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The decision tree output of Quinlan's ID3 algorithm is one of its major weaknesses. 
Not only can it be incomprehensible and difficult to manipulate, but its use in expert 
systems frequently demands irrelevant information to be supplied. This report 
argues that the problem lies in the induction algorithm itself and can only be 
remedied by radically altering the underlying strategy. It describes a new algorithm, 
PRISM which, although based on ID3, uses a different induction strategy to induce 
rules which are modular, thus avoiding many of the problems associated with 
decision trees. 

1, Introduction 

Considerable effort has recently been devoted to the development of efficient 
knowledge acquisition techniques for expert systems, with rule induction algorithms 
coming under the scrutiny of a substantial number of researchers. Particular 
attention has been paid to Ross Quinlan's ID3 algorithm (Quinlan, 1979a, 1979b, 
1983a) which, having performed well in the domain of chess end-games, was soon 
adopted for use in a number of commercial applications. However, despite this 
apparent success, some major limitations to the ID3 algorithm have been identified 
(Bundy, Silver & Plummer, 1984; Cendrowska, 1984; Hart, 1985; O'Rorke, 1982), 
which makes its use unsuitable for many domains. The algorithm's inability to deal 
with noisy input data is an area for much current research and new improved 
variants of ID3 are constantly being reported in the technical press (A-Razzak, 
Hassan & Pettipher, 1985; Hart, 1985; Lavrac et al. 1986; Michie, 1983; Quinlan, 
1983b), but concern has been shown about the way in which the results of the 
induction process are expressed. 

This report discusses the second of these two limitations. ID3 produces its output 
in the form of a decision tree, which can be incomprehensible (to humans), difficult 
to manipulate (by humans and computers) and complicates the provision of 
explanations (by computers for humans). In addressing this subject, it is argued that 
current research aimed at modifying the decision tree output of ID3 is misplaced, 
that the decision tree output is an inherent weakness in the algorithm itself and that 
this can only be remedied by radically altering the underlying induction strategy. 

The first part of this report explains the problem in more detail, highlighting it by 
means of a simple example which is introduced in Section 2. Section 3 describes how 
ID3 tackles the induction task using an information theoretic approach, and the 
inherent weaknesses of this approach are discussed in Section 4. The subsequent 
sections describe how the induction strategy can be changed to avoid some of these 
problems and outline a proposal for a new algorithm, PRISM which, although based 
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on techniques employed by ID3, produces its output as modular rules. The report  
concludes with an assessment of the performance of PRISM on a large training set. 

2. The domain 

The following example, taken from the world of ophthalmic optics, will be used 
throughout  this report  to illustrate the procedures involved in rule induction. 

An adult spectacle wearer enters an ophthalmic practice with a view to purchasing 
her first pair of  contact lenses. She has had her eyes examined recently elsewhere 
and has brought her prescription with her. She understands that there are different 
types of contact lenses available, and that it is the optician's decision as to whether 
or not she is suitable for contact lens wear, and if so, which type she should be fitted 
with. 

From the optician's point of view, this is a three-categoryt  classification problem. 
His decision will be one of: 

6~: the patient should be fitted with hard contact lenses, 
62: the patient should be fitted with soft contact lenses, 
63: the patient should not be fitted with contact lenses. 

In reaching his decision he must consider one or more of four t  factors: 

a: the age of the patient 
1. young, 
2. pre-presbyopic,  or 
3. presbyopic 

b: her spectacle prescription 
1. myope,  or 
2. hypermetrope  

c: whether  she is astigmatic 
1. n o ,  o r  

2. yes 
d: her tear production rate 

1. reduced, or 
2. normal 

Table 1 shows the optician's decision for each combination of the four factors. 
However ,  the optician does not carry such a table around with him, either on his 
person or in his head. Instead, through his training and experience, he has learned 
to exercise his professional judgement  in each individual ease, and will make his 
decision almost instinctively. If questioned as to how he arrived at a particular 
decision, his answer is likely to be of the form: 

This patient is not suitable for contact lens wear because her tear production rate is 
reduced. 

o r  

This patient can only be fitted with hard contact lenses because she is astigmatic. As she 
is young and has a normal tear production rate, hard lenses are not contraindictated. 

t It should be noted that this is a highly simplified example. In real life there are many types of contact 
lenses and many more factors affecting the decision as to which type, if any, to fit. 
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TABLE 1 
Decision table f o r  fitting contact  lenses 

Value of Value of Value of 
attribute Decisiont attribute Decisiont attribute Decisiont 

a b c d 6 a b c d 6 a b c d 6 

1 1 1 1 1 3 9 2 1 1 1 3 17 3 1 1 1 3 
2 1 1 1 2 2 10 2 1 1 2 2 18 3 1 1 2 3 
3 1 1 2 1 3 11 2 1 2 1 3 19 3 1 2 1 3 
4 1 1 2 2 ) 12 2 1 2 2 1 20 3 1 2 2 1 
5 1 2 1 1 3 13 2 2 1 1 3 21 3 2 1 1 3 
6 1 2 1 2 2 14 2 2 1 2 2 22 3 2 1 2 2 
7 1 2 2 1 3 15 2 2 2 1 3 23 3 2 2 1 3 
8 1 2 2 2 1 16 2 2 2 2 3 24 3 2 2 2 3 

t'I'he reader is asked not to be tempted to use this decision table to determine whether or not (s)he is 
suitable for contact lenses as Ihere are many/actors, not mentioned here, which may radically influence 
the decision. 

Each  explanat ion  is a justification o f  a decision in terms of  the values o f  relevant  
at tr ibutes,  and  is based on  one  o r  m o r e  ' rules o f  t humb ' :  

if tear  p roduc t ion  rate is r educed  
then do not  fit con tac t  lenses, 

if the pat ient  is ast igmatic,  and  
the pat ient  is young ,  lind 
the tear  p roduc t ion  rate is normal  

then fit hard  contac t  lenses. 

