learning algorit hm (Baum- Welch iteration) to fine
tune the param eters of the model which increases the likelihood that each
model pro duces its associated data. However, one of the prob lems with this
approach involves the a. priori assumpt ions made regardi ng t he topology of
the Hidden Markov mode l {e.g., number of states, allowable transitions). As
long as the total possible input data is consistent with the assumptio ns made
in the original mod el, then one can expect a faithfu l representat ion of the
dat a. Th is unfortunat ely presupposes that we already know how to model
speech adequately.

In an at tempt to circumvent this problem , self-learning machines have
been employed. T he virt ue of these is that no explicit model of speech is
required. For instance, t he multi layer perceptron (which is a layered nonlin­
ear network) embodies a set of nonlinear, "hidd en" unit s whose task is to
encode the higher-order constraints of the input data [4]. This is achieved
by varying weights governi ng t he st rengths of connections between t he units
in order to minimi ze the error in relati ng known input -output pairs (t he
"t raining" set). This process has become known as "learning." Th e ab ility
of the network to give subsequently reasonable (in some sense) outputs for
inpu ts not contai ned in the training set is termed "generalizat ion." In effect,
a multi layer perceptr on of given geomet ry with given nonlinear responses of
the units constit utes an A1-parameter family of models (where M is the total
number of weight s which are varied) . It is currently an act of faith , based on
encouraging practical results, that such families are broad enough to include
models of speech which are adequate for the purposes of classificati on. Thi s
means, however, that the design of a mult ilayer perceptron for a specific tas k
remai ns an empirical art . In part icular, how many hidden units should be
employed and in what confi gurat ion, how much tr aining data is needed, and
what initial interconnect ion st rengths have to be assigned? Some experim en­
tal work has been perform ed which addresses these problems (for instance,
[5,6]) although it is fair to comment t hat an understanding of these issues is
st ill lacking. Th e source of the difficulty is the implicit relat ionship betwee n
these externally cont rollab le factors, and the model ultimately represented
hy the network.

T he present paper investigates the implicit assumptions made when em­
ploying a feed-forward layered network model to analyze complex data. The
approach will be to view such a net work as rep resenting a map from an n­

dimensional input space to an nl-d imensional output space, say s : llln -+

lRn
' . This map will be t hought of as a graph r c IRn x !Rn l (in t he same way

that s : m. -+ lR, where s(x ) = x2 may be thought of as a parabola draw n
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in IR?). From th is point of view, "error free" tr aining dat a presented to the
network in the form of inpu t-output pairs represent points on the graph, r
and the learning phase of an adaptive net work const itutes the opt imization
for a fittin g procedure for r based on the known data points . Generalizat ion
is therefore synonymous with in terpolation between the data points with the
interpolation being along the constrained surface generated by the fitt ing
proced ure as the opt im um ap proximat ion to r. In th is pict ure the implicit
assumptions made when using a mul t ilayer percept ron concern t he nature
of the fitt ing procedure, and clearly relate directly to the way in which the
network generalizes. Th us, we are led to the theo ry of mul t ivariable inter­
polation in high dimensional spaces . In subseq uent sect ions, we sha ll exploit
some of the mathematics of th is expandi ng field of research to develop a new
ty pe of layered networ k model in which the nature of the fitt ing proced ure
is explicit. T his class of layered network model will be shown to be of con­
siderable interest in itself. In add ition , however , it is hoped that the explicit
nature of the fitt ing procedure will allow us to develop a better understand­
ing of the general proper ties of layered nonlinear networks which perform an
equivalent function.

2. Multivariable functional interpolation using radial basis func­
t ions

Thi s sect ion introduces briefly t he method of Radial Basis Functions, a tech­
nique for interp olating in a high dime nsional space which has recently seen
import ant developme nts . Further details may be obtained from the review
art icle of Powell [71 and the imp ortant contr ibution of Micchelli [81 ·

In the cited references the radial basis funct ion approach is ap plied to t he
str ict interp olat ion problem which may be summarized as follows:

Problem. Given a set of m distinct vectors (data point s), {~ j i = 1, 2,
..., m} in m.n and m real numbers {Ii; i = 1, 2, .. . , m }, choose a function
s : IR" -t IR which satisfies the interpolation conditions

S({fi) = Ii i = 1, 2, ... ,m (2 1)

Note t hat the function , s, is constrained to go through the known data points.
T here are clearly man y criteria one could imp ose which would restrict

the possible functional form of s(;£) (see for instance (9)). The Radial Ba­
sis Function approach const ructs a linear functi on space which depends on
the positions of the known da ta points accordi ng to an arbitrary distance
measu re. T hus, a set of m arbit rary (generally nonlinear) "basis" functions
";(11;£ -1i;11l is int roduced, where ;£ E rn.n and 11...11 denotes a norm im­
posed on IRn whiclr is usually taken to be Euclidean. The vectors y . E lR"
,i = 1,2, . . . I m are the centers of the basis functions and taken to be sam ­
ple data points. In term s of these basis funct ions, we consider interp olatin g
funct ions of the form:
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m

s(.:r.) = L Aj¢(II.:r. -11)1) .:r. E JR"
j=l
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(2.2)

Tnser tin g the interpola t ion conditions, equation (2.1) into eq uat ion (2 .2),
gives the following set of linear equations for the coefficients {,,\ },

OJ= (X :~J CJ (2.3)

where

'"A'j = ¢(IILi - y.11l i,j = 1,2, . .. , m-, (2.4)

Give n the exis tence of the inverse to matrix A with elements A i j , equation
(2.3) uniquely defines the coefficients Aj through,\. '" A-I f.

In general, one might ex pec t that for an arbit rary choice of ¢ the matrix
A could be singular. However, the results of Micchel li prove that for all
positive integers rn, n and for a large class of functions ,p, t he matrix A is
non-singular if the data points are aJi distinct .

Th is discussion readily generalizes to maps s : IRn
--+ IRn

' . In th is case
the m dist inct da ta po ints in IRn are associated with m vect ors ]. E IRn'.
The interpo lat ion cond ition or equation (2.1) thus gene ralizes to - ,

which leads to interpolating functions of the form

m

Sk(.:r.) = L Ajk¢(II.:r. - :i!)ll .:r. E IR" k = 1,2, . . ., n'
j=l

(2.5)

(2.6)

T he expansion coefficients )..jk are obtained using the inverse of the same
ma trix A defined in equation (2.4) .

Once a suitable choice of the function ¢ is made, and a conven ient dis­
tance measure imposed, the above relations exactly specify the interp olat ion
problem which has a guaranteed solution .

However I for certain classes of problem, the above ana lysis may not be
a good strategy for the following reason. A bas ic cons ideration when fitt ing
data is the number of degrees of freedom required . That is, the minimum
number of basis funct ions needed to generate an acceptable fit to the data.
In the situation where t he number of data points far exceeds t he number
of degrees of freedom there will be redundancy since we are constra ined to
use as many rad ial basis functions as data points. In this case the strict
interpolation cond itions generally result in this redundan cy being used to fit
misleading variations due to im precise , or noisy data .

