
Fuzzy Sets and Systems 18 (1986) 237-256 237
North-Holland

G E N E R A L I Z E D k - N E A R E S T N E I G H B O R RULES*

James C. B E Z D E K , Siew K. C H U A H
Computer Science Department, University of South Carolina, Columbia, SC 29208, USA

David L E E P
Boeing Aerospace Company, Seattle, WA 98124, USA

Received February 1985

This paper discusses a suitable framework for generalizing the k-nearest neighbor (k-NNR)
algorithms to cases where the design labels are not necessarily crisp, i.e., not binary-valued.
The proposed framework imbeds all crisp k-NNR's into a larger structure of fuzzy k-NNR's.
The resultant model enables neighborhood voting to be a continuous function of local labels at
a point to be classified. We emphasize that the decision itself may be crisp even when a fuzzy
k-NNR is utilized. The usefulness of this extension of the conventional technique is illustrated
by comparing the observed error rates of four classifiers (the hard k-NNR, two fuzzy k-NNR's,
and a fuzzy 1-nearest prototype rule (1-NPR)) on three data sets: Anderson's Iris data, and
samples from (synthetic) univariate and bivariate normal mixtures. Our conclusions: all four
designs yield comparable (usually within 4%) error rates; the Fuzzy c-Means (FCM) based
k-NNR is usually the best design; the FCM/1-NPR is the most efficient and perhaps most
useful of the four designs; and finally, that generalized NNR's are an important and useful
extension of the conventional ones.

Keywords: Classifier design, c-Means algorithm, Fuzzy sets, Nearest neighbors, Pattern
recognition.

1. Introduction and conclusions

A convent iona l pa t te rn recogni t ion system is a decision rule that assigns one of
c labels to (some representa t ion of) each test sample submit ted to the rule. In this
paper objects will be charac ter ized by feature vectors x e R s and the set of class
labels by Ic = (1, 2 c}. A n y funct ion D:RS---~ Ic is a classifier funct ion or
decision funct ion on RS: its act ion part i t ions R s into c disjoint regions, the inverse
images o f the e lements of Ic. I f one desires to include a re jec tance (no decision)
class, it can be realized by taking c = c + 1.

Statistical decision theory p resumes that the c object classes cap tured by D are
joint ly distr ibuted as a mixture o f c o m p o n e n t probabi l i ty density funct ions (pdf):

C

f (x) = ~ p~g(x lj) is the mixture ,
j=l

with
0 ~< pj ~< 1, pj the pr ior probabi l i ty of class j Vj,

g(x t J) = the pdf of class] Vj.

0165-0114/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)

(la)

(lb)

(lc)

238 J.C. Bezdek, S.K. Chuah, D. Leep

Bayes' rule relates the three factors in (la) to each other as follows:

p(jlx) =pjg(x Ij)/f(x), 1 <~j <<- c. (2)

In the sequel we shall denote the posterior vector whose elements are the left side
of (2) as p(x) = (p(1 Ix), p(2 Ix) p(c [x)) T. Any decision rule that is a
monotone increasing function of either side of (2) is called a Bayes decision rule.
In particular, if the factors at (1) are known, the rule

DB(X) = i ¢:> p(i Ix)>pfj Ix)Vj#~i, (3)

with ties resolved arbitrarly, is called the optimal Bayes classifier on R s with
respect to f (x) because D B minimizes the probability of misclassifying x. This
error rate is defined, for any classifier function D as

E (D) = a - f ~ ' ' ' ~ m a x { p i g (x l i) } d x , (4)

the integral being taken over the appropriate inverse images of D in R s. The
optimality of DB with respect to E, i.e., E B = E(DB) ~< E(D) VD :R ~ ---> Ic is well
known [1], but is actually true only when the loss matrix associated with the
problem is the 0-1 loss matrix. In this special instance D B also minimizes the
overall risk for all rules D. Henceforth, we consider only the 0-1 loss matrix case.

Being optimal relative to (4), Ea is often called upon to serve as a bench-mark
when comparing sub-optimal designs. Unfortunately, EB is almost always
impossible to compute even when f (x) is known; and is obviously not calculable
when f (x) is unknown (which is of course the usual case in practice). Thus, we
count, say/~(D), the average number of mistakes made by D on a labelled test
set, and interpret/~(D) either as (i) an estimate of the 'true but unknown' EB, or
(ii) an estimate of the future performance of D on fresh samples drawn in a
manner similar to the test data. Loosely speaking, using /~ for (i) asks for an
estimate of how well any D might do, whereas in (ii)/~ predicts how well this D
may do. Moreover,/~ is clearly dependent on both the test data used to compute
it and the design data used to find D. Because of these difficulties, the second use
of /~(D) - viz., to predict the future performance of D - is much less controver-
sial than its quality as an estimator of Ea: this is the view of/~ adhered to below.

There are two broad approaches to the design of a classifier based on the
mixture assumptions. In the parametric approach, labelled or unlabelled design
data is used to estimate (parameters of) the functions on the right-hand side of
(2); and the resultant densities are used to compute an approximate p(x) for use
in (3). Alternately, labelled design samples can be used to, given x, estimate p(x)
directly by examining the local distribution of class labels in the neighborhood of
x. The family of algorithms based on this latter idea are the k-nearest neighbor
rules (k-NNR): one calls them non-parametric because the left-hand side of (2) is
estimated directly from the design labels without resort to an intermediate
computation of the parameters of the right-hand side of (2). Although k-NNR's
can be used to estimate E B via lower and upper (asymptotic) bounds, we shall not
consider this aspect of k-NNR's below (see [2-4] for further discussion along this
line).