A l though  the opt ic ian is able to easily justify each individual decision,  he would find 
it qui te  ditficult to formal ize  his knowledge  as a comple te  set o f  rules. ID3 seeks to 
establish this under ly ing  set o f  rules, in the fo rm o f  a decision tree,  f rom examples  
of  the opt ic ian 's  decisions. The  a lgor i thm is descr ibed in detail  in Section 3. Table  1 
is used as the t raining set o f  instances;  di], 62 and 63 are the decisions o r  
classifications; a, b, c and  d are the attr ibutes.  At t r ibu te  a has three  possible values 
(1, 2 and 3) and at t r ibutes  b, c and d each have two possible values (1 and 2). Each  
instance is a descr ipt ion o f  a classification in terms of  values o f  the four  attributes.  
The  fol lowing assumpt ions  have been  made  about  the training set: 

�9 the classifications are mutual ly  exclusive 
�9 there  is no  noise,  i.e. each instance is comple te  and  correc t  
�9 each instance can be classified uniquely  
�9 no  instance is dupl icated 
�9 the values o f  the at t r ibutes  are  discrete 
�9 the t raining set is comple te ,  i.e. all possible combina t ions  o f  a t t r i bu te -va lue  

pairs are  r epresen ted  

3. An information theoretic approach I 
3.1. ENTROPY 

The  training set can be thought  o f  as a discrete in format ion  system, i.e. it contains a 
n u m b e r  o f  discrete messages  (values o f  at tr ibutes)  which impar t  some informat ion  
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about an event (classification). The entropy of  a set of events has been defined as a 
measure of the 'freedom of choice' involved in the selection of the event, or the 
'uncertainty' associated with this selection (Edwards, 1964, Goldman, 1968, 
Shannon & Weaver, 1949). Given a training set, S, if the above assumptions hold, 
then each instance is classified correctly and uniquely, i.e. there is no uncertainty 
about the  classification. The entropy of S is 0. The entropy of a decision tree or rule 
set, which fully describes S is also 0, but in most cases the decision tree is a 
generalization of S, which implies that some information offered by the training set 
is redundant.  ID3 tries to reduce this redundant information as much as possible 
(and thus find the least complex decision tree which fully describes the training set) 
by partitioning S into the smallest possible number of subsets, each of which can be 
described by a set of features (attribute-value pairs) whose entropy is 0. 

If all that is known about the classifications is their probabilities of occurrence, 
p ( 6 : i  = 1, 2, 3), then the entropy of the set of classifications, 

H = - ~  p(6,)  log2 p(6,)  bits. 
i 

For the contact lens classification problem, 

H = -p (61)  log2 p ( 6 0  - p(62) log2 p(62) - p ( r s )  log2 p(63) bits. 

The probabilities of occurrence of each of the classifications are 

p(6 0 = 4/24, 

p(b2) = 5/24, 

p(63) = 15/24. 

Thus, 

(1) 

4 
a ,  = - l o g 2  - l o g 2  - l o g 2  

= 0.4308 + 0.4715 + 0.4238 

= 1.3261 bits. (2) 

The induction algorithm partitions the training set into subsets in such a way as to 
reduce this entropy by the maximum amount,  and continues doing so recursively 
until the entropy is 0. 

3.2. R E D U C I N G  E N T R O P Y  

If the training set, S, is divided according to the values of some attribute, or, then 
unless the classification, 6, is completely independent of or, the values will contain 
some information about 6. The total entropy of the subsets is known as the 
conditional entropy of S with known or, H ( S  I a).  Let p ( % )  be the probability that 
attribute tr has value x, and let p(6,, A or,,) be the probability that the classification is 
6,, and the value of or is x. Then 

H( S [ or) = H(  S fq or) - n(or), (3) 
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where 

and 

H( S 0 at) = - ~  ~ ,p(  6,, t-I ate)log2 p ( 6 ,  N atx) (4) 
n 

H( at) = - ~ ,  P( atx) log2 p( e~x). (5) 
X 

By performing this calculation for each attribute, it is possible to minimize the 
entropy of  S by dividing it into subsets according to the values of that attribute for 
which H(SI at) is minimum. 

The calculation can be simplified by using a frequency table, for example for 
attribute a: 

No. of instances 
referencing a~ a 2 a3 Total 

61 2 1 1 4 
62 2 2 1 5 
63 4 5 6 15 

Total 8 8 8 24 

H(S I a) = H(S fq a) - H(a) 

= - ~  ~ p(tSn f3 ax) log2 p(tSn f') ax) + ~, p(ax) log2 p(ax) 
X n x 

= _ 3  x 21og2  ( 2 ) X  1 ( 1 )  4 ( 4 )  
24 ~-~ - 3 24 log2 ~-~ - ~-~ log2 

24 

1 
= ~-~ (3 x 8 log2 8 - 3 x 2 log2 2 - 2 x log2 1 - 4 log2 4 

- 5 log2 5 - 6 log2 6) 

= 1-2867 bits. (6) 

Similarly, 

H(S [ b) = 1.2867 bits, 

H(S I c) = 0.9491 bits, 

H(S I d) = 0.7773 bits. 