It is poss ible to avoid this difficulty by weaken ing t he inter polation con­
ditions. We suggest the following generalizations to the conventional radi al
bas is funct ion app roac h . F irst , it may be necessary to distinguish bet ween
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the data points, (.~i , i = I )2, . . . , m) and the radial basis functio n centers ,
(1!..jl j = 1,2, .. 0' no no < m) 1. The problem thus becomes overspecified ,
the matrix A is not square, a unique inverse no longer exists , and the previ­
ous exact problem becomes one of linear optim ization. In the following, we
shall adopt a m inimum norm least squares method by introducing the Moo re­
Penrose pseudo-i nverse, A + of matrix A . For the case where l'ankA = no,
thi s has th e prop erty th at A + A= 1 where 1 denotes th e no x no ident ity
matrix. More generally, the pseudo-i nverse provides a unique solut ion to th e
linear least squares problem {IO] in the following sense,

Of all the vectors ~ which minimize the sum of squares IIA~ - JlI', the
one which has the smallest norm (and hence minimizes II~I I ') is gJven by
~ = A +f·

For This particular solut ion set, an expression may he derived for the
normalized error E, spec ifically,

2:~1 112(£;) - LII'

\ 2:~ 1 IlL - WII'
2:~1 1 1 2:"~ 1 (AA+)". £, - LII'

2:~1 IlL - WII'

(2.7)

where (J) is the mean value of the response vector over all the training data
points. Note th at if the pseudo-inverse equals the exact inverse, th en the left
and right inverses are th e same and hence th e matrix product A A + is the
rn-dimensiona l identity matrix, and thi s error is zero.

An additional modification, which is useful parti cularly when J(;r.) has a
large ;r.-ind ep endent component, is to incorporat e constant offsets tAod into
the form of the interpolating funct ions

m

Sk(~) = AOk +I: Ajk ¢>( I1~ - JLjl ll ~ E JR" k = 1,2, ... , n' (2.8)
j=1

T hese coe fficients enter t he least squares formalism t hrough an add it ional
colum n in A

(2.9)

In th is form , the rad ial basis function approach to mult ivar iab lefunct ional
interpolation has a close resemblance to adaptive network theory . T his will
be discussed in the following sect ions. An important consequence of th is ap­
proach which should be emphasized is that the determination of the nonlin ear
map :1(,t.) has been redu ced to a problem in linear algebra. Th e coefficients
Ajl; appear linearly in the functional form of the mapping, therefore th e prob­
lem of determ ining the precise values , even in an overd et ermined situat ion,

"In part icular, we do not necessarily require t.hat the radial basis funct ion centers
correspond to any of the data points .
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has been redu ced to one of a linea.r least squares op t im izat ion which has a
"guara nteed learning algorithm" th rough the pseudo-inverse technique 2 . Of
course, this reducti on has assumed suitable choices for t he cente rs , {y .} and

- J
th e funct ion ¢. It may be argued, therefore, that the restricti on of the opt i-
mization by fi xing these quantities is excessive and must limit the range of
applicability of the approach. In t he case of the st rict interpolation this does
not seem to be the case, at least as far as the choice of ¢ is concerned [11 ].
Th ere is evidence to show [12], again for st rict interpolation, that the effect
of a subopt imal choice of t he {y .} is to reduce the rate of convergence of the

- J
expansion given in equation (2.6). For the least squares extensions described
here, much less is known.

3. The radi al basis function method vi ewed as a layered network

Much of the power and attraction of current adapti ve network models is
contained in the nonlinear aspects of the hidden units so that nonlinear
inpu t-outpu t relat ionships may be modelled. Unfort unately, since the error
crite rion, or cost function, depends on t he response of the nonlinear elements,
the problem of finding a globally opti mum solution becomes one of uncon­
st rained nonlinear least squares minimization. Such problems can be solved
usually only by iterati ve techniques. For instance, "error back-propagation"
is a first -orde r (only depends on the gradient of the functio n of interest ) stee p­
est descent technique which suffers from slow convergence proper t ies due to
its tendency to zig-zag about the tru e direct ion to a minimum. More so­
ph ist icated iterat ive schemes derived from second-order approximat ions have
been prop osed which improve convergence properti es (the quasi-Newton , or
variable metri c algorithms-see for instance [13], Chapte r 15 and [14]). Re­
cent works of note which have considered more general iterative st rategies
and found them to be orders of magnitude sup erior to back-propagation
when applied to specific layered network problems are those of Lapedes and
Farb er [151 (conjugat e gradients) and Watrous [161 (Davidon -Fletch er-Powell
and Broyden-Fletch el'-Goldfarb-Shanno) . In spite of this efTort , the difficulty
remains th at t he solution obtained by such methods is not guaranteed to be
the global opti mum since local minima may be found. Th ere is no reason
in the current iterati ve schemes why a least squares minimization solution
obtai ned, will necessarily have the required form. Even choosing a good ini­
t ial star t ing point for the iterat ion schemes will not necessarily imply that a
good ap proximation to the global minimum will be obtained. It is important
to know how "good" a solution is obtai ned by settling for a local minimum,
and under what condit ions the solution at such a min imum has to be deemed
unsatisfactory.

In the previous sect ion it was shown that because of the linear dependence
on the weights in the rad ial basis function expansion, a globally optimum

:2As a. technical numerical point , t he solut ion will not genera lly be obtained from the
normal equations (which may be ill-conditioned), but would be obta ined via the efficient
proced ure of singular valued decomposition.
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Input layer Hidden layer Output layer

Yij A jk

Figure 1: A schemat ic diag ram of the feed-forward layered network
mod el represented by the radial basis function expansion.

least squa res interpolation of nonlin ear maps can be ach ieved. The relevance
of thi s to layered network models is that the mapping produced by the radial
basi s function expression equat ion (2.6), has the form of a weighted sum
over nonlinear functions. T here is thus a natura l correspondence with th e
following genera l th ree-layer network system , in which th e layer s are full y
intercon nected wit h adjacent layer s, bu t there are no interconnections within
the layers (see figure I).

T he input layer of thi s network model is a set of n- nodes wait ing to accept
th e components of the n-di mensiona l vector g . T hese input nodes are direct ly
connected to all of the hidden nodes . Assoc iated with each connection is a
sca lar ( Yij for the link betw een t he i l h input node and the / h hidden nod e)
such that the fan-in to a given node has the form of a hyp er-sphere, i.e. in
the case of a Euclidean norm, the input to the node is OJ = L:~l(Xi - Yij ?
where th e Xi are componen ts of ±. The "hidden layer" cons ists of a set of
no nodes, one for each radi al basis function cen ter. The output of each of
these is a sca lar, generally nonlin ear funct ion of OJ. T he hidden layer is
fu lly connected to an output laye r correspond ing to the n'-com po nents of
the n '-dimensiona l resp onse vect or 2C~') of the ne twork. The input value
received by each output unit is a weigh ted sum of all the outputs of t he
hidden units, whe re the st rengt hs of connect ions from the / hhidden un it to
the klh ou tput unit are den oted by A jk ' T he response of each ou tpu t uni t is
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a linea r function of its net input which may include the bias AOk. A natural
extension is to allow for nonlinearity in th e respon se of the output unit s.
Clearly, if the transfer fun ction of these units is invertible, then it can be
accounted for by a suitable modi fication of t he interpola tion condit ions used
to der ive the weights {Aid- T his specifies, as a layered network mod el, the
radial basis fun ction ex pansion, equation (2.8), which produces a mapping
from an n-dimensional input space to an n'-dimensional tar get space .

