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This paper discusses a suitable framework for generalizing the k-nearest neighbor (k-NNR) 
algorithms to cases where the design labels are not necessarily crisp, i.e., not binary-valued. 
The proposed framework imbeds all crisp k-NNR's into a larger structure of fuzzy k-NNR's. 
The resultant model enables neighborhood voting to be a continuous function of local labels at 
a point to be classified. We emphasize that the decision itself may be crisp even when a fuzzy 
k-NNR is utilized. The usefulness of this extension of the conventional technique is illustrated 
by comparing the observed error rates of four classifiers (the hard k-NNR, two fuzzy k-NNR's, 
and a fuzzy 1-nearest prototype rule (1-NPR)) on three data sets: Anderson's Iris data, and 
samples from (synthetic) univariate and bivariate normal mixtures. Our conclusions: all four 
designs yield comparable (usually within 4%) error rates; the Fuzzy c-Means (FCM) based 
k-NNR is usually the best design; the FCM/1-NPR is the most efficient and perhaps most 
useful of the four designs; and finally, that generalized NNR's are an important and useful 
extension of the conventional ones. 

Keywords: Classifier design, c-Means algorithm, Fuzzy sets, Nearest neighbors, Pattern 
recognition. 

1. Introduction and conclusions 

A convent iona l  pa t te rn  recogni t ion  system is a decision rule that  assigns one  of  
c labels to ( some representa t ion  of) each test sample  submit ted  to the rule. In  this 
paper  objects  will be charac ter ized  by feature  vectors  x e R s and the set of  class 
labels by Ic = (1, 2 . . . . .  c}. A n y  funct ion D:RS---~ Ic is a classifier funct ion or  
decision funct ion on  RS: its act ion part i t ions R s into c disjoint regions,  the inverse 
images o f  the e lements  of  Ic. I f  one  desires to include a re jec tance  (no decision) 
class, it can be realized by taking c = c + 1. 

Statistical decision theory  p resumes  that  the c object  classes cap tured  by D are 
joint ly distr ibuted as a mixture  o f  c o m p o n e n t  probabi l i ty  density funct ions (pdf): 

C 

f ( x )  = ~ p~g(x lj) is the mixture ,  
j=l 

with 
0 ~< pj ~< 1, pj the pr ior  probabi l i ty  of  class j Vj, 

g(x t J) = the pdf  of  class ] Vj. 
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Bayes' rule relates the three factors in (la) to each other as follows: 

p(jlx) =pjg(x Ij)/f(x), 1 <~j <<- c. (2) 

In the sequel we shall denote the posterior vector whose elements are the left side 
of (2) as p(x) = (p(1 Ix), p(2 Ix) . . . . .  p(c [x)) T. Any decision rule that is a 
monotone increasing function of either side of (2) is called a Bayes decision rule. 
In particular, if the factors at (1) are known, the rule 

DB(X ) = i  ¢:> p(i Ix)>pfj Ix)Vj#~i, (3) 

with ties resolved arbitrarly, is called the optimal Bayes classifier on R s with 
respect to f (x)  because D B minimizes the probability of misclassifying x. This 
error rate is defined, for any classifier function D as 

E ( D ) = a - f ~ ' ' ' ~ m a x { p i g ( x l i ) } d x ,  (4) 

the integral being taken over the appropriate inverse images of D in R s. The 
optimality of DB with respect to E, i.e., E B = E(DB) ~< E(D) VD :R ~ ---> Ic is well 
known [1], but is actually true only when the loss matrix associated with the 
problem is the 0-1 loss matrix. In this special instance D B also minimizes the 
overall risk for all rules D. Henceforth, we consider only the 0-1 loss matrix case. 

Being optimal relative to (4), Ea is often called upon to serve as a bench-mark 
when comparing sub-optimal designs. Unfortunately, EB is almost always 
impossible to compute even when f (x)  is known; and is obviously not calculable 
when f (x)  is unknown (which is of course the usual case in practice). Thus, we 
count, say/~(D), the average number of mistakes made by D on a labelled test 
set, and interpret/~(D) either as (i) an estimate of the 'true but unknown' EB, or 
(ii) an estimate of the future performance of D on fresh samples drawn in a 
manner similar to the test data. Loosely speaking, using /~ for (i) asks for an 
estimate of how well any D might do, whereas in (ii)/~ predicts how well this D 
may do. Moreover,/~ is clearly dependent on both the test data used to compute 
it and the design data used to find D. Because of these difficulties, the second use 
of /~(D)  - viz., to predict the future performance of D - is much less controver- 
sial than its quality as an estimator of Ea: this is the view of/~ adhered to below. 

There are two broad approaches to the design of a classifier based on the 
mixture assumptions. In the parametric approach, labelled or unlabelled design 
data is used to estimate (parameters of) the functions on the right-hand side of 
(2); and the resultant densities are used to compute an approximate p(x) for use 
in (3). Alternately, labelled design samples can be used to, given x, estimate p(x) 
directly by examining the local distribution of class labels in the neighborhood of 
x. The family of algorithms based on this latter idea are the k-nearest neighbor 
rules (k-NNR): one calls them non-parametric because the left-hand side of (2) is 
estimated directly from the design labels without resort to an intermediate 
computation of the parameters of the right-hand side of (2). Although k-NNR's 
can be used to estimate E B via lower and upper (asymptotic) bounds, we shall not 
consider this aspect of k-NNR's below (see [2-4] for further discussion along this 
line). 
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In essence, k-NNR's simply find the k NN's to x and then count the votes for 
each class among these neighbors. There is a well established hierachy (cf. [4] for 
an excellent survey) of k-NNR's in the literature, viz., the 1-NNR, k-NNR, 
(k, I)-NNR, and (k,/i)-NNR, which are progressively more sophisticated in their 
requirements for giving x a label in Ic. Common to all of these algorithms, 
however, is the stipulation that the design labels are hard (non-fuzzy, crisp), i.e., 
that each neighbor to x is attached (wholly) to one and only one of the c classes. 
Recently, a great deal of interest has arisen concerning the relaxation of this 
requirement through the use of fuzzy label vectors, and consequently to fuzzy 
k-NNR's [5, 6]. One of the main objectives of the present study is to define a 
NNR formalism that unifies this work and embodies all of the previous k-NNR's 
in a single framework. This will provide a basis for further extensions, 
interpretations, and analysis of new generalizations of the extant theory and its 
applications. A second objective of this paper is to compare the performance of 
two fuzzy k-NNR's to the hard k-NNR; and to compare all three NNR's to a 
fuzzy one-Nearest Prototype Rule (1-NPR). Section 2 discusses the generalized 
k-NNR formalism. Section 3 briefly reviews 1-NPR's in general, and the 
FCM/1-NPR in particular. Section 4 describes J6~wik's algorithm. Section 5 
describes the data and computing protocols for the numerical examples of Section 
6. Section 7 reports our conclusions, which are summarized briefly as follows: 
• The FCM/k-NNR yields the best overall performance, especially for mixtures 
of normal densities, of the four classifiers tested. 
• The fuzzy 1-NPR is computationally superior (less storage and CPU time) than 
all three k-NNR's, and yields error rates that are quite comparable to NNR 
designs. 
• All four designs produce comparable results on normal mixtures; and rules 
that use (given) labelling information are somewhat better than those that ignore 
it for very small design sample sets. 
• Fuzzy generalizations of conventional k-NNR's do improve predicted perfor- 
mance rates in most instances. 