(7) 
(8) 
(9) 

Therefore,  the entropy of S can be reduced by the greatest amount by dividing S 
according to the values of attribute d. Two subsets are formed, each of which is then 
further subdivided in the same way until the entropy of each subset is 0, i.e. all 
instances in the subset belong to the same classification. The final decision tree is 
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81 : fit hard lenses 
S 8 2 : fit soft lenses 

~ = do not fit lenses 

J dl d2 

' 3  I c, ]C2 

o, o ,  Io, 8, Io, o ,  

82 82 83 8, 83 83 

FIG. 1. Decision tree produced by ID3. 

shown in Fig. 1. For convenience, this can be written as a set of individual rules: 

1. dl--~ it3 

2. d2 A Cl A bl A al---~ 62 

3. d2 A Cl A bl ^ a2--* 62 

4. d2 A Cl A bl ^ a3--'~ 63 

5. d2 A Cl A b2-'~ 6 2 

6. d2 A c2 A bl--)  61 

7. d2 A c2 A b2 A al---~ 6] 

8. d 2 A c 2 A b 2 A a 2 ~ 6 3  

9. d2 A c 2 A b2 A a3 ~ ~3 

4. Rule representation 

One of the principal features of rule-based expert systems is that the modularity of 
the rules typically enables a knowledge base to be easily updated or modified. It also 
provides a means for explanation. There is a requirement, therefore, that rules 
should be both modular and comprehensible, whether they are elicited from experts 
or automatically induced from examples. 

Although ID3 has been proved to be computationally efficient (Carbonell, 
Michalski & Mitchell, 1983; Michie, 1983; O'Rorke, 1982), it produces its output in 
the form of a decision tree (e.g. Fig. 1). This decision tree representation of rules 
has a number of disadvantages. Firstly, decision trees are extremely difficult to 
manipulate---to extract information about any single classification it is necessary to 
examine the complete tree. This problem is only partially resolved by trivially 
converting the tree into a set of individual rules, as the amount of information 
contained in some of these will often be more than an easily be assimilated. More 
importantly, there are rules that cannot easily be represented by trees. 

Consider, for example, the following rule set: 

Rule 1: al ^ hi--* 61, 

Rule2: cl ^ dl"--) 61. 

Suppose that Rules 1 and 2 cover all instances of class 61 and all other instances are 
of class 62. These two rules cannot be represented by a single decision tree as the 
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bl 
81 

IOl I ~ 

8~ 82 82 81 82 8z 

FIG. 2. Decision tree representation of Rules ] and 2 (Section 4). 

t 0 3  

c~ c 2 c5 
d3 82 82 

81 82 82 

root node of the tree must split on a single attribute, and there is no attribute which 
is common to both rules. The simplest decision tree representation of the set of 
instances covered by these rules would necessarily add an extra term to one of the 
rules, which in turn would require at least one extra rule to cover instances excluded 
by the addition of that extra term. The complexity of the tree would depend on the 
number of possible values of the attributes selected for partitioning. For example, 
let the four attributes, a, b, c and d each have three possible values, 1, 2 and 3, and 
let attribute a be selected for partitioning at the root node. Then the simplest 
decision tree representation of Rules 1 and 2 above is shown in Fig. 2. The paths 
relating to class tS~ can be listed as follows: 

1. al A bl"--) 61, 

2. a l A b 2 A C l A d l - - ~ 6 1 ,  

3. at A ba A Cl A dl--'~ 61, 

4. az A cl A dl"-~ 01, 

5. a3 A Cl A dl'-* t~l. 

Clearly, the consequence of forcing a simple rule set into a decision tree 
representation is that the individual rules, when extracted from the tree, are often 
too specific (i.e. they reference attributes which are irrelevant). This makes them 
highly unsuitable for use in many domains, as is illustrated by the following 
example. 

Suppose the decision tree in Fig. 1 was used as the knowledge base for an expert 
system advising on contact lens suitability, and suppose the patient requiring contact 
lenses was a presbyope with high hypermetropia and astigmatism (attributes 
a3 & bz & c2). The optician would know immediately from the age of the patient and 
her prescription that she was not a suitable candidate for contact lens wear (a 
decision taking about 30 seconds to make and costing the patient nothing). The 
expert system, however, would be unable to make a decision without the result of a 
tear production rate test (attribute d). This test is normally carried out as part of a 
contact lens consultation requiring a lot of time and payment of a fee. Having spent 
all this time and money, it would be quite understandable if the patient became 
upset or angry on finding out that the consultation had been, after all, unnecessary. 
The consequences could be even more serious if the expert system was a medical 
one and attribute d involved surgery. 
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Clearly, a decision tree in its unmodified form is most unsuitable for some 
domains, not only because it an be incomprehensible, but because in many cases its 
use would demand irrelevant information to be supplied, information that could be 
costly to obtain. Attempts have been made at modifying the algorithm to avoid this 
problem by assigning a 'cost' to each attribute. Attempts have also been made at 
converting decision trees into simple rule sets by identifying and removing 
redundant nodes, or by incorporating extra information which enables the user to 
focus on only relevant parts of the tree, but the problem is not an easy one to solve, 
particularly for very large and complex decision trees. 

Although simplification of the trees is possible by identifying common branches or 
parts of branches, the combinatorial explosion in the number of comparisons that 
have to be made as the complexity increases makes this method only feasible for 
small trees. Also, parts of a branch may be matched in different ways, and the 
question then arises as to which is the better generalization to make. This would 
involve either asking the expert, or using another rule induction program to induce 
new rules from the old ones. 

5. An information theoretic approach II 

5.1. ENTROPY VS. INFORMATION GAIN 

The main cause of the problem described in the preceding section is either that an 
attribute is highly relevant to only one classification and irrelevant to the others, or 
that only one value of the attribute is relevant. For example, the attribute d in the 
contact lens problem is highly relevant to the classification 63, if  its value/s 1, and 
because of this, it is selected for partitioning the training set, for which all its values 
are used. 