This type of network falls within th e general class of nonlinear layered
feedforward networks. In particular we have spec ialized the geometry to a
single hidden layer and fixed the fan-in and fan-out to the hidden units as
ind icated . The choice of hyperspherical fan-in to the hidden units has the
effect of sect ioning the decision space into hyperspherical regions rat her than
hyperplanes which result from the more usual choice of a scalar product type
of fan-in. This has the advantage of allowing disjoint regions in the deci­
sion space, but which pertain to the same classification, to be sat isfacto rily
resolved by t he single "hidden " adapt ive layer. Pro blems witho ut simple
connect ivity would tradit ionally require two hidden adaptive layers, as dis­
cussed in [17] , whereas th e approach described in thi s paper can dea l with
such problems by employing a. single hidd en layer.

It is interesting to compare the radial basis function network with t he
t radi t ional multilayer perceptron and the linear percept ron as discussed by
Minsky and Paper t [181. Th e "learn ing scheme" of conventional multilayer
perceptron s consists of an unconstrained nonlin ear least squares opti mize­
t ion process and as such there are no global theorems regarding convergence
to the correct minimum error solut ion. In contrast, t.he radial basis func­
t ion network has a guaran teed learn ing procedure since there is only a single
layer of adjustable weights which may be evaluated according to linear op­
t imization tech niques for which globa l existence theorems are known . In
this sense, the radial bas is funct ion networks are more closely relat ed to the
early linear perceptro ns. However , in cont rast to these ear ly networks, the
rad ial basis functi on net work is capable of repr esenting arbitrary nonlinear
transformations as det erm ined by a finite trai ning data set of input-output
pattern s, since the result s of Micchelli show that the radial bas is function
ap proach can produce an interpolating surface which exactly passes through
all the pairs of the tr ainin g set . Of course, in applicat ion th e exact fit is
neith er useful nor desirable since it may produ ce anoma lous interpolation
proper ties. In practi cal sit uat ions a regularization, equivalent to assum ing
the existence of a smooth interpolation bet ween known data pai rs, is im­
posed. One such regularization is the least squares const ruct ion int roduced
in section 2. The abil ity of radial basis functi on networks to expli citl y mod el
nonlinear relationships will be demon strated in subsequent sect ions by ap­
plication to specific problems which demand t he const ruct ion of a nonlinear
mapping in order to produce the correct solut ion.

Our radial basis function st rategy may be applied to the general mult i­
layer perceptr on for which the output units have an inver t ible nonlinear­
ity. In particular , when extended to allow for variat ion in the input-hidden
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Input Number of "ON" Output
Pattern bit s in inpu t Pattern

00 --> 0 --> 0
01 --> 1 --> 1
10 --> I --> 1
II --> 2 --> 0

Table 1: Symbolic mapping of the exclusive-OR problem.

weights, this method provides an interesti ng picture of learn ing. The hidden­
output weights may be visualized as evolving on a different "t ime scale" to
t he input-hidden weights. T hus, as the inp ut-hidden weights evolve slowly
by some nonlinear optimization st rategy, the hidden-output weight s adjust
themselves rapidly throug h linear optimizat ion so as to always remain in the
global minimum of an evolving erro r surface over the hidden-output weights
which is parametrically cont rolled by the inpu t-hidden weights. T he hidden­
output weights are "slaved" to the behavior of the input-hidden weights.

The rest of thi s pape r is concerned wit h various simpl e ap plicati ons of
the radial basis function network. The total set of adjustable parameters
include the set of no-radial basis function cente rs, y ., as well as the set of

- J

(no+ 1) x n l weights. A j l;. However, only the lat ter are includ ed in the least
squares analysi s in this paper in orde r to preserve the linearity of the learning
pro cedure. In the absence of any a priori knowledge, the cente rs, {y .} are

- J
eit her dist ributed un iformly wit hin the region of IRn for which there is data,
or they are chosen to be a subset of the training points by analogy with st rict
inter polation. We expect that with addit ional knowledge of the surface to
be fitt ed , the ffeedorn to position the cente rs may be used to advantage
to improve the convergence of the expansion (altho ugh not necessar ily to
improve t he "fit" to the unseen data) . Eviden ce for th is as well as insight into
the significance of the centers follows from the work of Powell [11} who showed
that for st rict interpolat ion when n = n' = 1 and when ¢(r ) = r2k H , (k =
0,1 , ...), the rad ial basis function method is equi valent to interpolat ion with
nat ural splines. In thi s case the {y .} are the knots of the spline fit . Nat urally,

- J
when the st rict interp olation is weakened to give a least squares interpolation,
the significance of t he "knots" in constr aining the surface is also weakened.
In what follows. we shall attempt to be as general as possible in t he ana lyt ic
work by assuming an arbi trary form of ¢. Where numerical work necessitates
a specifi c choice, we have chosen to employ either a Gaussian form (¢(r) :::::::
exp[- r' J) or a mult iquadric (4)(r ) '" vc' +r').

4. Spec ific example (i) : the exclusive-OR proble m and a n exact
so lut ion

The exclusive-OR problem defined by the symbolic mapping in table 1 has
been conside red interesting because points which are closest (in terms of the
Hamming distance) in the input space, map to regions which are max imally
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apart in the output space. This is a classic example of a logic funct ion that
cannot be represented by a linear perceptron. Clearly, a function which
interpolates between the points given in Table 1 must osci llate, and may be
hard to represent using a subset of data points unless there is some built in
symmetry in the radial basis function s.

In what follows, we init ially take one radial basis function center deter­
mined by each piece of input data, so that both Y'l k. are selections of the

- J
four ordered input patterns of table 1. We choose to number the four possible
input patterns as (0,0) --4 1, (0, 1) --4 2, (1,1) --4 3, (1,0) --44 which we
visualize to be the cyclically ordered corners of a square. The action of the
network may be represented by

4

SeE) = L: .\j<pUI;r - lLj ll)
j=l

so that t he set pj} may be found from

4

J, = L:.\j<p(IIL -lLjlll
j=l

i.e.

For the ordering we have chosen, the vector J and the matrix A take the
specific forms -

and

1 = ( ~) (4.1)

(4.2)

where a labeling notation has been introduced so that <Po denotes the value
of <p(II;r, - a.ll), <PI denotes the value <p(II;r, - ;r'±111l and <P,j2 represents
<PUlL - ;r'±211), all counting being pe rformed cyclically aroun d the square.
Note that this is a labeling device and we will not exploi t the properties
of any particular distance function at this stage (alt hough the notation <Ph
indicates that we have in mind a Euclidean metric as an exam ple) .