Generalized k-nearest neighbor rules 239

In essence, k-NNR's simply find the k NN's to x and then count the votes for
each class among these neighbors. There is a well established hierachy (cf. [4] for
an excellent survey) of k-NNR's in the literature, viz., the 1-NNR, k-NNR,
(k, I)-NNR, and (k,/i)-NNR, which are progressively more sophisticated in their
requirements for giving x a label in Ic. Common to all of these algorithms,
however, is the stipulation that the design labels are hard (non-fuzzy, crisp), i.e.,
that each neighbor to x is attached (wholly) to one and only one of the c classes.
Recently, a great deal of interest has arisen concerning the relaxation of this
requirement through the use of fuzzy label vectors, and consequently to fuzzy
k-NNR's [5, 6]. One of the main objectives of the present study is to define a
NNR formalism that unifies this work and embodies all of the previous k-NNR's
in a single framework. This will provide a basis for further extensions,
interpretations, and analysis of new generalizations of the extant theory and its
applications. A second objective of this paper is to compare the performance of
two fuzzy k-NNR's to the hard k-NNR; and to compare all three NNR's to a
fuzzy one-Nearest Prototype Rule (1-NPR). Section 2 discusses the generalized
k-NNR formalism. Section 3 briefly reviews 1-NPR's in general, and the
FCM/1-NPR in particular. Section 4 describes J6~wik's algorithm. Section 5
describes the data and computing protocols for the numerical examples of Section
6. Section 7 reports our conclusions, which are summarized briefly as follows:
• The FCM/k-NNR yields the best overall performance, especially for mixtures
of normal densities, of the four classifiers tested.
• The fuzzy 1-NPR is computationally superior (less storage and CPU time) than
all three k-NNR's, and yields error rates that are quite comparable to NNR
designs.
• All four designs produce comparable results on normal mixtures; and rules
that use (given) labelling information are somewhat better than those that ignore
it for very small design sample sets.
• Fuzzy generalizations of conventional k-NNR's do improve predicted perfor-
mance rates in most instances.

We conclude Section 7 with some conjectures and ideas for further research.
The Appendix gives a pseudo-code procedure for the generalized k-NNR.

2. The generalized NNR

A compact description of k-NN decision rules and algorithms for implementing
them is afforded by introducing some terminology associated with Vcn, the vector
space of real c x n matrices. Specifically, let W = [Wik] • V~n, and suppose its
entries satisfy three constraints:

wik•[0,1], l<~i<~c;l<~k<~n, (5a)

~ wik = l, l ~ k <~n, (5b)
i = 1 n

0 < ~ w~k<n, l<~i<~c. (5c)
k = l

240 J.C. Bezdek, S.K. Chuah, D. Leep

We denote by MI~ ~ the set of all such matrices:

MI~ ~ = { W e Vc~ I Wik satisfies (5)}, (6a)

and by Men the subset of Mrc ~ for which every entry of W is either 0 or 1:

Mc, = { W e Mfc n [Wik • {0, 1} Vi, k}. (6b)

It is also convenient to name the subsets of R ~ that contain single column vectors
of such matrices. Let

N f = { w e R ~ l O < ~ w i < ~ l V i , ~ w i = l } , (6c)
i= l

Nc = {w I wi E {0, 1} Vi}. (6d)

In the present context elements of these four sets have the following names and
interpretations:

w e Nc - hard label vectors,

w • (NI~ - N~) - fuzzy label vectors,

W • Mc~ ~ hard c-partitions of X,

W • (MI~ ~ - Mc~) - fuzzy c-partitions of X,

where X = {xt, x2, xn } is a set of n points in R s. The terms hard and fuzzy
c-partitions o f X accrue to Men and Mic ~ upon regarding Wik as Wi(Xk), where
wi :X--~ [0, 1] is the membership function for the i-th partitioning subset of X,
exhibited through its values along row i of W on all n points in X. The number Wig
is the grade o f membersh ip of x in wi, and when W • Mc~, its columns are just the
hard label vectors in Nc of any n points. Reference [7] contains a lengthy
discussion of the geometric and philosophical ramifications of these definitions, as
well as several numerical examples exemplifying their usefulness. It is also
convenient to have a notation for each column vector of W: let W (k) = (Wlk, WEk,
. . . , Wck) T, SO that for W ~ Mic ~, we have the association

W = [W O) W (2) . . . W (k) . . . W O)]eMfc +, (7a)

X = { X l x2 " " " Xk " " x~} c R s, (7b)

where $ " W (k) labels Xk". Note that each W (k) is a label vector in Nit. For
example, if x s belongs entirely to class 4 among c = 5 classes, then W (8) =
(0, 0, 0, 1, 0)a'; on the other hand, if the membership of x5 is divided among
classes 1, 2, and 4, say, in the percentages 40%, 22%, and 38%, respectively,
then W (5) = (0.40, 0.22, 0, 0.38, 0) T. W (8) is a hard label, W (5) is a fuzzy one. A
pair (X, W) satisfying (7) is called a hard (or fuzzy) labelled data set according as
w Mc+ (or (M1c. -

Given a .labelled data set (X, W), we ordinarily divide it into two parts: a
design set X d, [Xdl = rid, and a test set X t, [Xt[= nt, satisfying

Xa L+J X, = X , (8a)

Generalized k-nearest neighbor rules 241

Xd tq X, = ~ (the empty set), (8b)

n d -t- nt = n, (8c)

From the association in (7) there follows the partitioned association (perhaps
after suitable relabelling):

w = . . . w $. . . v ¢ $ ') l = W,l, (9a)

X = (x~ . . . x,~ I x,,~+l . . . x,,} = {Xa IX,}. (95)

So (Xd, Wd) is a labelled design set, and (Xp W~) is a labelled test set; note that Wa
and V¢ t are in Mrcnd and M1c,, ' respectively. We call (na:nt) the partition ratio
corresponding to the division of X into design and test sets.