Figure 3 shows the decision tree after S has been partitioned according to the 

dl 

, , t  ~ :t ,l 
3 ,I,121,13 
5 I 2 I I 3 

7 I 2 l l 3  
9 1 2  I I 3 

I I  2 I 3 

13 2 2 I 3 

15 2 2 3 

17 3 I 3 

19 3 I 3 

21 3 2 . 3 

23 3 2 2 I I 3 

H(S dt)=O bits 
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I I 
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-)2 3 2 2 1 

~hl 3 2 2 , 

H(S dz)=1.555 bits 

FIG. 3. S partitioned according to d. 
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values of attribute d. It can be seen that although the entropy of the branch dl has 
been reduced to 0, the entropy of the branch d2 has actually increased to 1.555 bits. 
Attribute d was chosen because ID3 minimizes the average entropy of the training 
set, or alternatively, it maximizes the average amount of information contributed by 
an attribute to the determination of any classification. 

In order to eliminate the use of irrelevant values of attributes and attributes which 
are irrelevant to a classification, the algorithm needs to maximize the actual amount 
of information contributed by knowing the value of the attribute to the determina- 
tion of a specific classification. 

5.2. I N F O R M A T I O N  C O N T E N T  

As stated at the beginning of Section 3, the values of attributes can be thought of as 
discrete messages in a discrete information system. Now, the amount of information 
about an event in a message i, 

( probability of event after the message is received 
l(i) = log2 \ p ~  o-f ev-e-mnt be-f-~rore t-fie ~ e i s  ~ d / b i t s .  

The training set, S, contains 4 instances belonging to class 61, 5 belonging to class 62 
and 15 to class 63. Therefore, the probability of an instance belonging to class 6l, 
p(61) is 4/24 and thus if the message i was 61 (i.e. the class is 61) then the amount of 
information received in this message, 

/(61) = log2 (p-(-~)6~)) = -log2 ( 4 )  = 2.585 bits. (10) 

Similarly, the amount of information received in the message 62, 

I(62) = log2 (p--~2)) = -log2 (24) 

and in the message 63, 

I(63) = log2 1 = -log2 

= 2.263 bits. (11) 

= 0-678 bits. (12) 

Thus the lower the probability of occurrence of an event, the more information we 
receive if we are told that the event has occurred. 

Now, if the message received was that attribute d has value 1, then the amount of 
information received in this message about 63, 

(P(63-I dl)~ bits (13) 1(631d,)=log2 \ p(63) / " 

where p(631 dl) is the probability of 63 given that the value of d is 1. 
For S, p(631 dl) = 1, therefore 

l(631 d,) = log2 (p~63)) = 0.678 bits. (14) 

Thus knowing that attribute d has value 1 contributes 0.678 bits of information to 
the belief that an instance belongs to class 63. 
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If, on the other hand, the message was that attribute d has value 2, then the 
amount of information received about  63, 

. . . .  /p(63 [d2)\ ( 3/12 ) = l(631a2)-l~ -p-(6"-~ ,]=1og2\15-5--~/ -1-322bi ts .  (15) 

The minus sign indicates that knowing that the value of d is 2 makes it less certain 
that an instance belongs to 63 than if the value of d was unknown, d2 is therefore 
not a good choice for describing 63. 

If an attribute-value pair, cr~, and a classification, 6~, are completely independ- 
ent, then p ( 6 ,  [ c~x) = p ( 6 ~ )  and I(6~ I c~) = log2 1 = 0, i.e. the fact c~x contributes no 
information to the belief that the class is 6n. 

5.3. MAXIMIZING INFORMATION GAIN 

The task of an induction algorithm must be to find the at tr ibute-value pair, c~x, 
which contributes the most information about  a specified classification, 6n, i.e. for 
which l(6n I c~x) is maximum. Now, 

(p(6  
1(6, I cry) = log2 \ ~ - - /~  / bits. (16) 

but p(6~) is the same for all cex, and thus it is only necessary to find the c~x for which 
p(6~ I c~x) is maximum. 

The values of p ( 6 ,  I a,~) for all c~ and n = 1 are listed in Table 2a. There are two 
candidates for 'best '  cry. These are c2 and d2. For c2, chosen arbitrarily, the 
information gain, 

(p(611 c2)) ( 4 / 1 2 ) =  
I(611c2) = log2 \ p-(-6-~ / = log2 \4--/-~/ 1 bit. (17) 

Had d2 been chosen, the information gain would also have been 1 bit. Repeating the 
process now on a subset of S which contains only those instances which have value 2 
for attribute c, it can be seen from Table 2b that p(61 I ac~) has the highest value for 
d2. The information gain (for this subset), 

(p(61 [d2)) = log2 ( 4/6 ) 
1(61 I d2) = log2 \ p(61) / \ 4 / 1 2 / =  1 bit. (18) 

If the process is now repeated on the subset which contains only those instances 
which have value 2 for attribute c and value 2 for attribute d (Table 2c), there is 
again a choice for 'best '  0r~. Suppose the second of these, bl ,  is selected.t  Then 

1(61 I b0 = lo 2 [p(61 ]bl)~ ( ) 1  g k -p-(6--O )=log2\~-~]=O'585bits. (19) 

From equation 10, the information provided by the message 61 before any attributes 
are known = 2.585 bits. 

The information provided by c2 = 1 bit. 

t The reason for this choice is explained in Section 7.2.1. 