It will be convenient to construct A - 1 from the eigenvalue decomposition
(see Appendix A for further detai ls)
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Since A is real symmetric, V is an orthogonal matri x with columns composed
out of the orthogonal eigenvectors; in this case,

v = ~ (:

1 ../2

-~)- I 0
2 1 1 -../2

1 - I 0 -../2
and g is the real , diagonal matrix

(I
0 0

I)I'B 0
!f; = 0 I'E

0 0

where

(4.3)

I' A

I'B

I'E

(,po+ 2,p , + ,p",,)
(,po - 2,p, + ,p",,)
(,po - ,p",,)

(4.4)

Note that at this stage it is possible to decide how well posed the original
problem was, by seeing under what conditions an inverse matrix A - I exists .
It is clear from the form of the derived eigenvalues of the problem , that an
inverse exists as long as

(4.5)

or

(4.6)

are satisfied. T hus far , the analysis has been carr ied out for an arbitrary
choice of nonlinear radial basis function and metric, therefore t he above con­
dit ions can be taken to be restrictions on the various combinations of radial
basis function and metri c t hat may be reasonably emp loyed for this problem.
It is interesting to point out two sit uations where an inverse does not exist :

,p(x ) = mx +c combined with a city-block metric

and ,p(x) = ox' + c combined with a Euclidean distance function,

(11,1<11 '" V'D xi)

as may be easily verified by direct subst it ut ion into equation (4.6). Th ese
instances correspond to the network struct ure of a linear percep tron and are
thu s unable to represent the exclusive-OR function.
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(4.7)

Given the inverse of A J we may proceed to obtain the "weights" of the
network as

A -IL

Yg- lyTL

Y g- lyT (lL< - Ji.B)

where we have exploited the fact t hat th e response vector I, equat ion (4.1),
may be decomposed int o the d ifference of the basis vectors~ and!l.B derived
in th e appendix (Appendix A). Performing the above operations (which is
simp lified since vecto rs orthogonal to Q.A ,!:!.B do not contribute) gives th e final
result th at

- 1 -1 ). 1I'A - 1'8

A =~
J.l::i 1 + J.lE/ A,

=- 2 - 1 - 1 A,I'A -1'8

ItAl + J.ls1 ). ,

where, explicitly

AI '"[..+0>",1' - <"j

A, (..+0>",)
[..+0>",1'-<"j

(4.8)

(4.9)

Equation (4.8) specifies the choice of network weights which exactly solves
the exclusive-OR prob lem. T he weights are st ill dependent on the precise
choice of ra dial basis function an d distance meas ure . Clearly we are free
to choose these sub ject to condit ion (4.6) without affect ing the solution of
exclusive-OR. Th is choice does however influence the out put of the network
for arbitrary , real-valued inputs.

Figure 2 illust rates the solution for the specific choice of a Euclidean
distance funct ion and Gaussian radial basis functions (4)(x) = exp[- x' /u]).
Similarl y, figure 3 shows the output using the same distance function, but em­
ploying multiq uadr ic rad ial basis funct ions (4)(x) =VI+x' /u ). In both in­
stances, the map ping surfaces have two planes of reflection symmetry t hrough
the diagonals of the unit square. Th e difference is that the Gaussian choice
produces two maxima near to the odd pari ty inp uts and two shallow minima
close to t he even parit y inputs. The multiquadri c does not have t hese max­
ima and moreover diverges rapidly outside the unit square. Thi s distin ction
is of no relevance to the exclusive-OR function itself. It would however , be
significant were it at tempted to give mean ing to input and output values
other than those represented by zero and unity. Clearly, the details of the
generalizat ion would then be dependent on the specific interpolation scheme
represented by the network .
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Figure 2: The exclusive-OR solution 0). Obtained using a Euclidean
distance function and Gaussian radial basis functions centered at the
corners of the unit square.
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Figure 3: The exclusive-OR solution (ii). Obtained using a Euclidean
distance function and mult iquad ric radial basis functions centered at
the corners of the unit square.
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1

Figure 4: Equivalent network for exclusive-OR with ).2 set to zero.

Vve conclude this sect ion with a discussion on the numbe r of "hidde n
uni ts" em ployed to solve the problem. Note that the problem has been
solved exactly ;given t he weights as determ ined by equat ion (9) and a specific
choice of a rad ial basis function, app lying any of the input pattern pairs will
gua rantee to get the correct output answer. On preliminary inspecti on thi s
may not seem so surp rising since each possible input data.point was used as
a.center for a. radi al basi s function and so a "dict ionary" of possibili ties could
be enco ded .?

One can exploit th e symmetry of th e solut ion however , to show how it
is st ill possible to solve the exclusive-OR problem ex act ly without explicit ly
spec ifying the respon se of the whole set of input states . Specifically, from
equat ion (9) and by a judi cious or "fortuitous" choice of nonlinear funct ion
4> (for instance if 4>1= 0 or 4>0= - 4>,fi) then two of the four possible weight s
would be zero. T his uncouples the correspon ding pair of hidden unit s from
the system, wit h the result th at the remaining network sat isfies the exclu sive­
OR funct ion without being explicit ly "t rained" on the ent ire possible set of
input / output pairs.

For the case that 1>1 = 0 (figure 5) th e two identical weights connect ing
th e two hidden units to the output unit have a value of 1/[4>0 + 4>,fi]. In
thi s case, t he hidden units cente red on the pattern s (0, 0), (I , 1) ha ve no
connect ions to the output and hence cannot contribute. Thus, when th ese
patt ern s are presented to the network , the two units which would react most
strongly to their presence have been disconnected from the output uni t while
the rem aining two respond with ,pI = 0 as expected. Altern atively, if t he
patterns (0, I ), (I , 0) are presented , one hidd en unit contributes a value of
,po and the other a. value of tP.,fi' Since their sum is just 1/),.2 th e result of
the network is to give t he answer 1 as it should. A similar argument may be
presented for the case when 1>0 = - ¢.,ji.

In either case, th e surfaces shown in figure 2 and figure 3 are const rained

3Uowever, note that thi s scheme has achieved a fit with four adj ustable pa ram eters, the
weights Aj, whereas the standard 2-2-1 mul tilayer perceptron would employ nine adj ust able
pa rameters .
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2

Figure 5: Equivalent network for exclusive-OR with ).1 set to zero.

sufficiently for t he specificat ion of just two point s to fix the remaining pair
of output values. Here we have, by a suitable choice of 4>, adjusted the
form of the fitt ing algorit hm to adm it a. network which "generalizes" the
incom plete t ra ining data to give the entire exclusive-OR funct ion. T his sort
of proced ure can of course be emp loyed by a multilayer percept ron , However ,
it should be clear that for a st rongly folded surface such as represents the
exclusive-OR funct ion (or the more general a-bit parity function shown in
Appendix B) the presence or absence of redundant points which may be
omitted from the train ing set must depend sensit ively on the imp licit fitting
procedu re employed by the network. Moreover, the quest ion of which point s
are redundan t must also require detailed specific knowledge of the network
and the relat ionship it is being used to represent . As a rule, one can expect a
net work to be capable of "correct ly" generalizing, only when there is sufficient
t raining data a.ppropria. tely distributed to enable an adequ ate fit to significant
turn ing point s of the underlying graph . Clearly, the more folded this grap h
is, the more demanding will be the requ irement on the data.

5. A n analytic solu t ion to a n on-exact problem: the ex clus ive -OR
problem wit h t wo centers

The previo us sect ion, with its related appendices, dealt with exact solutio ns
to strict interpolat ion problems. For strict interpolat ion the interpolat ing
surface is constrained to pass thro ugh all the training data points . This
is achieved by using t he formalism described in the first part of sect ion 2
which requi res the use of a radial basis funct ion (or hidden unit) for each
dist inguishab le data pair. It was noted that this ru le may be relaxed in
spec ial circumstances where the symmet ry and ot her detai ls of the problem
may be employed.