Now we define the quantities needed to make (Xd. Wd) a k-NNR. Specifically,
let x be any vector in R s (it might be in Xd), let A be a metric on R ", and set

zl(x, y) = the A-distance between x, y e R s, (10a)

la = {1, 2 na - 1}: integers in I d are potential (10b)
numbers of nearest neighbors to any point x,

N k (x) = the k vectors in Xd Zi-dosest to x, where k • Id. (10c)
Nk(x) are the k-NN of x, x ~ Nk(X),

Jk(X) = the indices of the points in Nk(X), ordered so that (10d)
A(x, xi) ~< A(x, x,.+l), i = 1, 2 , k - 1,

E (lOe)
jEJk(X)

Note that Lk(x) • Nrc, i.e., it is a label vector for x. The i-th component of Lk(X),
say Lit(x), is easily interpreted: L~k(X) is the membership in class i assigned to x
by the labels of its k NN's. Thus, Lk(X) is, in general, a fuzzy label vector for x.
Indeed, kLg(x) is a hard label vector for x if and only if all of the columns {Wd 0)}
used to compute it via (10e) are hard labels. If a hard decision is required
(ultimately it usually is, although the membership of x in each class may be more
useful in intermediate processing goals), one could elect to assign x to the class of
maximum membership. A more stringent decision philosophy would be to require
(even the maximum 0 Ltk(x) tO exceed a prespecified threshold before converting
Lk(X) to a hard label (i.e., hard decision). Thus, we are led to the fuzzy (k, l~)
rule:

Definition 1. The generalized (k, li)-NNR classifier. Let k E Id, (Xa, Wa), be a
labelled (hard or fuzzy) data set, and let Lk(X) = (Llk(X), L2k(X) , Lck(X)) T be
the label vector for any x e R s computed via (10e). Finally, let {l 1, 12, l¢} be
class voting thresholds. The function Dk : R ~ ""> I~ defined as

Dk(X) = i ¢:> Lik(X) > l~ (11)

is the generalized (k, li)-NNR.

Rule (11) is not well defined unless the numbers {/i) are properly constrained.

242 J.C. Bezdek, S.K. Chuah, D. Leep

For example, E~=a Lik(x) = 1 because Lk(X) • Nr¢, so every li should be between 0
and 1. If the li's are large enough, Dg can fail to make any decision. Conversely,
if the l's are small enough, ties are inevitable, so a suitable set of tie-breaking
procedures is needed to make Dk a function. For example, suppose c = 4 and
Lk(X) = (0.65, 0.10, 0.25, 0) T. If li =0.7, Dk is undefined; if It =0.6, D~(x) = 1,
and if li = 0.20 Vi, then Dk(x)= 1 or 3 is double-valued, so is not a (classifier)
function. For our purpose it suffices to note that due caution must be exercised in
choosing the (l;} so that Dk is always singe-valued on R s and when it is, (11) is the
proper generalization of all hard k-NNR families having equivalent conventions.
The virtues of (11) are twofold: First, it enables one to discriminate against
selected classes by raising or lowering It for a specific class as the application
demands. And second, the k-NNR's are extended to fuzzy labels of Xd in a
natural way that completely imbeds the original methodology. The primary
advantage in allowing W d to be a fuzzy labelling of Xd is that the label vector
Lk(X) of X defined at (10e) can be a continuous function of the label information
about mixed classes in its neighborhood. If, e.g., k = c = 3 and Wd e Msn is hard,
the only possible values for L~k(X) - t h e membership assigned to x for class i by
the labels in Jg(x) - are the four numbers 0, ½, 32, and 1; whereas all values in [0, 1]
are possible (subject to constraint (6c)) for the elements of Lk(X) if Wd • MS3n is a
set of fuzzy design labels. Fuzzy k-NNR's ostensibly provide a continuous 'tuning
mechanism' for thresholding votes as opposed to the set of preselected bands (the
possible discrete values of L~k(X)) imposed by hard k-NNR's. Consequently, one
may expect more precise performance when the data represent truly mixed
classes. Returning to our example with k = c = 3, taking equal values of I t at any
value less than 0.67 (ignoring roundoff) in (11) yields the conventional hard
3-NNR with simple majority (at least 2 out of 3) voting. Moreover, this happens
if and only if (say) L~k(x) is the unique maximum (because E Lik(X) = 1) of the
L]k(X), SO (11) has, for this special case, the more familiar form of simple majority
rule:

Dk(X) = i ~ Ltk(X) > Ljk(x) Vj ~ i. (12)

Further, the substance of Cover and Hart's classic result [8] in this special case is
that kLk(X) • N¢ and

Lk(X) ~ p(x) as (k, n) ~ ~ with k/n property constrained. (13)

In turn, Dk at (12) 'approaches' the optimal performance of D B. It is beyond the
scope of this study to do more than observe that, for a fuzzy label sequence
{Lk(X)} indexed on n, that if {kLk(X)}---> kL(x) • N¢, there is surely a suitable
extension of the Cover and Hart result for the fuzzy k-NNR case. In what
follows, we are content to cc,mpare several instances of (12) numerically, with a
view towards deciding whether or not fuzzy k-NNR's do in fact improve the
expected classifier performance of Dk over their hard counterparts. Does this
make any sense? It does, because Dk(X) = i in (11) is a hard decision about x even
when the labels Wa used to get it are fuzzy. What cannot be fuzzy for our current
objective is the set of testing labels W, for X r With a view towards comparing the
performance of various classifiers on R s we make

Generalized k-nearest neighbor rules 243

Delh~ion 2. Empirical error rate of D. Let D be any decision function,
D : R s --* I~, and let (Xt, Wt) be a hard test set, vet • M~n,. The empirical error rate
of D is

rlt

E(D) = ~ e(xj)/nt (14a)
/ ' =1

where xj • Xt and

1, D(xj) =i and W~)=0 ,

e(xj)= 0, otherwise.
(lab)

/~(D) is just the average number of labelling errors made by D on X~ W 0) is the
i-th component of W °), the hard labels for xj.

We have not, in Definition 2, specified any relationship between the samples Xt
and, if used, any design samples X d used to train (or find) the classifier function D
being tested. This topic is well discussed elsewhere (cf. [1, 4]). Suffice it to say
that Xt and Xa should be independent, as they will be, e.g., when the partitioning
scheme for X exhibited at (9) is used.