PRISM: AN ALGORITHM FOR MODULAR RULES 359  

TABLE 2a 
Selecting the first term 

al 2 /8  = 0-25 
a2 1/8 = 0.125 
a3 1/8 = 0.125 
bl 3/12 = 0.25 
b2 1/12 = 0-083 
c~ 0 = 0 
c2 4 /12 = 0.333 
dl 0 = 0 
dz 4/12 = 0-333 

TABLE 2b 
Selecting the second term 

TABLE 2C 
Selecting the third term 

or p(61 I c~x) oc~ p(~l I ~ )  

at 2 /4  = 0.5 al 2 /2  = I 
a2 1/4 = 0.25 a2 1/2 = 0-5 
a3 1/4 = 0.25 a 3 1/2 = 0-5 
bl 3/6 = 0.5 bl 3/3 = 1 
b: 1/6 = 0.167 b2 1/3 = 0.333 
dt 0 = 0 
d2 4/6 = 0.667 

The information provided by d2 when c2 is known = 1 bit. 

The information provided by bl when d2 and c2 are known = 0.585 bits. 

Therefore,  the information provided by c2 A d2 A b~ = 1 + 1 + 0-585 = 2.585 bits. 

i.e. the message c2 A d2 A bx provides the same amount  of information as the 
message 61. 

Specialization of (i.e. adding more attribute-value pairs to) c2 A d2 A b~ does not 
increase the information gain. All other  attributes are irrelevant in this description 
as all instances containing c2 & d2 & bl belong to class 61 (p(tS~ I c2 A d2 A b~) = 1). 
The induced rule is therefore  

cz A d2 A bl--*/tl  

and is known to be correct for S. 

5.4. TRIMMING THE TREE 

The decision tree at this stage of the induction process is shown in Fig. 4. The 
algorithm has concentrated on building the shortest branch possible for the class 61. 
The remaining branches are not yet labelled, and the next step in the induction 
process is to identify the best rule for the set of instances which are not examples of 
the first rule. This is done by removing from S all instances containing c2 & d2 & b~ 



360 J. CENDROWSKA 

C2 

F 
81 

FIG. 4. 'Decision tree' after induction of the first rule. 

and applying the algorithm to the remaining instances. If this is repeated until there 
are  no instances of class 61 left in S, the result is not a decision tree but a collection 
of branches. The whole process can then be repeated for each classification in turn, 
starting with the complete training set, S, each time. 

The final output is an unordered collection of modular rules, each rule being as 
general as possible (but see Section 7.2), thus ensuring that there are no redundant 
terms. The rule set for the optician's contact lens classification problem is as follows: 

1. C2 A d2 A bl '-~ 6D 

2. al A C 2 A d 2 - " ~ 6 t ,  

3. cl A d2 A b2-"* 62, 

4. Cl A d2 A al"--~ ~2, 

52 Cl A d 2 A a2---~ t52, 

6. d1"-'~63, 

7. a3 A bl  A CI"-'~ r 

8. b2 A C2 A a2"--* 63, 

9. b2 A c2 A a3-"~ t~3. 

Although the number of rules in this set is the same as the number of leaf nodes in 
the decision tree (Fig. 1), six of the rules have had redundant terms removed. The 
presbyopic patent with high hypermetropia and astigmatism no longer needs to 
undergo an examination to be told that she is not suitable for contact lens wear 
(Rule 9). 

6. The "correctness' of rules and predictability 

Given that the assumptions listed at the end of Section 2 hold, the above algorithm 
produces a complete set of correct rules.t This section is devoted to explaining first 
the meaning, and then the importance of this statement. 

6.1. A COMPLETE SET. . .  

A set of rules is complete if for every possible example of a classification there is at 
least one rule which explains it. It is assumed that all examples can be adequately 

t This statement applies to most training sets. For the remainder, the algorithm must first be modified 
as explained in Section 7.2. 
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described in terms of the attributes used for the training set. Such a set of rules can 
be used for predicting the classification of any instance, which is a basic requirement 
for any rule induction program. A set of rules m u s t  be complete if it is induced from 
a complete training set. Otherwise, a rule set can be either complete or incomplete. 

6.2 . . . .  OF C O R R E C T  RULES 

On the other hand, a rule which is not incorrect is not necessarily correct. There are 
different levels of 'correctness'. An incorrect rule is one which misclassifies 
instances. For example, the rule Rule 1: at A bl-'-~ t51 is incorrect if it is too general, 
because there will be some instances which have value 1 for attribute a and value 1 
for attribute b, but which are of a class of other than 61. These instances will be 
misclassified as 61 by Rule 1. It is possible for a rule to be both too general and too 
specific; for example, if Rule 1 should have been a~ A Cl---~ 61, then it is too general 
with respect to attribute c but too specific with respect to attribute b. However, this 
does not alter the fact that the rule is incorrect because it still misclassifies some 
instances. An incorrect rule is, therefore, one which does not reference all the 
relevant attributes. 

A rule which is not too general is correct in the sense that it will not misclassify 
any instances. If it is too specific, however, it will fail to classify some instances 
which it should classify, although there may be other rules in the set which will cover 
these instances. A rule which is too specific is incorrect in the sense that it will not 
fire unless the value of an irrelevant attribute has been determined. The unde- 
sirability of this was discussed in Section 4. 

A 'correct' rule, therefore, is one which references all the relevant attributes and 
no irrelevant ones. A complete set of correct rules classifies all possible instances 
correctly. 

6.3. PREDICTABILITY 

The algorithm described in Section 5 induces a complete set of correct rules, on the 
condition that the assumptions listed in Section 2 hold. However, these assumptions 
are extremely restrictive and unlikely to be applicable to 'real-life' classification 
problems. In particular, the last assumption--that  the training set be complete---is 
most unrealistic. Relaxing any of the restrictions, even slightly, introduces into the 
set of induced rules the possibility of errors or uncertainty, thus reducing their 
predictability value. If the rule set cannot be guaranteed to be complete and correct 
(in the strict sense) when the training set does meet the assumptions then any errors 
or uncertainty introduced by relaxing the restrictions will be greatly increased. The 
importance of knowing that the rule set is complete and correct for a complete and 
noiseless training set cannot be over-emphasized. 