In this sect ion, we shall consider a specificexample of the more general ap­
proach discussed at the end of sect ion 2 which relaxes the st rict inter polation
of the data. Recall that sufficient scope was allowed in the variant of radial
basis functio n techniques to accommodate an app roxima teinterp olat ing sur­
face whereby this surface is not directly constrained to go through all (or
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any) of t he t ra ining set. This is clearly an advantageous strategy when the
input data is corrupted in some fashion by exte rnal sources and it would not
be desirable to t ry and fi t t he noise added onto the (presumably) st ructured
data. In addit ion, where th e t rue data actually represents a smooth map , it
allows th e use of far fewer hidden units t han data points.

We repeat th e ana lys is of the exclusive-OR problem considered in the
previous section, hut using just two radial basi s fun ction center s. It is clear
th at t here are two distin ct choices how the two centers may be positioned:
eithe r on opposing vert ices, or adjacent vert ices on the ord ered corne rs of
the unit square. vVe choose the locat ions of the centers to be on opposing
vert ices at (0, 0) and (1,1). Thi s choice allows us to exp loit the symmet ry of
the exclusive-OR funct ion to allow its solution wit h fewer "t raining" points
than da ta point s.

The total training data is the mapping dep ict ed in Table 1. Th e calcu­
lat ions are performed using t he pseudo-inverse technique with , and without ,
the use of an adjustable bias on the output unit.

5 .1 T he a pp roximate excl usive-O R without an output bias

Following section 2, we use th e following form of interpolating function s:

s(;J;) = z= ~i </> (I I... - 11) 1)
i = I ,3

where 1!., = [O,OIT , 1b = [1, 1)T The set {Ai} is given by

L> z= ~;</>( I I"" -!Lill) i= 1,2 ,3 ,4
i= I ,3

so that

(5.1)

(5.2)

(5.3)

where f is the same response vecto r as in the exact case, equation (4.1), and
A+ is tile pseud o-inverse of the [non-squa re) t ransformation matr ix

(

</>.
A = </>,

</>,
</>,

(5.4)

From Appendix A, given t he singular value decomposition of A

A= USyT

the pseudo- inverse is ob tained as

y (S-' )UT

y (S-' )'yTA T
(5.5)

T he matrix V is com posed of th e normalized eigenvectors of t he mat rix
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Figure 6: Contours of th e approximate exclusive-GR solution, without
an output bias.
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(5.6)

where

a = <p~+2<Pi+<pi (5 .7)
b = 2<Pi + 2<po<p,

and the diagonal matrix (S-l ? is made up of the rec iprocal of the eigenvalues
of the corresponding eigenvectors.

H is straightforward to verify that

and

V=~ (l 1)
2 1 -1

(5-1 ) ' = ( l/[a + b] 0 )
o l / [a - b]

(5.8)

(5.9)

Substituting these matrices into the pse udo-inverse expression, eq uation
(5) and then into equation (5.3) gives,

where

>', = 2<pl/[a + bl
= 2<Pd (4<Pi + [<Po+ <P2]')

(5.10)

(5.11)

(5.12)

T his is the set of weigh ts which m inim izes the least mean squared error to
all the training da ta. In fact the error 1 E1 may be analyt ically evaluated to
give

£ = (<Po+ <p, )
J2<Pl + [<Po + <P,l' /2

An int eresting point about th is error, is t hat it will be zero if the radial basis
funct ions are chosen to be such that 4Jo = -cP2' This is precisely the condi­
t ion ment ioned at the end of the previous section in t he discussion of how
the exact exclusive-OR problem could be solved with only two rad ial basis
funct ion centers . In bot h instances the error is zero and the interpo lat ing
map manages to perfectly "learn" the t rain ing data. However , for general
choices of rad ial basis function the solutio n as der ived, does not reproduce the
desired out put of exclusive-OR sat isfacto rily. For instance, figure 6 depict s
this solution using Gaussian radial basis funct ions and a Euclidean norm .
The figure plots contours of equal "height" produced at the output of the
radial basis funct ion mapping. The vert ices of the unit square in the figure
represent the logical values 00, 01, 11, 10. As seen, although the outp ut
discriminates between even and odd par ity inputs, the relati ve magn itudes
have not been preserved (the output of 00 is greater t han the output of 01
for inst ance).
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Figure 7: Contours of the approximate exclusive-OR solution, includ­
ing an out put bias.

5.2 T he a pp rox im ate excl usive-OR includi ng an ou t pu t bias

Consider the same situa t ion as in the previous subsect ion, but where now
a data independent variable is allowed, effectively a weighted bias at the
out put node through a connect ion to a node which gives a constant unit
out put. T he significance of the out put bias is that the desired output states
of the exclusive-OR funct ion have non-zero mean. The analysis without the
inclusion of bias achieves a minimu m error solut ion which matches the out put
in the m ean. However, since positive weights are needed to achieve this,
the resulti ng S(;li.) naturally has maxima near to the centers (0, 0), (1,1) .
Th erefore, s(';~J does not reproduce the requi red qualit ative detail s of the
exclusive-OR function. In contrast, one might expect t he inclusion of a bias
to allow t he whole surface s(;~.) to be "floated" to the correct mean level
while the remaining paramet.ers adjust its quali tati ve form. Following thi s,
the interpolat ing function is taken to have t he form

S(~) = '\0 + I:= '\i <P(lI~ -1[j ll)
j= l,3

where {A 1,3} are as previously assumed.
Th e mat rix of distances is now

(5.13)
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(5.14)

Consequently) the singular value decomposition is determined by the
eigenvect ors and eigenvalues of the matr ix

where

(5.15)

a

b

e

4>~ +24>; H i
24>; +24>, 4>,
4>0 + 24>, + 4>,

(5.16)

Note that c here has the interpretation of being proportional to the mean
value of radial basis funct ions evaluated at any training point .

Consider the eigenvalue equa tion

From the characte ristic equatio n one finds that the eigenvalue problem
factorizes, giving

1'0

I' ±

a -b

(a + b+4) ± J(a + b - 4)' +8e'

2

(5.17)

T he normalized eigenvector corresponding to f1 = a - b is then

(5.18)

For the case j.t = /L ± , we have {}:2 = 0'3 , since the resulting eigenvectors
are orthogonal to aQ. Setting (}: 2 = 1 without loss of generalit y implies that
the (unnormalize d) component O'} is

± 2c
0'1 = ---

Jl ± - 4

Thus the resulting orthonormal matri ces V and (5-1)2 take the form

v = ( 1~)2
- 1/ )2

(5.19)
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(

l'D
(5- 1

) ' = ~

o
1'+
o

(5.20)

where the normalization factors 6.± are given explicitly by

(5.21)

Using these matrices to construct the pseudo-inverse of A results finally
in the set of weigh ts ,

where

Ao = ":''It (at + 2¢d + "'oI: (a~ + 2¢})

AI = " +~t (at + 2¢1 )+ " _~: (a~ + 2¢d

(5.22)

(5.23)

This result is shown in figure 7 and may be compared directly with that of
the previous sub section shown in figure 6. Note that the network now success­
fully discriminate s states of opposite parity and moreover returns precisely
the correct magnitude for each corner of the uni t squa re. Howeve r, the sym­
me tr y of placing the cen ters on the diagonal of the unit square , means th at
the solution obtained in this case is exact . There are only three independent
equations we need to solve, and three ad justable parameters at our disposal.
In this sense the XOR problem is rather too simple.