The next detail requiring attention is the value of k: how many neighbors
should be used? Different k's obviously result in different classifiers and hence
various/~(Dk)'S. If we let k vary from 1 to some maximum value, say kma x • I d we
end up with a sequence of empirical error rates, {/~(D1),/~(D2) /~(Dk.~)}.
An inelegant but pragmatic way to choose k is to select the k* that produces the
smallest error rate. We shall call (k*, F,(Dko)) the 'optimal' number of nearest
neighbors and predicted error rate for (Xd, Wa) when k* is chosen so that

E(Dko) = min{/~(Dj) : 1 ~<j ~< kmax}. (15)

k* is deafly a function of many variables, some of which (e.g., the actual samples
Xd and X~ used) are beyond theoretical analysis. In view of this, (15) is about the
best we can do.

At this point we have a completely specified procedure for the generalized
k-NNR. The procedure is given in the Appendix in 'pseudo-code' format; in the
sequel we shall refer to it as PROC.KNNR. Each of the variables passed to
PROC.KNNR alters its output (k*, E(Dk.)). In order to study the effect of
various labelling schema for the same design set, we fix all of the inputs to
PROC.KNNR except Wd, the labels attached to Xd. In this case (k*, E(Dk.))
become functions of Wd alone; one can envision a truly gruesome notation for
the dependency of /~(Dk.) on the labels; e.g., (E(Dk.)[(Wd)]). We ease this
problem by identifying (k*,/~(Dk.)) with the algorithm used to generate the label
matrix Wd. Specifically then, how can different Wd's arise? For a fixed design set
Xd several possibilities exist:

Type (i). Wd • Mend is hard (given).
Type (ii). Wd • Mien d is fuzzy (given).
Type (iii). A hard W d as in (i) is converted into fuzzy Wd as in (ii).
Type (iv). W d (and perhaps even c!) is unknown. Use Xd to produce: (a) W d as

244 J.C. Bezdek, S.K. Chuah, D. Leep

in (i); or (b), Wd as in (ii) by applying, respectively, a hard or fuzzy clustering
algorithm to Xa.

In this list 'given' can mean assigned or observed by man or machine;
'converted' means either by a human or with an algorithmic process; and
'produce' means by an algorithmic process (e.g., by clustering Xd). Type (i) is
presumably unique, and corresponds to the usual hard k-NNR situation. Here is
an example of (ii), i.e., a natural physical process in which it is possible,
reasonable, and desirable to assign fuzzy labels to the vectors in Xa: a sensor
searching for some object (against an unfamiliar background) may be covering
the assigned search area by scanning. At any instant, the object-recognition
system attached to the sensor is paying attention to a limited field of view; if the
boundaries of this field are not sharp, i.e., if the sensor's response to a pointlike
object fades gradually with displacement from the current center of attention,
then in collecting a set of pattern vectors to characterize the sought object under
various circumstances, it is natural to assign to each vector a fuzzy label
representing the degree to which the object was near the center of attention.
Possibility (iii) begs a question: if hard labels are given, what motivation can
there be for converting them into fuzzy ones? It is easy to envision cases where
the measurements (features) of Xk'S ~ X a from different classes exhibit con-
siderable overlap in R s even though their labels, if hard, imply that they are in
some sense well separated. Conversion as in (iii) simply attempts to make the
labels of the Xk'S more accurately reflect the relationship between their features.
Thus, Type (iii) labels are sought simply to improve the (expected) error rate of
the k-NNR upon which they are based. As an aside, we point out that the Type
(iii) situation is entirely analogous to the relationship between Hard and Fuzzy
c-Means: there are an infinite number of fuzzy generalizations of the (unique)
hard algorithm. Both situations are ultimately traceable to the extension of
membership values from {0, 1} to [0, 1]; and the trick in either case is to find a
'good', i.e., better fuzzy algorithm than the hard one based on a Type (i) Wd.

The last class, Type (iv), is the 'unsupervised learning' problem. Unlabelled
data is first labelled by a hard or fuzzy clustering algorithm; and then the labels
are themselves used with X a in the k-NNR classifier mode. This is clearly the
most difficult (c itself may be unknown!) and least tractable of the four
possibilities; we list it here only for completeness. In the examples to follow we
send one Type (i) and two Type (iii) sets of labels to PROC.KNNR with all other
variables fixed for each data set. The purpose of these experiments is threefold:
to demonstrate that Type (iii) processing does reduce the Type (i) error rate; to
compare two Type (iii) processes; and to compare the performance of two
generalized k-NNR's to a fuzzy 1-NPR. With this latter objective in mind, we
turn to a brief description of NPR's.

3. The nearest prototype rule: FCM

Given a set X d constituted as above, the label matrix W a (hard or fuzzy) is one
way to represent information about the class identity of each individual in Xd.

Genera l i zed k-neares t ne ighbor rules 245

Another (not necessarily equivalent) representation of this information is by class
prototypes, i.e., vectors in R s that are presumed to be paradigmatic of the
features one might expect for 'ideal' class representatives. Each class may have
multiple prototypes (in fact, if ndi is the number of vectors labelled as class i by
some Wd • Mcn~,)'~i ridi = rid, then the hard k-NNR is a n { n d i } multiple-prototype
rule).

The virtue of NPR's is in their compression of the na points into some smaller
number. The limit of this process is to represent all na~ points in class i by exactly
one class prototype, say vi • R s. Once the c prototypes are found, the 1-NPR is
easy to implement:

Definilion 3. The 1-NPR classifier. Let v = (vl, v2, . . . , Vc) T, vi • RSVi, found by
any means whatsoever, be class prototypes for the labels in Ic. Let x e R s. The
function D o : R s ---> I~ defined as

Oo(x) = i ¢=> A(x, ~)i) (A(x, IJj) Vj ¢ i, (16)

where A is any metric on R s and ties are broken arbitrarily, is called the 1-nearest
prototype rule associated with the pair (A, v).

Note first that/~(Do) at (14) is well defined for Do's as in (16):/~ will serve as a
common denominator for comparing NN and NP rules. 1-NPR's are discussed at
length in many works [1, 4, 7]. If A is induced by an inner product, e.g., the
action of D~ can be written in terms of affine functions (A(x, v;) can be replaced
by xTvi + ki), with the subsequent geometric characterization of D~ as a 'linear'
classifier.