We conclude Section 7 with some conjectures and ideas for further research. 
The Appendix gives a pseudo-code procedure for the generalized k-NNR. 

2. The generalized NNR 

A compact description of k-NN decision rules and algorithms for implementing 
them is afforded by introducing some terminology associated with Vcn, the vector 
space of real c x n matrices. Specifically, let W = [Wik] • V~n, and suppose its 
entries satisfy three constraints: 

wik•[0,1], l<~i<~c;l<~k<~n, (5a) 

~ wik = l, l ~ k <~n, (5b) 
i = 1  n 

0 < ~  w~k<n, l<~i<~c. (5c) 
k = l  
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We denote by MI~ ~ the set of all such matrices: 

MI~ ~ = { W  e Vc~ I Wik satisfies (5)}, (6a) 

and by Men the subset of Mrc ~ for which every entry of W is either 0 or 1: 

Mc,  = { W  e Mfc n [ Wik • {0, 1} Vi, k}. (6b) 

It is also convenient to name the subsets of R ~ that contain single column vectors 
of such matrices. Let 

N f = { w e R ~ l O < ~ w i < ~ l V i , ~ w i = l } ,  (6c) 
i= l  

Nc = {w I wi E {0, 1} Vi}. (6d) 

In the present context elements of these four sets have the following names and 
interpretations: 

w e Nc - hard label vectors, 

w • (NI~ - N~) - fuzzy label vectors, 

W • Mc~ ~ hard c-partitions of X, 

W • (MI~ ~ - Mc~ ) - fuzzy c-partitions of X, 

where X = {xt, x2, . . . .  xn } is a set of n points in R s. The terms hard and fuzzy 
c-partitions o f  X accrue to Men and Mic ~ upon regarding Wik as Wi(Xk), where 
wi :X--~ [0, 1] is the membership function for the i-th partitioning subset of X, 
exhibited through its values along row i of W on all n points in X. The number Wig 
is the grade o f  membersh ip  of x in wi, and when W • Mc~, its columns are just the 
hard label vectors in Nc of any n points. Reference [7] contains a lengthy 
discussion of the geometric and philosophical ramifications of these definitions, as 
well as several numerical examples exemplifying their usefulness. It is also 
convenient to have a notation for each column vector of W: let W (k) = (Wlk, WEk, 
. . . ,  Wck) T, SO that for W ~ Mic ~, we have the association 

W = [ W  O) W (2) . . .  W (k) . . .  W O)]eMfc +, (7a) 

X = { X l  x2 " " " Xk " "  x~} c R s, (7b) 

where $ " W  (k) labels Xk". Note that each W (k) is a label vector in Nit. For 
example, if x s belongs entirely to class 4 among c = 5 classes, then W (8) = 
(0, 0, 0, 1, 0)a'; on the other hand, if the membership of x5 is divided among 
classes 1, 2, and 4, say, in the percentages 40%, 22%, and 38%, respectively, 
then W (5) = (0.40, 0.22, 0, 0.38, 0) T. W (8) is a hard label, W (5) is a fuzzy one. A 
pair (X, W) satisfying (7) is called a hard (or fuzzy) labelled data set according as 
w Mc+ (or (M1c. - 

Given a .labelled data set (X, W), we ordinarily divide it into two parts: a 
design set X d, [Xdl = rid, and a test set X t, [Xt[ = nt, satisfying 

Xa L+J X,  = X ,  (8a) 
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Xd tq X, = ~ (the empty set), (8b) 

n d -t- nt = n, (8c) 

From the association in (7) there follows the partitioned association (perhaps 
after suitable relabelling): 

w = . . .  w $  . . .  v ¢ $ ' ) l  = W,l, (9a) 

X =  (x~ . . .  x,~ I x,,~+l . . .  x,,} = {Xa IX,}. (95) 

So (Xd, Wd) is a labelled design set, and (Xp W~) is a labelled test set; note that Wa 
and V¢ t are in Mrcnd and M1c,, ' respectively. We call (na:nt) the partition ratio 
corresponding to the division of X into design and test sets. 

Now we define the quantities needed to make (Xd. Wd) a k-NNR. Specifically, 
let x be any vector in R s (it might be in Xd), let A be a metric on R ", and set 

zl(x, y)  = the A-distance between x, y e R s, (10a) 

la = {1, 2 . . . . .  na - 1}: integers in I d are potential (10b) 
numbers of  nearest neighbors to any point x, 

N k ( x  ) = the k vectors in Xd Zi-dosest to x, where k • Id. (10c) 
Nk(x) are the k-NN of x, x ~ Nk(X), 

Jk(X) = the indices of the points in Nk(X), ordered so that (10d) 
A(x, xi) ~< A(x, x,.+l), i = 1, 2 . . . .  , k - 1, 

E (lOe) 
jEJk(X) 

Note that Lk(x) • Nrc, i.e., it is a label vector for x. The i-th component of Lk(X), 
say Lit(x), is easily interpreted: L~k(X) is the membership in class i assigned to x 
by the labels of its k NN's. Thus, Lk(X ) is, in general, a fuzzy  label vector for x. 
Indeed, kLg(x) is a hard label vector for x if and only if all of the columns {Wd 0)} 
used to compute it via (10e) are hard labels. If a hard decision is required 
(ultimately it usually is, although the membership of x in each class may be more 
useful in intermediate processing goals), one could elect to assign x to the class of 
maximum membership. A more stringent decision philosophy would be to require 
(even the maximum 0 Ltk(x ) tO exceed a prespecified threshold before converting 
Lk(X) to a hard label (i.e., hard decision). Thus, we are led to the fuzzy (k, l~) 
rule: 

Definition 1. The generalized (k, li)-NNR classifier. Let k E Id, (Xa, Wa), be a 
labelled (hard or fuzzy) data set, and let Lk(X) = (Llk(X), L2k(X) . . . .  , Lck(X)) T be 
the label vector for any x e R s computed via (10e). Finally, let {l 1, 12, . . . .  l¢} be 
class voting thresholds. The function Dk : R ~ ""> I~ defined as 

Dk(X ) = i ¢:> Lik(X ) > l~ (11) 

is the generalized (k, li)-NNR. 