It is int eresting to repeat the calculation of sect ion 5.1 using a respo nse
vector j = (-~,~,-t,tf. This allows one to study an equivalent problem
with the mean artificially removed without the int rodu cti on of an additional
parameter. This produces, again, two equ al weight values (compare with
(11))

A _ ¢1- [¢0+ ¢,]/2
I - 8¢1 + 2[¢o + ¢,l'

The resultant fit clearly does not reproduce the training valu es as well
as the three parameter model given above. It does however have the correct
qualitat ive form.

In general, a bias pa ra me ter may be expected to provide a compensation
for a global shift which is hard to achieve through weighting the individual
basis fun ct ions. The consequences of this observatio n may also be noted
in conventional mu ltilayer percep t ron studies where the performance of the
network is enhanced if t he in put data is previously sca led to have zero mean .
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6. Numerical examples : the prediction of cha ot ic time series

Lapedes and Farber [15] have recently used multilayer perceptrons for the
predict ion of t ime series data generated by nonlinea r dynamical sys tems . Ex­
tensive compar isons with other prediction techniques showed that mult ilayer
perceptrons were more accurate than the clas sical (linear) met hods and were
compar able with th e locally linear approach of Farmer and Sidorowich [19].

In this section, we shall, following Lapedes and Farber , use nonlin ear pre­
diction as a non -trivial exam ple of the applica tion of adaptive networks. VVe
note that in thi s application our approac h is very close to that of Casdagli [12]
who has applied radial basi s funct ions to th e cons tr uct ion of nonlinear map s
from time series data . Unlike Casdagli who used st rict interpolation , we shall
em ploy th e least squ ares generaliza tion given in sect ion 2.

Specifically, consider Td l an ordered sequence of iter ates of the doubling
m ap :

Xn+l = 2xn (modulo 1)

and Tq , a sequence of it erates of the quadratic map

(6.1)

(6.2)

These maps are known to be chaoti c on the inte rval [0, 1]: in both cases the
iter ates of gener ic initial conditions are distribu ted according to cont inuous
invariant measures. For Td th e au tocorrelation (xox n) decays as 2- n while
for Tq , (xox n) ~ OO,n where 0i,i is the Kroenecker de lta. Therefore , given
on ly th e data Tq l second-order statistics would convey the impression that
the sequence is random broadband noise (see Appendix C for fur ther de­
tails). Naively (and in fact , erroneou sly ) one m ight expect from this that the
prediction of Tq is harder than the predict ion of Td•

A radial basis function network for predict ing one ti me step into the fu­
t ure was const ruct ed as follows . The basis funct ion centers {yiJ were chosen
to be uniformly spaced on (O l1); t he number of centers was an ad justab le
parameter. A set of input values {Xi E [O,llli = 1, 2, . . . , 250} was used to
calculate the matrix A using equat ion (2.4) . T he singular value decompo­
sit ion of A , calculated numeri cally by a Golub-Rein sch algorit hm, was used
to form the pseudo inverse A + using equation (A .2). T his was th en applied
to the vector of ou tputs:

L= (J (xJl, .. . , f( xi), . . . , f (x250W

(where f(x) is the map given by either equation (6.1), or equation (6.2))
to obtain the weights {Aj} according to ,\. = A +f . The accuracy of thi s
mapping were then ana lyzed for an ext ra 250 diffel:ent "test'' points.

Figures 8 and 9, which show the output of the networks as a function
of inputs, illustrate the relationsh ip with curve fit t ing for these simple one­
dimensional problems. It is clear that the basis of th e difference b etween
predicting Teand predicting Tq is that the doubling map is discontinuous and
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o
o 1

Figure 8: The Quadratic Map: A figure showing the actual (solid
line), and predicted (filled squares) outp uts of the network over the
interval [0,1] for one iterate.

therefore hard to fit . Multilayer percept rons also have difficul ty with t rying
to find an appropriate set of weight values which a llows a good fit to Td (in
fact the overw helm ing ten dency is for the mul til ayer pe rceptron to get stuck
in an unsu itable local minimum , M.D. Bed worth, private communication) .

For prediction fur th er into the future , the situat ion is further exacerbated
and rapidly becomes hard even in the case of Tq • The problem is now one
of fitt ing a graph of the nth order iterate of equat ion (6.1) or (6.2). In
either case the graph has 2n - 1 oscillations of uni t am pli tu de. In terms of the
radial basis function networ k, th is woul d requi re at least 2n hidd en units with
centers app ropriately posit ione d . An alternative to this st rategy is to itera te
th e one-step networ k. This howeve r, is inaccurate since errors in chaotic
systems grow ex ponentially because of the local instability of the evolu t ion .

The accuracy of the network can be quant ified by the following ind ex, T :

I= ([XpTedicted(t) - Xexpected(t )]2}
{(x - (x))' )

(6.3)

This quant ity is a measure of how well the network generalizes beyond the
t ra ining data. T he er ror expression given in section 2 has the same form, but
since it is based on the training data , shows how well th e network rep roduces
the training data. It is of interest to compare the two since the difference
quantifies t he degrad ation of the predict ive power of th e network when it is
required to gene ra lize . T he graphs shown in figures 10 and 11 summarize
both kinds of error analysis for networks trained on Td , and Tq•

The most obvious difference bet ween th ese figures is the scale. It is clear
that predict ion of Tq , whichever error cr iterion is used, is much eas ier th an
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o
Figure 9: T he Doublin g Map: A figure showing t he actual (solid line),
and predicted (filled squares) outputs of the network over t he int erval
[0, 1) for one time ste p into the future for t he doublin g map.
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Figure 10: T he Quadratic Map: The log normalized error showing
the tra ining (sol.i d circles) and recognit ion data (op en circles) as a
function of the numb er of radial basis function cent ers. Euclidean
norm and a Gaussian radial basis function (t/J = exp[-z2n5J16]) were
used.
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Figure 11: Th e Doubling Map: T he log nor malized error showing the
training (solid circles) and recognition data. (open circles) as a funct ion
of the number of radial basis function centers. Euclidean norm and a
Gaussian radial basis function (¢ ::;:;: exp[-z2n5l16]) were used .
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the prediction of Td by seve ral orders of magnit ude . Beyond this, we see in
both cases t hat the training error of sect ion 2 has the same basic dep endence
on the number of hidden units; that is, a fast improvement as no inc reases
to ab out 30 followed by a plateau region where the relative improvement is
small. As no approaches the number of data points used in the training (250
in this example), the training error again drops rapidly as the problem ap­
proaches t he strict interpolat ion limit. This drop is not, however, mirrored
by a drop in the recognition error. Although initially, the recognition error
follows the training error very close ly, a saturation plateau is reached and ap­
proximate ly mai ntained irrespective of how many hidden units are employed .
This can be understood since the capability of the model to genera lize, is con­
nected wit h the un derlying "smoothness" of the t rue m ap an d the level of
"sm oothness" built into the model through the choice of metric an d radial
basis functi on (and indeed the assumption th at an arbitrary function may be
approximate ly represented by the radial basis function expansio n). There­
fore one can surmise that in most instances, there will be a lim it ing acc uracy
to whic h it is possible to model unseen data genera ted by a mapping. T his
is not true for the training points themselves, since it is poss ible by strict
interpolation to produce a mapping surface which exactly passes through all
t he p oints. However, all that th is accomplishes is a fit to the noise on the
training po ints wh ich may oscillate wildly be tween t he constrai ning "knots."
It was for this very reason that we introduced the least sq uares solution of
the radia l basis function construction in section 2.