Given (Xd, Wd) with Wa hard, an obvious set of prototypes to use are the
sample means of each labelled subset in Xd: letting [w/k] = Wd,

m i = w/icXk Wik, (17)
k = l t k = l

The vector m = (m 1, m 2, m c) defines D,,, at (16). D,,,, is, for a given A, the
1-NPR classifier called the Hard c-Means (HCM) 1-NPR, regardless of whether
Wd is given (Type (i)), or computed (Type (iv)(a)). There are many alternatives
to (17). Of these, we are particularly interested in the following: given Xd, let us
apply the Fuzzy c-Means (FCM) algorithm (cf. [7] or [13]) to it. At termination,
there are two outputs, (Wd) and v:

f Wd = Wfcm • M1cn~ a fuzzy label matrix for Xd,)
.-*Jeither Type (iii) or Type (iv)(b), to use in the~ (18a)

(FCM/k-NNR at (11) J

Xd --* [PROC.FCM [

~..~f lff = IJfc m -~ (t l l , 132.~. . . , iYc) a set of prototypes
[for Xa, to use in (16) with A as a fuzzy 1-NPRJ (18b)

We shall henceforth refer to D,, with (A, v) from (18b) as a FCM/1-NPR and to

246 J.C. Bezdek, S.K. Chuah, D. Leep

Dk when labels (18a) are used in (11) as a FCM/k-NNR. It is clear that the
implemenability and computational efficiency of D,, from (18b) is superior to any
Dk at (11) using labels from (18a): it is not clear that the two representations of
the 'classifier information' resident in the fuzzy labels (Wit,,) and prototypes (Vfcm)
are equivalent. Previous studies [10, 11, 12] have compared the FCM/1-NPR with
the HCM/1-NPR, MLE/1-NPR, and Hard/k-NNR's (MLE refers to maximum
likelihood estimation: both labelled and unlabelled forms have been investig-
ated). In all of these studies the FCM/1-NPR has proven superior in terms of
minimizing /~(D): an objective of the examples below is to determine whether
this continues to hold for comparisons with fuzzy k-NNR's.

A complete description of FCM including a FORTRAN listing with test
examples is given in [13]. We shall refer to it here as PROC.FCM; its primary
input is X a and its outputs are (Wa = Wfc,n, v = VScm) where Wy~,~ is a fuzzy
labelling of X d and the vi's are fuzzy prototypes for Xa. Consult [7] for a more
expansive discussion of theoretical aspects of FCM. The FCM/k-NNR and
FCM/1-NPR classifier designs are illustrated schematically in Figure 1. Observe
that the * has been dropped from the notation for the optimal number of
neighbors (k~,~--~ kfc,,); and we have suppressed the functional dependency of/~

• and D,,fo m to simplify the notation. on Dk~c..
As an aside, generalized NNR's of Types (iii) and (iv) may or may not be

'parametric' in the sense discussed above. For example, the FCM/k-NNR as
defined here is not statistically parametric, but W ft,, is certainly an est imate-

Fuzzy Design Labels]

--

I
I 0utput of th~

FCM/k-NNR I

I,os o Set X,]

l
I I

I Hard Test I ~1
Set (Wt ,Xt) -1

1
Fuzzy Prototypes I
v = v_gum ~R ~a I

D u in (16) 1

i
Output of the I
FC~/1-se~ I

Fig. 1. The FCM/k-NNR and FCM/1-NPR classifiers.

Generalized k-nearest neighbor rules 247

produced algorithmically with Xd of parameters (viz., W1~m) needed to define the
(presumably) non-parametric rule defined by (Xd, Wd = Wry, k* = krem)!

4. J6~4k's fuzzy NNR

The FCM/k-NNR is a Type (iii) rule which simply discards (if known) Wa, the
hard labels accompanying Xd, and processes)Ca with FCM to produce the fuzzy
design labels Wr~ m in (18a). J6/a,cik's algorithm [5] is also a Type (iii) method, but
in his scheme the given labels Wd of Xd are used to initialize an iterative method
which ultimately produces a set of fuzzy design labels, called Wj below, for Xd.
J6iwik's algorithm is complicated to describe (c.f. [5, 9]); we briefly summarize
the main steps here so that readers will understand the numerical examples of
Section 6.

First, a division of data (X, W) as shown at (9) is made, but for this discussion
it is convenient to replace the subscript (t) by (2); then (X2, W2) is temporarily
laid aside. In order to describe J6£,wik's method, we add the subscript h to Wd:
Wdh denotes the h-th iterate in a sequence of labellings of Xd, h = 0, 1, 2 and
we take Wd = Wdo, i.e., the given hard labels of Xd are its initial labels.

Phase 1 of J6£~vik's Method.
(J1.1) Send (X d, Wao) to PROC.KNNR with kmax = (nd - 1) and (Xt, Wt)=
(Xd, Wao). Label the outputs (k*, E(Dk.)) = (ko, F-,o).
(J1.2) For any integer h I> 0, define the column vectors

W~)h+l = (khLkh(Xi) 4- W~)/(kh + 1), (19)

where i = 1, 2 n d and Lk(X) is defined at (10e). In particular, the fuzzy
labelling Wall of Xa is computed with (Wdo, ko) and (19).
01.3) For h = 1, 2 hm~:

(a) Send design data (Xa, Wah) and test data (Xa, Wao) to PROC.KNNR, and
call its outputs (kh, Eh). Compute Wd, h+l per (19).

(b) if/~h ~</~h+~ set (Wdh, kh, Eh) = (W'~, k~, E~) and stop. Otherwise, next h.

Phase 2 of J6£~vik's Method.
(J2.1) Compute fuzzy labels for the n2 vectors in X2 using (W~, k~) in formula
(10e). Since each Lk(X) ~ N/c, the augmented matrix Wdo = [W~ [Lk~(xl),
. . . . Lkr (xn:)] e M:cn is a fuzzy label matrix for X = Xd t3)(2.
(J2.2) Send design data (X, WdO) and test data (X, W) to PROC.KNNR, and call
its outputs (ko, ,Eo). Compute Wall via (19). Note that Wdl is now a fuzzy
c-partition of X, i.e., is a (c x n) matrix in M:c~.
(J2.3) For h = 1, 2 , . . . , hm~:

(a) Send desig_n data (X, Wdh) and test data (X, W) to PROC.KNNR, and call
its outputs (k h, Eh). Compute Wa~h+l per (19).