Rule (11) is not well defined unless the numbers {/i) are properly constrained. 
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For example, E~=a Lik(x) = 1 because Lk(X) • Nr¢, so every li should be between 0 
and 1. If the li's are large enough, Dg can fail to make any decision. Conversely, 
if the l's are small enough, ties are inevitable, so a suitable set of tie-breaking 
procedures is needed to make Dk a function. For example, suppose c = 4 and 
Lk(X) = (0.65, 0.10, 0.25, 0) T. If li =0.7, Dk is undefined; if It =0.6, D~(x) = 1, 
and if li = 0.20 Vi, then Dk(x)= 1 or 3 is double-valued, so is not a (classifier) 
function. For our purpose it suffices to note that due caution must be exercised in 
choosing the (l;} so that Dk is always singe-valued on R s and when it is, (11) is the 
proper generalization of all hard k-NNR families having equivalent conventions. 
The virtues of (11) are twofold: First, it enables one to discriminate against 
selected classes by raising or lowering It for a specific class as the application 
demands. And second, the k-NNR's are extended to fuzzy labels of Xd in a 
natural way that completely imbeds the original methodology. The primary 
advantage in allowing W d to be a fuzzy labelling of Xd is that the label vector 
Lk(X) of X defined at (10e) can be a continuous function of the label information 
about mixed classes in its neighborhood. If, e.g., k = c = 3 and Wd e Msn is hard, 
the only possible values for L~k(X ) - t h e  membership assigned to x for class i by 
the labels in Jg(x) - are the four numbers 0, ½, 32, and 1; whereas all values in [0, 1] 
are possible (subject to constraint (6c)) for the elements of Lk(X) if Wd • MS3n is a 
set of fuzzy design labels. Fuzzy k-NNR's ostensibly provide a continuous 'tuning 
mechanism' for thresholding votes as opposed to the set of preselected bands (the 
possible discrete values of L~k(X)) imposed by hard k-NNR's. Consequently, one 
may expect more precise performance when the data represent truly mixed 
classes. Returning to our example with k = c = 3, taking equal values of I t at any 
value less than 0.67 (ignoring roundoff) in (11) yields the conventional hard 
3-NNR with simple majority (at least 2 out of 3) voting. Moreover, this happens 
if and only if (say) L~k(x) is the unique maximum (because E Lik(X) = 1) of the 
L]k(X), SO (11) has, for this special case, the more familiar form of simple majority 
rule: 

Dk(X ) = i ~ Ltk(X ) > Ljk(x ) Vj ~ i. (12) 

Further, the substance of Cover and Hart's classic result [8] in this special case is 
that kLk(X) • N¢ and 

Lk(X) ~ p(x)  as (k, n) ~ ~ with k/n property constrained. (13) 

In turn, Dk at (12) 'approaches' the optimal performance of D B. It is beyond the 
scope of this study to do more than observe that, for a fuzzy label sequence 
{Lk(X)} indexed on n, that if {kLk(X)}---> kL(x ) •  N¢, there is surely a suitable 
extension of the Cover and Hart result for the fuzzy k-NNR case. In what 
follows, we are content to cc,mpare several instances of (12) numerically, with a 
view towards deciding whether or not fuzzy k-NNR's do in fact improve the 
expected classifier performance of Dk over their hard counterparts. Does this 
make any sense? It does, because Dk(X ) = i in (11) is a hard decision about x even 
when the labels Wa used to get it are fuzzy. What cannot be fuzzy for our current 
objective is the set of testing labels W, for X r With a view towards comparing the 
performance of various classifiers on R s we make 
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Delh~ion 2. Empirical error rate of D. Let D be any decision function, 
D : R s --* I~, and let (Xt, Wt) be a hard test set, vet • M~n,. The empirical error rate 
of D is 

rlt 

E(D) = ~ e(xj)/nt (14a) 
/ ' =1  

where xj • Xt and 

1, D(xj) =i and W~ )=0 ,  

e(xj)= 0, otherwise. 
(lab) 

/~(D) is just the average number of labelling errors made by D on X~ W 0) is the 
i-th component of W °), the hard labels for xj. 

We have not, in Definition 2, specified any relationship between the samples Xt 
and, if used, any design samples X d used to train (or find) the classifier function D 
being tested. This topic is well discussed elsewhere (cf. [1, 4]). Suffice it to say 
that Xt and Xa should be independent, as they will be, e.g., when the partitioning 
scheme for X exhibited at (9) is used. 

The next detail requiring attention is the value of k: how many neighbors 
should be used? Different k's obviously result in different classifiers and hence 
various/~(Dk)'S. If we let k vary from 1 to some maximum value, say kma x • I d we 
end up with a sequence of empirical error rates, {/~(D1),/~(D2) . . . . .  /~(Dk.~)}. 
An inelegant but pragmatic way to choose k is to select the k* that produces the 
smallest error rate. We shall call (k*, F,(Dko)) the 'optimal' number of nearest 
neighbors and predicted error rate for (Xd, Wa) when k* is chosen so that 

E(Dko) = min{/~(Dj) : 1 ~<j ~< kmax}. (15) 

k* is deafly a function of many variables, some of which (e.g., the actual samples 
Xd and X~ used) are beyond theoretical analysis. In view of this, (15) is about the 
best we can do. 