7 . C onclus ion

T he object of this pa pe r has bee n to introduce a sim ple view of network
models as devices for the interpolation of data in mult idimensional spaces.
The purpose of this is to allow the application of a large body of intui tion and
knowle dge from t he theory of fitt ing and interpolation to the un derstanding
of the properties of nonlinear networks. T hus we associate the concept of
generalization in networks with the simple idea of interpola tion (extrapola­
tion) between known data points. The details of the generalization are then
dependent upon th e im plicit interpolation scheme em ployed by a given net­
work. Genera lizat ion is ha rd where the relationship has strong osci lla t ions
or discont inu it ies. This suggests that, par t icularl y in the case of abstract
problems for which the topology of the input and ou tput spaces may not be
clear a priori, it may be advantageous to attempt to code the data so as to
produce a relationship which is as smooth as possible. Further we expect the
train ing data, whe re possible, would best be distributed to give informa tion
about all t he tu rning points of the graph and need not be tightly cluste red
where, for example, the relationship is smooth or monotone.

Motivated by this philosophy, we introduce a netwo rk model based on
t he radial bas is fu nction approach to curve fitt ing . T his mod el has two main
advantages. First, it is firm ly attached to a well established techn ique for fit­
ting, but, since it is contained within a general class of non linear networks, it
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may be used as a source of "existence proofs" for such networks. For instance}
we know that networks of this form can be used to model relationships which
lie in the function space spanned by the chosen set of rad ial basis functions.
The characterizati on of this space and quantificat ion of such things as the
rate of convergence of radia l basis funct ion expansions is currently receiving
much attent ion and is seen to be of direct relevance to the theory of networks.

T he second advantage of this network is in pract ical applicat ion. T he
basis of its simplicity is that it combines a linear dependence on the variable
weights with an abili ty to model explicitly nonlinear relationships such as
for exam ple} the exclusive-OR function. Thus, in the least squares context}
t raining the network is equivalent to solving a linear matrix equation. If we
spec ialize to a. minimum norm solution, the solut ion is unique and in this
sense the network may be said to have a. guaranteed lear ning algorit hm.

This general approach, whereby optimi zati on is carri ed out on the subset
of the weight s for which the problem is linear, may be taken with other
network models. It would be interestin g to study how much t his rest ricts t heir
general ity. Work along t hese lines is currently in progress. In the present
case, on the other hand , t he inclusion of the basis functi on centers into the
optimi zat ion calculat ion may be carri ed out using a nonlinear opt imization
technique in conjunct ion with the linear analysis described above. By analogy
with spline fitt ing of curves, this may produce some advantage, perhaps
in t he form of needing fewer hidden units, but it is questionable whether
this would compensate for the added complexity of performing the nonlinear
opt imizati on. We have not approached here the general question of what form
of ¢ is best , or where and how many centers should be used in t he expansion .
Work is currently in progress to assess the sensit ivity of convergence of these
factor s and the use of the error funct ion given in equation (7) as a cost
function for nonlinear optimization using the basis function cente rs.
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Appendix A. Solving linea r inverse problems

The appendix looks at linear inverse problems as they arise in the radial basis
function app roach to nonlinear networks.

In ap plying the rad ial basis funct ion method , we need to inver t an m x
n (m:O: n) matri x wit h elements Ai; = ¢(II±i -!L; II). Since A may be rank
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C4 E C4 C, C~

A 1 1 1 1
B 1 - 1 1 - 1

E {i , -1 7}- , -1

Table 2: The character table for C 4

deficient , it is necessary to account for the possibility of ill-condi tioning.
Conside r the singular value decompos it ion of A

A = USyT (A.l )

where V is an n X n orthogonal matr ix) S is an n x n diagonal matrix of
singular values and U is an m x n matrix with ort honormal column s. The
pseud o inverse of A , A +1 m ay be const ructed as

(A.2)

where S+ is obtained from S by reciprocating t he non-zero diagonal elements .
Clearly if rank A= m then A+ A = 1 where 1 is the m x m unit matrix. On
the oth er han d, AA+ = D U T a supe rposit ion of projections onto a subspace
of JRn span ned by the columns of U . If J'ank A < m then A +A and A A+ give
pro jections onto su bspaces of IRm an d JR." resp ecti vely.

In the case of the exact exclusive-OR funct ion the question of ill-conditioning
does not arise. In this case it is convenient to calculate the inverse of A
through its eigenvalue decomposition since the symmetry of the problem
may be exploited to obtain the solution. Here

(A.3)

where, since in t his case A is a real symmet ric matrix, the matri x of eigen­
vectors V is orthogonal. It follows t hat

A -I = Y t;;- l y T (A.4)

assuming th at A is full rank. Th e rest of the appendix deals wit h the cal­
culat ion of the eigenvectors and eigenvalues of A using the symmetry of the
exclusive-OR funct ion.

Our choice of ordering of the input points in sect ion 4 is somewhat ar bi­
t ra ry. It should be clear tha t we can perform a sequence of rot at ions on the
or iginal orderings while retaining t he same matr ix A . In other words, A is
invariant to a certain class of transformati ons, in par ticular, it is invar iant to
operations in the group C4 = {E, C4 1C2 , Cn, where E is the identity trans­
formation, C4 denotes rotat ions by 1r / 2, C2 by tt and C1 rotations by 31r / 2.
T he character table for the group C4 is shown in table 2 (for an introd uction
to the theory and appli cation of groups see [20]).

The character table may be exploited to solve the eigenvalue problem for
A by obtaining a symmetry adapted basis. We can see this as follows. The
representat ion of t he group operat ions using the standard basis,
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is not irreduc ible since its dime nsion is four and the maximum dimension
of an irreducible representation of C4 is two. In fact th is representation of
the group has the form r = A + B + E and so the basis has irreducible
components A, B , E. From the character table , one can ascertain that the
appropriate symmet ry adapted basis is just

or , by normalizing and replacing the degenerate vectors !!.E and!Lg by simple
linear combinat ions, we arrive at a symmetry adapted set of basis vectors,

(A.5)

It is clear tha t these basis vectors are ort hogonal and they are eigenvectors
of the matrix A since, explicit ly,

A :!LA (4)0+ 24>. + 4>0):!LA '*
A1'B = (4)0 - 24>1 + 4>0 )1'B '*
A1'k = (4)0 - 4>0M '*

I'A = (4)0 +24>1+ 4>0)
I'B = (4)0 - 24>1+4>0)
I'E = (4)0 - 4>0)

(A .G)

These basis vectors and eigenvalues are employed in sect ion 4 to obtai n
a set of weights analytically, which exactly solves the exclusive-OR function.

A ppend ix B. An analytic solution of t he ex act n-b it pari t y prob-
lem

Th e n-bit par ity problem is a generali zat ion of the exclusive-OR problem
discussed in sect ion 4. It may be defined by the mapping depicted in table
3, that is, the output is unity if the total number of input bits having value
one is odd, otherwise the output is zero. T hus changing one bit in the inpu t
pattern produces a maximal change in the output .