(b) If/~h ~</~h+l set (Wdh, k h, Eh) = (W~, k~, E~) and stop. Otherwise, next h.

248 J.C. Bezdek, S.K. Chuah, D. Leep

Phase 3 of J6£,wik's Method.
(J3.1) Select the final set of NNR parameters (Xa, Wa, k) for use in (11) as
follows:

i f / ~ < / ~ : (Xa, Wa, k)=(Xa, W~, k~), (20a)

i f / ~ > / ~ : (X a, Wa, k) = (X, W~, k~). (20b)

(J3.2) Denote the final design set chosen at (20) by (Xaj, Waj, kaj), and call the
error rate (min(/~ ' , /~)) =/~j.

/~j in (J3.2) has essentially been computed via (15) using the hold-one-out
method. As stated earlier, it is not our purpose here to argue the merits of/~j as
an estimate of F-,B; rather, we view it as an indication of the expected performance
of (11) using the design parameters chosen with (20).

The two-phase approach leading to (20) complicates direct comparisons with,
e.g., the FCM/k-NNR and FCM/1-NPR, because it is not known in advance
whether gdj will be all of X (20b) or a subset of X (20a). Moreover, it is clear
that the partition ratio (na:nz) affects not only the final choice of Xaj in (J3.2);
but also the values of/~ic,~ and/~rn~,. In particular, when (20b) is selected, a direct
comparison with the FCM classifiers would necessitate regarding X d in (18) as all
of X; then Wrc m ~ Mfcn, and there would be no independent test data left with
which to compute the empirical error rates of D1c m o r Dfn p. There are several
possibilities for ameliorating this dilemma. For example, one might adopt the
hold-one-out strategy by taking (na :n2)= (n - 1:1) in (18); and then averaging
the results of n estimates of EIc m, /~rnp by running (18) n times, once for each
deleted point in X. This technique would produce an estimate that seems, for
large enough n, 'pretty comparable' to/~j when (20b) is used. A different strategy
is to simply 'hide' some fraction of X from all the classifiers, and use this hidden
data as a new test set: this latter strategy is adopted below.

J6£wik's method invites several interesting questions. For example, the
termination criterion in both phases is to stop when /~h ~</~h+l. /~h is defined on
the (possibly infinite) set {0, 1, 2 , . . . }. One wonders about the 'global' minimum
of/~h: does one always exist? Is it unique? Is it the first 'local' minimum? A
second line of inquiry: under what circumstances can we expect (20a) to hold,
i.e., when will adding more (fuzzy) labels degrade the predicted performance of
the fuzzy J/k-NNR? And finally, is the investment of computation time required
to find (Wj, kj) sufficiently rewarding to justify the extra Phase 2 calculations?
The experiments below are designed with these questions in mind.

5. Computing protocols

All three NNR's were tested using equation (12). In particular, the (hard) label
corresponding to the class having maximum membership in Nk(x) was assigned to
each x ~ X r The Euclidean norm and the inner product were used for all
distances: for x, y e R s,

<x, y) = xTy = ~ XYi, (21a)
i=I

Generalized k-nearest neighbor rules 249

a2(x, 7) = Iix-7112 = <x - 7 , x - 7 > . (21b)

This choice for A is admittedly uninspired (albeit convenient, and we suspect, not
greatly injurious to our conclusions). We are content here to remark that the
choice for A in NN and NP designs is obviously an important facet of the
expected performance of D; and that Fukunaga and his co-workers have
pioneered several ingenious methods for determining an optimal A for use in
(hard) k-NNR's [14]. The value of the weighting exponent (m) for the FCM
algorithm was fixed at m = 2.00. Ties were broken in all algorithms by randomly
selecting an alternative from the ones available. Three data sets were used for the
experiments:

Data Set A. Anderson's Iris Data [15]. c = 3 classes; s = 4 features; n = 150
samples, 50 from each class.

Data Set B. (Synthetic) univariate normal data drawn from mixture (la) with
Pl =P2 = 0 . 5 ; and c = 2 classes; s = 1 feature; n = 1000 samples, 500 from each
class; g(x [1) - N(1, 1), g(x [2) - N(2, 1); Ea = 0.31 ~ the 'true' optimal Bayes
error rate.

Data Set C. (Synthetic) bivariate normal data drawn from mixture (la) with
Pl =P2 = 0 . 5 , and c -- 2 classes; s = 2 features; n -- 1000 samples, 500 from each
class;

g(x I 1) ~ N(IlI1, I). I~1 = (1, 1) T,

g(x [2) - N(~2, I), ~ = (2, 2)r;

E B = 0.24 ~ the 'true' optimal Bayes error rate.

These data sets are henceforth referred to collectively as (X, W), X being the
pooled samples, and W being the observed (hard) labels attached to X.
Partitioning of the data was done by dividing each (X, W) into three subpairs:

W = [Wdl Wz[Wt], (22a)

x = { x d l x z l x ,) , (22b)

n =nd + n2 + n~ (22c)

Our division in (22) reserves (Xt, Wt) as a 'final' test set for all algorithms
against the possibility that J6£-ccik's scheme opts for (20b) and uses (X2 tO Xa, W2)
as discussed in Section 4 above. The fraction of each data set laid aside for final
testing was as follows: n,A = 36 samples, 12 from each class; and n,B = ntc = 100
samples, 50 from each class.