At this point we have a completely specified procedure for the generalized 
k-NNR. The procedure is given in the Appendix in 'pseudo-code' format; in the 
sequel we shall refer to it as PROC.KNNR. Each of the variables passed to 
PROC.KNNR alters its output (k*, E(Dk.)). In order to study the effect of 
various labelling schema for the same design set, we fix all of the inputs to 
PROC.KNNR except Wd, the labels attached to Xd. In this case (k*, E(Dk.)) 
become functions of Wd alone; one can envision a truly gruesome notation for 
the dependency of /~(Dk. ) on the labels; e.g., (E(Dk.)[(Wd)]). We ease this 
problem by identifying (k*,/~(Dk.)) with the algorithm used to generate the label 
matrix Wd. Specifically then, how can different Wd's arise? For a fixed design set 
Xd several possibilities exist: 

Type (i). Wd • Mend is hard (given). 
Type (ii). Wd • Mien d is fuzzy (given). 
Type (iii). A hard W d as in (i) is converted into fuzzy Wd as in (ii). 
Type (iv). W d (and perhaps even c!) is unknown. Use Xd to produce: (a) W d as 
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in (i); or (b), Wd as in (ii) by applying, respectively, a hard or fuzzy clustering 
algorithm to Xa. 

In this list 'given' can mean assigned or observed by man or machine; 
'converted' means either by a human or with an algorithmic process; and 
'produce' means by an algorithmic process (e.g., by clustering Xd). Type (i) is 
presumably unique, and corresponds to the usual hard k-NNR situation. Here is 
an example of (ii), i.e., a natural physical process in which it is possible, 
reasonable, and desirable to assign fuzzy labels to the vectors in Xa: a sensor 
searching for some object (against an unfamiliar background) may be covering 
the assigned search area by scanning. At any instant, the object-recognition 
system attached to the sensor is paying attention to a limited field of view; if the 
boundaries of this field are not sharp, i.e., if the sensor's response to a pointlike 
object fades gradually with displacement from the current center of attention, 
then in collecting a set of pattern vectors to characterize the sought object under 
various circumstances, it is natural to assign to each vector a fuzzy label 
representing the degree to which the object was near the center of attention. 
Possibility (iii) begs a question: if hard labels are given, what motivation can 
there be for converting them into fuzzy ones? It is easy to envision cases where 
the measurements (features) of Xk'S ~ X  a from different classes exhibit con- 
siderable overlap in R s even though their labels, if hard, imply that they are in 
some sense well separated. Conversion as in (iii) simply attempts to make the 
labels of the Xk'S more accurately reflect the relationship between their features. 
Thus, Type (iii) labels are sought simply to improve the (expected) error rate of 
the k-NNR upon which they are based. As an aside, we point out that the Type 
(iii) situation is entirely analogous to the relationship between Hard and Fuzzy 
c-Means: there are an infinite number of fuzzy generalizations of the (unique) 
hard algorithm. Both situations are ultimately traceable to the extension of 
membership values from {0, 1} to [0, 1]; and the trick in either case is to find a 
'good', i.e., better fuzzy algorithm than the hard one based on a Type (i) Wd. 

The last class, Type (iv), is the 'unsupervised learning' problem. Unlabelled 
data is first labelled by a hard or fuzzy clustering algorithm; and then the labels 
are themselves used with X a in the k-NNR classifier mode. This is clearly the 
most difficult (c itself may be unknown!) and least tractable of the four 
possibilities; we list it here only for completeness. In the examples to follow we 
send one Type (i) and two Type (iii) sets of labels to PROC.KNNR with all other 
variables fixed for each data set. The purpose of these experiments is threefold: 
to demonstrate that Type (iii) processing does reduce the Type (i) error rate; to 
compare two Type (iii) processes; and to compare the performance of two 
generalized k-NNR's to a fuzzy 1-NPR. With this latter objective in mind, we 
turn to a brief description of NPR's. 

3. The nearest prototype rule: FCM 

Given a set X d constituted as above, the label matrix W a (hard or fuzzy) is one 
way to represent information about the class identity of each individual in Xd. 
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Another (not necessarily equivalent) representation of this information is by class 
prototypes, i.e., vectors in R s that are presumed to be paradigmatic of the 
features one might expect for 'ideal' class representatives. Each class may have 
multiple prototypes (in fact, if ndi is the number of vectors labelled as class i by 
some Wd • Mcn~, )'~i ridi = rid, then the hard k-NNR is a n  { n d i  } multiple-prototype 
rule). 

The virtue of NPR's is in their compression of the na points into some smaller 
number. The limit of this process is to represent all na~ points in class i by exactly 
one class prototype, say vi • R s. Once the c prototypes are found, the 1-NPR is 
easy to implement: 

Definilion 3. The 1-NPR classifier. Let v = (vl, v2, . . . , Vc) T, vi • RSVi, found by 
any means whatsoever, be class prototypes for the labels in Ic. Let x e R s. The 
function D o : R s ---> I~ defined as 

Oo(x) = i ¢=> A(x, ~)i) ( A(x, IJj) Vj ¢ i, (16) 

where A is any metric on R s and ties are broken arbitrarily, is called the 1-nearest 
prototype rule associated with the pair (A, v). 

Note first that/~(Do) at (14) is well defined for Do's as in (16):/~ will serve as a 
common denominator for comparing NN and NP rules. 1-NPR's are discussed at 
length in many works [1, 4, 7]. If A is induced by an inner product, e.g., the 
action of D~ can be written in terms of affine functions (A(x, v;) can be replaced 
by xTvi + ki), with the subsequent geometric characterization of D~ as a 'linear' 
classifier. 

Given (Xd, Wd) with Wa hard, an obvious set of prototypes to use are the 
sample means of each labelled subset in Xd: letting [w/k ] = Wd, 

m i = w/icXk Wik, (17) 
k = l  t k = l  

The vector m = ( m  1, m 2, . . . .  m c )  defines D,,, at (16). D,,,, is, for a given A, the 
1-NPR classifier called the Hard c-Means (HCM) 1-NPR, regardless of whether 
Wd is given (Type (i)), or computed (Type (iv)(a)). There are many alternatives 
to (17). Of these, we are particularly interested in the following: given Xd, let us 
apply the Fuzzy c-Means (FCM) algorithm (cf. [7] or [13]) to it. At termination, 
there are two outputs, (Wd) and v: 

f Wd = Wfcm • M1cn~ a fuzzy label matrix for Xd, ) 
. . . . . .-*Jeither Type (iii) or Type (iv)(b), to use in the~ (18a) 

(FCM/k-NNR at (11) J 

Xd --* [ PROC.FCM [ 

~..~f lff = IJfc m -~ ( t l l ,  132.~. . .  , iYc) a set of prototypes 
[for Xa, to use in (16) with A as a fuzzy 1-NPRJ (18b) 

We shall henceforth refer to D,, with (A, v) from (18b) as a FCM/1-NPR and to 
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Dk when labels (18a) are used in (11) as a FCM/k-NNR. It is clear that the 
implemenability and computational efficiency of D,, from (18b) is superior to any 
Dk at (11) using labels from (18a): it is not  clear that the two representations of 
the 'classifier information' resident in the fuzzy labels (Wit,,) and prototypes (Vfcm) 
are equivalent. Previous studies [10, 11, 12] have compared the FCM/1-NPR with 
the HCM/1-NPR, MLE/1-NPR, and Hard/k-NNR's (MLE refers to maximum 
likelihood estimation: both labelled and unlabelled forms have been investig- 
ated). In all of these studies the FCM/1-NPR has proven superior in terms of 
minimizing /~(D): an objective of the examples below is to determine whether 
this continues to hold for comparisons with fuzzy k-NNR's. 