7. Prism 

The theory outlined in Section 5 has been embodied in a new rule induction 
program, PRISM. PRISM takes as input a training set entered as a file of ordered 
sets of attribute values, each set being terminated by a classification. Information 
about the attributes and classifications (e.g. name, number of possible values, list of 
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possible values, etc.) is input from a separate file at the start of the program, and the 
results are output as individual rules for each of the classifications listed in terms of 
the described attributes. 

7.1. THE BASIC ALGORrrHM 

The basic induction algorithm is essentially as described above, namely: 
If the training set contains instances of more than one classification, then for each 

classification, 6~, in turn: 

Step 1: calculate the probability of occurrence, p(6~ [ a~), of the classification 6n 
for each attribute-value pair o:~, 

Step 2: select the ac~ for which p(6~ [ ax) is a maximum and create a subset of the 
training set comprising all the instances which contain the selected t~x, 

Step 3: repeat Steps 1 and 2 for this subset until it contains only instances of class 
6~. The induced rule is a conjunction of all the attribute-value pairs used 
in creating the homogeneous subset. 

Step 4: remove all instances covered by this rule from the training set, 

Step 5: repeat Steps 1-4 until all instances of class 6~ have been removed. 

When the rules for one classification have been induced, the training set is restored 
to its initial state and the algorithm is applied again to induce a set of rules covering 
the next classification. As the classifications are considered separately, their order of 
presentation is immaterial. If all instances are of the same classification then that 
classification is returned as the rule, and the algorithm terminates. 

Although the basic induction algorithm used by PRISM is based on techniques 
employed by ID3, it is quite unlike ID3 in many respects. The major difference is 
that PRISM concentrates on finding only relevant values of attributes, while ID3 is 
concerned with finding the attribute which is most relevant overall, even though 
some values of that attribute may be irrelevant. All other differences between the 
two algorithms stem from this. ID3 divides a training set into homogeneous subsets 
without reference to the class of this subset, whereas PRISM must identify subsets 
of a specific class. This has the disadvantage of slightly increased computational 
effort, but the advantage of an output in the form of modular rules rather than a 
decision tree. 

7.2. THE USE OF HEURISTICS 

The two algorithms are similar in that they both employ an information theoretic 
approach to discovering disjunctive rules by grouping together sets of instances with 
similar features. Consequently, they both encounter similar difficulties in certain 
circumstances. In particular, there is the problem of which attribute or attribute- 
value pair to choose when the results of the respective calculations indicate that 
there are two or more which are equal. In ID3, however, the choice is immaterial 
because the objective is to reduce entropy at the maximal rate and this is achieved 
equally well whichever attribute is chosen. On the other hand, if the wrong choice is 
made in PRISM, then the result is that an irrelevant attribute-value pair may be 
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chosen. Fortunately, this most unwelcome feature can be avoided by incorporating 
some heuristics in the basic algorithm. 

7. 2. I. Opting for generality I 
If there are two or more rules describing a classification, PRISM tries to induce the 
most general rule first. The rationale behind this is that the more general a rule is 
then the less likely it is to reference an irrelevant attribute. Thus where there is a 
choice of attr ibute-value pairs, PRISM selects that attribute-value pair which has 
the highest frequency of occurrence in the set of instances being considered. 
Referring back to Table 2c in Section 5 (selection of a third term for the first rule for 
class 60 ,  it can be seen that the attribute-value pairs a~ and b~ both offer an equal 
information gain. PRISM selects b~ because the resulting rule covers three 
instances, whereas the rule resulting from the selection of a~ would only cover two 
instances. Thus the rule c2 A d2 A b~---~ 6~ is more general than c2 A dz A a~-', 6~. In 
this particular case, both rules are in fact equally correct, and so the order in which 
they are induced does not really matter,  but opting for generality in this way has the 
advantage of reducing computational effort when there is a significant difference in 
the number of instances covered by each of the rules. Its true value, however, is 
realized when the training set is an incomplete one and there is a possibility that one 
potential rule is a specialization of another. In this situation PRISM must select the 
more general. 

Z 2. 2. Opting ]:or generality H 
When both the information gain offered by two or more attr ibute-value pairs is the 
same and the numbers of instances referencing them is the same, PRISM selects the 
first. This is the only time that the order of input of the attributes affects the 
induction process, but in these cases it is still possible for an irrelevant attr ibute- 
value pair to be selected. To illustrate how PRISM copes with this situation, 
suppose there are four attributes, a, b, c and d, each having three possible values, 1, 
2 and 3, and the rules to be induced for class 6t are: 

Rule 1: cl A dt---~ 6t, 

Rule 2: cz A d2"--~ 61, 

Rule 3 :c3  A d3"-~ 61. 

Thus, attributes a and b are irrelevant to 6~, whereas all values of attributes c and d 
are equally relevant. If the training set is complete, then p(6~ ) ax) is the same for all 
a~x and PRISM selects a~. The subset containing only instances which have value 1 
for attribute a also presents the same problem--p(6~ ]ax) is equal for all a~, so b~ is 
selected, and so on. The result is the following set of rules: 

Rule 1: al A bl A ct A d l - * b t ,  

Rule 2: az A b~ A C~ A d~--* tS~, 

Rule3: a3AbI  Acj Adl--+~l, 

Rule 4: bz A al A Cl A dt--~ 61, 

Rule 5 : b 3  A al A Cl A d~--~ 6~. 
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At this stage p (61[a~)  is greater for c2, c3, d2 and d3 than for any other 
attr ibute-value pair, so the next two rules are induced correctly: 

Rule 6 :c2  A dE'* 61, 

Rule 7 :c3  ^ d3--'~ 61. 