The remaining samples in each case were divided into Xa and)(2 in five different
apparent partition ratios as follows: (ha : nz) = (1 : 2), (1 : 1), (2: 1), (1 : 9), and
(9 : 1). These would be 'real' partition ratios as defined in (9) ff J6~wik's method
always chose (20a), and the artifice of using the 'fresh' test set (X,, W,) could be

250 J.C. Bezdek, S.K. Chuah, D. Leep

Table 1. Summary of classifiers

Design Optimal no. Empirical
Classifier, D labels, W d of neighbors, k* error rate,/~(D)

Hard/k-NNR Wnn knn /~nn
Fuzzy J/k-NNR Wj kj /~j
FCM/k-NNR l'Vf~ m kf~,,, E_/~,,,
FCM/I-NPR Wr,, p - Emp

eliminated. As it turned out, eleven of the fifteen runs made on data sets A, B,
and C using the five partition ratios above resulted in/~j = / ~ . For the Iris data,
Phase 2 processing using X2 resulted in lowering /~j to / ~ < / ~ in all but the
(1:9) case; in this latter instance na = 12 points resulted in no error, whereas
nd+ n2 = 114 points had a 7% error rate. We mention that in the four instances
where/~j = / ~ , the improvement on passing to Phase 2 only ranged from 0.2% to
2.5%. In view of this it seems that for 'reasonable' ratios of (rid :n2), Phase 2 of
J6£wik's algorithm may not be very cost effective. Consequently, the four
classifiers are compared below on common data sets which, in the notation of
equation (22), have the common labels (Xd, Wd) and (At, Wt). In other words, our
discussion follow the notation in (9); the partition ratios shown in the tables are
real o n e s - they look a bit bizarre because data sets labelled X2 in (22) have
simply been ignored (the ratios (ha : n2) were integer valuedt).

Finally, we simplify the notation for the discussion below by letting the output
of PROC.KNNR be called (knn, /~nn) when (k*, E(Dk*)) are the result of using
PROC.KNNR in the crisp mode (i.e., when the labels for the design data are
hard, Wd = W~n e McJ . Summarizing, we will compare four classifiers with
notations for common parameters as shown in Table 1.

6. Numerical examples

Tables 2-4 summarize the data processing of A, B, and C with the four
classifiers under examination. The columns are arranged (left to right) in
ascending order of the partition ratio nd/nt. Consequently, one generally expects
/~(D) to decrease (moving right in these tables) as the number of design samples
increases (the number of test samples are fixed in each table). This is not always
the case, nor is it true that the optimal number of neighbors always decreases
with an increase in the number of training samples. These anomalies are probably
due to the vagaries of random sampling. Comparing Tables 2-4 further, there is
no apparent trend between (optimal) numbers of neighbors (k*) and the various
algorithms. Indeed, the Fuzzy J/k-NNR, e.g., uses on average the most (4.6),
intermediate (5.2), and least (2.4) number of neighbors compared to the other
NNR's to achieve minimal/~ rates over the three sets A, B, and C, respectively.
In terms of computing then, there seems little hope in being able to predict a
priori that any particular generalized k-NNR will be more efficient (use a fewer
number of neighbors) than a competitor; and moreover, increasing the size of the

Generalized k-nearest neighbor rules

Table 2. Empirical error rates (in percent) for data set A: The Iris
data

Partition ratio na/nt with n t = 36
Row-wise

0.33 1.00 1.58 2.16 2.83 average

k*
kn~ 1 1 3 4 1 2
kj 1 1 1 10 10 4.6
kfem 1 6 1 1 1 2

/~nn 0.0 2.8 0.0 0.0 2.8 1.12
/~j 0.0 2.8 2.8 2.8 5.6 2.8
E_fcm 38.9 33.3 5.6 5.6 5.6 17.8
Ep,p 38.9 38.9 5.6 5.6 11.1 20.0

251

design set does not necessarily decrease either the optimal number of neighbors
k* or the corresponding empirical error rate E(Dk.).

Turning to the row-wise averages of E we note from Table 2 that the Hard and
Fuzzy J/k-NNR's both achieved very good results with data set A. Both
FCM-based rules were on average quite poor, the worst performance occurring
when na/nt = 0.33 where both FCM designs had 38.9% error rates. The high
error rates for both FCM-based designs at nd ~< n, = 36 are in all likelihood due to
the fact that (Wrc m, vie,,,) are being estimated in unsupervised fashion for (3)
classes in 4-dimensional feature space using either 4 or 12 unidenttfied samples per
class! Statistically, this is quite obviously the cause of poor performance here. On
the whole, Table 2 suggests that when n is small relative to c and k, it is probably
a bad idea to ignore the information reposited in (given) hard labels: the Hard
and Fuzzy J/k-NNR's don't, whereas the FCM-based classifiers do.

Turning to Table 3, one finds quite a different situation. Data set B has a
calculable Bayes error rate of E a = 3 1 % , so in the limit a lower rate is
theoretically impossible. However, the row-wise averages of/~I~-, and /~p are,
respectively, 29.4% and 29.8%. This re-emphasizes a point made in an earlier
comparison of/~nn to /~p [10], viz., that there is nothing in the theory to preclude

Table 3. Empirical error rates (in Percent) for data set B: A univariate
normal mixture

Partition ratio nd/n t with nt = 100
Row-wise

0.90 3.00 4.50 6.00 8.10 average

k,n 9 15 15 18 16 15
k* kj 1 9 8 3 5 5.2

krc m 8 2 1 1 1 2.6

/~nn 40 29 34 34 27 32.8
/~j 32 32 36 40 31 34.2
E_fcm 31 29 29 29 29 29.4
E~p 33 29 29 29 29 29.8

E B 31 31 31 31 31 31.0

252 J.C. Bezdek, S.K. Chuah, D. Leep

better performance than Ea with finite sets of samples. Indeed, the values in
Table 3 reinforce our remarks above; it is hard to interpret/~(D) in (14) as more
than a very rough estimate of Ea, not is it safe to assume that/~(D) is necessarily
greater than the 'true but unknown' Bayes error rate. Our use o f /~(D) for a
given D as a predictor of future performance with samples of the same type and
size seems uncontrovertible. In this context Table 3 suggests that the FCM/k-
NNR is the best choice for data such as B, predicting an average error rate for
Die,, which is about 4.8% lower than/~j = 34.2%. Note further that on average
only 0.4% separate the FCM/k-NNR and FCM/1-NPR error rates. For these
data, the most cost-efficient classifier is Dy, p because the storage and calculations
involved in (18b) + (16) for the FCM/1-NPR are less than for (18a) + (12) for the
FCM/k-NNR. Finally, we point out two differences between Tables 2 and 3 and
might further account for the reversal in rankings of the two FCM designs with
the Hard and Fuzzy J/k-NNR's; (i) the data in B are normally distributed, and
(ii), training sample sizes run from ndi = 45 to ndi = 405 (unlabelled) samples per
class in Table 3. Both of these facts seem to improve the quality of FCM-based
designs.