A complete description of FCM including a FORTRAN listing with test 
examples is given in [13]. We shall refer to it here as PROC.FCM; its primary 
input is X a and its outputs are (Wa = Wfc,n, v = VScm) where Wy~,~ is a fuzzy 
labelling of X d and the vi's are fuzzy prototypes for Xa. Consult [7] for a more 
expansive discussion of theoretical aspects of FCM. The FCM/k-NNR and 
FCM/1-NPR classifier designs are illustrated schematically in Figure 1. Observe 
that the * has been dropped from the notation for the optimal number of 
neighbors (k~,~--~ kfc,,); and we have suppressed the functional dependency of/~ 

• and D,,fo m to simplify the notation. on Dk~c.. 
As an aside, generalized NNR's of Types (iii) and (iv) may or may not be 

'parametric' in the sense discussed above. For example, the FCM/k-NNR as 
defined here is not statistically parametric,  but  W ft,, is certainly an est imate-  

Fuzzy Design Labels ] 

--  

I 
I 0utput of th~ 

FCM/k-NNR I 

I,os o Set X,] 

l 
I I 

I Hard Test I ~1 
Set ( Wt ,Xt ) -1 

1 
Fuzzy Prototypes I 
v = v_gum ~R ~a I 

D u in (16) 1 

i 
Output of the I 
FC~/1-se~ I 

Fig. 1. The FCM/k-NNR and FCM/1-NPR classifiers. 



Generalized k-nearest neighbor rules 247 

produced algorithmically with Xd of parameters (viz., W1~m) needed to define the 
(presumably) non-parametric rule defined by (Xd, Wd = Wry, k* = krem)! 

4. J6~4k's fuzzy NNR 

The FCM/k-NNR is a Type (iii) rule which simply discards (if known) Wa, the 
hard labels accompanying Xd, and processes )Ca with FCM to produce the fuzzy 
design labels Wr~ m in (18a). J6/a,cik's algorithm [5] is also a Type (iii) method, but 
in his scheme the given labels Wd of Xd are used to initialize an iterative method 
which ultimately produces a set of fuzzy design labels, called Wj below, for Xd. 
J6iwik's algorithm is complicated to describe (c.f. [5, 9]); we briefly summarize 
the main steps here so that readers will understand the numerical examples of 
Section 6. 

First, a division of data (X, W) as shown at (9) is made, but for this discussion 
it is convenient to replace the subscript (t) by (2); then (X2, W2) is temporarily 
laid aside. In order to describe J6£,wik's method, we add the subscript h to Wd: 
Wdh denotes the h-th iterate in a sequence of labellings of Xd, h = 0, 1, 2 . . . . .  and 
we take Wd = Wdo, i.e., the given hard labels of Xd are its initial labels. 

Phase 1 of J6£~vik's Method. 
(J1.1) Send (X d, Wao ) to PROC.KNNR with kmax = (nd - 1 )  and (Xt, Wt)= 
(Xd, Wao). Label the outputs (k*, E(Dk.)) = (ko, F-,o). 
(J1.2) For any integer h I> 0, define the column vectors 

W~)h+l = (khLkh(Xi) 4- W~)/(kh + 1), (19) 

where i = 1, 2 . . . . .  n d and Lk(X ) is defined at (10e). In particular, the fuzzy 
labelling Wall of Xa is computed with (Wdo, ko) and (19). 
01.3) For h = 1, 2 . . . . .  hm~: 

(a) Send design data (Xa, Wah) and test data (Xa, Wao) to PROC.KNNR, and 
call its outputs (kh, Eh). Compute Wd, h+l per (19). 

(b) if/~h ~</~h+~ set (Wdh, kh, Eh) = (W'~, k~, E~) and stop. Otherwise, next h. 

Phase 2 of J6£~vik's Method. 
(J2.1) Compute fuzzy labels for the n2 vectors in X2 using (W~, k~) in formula 
(10e). Since each Lk(X) ~ N/c, the augmented matrix Wdo = [W~ [Lk~(xl), 
. . . .  Lkr (xn:)] e M:cn is a fuzzy label matrix for X = Xd t3 )(2. 
(J2.2) Send design data (X, WdO) and test data (X, W) to PROC.KNNR, and call 
its outputs (ko, ,Eo). Compute Wall via (19). Note that Wdl is now a fuzzy 
c-partition of X, i.e., is a (c x n) matrix in M:c~. 
(J2.3) For h = 1, 2 , . . . ,  hm~: 

(a) Send desig_n data (X, Wdh) and test data (X, W) to PROC.KNNR, and call 
its outputs (k h, Eh). Compute Wa~h+l per (19). 

(b) If/~h ~</~h+l set (Wdh, k h, Eh) = (W~, k~, E~) and stop. Otherwise, next h. 
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Phase 3 of J6£,wik's Method. 
(J3.1) Select the final set of NNR parameters (Xa, Wa, k) for use in (11) as 
follows: 

i f / ~ < / ~ :  (Xa, Wa, k)=(Xa, W~, k~), (20a) 

i f / ~  > / ~ :  (X a, Wa, k) = (X, W~, k~). (20b) 

(J3.2) Denote the final design set chosen at (20) by (Xaj, Waj, kaj), and call the 
error rate (min( /~ ' , /~ ) )  =/~j. 

/~j in (J3.2) has essentially been computed via (15) using the hold-one-out 
method. As stated earlier, it is not our purpose here to argue the merits of/~j as 
an estimate of F-,B; rather, we view it as an indication of the expected performance 
of (11) using the design parameters chosen with (20). 