The remaining instances all have value 1 for attribute c and value 1 for attribute d, 
so the final rule is 

Rule 8: cl A dl---~ 81. 

Rules 1-5 are all specializations of Rule 8. To avoid this happening, PRISM first 
induces all rules for a classification and then selects the most general of these on the 
basis of (i) the rule which covers the maximum number of instances, and (ii) the rule 
which references the fewest attributes. The instances covered by this rule are 
removed from the training set, and PRISM goes on to induce the remaining rules in 
the same way. For the above example, the result is that Rules 6 and 7 are induced 
first, and then Rule 8. These three rules account for all instances of class 61, so 
Rules 1-5 are discarded. 

Although this iterative procedure is quite costly in terms of computational effort, 
it ensures (at least for a complete training set) that the induced rules are maximally 
general. 

8. Induction from incomplete training sets 

When PRISM is applied to a complete training set, the resulting set of rules can 
confidently be expected to be complete and correct. When the training set is 
incomplete, this confidence is reduced. The smaller the relative number of instances 
in the training set, the more likely it is that the rule set will contain errors. Errors in 
the induction process arise for a number of reasons and can be best explained using 
an (artificial) example. For this purpose, suppose there are four attributes, a, b, c 
and d. Attribute a has five possible values (1,2, 3, 4, 5), attributes b and c each have 
four possible values (1, 2, 3, 4) and attribute d has three possible values (1,2, 3). 
Thus a complete training set would consist of 5 x 4 x 4 x 3 = 240 instances. Suppose 
that the rule set governing class 61 is 

Rule 1 :a4  

Rule 2: cl 

Rule 3 : a 2  

Rule 4 : a 5  

^ dz---~ 61, 

A dl'-'~ 61, 

A C4 ^ d2---* 61, 

A c4 ^ d z - * r l ,  

and that the 40 instances listed in Table 3 are the only ones available to the 
induction program. 

The set of rules induced by PRISM for the class 61 is 

Rule A: a 4 A d2-"~ 61, 

Rule B: a 3 A c! A dl---~ 61, 

Rule C: a 2 A C4"--'~ 61 , 

RuleD:  bl A dl A Cl-"~ 61. 
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TABLE 3 
Example of incomplete training set 

365 

a b c d 6 a b c d 6 a b c d 6 a b c d 6 

1 1 3 3 2 2 1 2 2 2 3 2 1 1 1 4 3 2 2 1 
1 2 1 2 2 2 2 2 1 2 3 2 4 1 2 4 4 1 3 2 
1 2 3 1 2 2 2 4 2 1 3 2 4 2 2 4 4 3 1 2 
1 3 1 3 2 2 3 2 1 2 3 3 1 1 1 5 1 1 2 2 
1 3 3 2 2 2 3 3 1 2 3 3 1 2 2 5 1 3 2 2 
1 4 1 3 2 2 3 3 3 2 3 3 2 2 2 5 2 2 2 2 
1 4 4 1 2 2 4 I 3 2 3 4 2 1 2 5 3 1 2 2 
2 1 1 1 1 2 4 2 1 2 4 1 3 2 1 5 3 2 3 2 
2 1 1 3 2 3 1 1 1 1 4 1 4 2 1 5 4 1 3 2 
2 I 2 I 2 3 1 4 3 2 4 2 1 3 2 5 4 4 3 2 

It can be seen that Rule 1 is induced correctly (Rule A), Rule 2 has been 
specialized in two ways (Rules B and D), Rule 3 has been generalized (Rule C) and 
Rule 4 has not been induced at all. The decision tree induced by ID3 from the same 
training set is shown in Fig. 5. The bold lines depict the branches for class 61 . 

8.1. FAILURE TO INDUCE A RULE 

A rule will not be induced if there are no examples of it in the training set (e.g. Rule 
4 above). This applies to all induction programs. Even human beings cannot be 
expected to induce rules from non-existent information. 

8.2. OVER-GENERALIZATION 

An induced rule may be too general if there are no counter-examples to it in the 
training set. For example, Rule C above (a2 ^ c4 ' o  61) is a generalization of the 
correct rule, Rule 3 (a2 ^ c 4 ^  d2-~,61). As there are no instances containing 
a2 & c4 & dl or  a2 & c4 & d3 in the training set, t hen  there are no counter-examples 
to a2 ^ c4---* 61 and  no reason to specialize. A n y  a t tempts  to specialize automat ica l ly  
would have u n w a n t e d  side-effects on  rules which were not  too general .  

S 

o ilo2 io3 Io o5 
d2 d3 

~I n ~2 ~1 ~2 n n =null 

FIG. 5. Decision tree produced from the training set in Table 3, 
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TABLE 4 
Relative frequency f vs. probability p for a small training set 

al 0 0.083 b4 0 0-107 
a2 0.182 0-167 cl 0.267 0-357 
a3 0-333 0.083 c2 0 0 
a, 0 O- 125 c3 0 0 
as 0 0.083 c4 0.167 0.071 
bl 0.222 0.107 dl 0.286 0.25 
b 2 0"222 0" 107 d2 0-091 0.063 
b3 0"1 0.107 d3 0 0 

8.3. OVER-SPECIALIZATION 

Theoretically, the induction algorithm is based on finding the a:x for which p(t51 [ o~x) 
is a maximum. In practice, for an incomplete training set, the true probability of 
occurrence p is unknown, and is approximated by the relative frequency, f (6 t  [ ~r~). 
This approximation of p introduces errors in the estimation of information gain of 
each a,~, which become significant for small training sets, resulting in the selection of 
an irrelevant attribute-value pair as the best representative of t51. Rule B above 
(a3 ^ cl ^ d~---~ 61) is an example of this type of error, in which a3 is the unwanted 
term. The reason for the selection of a3 becomes obvious when the values of p and f 
for each tr~ are compared (see Table 4). It can be seen that p(6t  l a3), is relatively 
small compared with p (61 lc0 ,  but as the distribution of a3 is inaccurately 
represented in the training set, f(6~la3) is artifically high, thus leading to the 
selection of a3 as 'best' attribute-value pair. This in turn leads to the induction of 
the second too-specific rule, Rule D. 