Wit h the benefi t of insight developed from the exclusive-OR prob lem,
th is sect ion obtain s an exact representation of the n-bit pari ty problem as a



350 D. S. Broomhead and David Lowe

Input Number of "uN" Outp ut
Pat tern bits in input Pattern

000 ..... 0 ..... 0
001 ..... 1 ..... 1
010 ..... 1 ..... 1
100 ..... 1 ..... 1
011 ..... 2 ..... 0
101 ..... 2 ..... 0
110 ..... 2 ..... 0
111 ..... 3 ..... 1

Table 3: Symboli c mapping of t he n-bit parity problem for t he case
n = 3.

network based on radial basis funct ions. The network will have the general
form of n-inputs for an n-bit word, and 21t hidde n units all connected to one
output. The cen ters of th e 2n hidden units correspond to the possible input
pat terns. T hus, an exact solut ion may be obtained once the 21t -dimensional
vecto r ~ of weights has been determi ned. All possible inpu t states may be put
in a 1 : 1 correspondence with the vertices of a unit n- dimensiona l hyper cub e.
This is conveniently achieved by aligning the hypercube with the Cartesian
basis so that ODe vertex resides at the origin. Th e Cartesian co-ordinates
of each vertex then directl y maps to a uniqu e binary sequence, for inst ance
(0, 0, 0) ..... ODD, (0, 1,0) ..... 010, (1, 1, 0) ..... lID, etc. The vert ices may be
ordered by treatin g the set of sequences as a cyclic Grey code of the first
2n integers. Thus all nearest neighbors in this scheme correspond to points
of opposite pari ty and the use of the cyclic Grey code ensures that entries
across t he rows of A represent points of alternating parity .

The rows of A are permutat ions of each other because of the symmetry
of the hypercube. It follows that there is a tot ally symmetric eigenvector,
v+ = 2- n

/
2[l, l, .. .]T for which the corresponding eigenvalue is the sum of

the row elements of A
n

1'+ = I:, pj 4>;
j =O

(B.l )

where pj is the number of phnearest neighbors to an arb itrary vertex .
A second eigenvector may be found using the division of the vert ices

into two groups, differentiated by their parity. The form of this eigenvector
follows from the use of the cyclic Grey code in ordering the vert ices: v., =
2- n/ 2!I, -1 , 1, . . .]T. T his ant isymmetric form dist inguishes sites of oppos ite
parity and thu s has a corresponding eigenvalue

1'- = I:, pj 4>; - I:, pj 4>;
j even i odd.

(B.2)

since there are L:j even pj sites of the same parity, and L:j odd pj sites with
opposite parity.
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Figure 12: The hypercube of the three-bit parity problem.

The coefficients pi may be obtained by comparing two arbit rar y n-bit
sequences which differ in j -locat ions. Th e numb er of ways of permuting j -

locations with in n-bits is just pi = (j). Note that L~ pi = 2\ the total

number of vert ices of the hypercube.

T he response vector, ~ = [0, l, O,l, O, . . .J may be decomposed as the dif­
ference of the symmet ric and antisymmet ric eigenvectors. Th us, v+, v., are
the only eigenvectors which are relevant in evaluat ing the weights . Conse­
quently, as in the exclusive-OR exam ple, the vector of weights of the n-bit
par ity problem may be evaluated as

- 1 - 1 Al1"+ - 1" _

Jl+. 1 + jJ.: ' A2

A= ! Pt.] - lC I AI (B.3)- 2

Jl +.
1 + tC I A2
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where,

D. S. Broom head and David Lowe

(8.4)

Equat ion (B.4) accomplishes what the sect ion set out to obtain: an ex act
solution to the a -bit parity problem in the sense that there is a guaranteed
set of values for t he weights of the matrix which ensures tha t th e result of the
network is to rep roduce, at least} the values exh ibited in table 3. It should
be noted that although thi s task has been achieved with a network involving
2" hidden un its, it is st ill possible to solve the problem exactly with fewer
th an th is number of hidd en units. For instance, and by analogy wit h t he
excl usive-OR problem , if the radial basi s functi on and metric were chosen in
such a way th at eit her of

L: (j) .pi = 0
} w=

i~d (j) .pi = 0

(8.5)

arc sat isfied, then an exact solut ion may be obtained wit h only 2n
-

1 hidden
units.

App endix C . T he quadrat ic a nd d oubling In aps

This ap pendix list s a few details relevant to the chaotic maps d iscussed in
sect ion 6 for ti me series prediction . The quadratic map, as discussed , det er­
mines the signal at time t + 1 in terms of the signal at t ime t by th e explicit
iterat ion scheme

X'+l = 4x, (1 - x,) (C.l)

By a simple linear transformation, x -+ y, th is map is t ransformed into the
form

(C.2)

Since these two mappings are rela ted by a linear transformation (x = 0.5[1 ­
yJ), the behavior of equat ion (C.2) determines t he behavior of the quadratic
map . Equation (C.2) is int eresti ng because it illustrates that the mappin g is
explicit ly given in terms of Che byshev polynomials [21], specifically

Yn+I = T,(Yn) (C.3)
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From t his relat ionship and exploiting the property of Chebyshev polyno­
mials th at

2TrnTn = Tn+m +Tn _ m

Of, spec ifically

(CA)

(C.7)

one finds that t he nth iterate, Yn, is connected wit h the starting value Yo
t hrough t he 2' Che byshev polyoomial ,

Y. = T,n (Yo) (C.6)

T his just ma kes exp licit the fact that the value of the map at any t ime
in th e future is un iquely determined by the start ing value. However , the
map is known to be ergodic, and thus t ime averages are equivalent to phase
averages . To obtain t he phase average, one needs the fact that the invar ian t
measu re of the map , equat ion (C.2), is

I
m(y) = vr=Y'"

1r I - Y

Th erefore, the corre lat ion function (YkYk+i) may be det erm ined by th e ex­
pect at ion value

(C.S)

However, t his is precisely the orthogonality relationship bet ween Chebyshev
polynom ials of th e first kind, and hence the integral yields a Krceneker delta,

(C.g)

Consequent ly, as far as second-order sta t ist ics are conce rned, th e t ime
series genera ted by the quadr atic map totally loses its memory between each
t ime step, and hence would appea r to be an infinite bandwidth, noise signal
(this is of course not t he case when higher-order correlat ions are tak en into
account).

In the case of the doubling map , the value of th e t ime series at t ime t + 1
is dete rmined by the t ime series at t via

Xt+! = 2X t mod 1

Th e correlation funct ion may be exp ressed as

(xox.) = 11

xo[2'xol dx

21- l

j(i+1)/2lL x[2'x] dx
;=0 i/2t

(C.I O)

(C.lI)
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where [xl de notes the fract.ional pa rt of x (note that the invariant meas ure is
uniform in this case and the map is known to be chaotic so that time ave rages
and ensemble averages are equivalent ). By a change of var iables, y = 2t x - i
th e ab ove integral is read ily performed to give:

Thus, in contrast to the quad rat ic map, the correlat ion funct ion for the
doubling map decays exponent ially in t ime.
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