The two-phase approach leading to (20) complicates direct comparisons with, 
e.g., the FCM/k-NNR and FCM/1-NPR, because it is not known in advance 
whether gdj will be all of X (20b) or a subset of X (20a). Moreover, it is clear 
that the partition ratio (na:nz) affects not only the final choice of Xaj in (J3.2); 
but also the values of/~ic,~ and/~rn~,. In particular, when (20b) is selected, a direct 
comparison with the FCM classifiers would necessitate regarding X d in (18) as all 
of X; then Wrc m ~ Mfcn, and there would be no independent test data left with 
which to compute the empirical error rates of D1c m o r  Dfn p. There are several 
possibilities for ameliorating this dilemma. For example, one might adopt the 
hold-one-out strategy by taking (na :n2)= ( n -  1:1) in (18); and then averaging 
the results of n estimates of EIc m, /~rnp by running (18) n times, once for each 
deleted point in X. This technique would produce an estimate that seems, for 
large enough n, 'pretty comparable' to/~j when (20b) is used. A different strategy 
is to simply 'hide' some fraction of X from all the classifiers, and use this hidden 
data as a new test set: this latter strategy is adopted below. 

J6£wik's method invites several interesting questions. For example, the 
termination criterion in both phases is to stop when /~h ~</~h+l. /~h is defined on 
the (possibly infinite) set {0, 1, 2 , . . .  }. One wonders about the 'global' minimum 
of/~h: does one always exist? Is it unique? Is it the first 'local' minimum? A 
second line of inquiry: under what circumstances can we expect (20a) to hold, 
i.e., when will adding more (fuzzy) labels degrade the predicted performance of 
the fuzzy J/k-NNR? And finally, is the investment of computation time required 
to find (Wj, kj) sufficiently rewarding to justify the extra Phase 2 calculations? 
The experiments below are designed with these questions in mind. 

5. Computing protocols 

All three NNR's were tested using equation (12). In particular, the (hard) label 
corresponding to the class having maximum membership in Nk(x) was assigned to 
each x ~ X r The Euclidean norm and the inner product were used for all 
distances: for x, y e R s, 

<x, y ) = xTy = ~ XYi, (21a) 
i=I 
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a2(x, 7) = Iix-7112 = <x - 7 ,  x - 7 > .  (21b) 

This choice for A is admittedly uninspired (albeit convenient, and we suspect, not 
greatly injurious to our conclusions). We are content here to remark that the 
choice for A in NN and NP designs is obviously an important facet of the 
expected performance of D;  and that Fukunaga and his co-workers have 
pioneered several ingenious methods for determining an optimal A for use in 
(hard) k-NNR's [14]. The value of the weighting exponent (m) for the FCM 
algorithm was fixed at m = 2.00. Ties were broken in all algorithms by randomly 
selecting an alternative from the ones available. Three data sets were used for the 
experiments: 

Data Set A. Anderson's Iris Data [15]. c = 3 classes; s = 4 features; n = 150 
samples, 50 from each class. 

Data Set B. (Synthetic) univariate normal data drawn from mixture (la) with 
Pl =P2 = 0 . 5 ;  and c = 2 classes; s = 1 feature; n = 1000 samples, 500 from each 
class; g(x [ 1) - N(1, 1), g(x [ 2) - N(2, 1); Ea = 0.31 ~ the 'true' optimal Bayes 
error rate. 

Data Set C. (Synthetic) bivariate normal data drawn from mixture (la) with 
Pl =P2 = 0 . 5 ,  and c -- 2 classes; s = 2 features; n -- 1000 samples, 500 from each 
class; 

g(x  I 1) ~ N(IlI1, I). I~1 = (1, 1) T, 

g(x [ 2 ) -  N(~2, I), ~ = (2, 2)r; 

E B = 0.24 ~ the 'true' optimal Bayes error rate. 

These data sets are henceforth referred to collectively as (X, W), X being the 
pooled samples, and W being the observed (hard) labels attached to X. 
Partitioning of the data was done by dividing each (X, W) into three subpairs: 

W = [Wdl Wz[ Wt], (22a) 

x = { x d l x z l x , ) ,  (22b) 

n =nd + n2 + n~ (22c) 

Our division in (22) reserves (Xt, Wt) as a 'final' test set for all algorithms 
against the possibility that J6£-ccik's scheme opts for (20b) and uses (X2 tO Xa, W2) 
as discussed in Section 4 above. The fraction of each data set laid aside for final 
testing was as follows: n,A = 36 samples, 12 from each class; and n,B = ntc = 100 
samples, 50 from each class. 

The remaining samples in each case were divided into Xa and )(2 in five different 
apparent partition ratios as follows: (ha : nz) = (1 : 2), (1 : 1), (2: 1), (1 : 9), and 
(9 : 1). These would be 'real' partition ratios as defined in (9) ff J6~wik's method 
always chose (20a), and the artifice of using the 'fresh' test set (X,, W,) could be 
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Table 1. Summary of classifiers 

Design Optimal no. Empirical 
Classifier, D labels, W d of neighbors, k* error rate,/~(D) 

Hard/k-NNR Wnn knn /~nn 
Fuzzy J/k-NNR Wj kj /~j 
FCM/k-NNR l'Vf~ m kf~,,, E_/~,,, 
FCM/I-NPR Wr,, p - Emp 

eliminated. As it turned out, eleven of the fifteen runs made on data sets A, B, 
and C using the five partition ratios above resulted in/~j = / ~ .  For the Iris data, 
Phase 2 processing using X2 resulted in lowering /~j to / ~  < / ~  in all but the 
(1:9) case; in this latter instance na = 12 points resulted in no error, whereas 
nd+ n2 = 114 points had a 7% error rate. We mention that in the four instances 
where/~j = / ~ ,  the improvement on passing to Phase 2 only ranged from 0.2% to 
2.5%. In view of this it seems that for 'reasonable' ratios of (rid :n2), Phase 2 of 
J6£wik's algorithm may not be very cost effective. Consequently, the four 
classifiers are compared below on common data sets which, in the notation of 
equation (22), have the common labels (Xd, Wd) and (At, Wt). In other words, our 
discussion follow the notation in (9); the partition ratios shown in the tables are 
real o n e s -  they look a bit bizarre because data sets labelled X2 in (22) have 
simply been ignored (the ratios (ha : n2) were integer valuedt). 

Finally, we simplify the notation for the discussion below by letting the output 
of PROC.KNNR be called (knn, /~nn) when (k*, E(Dk*)) are the result of using 
PROC.KNNR in the crisp mode (i.e., when the labels for the design data are 
hard, Wd = W~n e McJ .  Summarizing, we will compare four classifiers with 
notations for common parameters as shown in Table 1. 