However, this situation can frequently correct itself. Rule B is a specialization of 
Rule 2, induced incorrectly because of the inaccurate representation of a3 in the 
training set. Once Rule B has been induced, the instances covered by it are removed 
from the training set, thus removing the offending bias towards a3. At this stage it is 
possible that the training set still contains enough instances which are examples of 
the correct rule, Rule 2, so that Rule 2 can subsequently be correctly induced. As all 
instances covered by Rule B are also covered by Rule 2, Rule B becomes redundant 
and can be discarded in the manner described in Section 7.2.2. 

These problems are inherent in many induction algorithms and successful 
solutions to them will be extremely difficult to find. 

9. Comparison of ID3 and PRISM 

This final section demonstrates the performance of PRISM on a training set 
containing a large number of examples. The training set is provided by the 
King-Knight-King-Rook chess end-game on which Quinlan performed his original 
experiments (Quinlan, 1979a). The problem is to find a rule set which will 
determine for each configuration of the four pieces, whether knight's side is lost 
two-ply in a black-to-move situation. Quinlan tackled the problem in stages, by first 
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placing severe constraints on the number of allowable configurations of the pieces, 
and then gradually relaxing these constraints until he could apply his algorithm 
successfully to the original unrestricted problem. He identified a total of seven 
problems of increasing complexity. The training set described below is provided by 
the third of these problems. 

There are seven attributes: 

a: distance from black king to knight, values 1, 2 or 3, 
b: distance from black king to rook, values 1, 2 or 3, 
c: distance from white king to knight, values 1, 2 or 3, 
d: distance from white king to rook, values, 1, 2 or 3, 
e: black king, knight, rook in line, values t or f, 
f :  rook bears on black king, values t or f, 
g: rook bears on knight, values t or f. 

There are two possible classifications--lost and safe, and the training set consists 
of 647 instances?. The decision tree produced by ID3 is shown in Fig. 6. It has 52 
branches, and if these are trivially converted into separate rules, there are a total of 
337 terms. In contrast, the rule set produced by PRISM has 15 rules and 48 terms: 

1. el-* safe, 

2 . . f f ~  safe, 

3. g:-* safe, 

4. b t ^ d E--* safe ,  

5. bl A d3-* safe, 

6. a I A c2- -*safe ,  

7. a2 A c2---*safe, 

8. a t A c3- -*safe ,  

9. a 2 A c3--~safe, 
10. a 3 A b2 A et Af t  A gt ~ los t ,  

11. b 3 A C 1 A e, Aft A gt ' -~  los t ,  

12. a3 A b3 A e t Aft  A g t - '~  lost, 

13. b2 A Cl A e t Aft  A gt"-~ los t ,  

14. a 3 A b l  A d l  A et Aft  A gt--~ los t ,  

! 5 .  a 2 A b l  A C 1A dl  A e, Aft A g t - -* los t .  

Both the decision tree and the above rule set classify all 647 instances correctly, but 
an expert system using the decision tree as its knowledge base would require 
significantly more tests to be performed. 

There is also one less obvious difference between the outputs, which is that the 
decision tree would classify the illegal instance (as & bl & cl & dl & et &ft &gt) as 
safe, whereas the rule set produced by PRISM is unable to classify it. 

? There is one combination of the seven attributes (al & bl & cl & dl & e, &ft & g,) which is illegal and 
therefore not included in the training set. 
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FiG. 6. Decision tree for Quinlan's third problem. 



PRISM: AN ALGORITHM FOR MODULAR RULES 369 

10. Summary and conclusions 

One of the major criticisms of the ID3 algorithm is that its decision tree output is 
not suitable for use in expert systems whose control structure is based on the 
forward or backward chaining of modular rules, particularly if these rules are also 
used for explanation purposes. Attempts at converting decision trees into modular 
rules have had limited success because large and complex trees often contain a lot of 
redundancy, and simplification of these trees requires generalization techniques 
similar to those used in rule induction. It has been easier to implement expert 
systems whose control structure is designed to operate on decision trees. 

However, the use of unmodified decision trees can have serious consequences in 
some domains, because the inherent redundancy requires that the results of 
irrelevant tests be known before a decision can be made. In medicine, these tests 
may require surgery, or alternatively may take up valuable time; in other domains, 
they may be extremely costly to perform. An expert system which uses such a 
decision tree must know the result of a requested test before it can decide on the 
next test to perform. 

Redundancy is clearly an undesirable feature of a decision tree, but as this report 
points out, it is an inherent weakness in the strategy employed for induction, and 
can only be remedied by radically altering this strategy. By minimizing the average 
entropy of a set of instances, ID3 does not pay any attention to the fact that some 
attributes or attribute values may be irrelevant to a particular classification. This 
report suggests that a better strategy would be to maximize the information 
contributed by an attribute-value pair to knowing a particular classification. The 
report outlines a new induction algorithm, PRISM, which is based on this strategy, 
and describes some of the results obtained by applying it to different training sets. 

PRISM produces its results as a set of modular rules which are maximally general 
when the training set is a complete one. The accuracy of rules induced from an 
incomplete training set depends on the size of that training set (as with all induction 
algorithms) but is comparable to the accuracy of a decision tree induced by ID3 
from the same training set, despite the gross reduction in number and length of the 
rules. 
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