6. Numerical examples 

Tables 2-4 summarize the data processing of A, B, and C with the four 
classifiers under examination. The columns are arranged (left to right) in 
ascending order of the partition ratio nd/nt. Consequently, one generally expects 
/~(D) to decrease (moving right in these tables) as the number of design samples 
increases (the number of test samples are fixed in each table). This is not always 
the case, nor is it true that the optimal number of neighbors always decreases 
with an increase in the number of training samples. These anomalies are probably 
due to the vagaries of random sampling. Comparing Tables 2-4 further, there is 
no apparent trend between (optimal) numbers of neighbors (k*) and the various 
algorithms. Indeed, the Fuzzy J/k-NNR, e.g., uses on average the most (4.6), 
intermediate (5.2), and least (2.4) number of neighbors compared to the other 
NNR's to achieve minimal/~ rates over the three sets A, B, and C, respectively. 
In terms of computing then, there seems little hope in being able to predict a 
priori that any particular generalized k-NNR will be more efficient (use a fewer 
number of neighbors) than a competitor; and moreover, increasing the size of the 
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Table 2. Empirical error rates (in percent) for data set A: The Iris 
data 

Partition ratio na/nt with n t = 36 
Row-wise 

0.33 1.00 1.58 2.16 2.83 average 

k* 
kn~ 1 1 3 4 1 2 
kj 1 1 1 10 10 4.6 
kfem 1 6 1 1 1 2 

/~nn 0.0 2.8 0.0 0.0 2.8 1.12 
/~j 0.0 2.8 2.8 2.8 5.6 2.8 
E_fcm 38.9 33.3 5.6 5.6 5.6 17.8 
Ep,p 38.9 38.9 5.6 5.6 11.1 20.0 
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design set does not necessarily decrease either the optimal number of neighbors 
k* or the corresponding empirical error rate E(Dk.). 

Turning to the row-wise averages of E we note from Table 2 that the Hard and 
Fuzzy J/k-NNR's both achieved very good results with data set A. Both 
FCM-based rules were on average quite poor, the worst performance occurring 
when na/nt = 0.33 where both FCM designs had 38.9% error rates. The high 
error rates for both FCM-based designs at nd ~< n, = 36 are in all likelihood due to 
the fact that (Wrc m, vie,,, ) are being estimated in unsupervised fashion for (3) 
classes in 4-dimensional feature space using either 4 or 12 unidenttfied samples per 
class! Statistically, this is quite obviously the cause of poor performance here. On 
the whole, Table 2 suggests that when n is small relative to c and k, it is probably 
a bad idea to ignore the information reposited in (given) hard labels: the Hard 
and Fuzzy J/k-NNR's don't, whereas the FCM-based classifiers do. 

Turning to Table 3, one finds quite a different situation. Data set B has a 
calculable Bayes error rate of E a = 3 1 % ,  so in the limit a lower rate is 
theoretically impossible. However, the row-wise averages of/~I~-, and /~p are, 
respectively, 29.4% and 29.8%. This re-emphasizes a point made in an earlier 
comparison of/~nn to /~p  [10], viz., that there is nothing in the theory to preclude 

Table 3. Empirical error rates (in Percent) for data set B: A univariate 
normal mixture 

Partition ratio nd/n t with nt = 100 
Row-wise 

0.90 3.00 4.50 6.00 8.10 average 

k,n 9 15 15 18 16 15 
k* kj 1 9 8 3 5 5.2 

krc m 8 2 1 1 1 2.6 

/~nn 40 29 34 34 27 32.8 
/~j 32 32 36 40 31 34.2 
E_fcm 31 29 29 29 29 29.4 
E~p 33 29 29 29 29 29.8 

E B 31 31 31 31 31 31.0 
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better performance than Ea with finite sets of samples. Indeed, the values in 
Table 3 reinforce our remarks above; it is hard to interpret/~(D) in (14) as more 
than a very rough estimate of Ea, not is it safe to assume that/~(D) is necessarily 
greater than the 'true but unknown' Bayes error rate. Our use o f /~(D)  for a 
given D as a predictor of future performance with samples of  the same type and 
size seems uncontrovertible. In this context Table 3 suggests that the FCM/k- 
NNR is the best choice for data such as B, predicting an average error rate for 
Die,, which is about 4.8% lower than/~j = 34.2%. Note further that on average 
only 0.4% separate the FCM/k-NNR and FCM/1-NPR error rates. For these 
data, the most cost-efficient classifier is Dy, p because the storage and calculations 
involved in (18b) + (16) for the FCM/1-NPR are less than for (18a) + (12) for the 
FCM/k-NNR. Finally, we point out two differences between Tables 2 and 3 and 
might further account for the reversal in rankings of the two FCM designs with 
the Hard and Fuzzy J/k-NNR's; (i) the data in B are normally distributed, and 
(ii), training sample sizes run from ndi = 45 to ndi = 405 (unlabelled) samples per 
class in Table 3. Both of these facts seem to improve the quality of FCM-based 
designs. 

Using the same method of ranking the four designs in Table 4 again yields the 
FCM/k-NNR as the classifier of choice; and again, the Fuzzy J/k-NNR is ranked 
last, with a row-wise average, /~j=28.6%, some 3.8% higher than /~Ic,,. Note 
here that none of the four designs predict (on average) an /~(D) lower than 
Ea = 0.24. All four are again good 'ballpark' estimates (within 5% in all cases for 
both sets B and C) of EB. 

Another aspect of our study concerned the termination criterion of J6~wik, 
step (b) of (J1.3). To investigate this stopping rule we ignored the criterion and 
ran Phase 1 of J6~wik's rule out to h = 50 and then plotted/~h as a function of h. 
The results, shown in Figure 2, are quite interesting because three radically 
different types of graphs were observed. Figure 2(a) involves the IRIS data while 
Figures 2(b) and 2(c) involves data distributed as two-class mixtures of N(#i, 1) 
normals. For, view 2(a), /~h oscillates from a 'local' minimum of 2.8% to a local 
maximum of 4.0%, having five aperiodic cycles over the integers 0 to 50. Since 

Table 4. Empirical error rates (in percent) for data 
normal mixture 

Partition ratio nd/n t with nt = 100 

set C: A bivariate 

k* 

F~ 

knn 6 8 16 17 11 11.6 
kj 3 1 1 2 5 2.4 
kr¢ m 7 9 13 22 2 10.6 

/~nn 24 24 27 27 27 25.8 
/~j 28 26 28 32 29 28.6 
Efcm 23 25 25 25 26 24.8 
E~p 24 26 27 27 27 26.2 

24 24 24 24 24 24.0 

Row-wise 
0.90 3.00 4.50 6.00 8.10 average 
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using a different data s e t -  but it supports the same conclusions. Namely, /~h 
achieves a global minimum as early as possible (again at h = 2), and never 
increases as h runs out to 50. Finally, a third type of behavior is manifested by the 
graph shown in Figure 2(c), wherein /~h has global minimum at h = 2 and again 
for all h from 35-50. Note, however, that in this third case /~h has several local 
minima at larger values of/~h than/~2. In all three cases, these examples suggest 
that J6~wik's stopping rule possesses the properties one would like it to have; it 
does attain a global minimum in the smallest possible number of iterations. 
Moreover, in all three cases, this happens at h = 2. One wonders if this might be 
the case in every instance! 

7. Conclusions 

First, some remarks about J6~wik's design. Our calculations indicate that this 
algorithm is well defined in the sense that the stopping rule is consistent. A 
theoretical investigation supporting our empirical results concerning /~h is 
desirable. Our experience with J/k-NNR indicates that Phase 2 of the algorithm 
seldom improves the performance of the Phase 1 design. In the four cases with 
data set A where Phase 2 did improve the Phase 1 result, the average 
improvement in /~j was 1.2%. The cost of this marginal decrease in terms of 
computing is quite high. In general it appears that modifying the J/k-NNR by 
simply stopping at (J1.3) (perhaps always at h = 2?) usually produces the optimal 
result. Finally, the J/k-NNR was always within a few percent of the 'best' (in 
terms of /~(D)) design, but in our experiments never out-performed all of its 
competitors. However, with small data sets (such as A) we feel that utilization of 
the labelling informaion residing in Wd is necessary, and the J/k-NNR does so in a 
very interesting manner. This aspect of J6~wik's algorithm deserves further study. 

Second, what can be said about the FCM/k-NNR? This design provided the 
best results for both normal mixtures among all the designs compared, so it seems 
safe to assert that the FCM/k-NNR at least warrants more extensive field tests 
whenever NNR's are being used. It is too early to conclude that normality is an 
important precondition for success with the FCM/k-NNR. However, evidence 
that this may be true is mounting (cf. [11, 12] for additional examples in other 
contexts that suggest FCM is particularly effective when the g(x [])'s are 
Gaussian). A further supposition along these lines concerns the link between the 
norm metric A used in (11), the norm used to measure similarity in FCM, and the 
shape of level sets of the g(x ]])'s. In examples B and C, the Euclidean norm (for 
A and FCM) is well matched with the covariance structure of the g's, because 
both are essentially circular, whereas the structure of the g's is unknown in 
example A. Although FCM makes no statistical assumptions whatsoever, it does 
seem to consistently yield its best performance when the data are drawn from a 
mixture of normals. The theoretical reason for this apparent behavior has not yet 
emerged. 

Do Wfc m in (18a) and Vfc m in (18b) contain the same information? More 
specifically, are the FCM/k-NNR and FCM/1-NPR operationally equivalent 
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classifiers? On the basis of the results in Tables 2-4 it appears that, for all 
practical purposes, the answer is yes. The classifier Dicm consistently exhibited 
beter performance than D ~ , - b u t  how much better? Over fifteen runs, the 
FCM/k-NNR had an average error rate about 1.33% less than the FCM/1-NPR! 
Against this negligibly small improvement are three very important advantages 
for Df,,p. First, Di,,p needs much smaller storage: once found, only vi¢,~ need be 
stored (cs real numbers), as compared to DIe,, , storing Xd and Wr¢ m (nd(s + C) real 
numbers). For example, the storage required for these parameters in column (5) 
of Table 4 is cs = 4 for D~p whereas (nd(S + C))= 810(2 + 2 )=  3240 for Dicm. 
Second, the number of operations required per decision is as follows: Dynp 
requires c distance calculations, whereas Die m needs n a such computations. Using 
the same column of Table 4 for this comparison, Dhp completed its test of X, by 
calculating 2(100) = 200 distances; Df~,~ needed 810(100) = 81 000! Thus, D~p is at 
least several orders of magnitude better than Drc m in terms of both storage and 
CPU time. And last, D~,p is more easily implemented in hardware for real-time 
applications. These factors may or may not outweigh the apparent reduction in/~ 
realized by the FCM/k-NNR as compared to the FCM/1-NPR-  but certainly 
they should be kept in mind!. 

Do the examples above provide enough evidence to justify further study of 
generalized NNR's? Certainly (11) raises some interesting theoretical issues: what 
convergence theory can be established for decision rule (11)? What about upper 
and lower bounds on Ea? Are there theoretical reasons for preferring a particular 
form of the generalized NNR? And for the applications community, the 
numerical examples presented above certainly establish the utility of generalized 
k-NNR's. Several investigations are underway to corroborate some of these 
suppositions. 
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Appendix. PROC.KNNR: The generalized k-NNR 

Input: 

Parameters: 
Initialize: 

Output: 

A, a metric for R ~ 
(Xd, Wd) a labelled design set, Wd hard or fuzzy 
(X,, VCe) a labelled test set, Wt hard 
(11 ..... lc) a set of voting thresholds for (11) 
c, rid, nt, kmax (maximum number of neighbors tried) 
/~(Ok,~, ) = (0, 0 . . . .  ,0) 
Loop 
For j = 1 to nt 

Choose xj ~. X t 
Find Nk(Xj) per (10c) 
Find Jk(Xj) per (10d) 
For i = 1 to kma x 

Find Li(xj) per (10e) 
Find Di(xj) per (11), D = D i, break ties arbitrarily 
Find ei(x~) - per (14b), D = D, 
E(Oi) = E(Oi) + ei(xj)/n, 

Next i 
Next j 
Find (k*, E(Dk.)) per (15) 
(k*, E(Dk.)) as in (15), the optimal number of neighbors and 
minimum predicted error rate for the design set (Xd, Wd). 

Note 1. This procedure automatically finds the smallest number k* of nearest 
neighbors to use with (Xd, Wd) that produces the minimal error rate E(Dk. ) on 
( X  t, Wt). 

Note 2. One can send (X a, Wa) to this procedure twice, i.e., as both the design 
set and test set, provided Wa is hard. P R O C . K N N R  accessed in this fashion 
corresponds to the so-called ' leave-one-out '  method of establishing E,(Dk.) using 
all of the samples for design. 