Using the same method of ranking the four designs in Table 4 again yields the
FCM/k-NNR as the classifier of choice; and again, the Fuzzy J/k-NNR is ranked
last, with a row-wise average, /~j=28.6%, some 3.8% higher than /~Ic,,. Note
here that none of the four designs predict (on average) an /~(D) lower than
Ea = 0.24. All four are again good 'ballpark' estimates (within 5% in all cases for
both sets B and C) of EB.

Another aspect of our study concerned the termination criterion of J6~wik,
step (b) of (J1.3). To investigate this stopping rule we ignored the criterion and
ran Phase 1 of J6~wik's rule out to h = 50 and then plotted/~h as a function of h.
The results, shown in Figure 2, are quite interesting because three radically
different types of graphs were observed. Figure 2(a) involves the IRIS data while
Figures 2(b) and 2(c) involves data distributed as two-class mixtures of N(#i, 1)
normals. For, view 2(a), /~h oscillates from a 'local' minimum of 2.8% to a local
maximum of 4.0%, having five aperiodic cycles over the integers 0 to 50. Since

Table 4. Empirical error rates (in percent) for data
normal mixture

Partition ratio nd/n t with nt = 100

set C: A bivariate

k*

F~

knn 6 8 16 17 11 11.6
kj 3 1 1 2 5 2.4
kr¢ m 7 9 13 22 2 10.6

/~nn 24 24 27 27 27 25.8
/~j 28 26 28 32 29 28.6
Efcm 23 25 25 25 26 24.8
E~p 24 26 27 27 27 26.2

24 24 24 24 24 24.0

Row-wise
0.90 3.00 4.50 6.00 8.10 average

(a)

Generalized k-nearest neighbor rules

Eh

.04

.03

h=2 : First Global Min

I ' 0 20
I I i t h

30 40 50

253

(b)

(c)

.30

.20

.32

.27

~h

I

!
1~ h=2 : First Global Min

! I I t I
10 20 30 40

h

Fig. 2. O p t i m a l (Phase 1) e r ro r r a t e s for the J / k - N N R as a func t ion of i t e ra te h.

J~-,z = #--3 = 2.8%, (J1.3(b)) would terminate Phase l at h = 3 with k~ = 1. The
point of Figure 2(a) is to discover if some higher value of h might result in an/~h
even lower than #-e. This was not the case; (J1.3(b)) here stops Phase 1 at the
global minimum of/~h; and it occurs at the first (i.e., least) value of h where /~h
minimizes with respect to /~h÷p Figure 2(b) shows a much different behavior

i

I

I

i

I

I

I
I

1
t

t
i~ h=2 : First Global Min I

h I I I I !

i0 20 30 40 50

50

254 J.C. Bezdek, S.K. Chuah, D. Leep

using a different data s e t - but it supports the same conclusions. Namely, /~h
achieves a global minimum as early as possible (again at h = 2), and never
increases as h runs out to 50. Finally, a third type of behavior is manifested by the
graph shown in Figure 2(c), wherein /~h has global minimum at h = 2 and again
for all h from 35-50. Note, however, that in this third case /~h has several local
minima at larger values of/~h than/~2. In all three cases, these examples suggest
that J6~wik's stopping rule possesses the properties one would like it to have; it
does attain a global minimum in the smallest possible number of iterations.
Moreover, in all three cases, this happens at h = 2. One wonders if this might be
the case in every instance!

7. Conclusions

First, some remarks about J6~wik's design. Our calculations indicate that this
algorithm is well defined in the sense that the stopping rule is consistent. A
theoretical investigation supporting our empirical results concerning /~h is
desirable. Our experience with J/k-NNR indicates that Phase 2 of the algorithm
seldom improves the performance of the Phase 1 design. In the four cases with
data set A where Phase 2 did improve the Phase 1 result, the average
improvement in /~j was 1.2%. The cost of this marginal decrease in terms of
computing is quite high. In general it appears that modifying the J/k-NNR by
simply stopping at (J1.3) (perhaps always at h = 2?) usually produces the optimal
result. Finally, the J/k-NNR was always within a few percent of the 'best' (in
terms of /~(D)) design, but in our experiments never out-performed all of its
competitors. However, with small data sets (such as A) we feel that utilization of
the labelling informaion residing in Wd is necessary, and the J/k-NNR does so in a
very interesting manner. This aspect of J6~wik's algorithm deserves further study.

Second, what can be said about the FCM/k-NNR? This design provided the
best results for both normal mixtures among all the designs compared, so it seems
safe to assert that the FCM/k-NNR at least warrants more extensive field tests
whenever NNR's are being used. It is too early to conclude that normality is an
important precondition for success with the FCM/k-NNR. However, evidence
that this may be true is mounting (cf. [11, 12] for additional examples in other
contexts that suggest FCM is particularly effective when the g(x [])'s are
Gaussian). A further supposition along these lines concerns the link between the
norm metric A used in (11), the norm used to measure similarity in FCM, and the
shape of level sets of the g(x]])'s. In examples B and C, the Euclidean norm (for
A and FCM) is well matched with the covariance structure of the g's, because
both are essentially circular, whereas the structure of the g's is unknown in
example A. Although FCM makes no statistical assumptions whatsoever, it does
seem to consistently yield its best performance when the data are drawn from a
mixture of normals. The theoretical reason for this apparent behavior has not yet
emerged.

Do Wfc m in (18a) and Vfc m in (18b) contain the same information? More
specifically, are the FCM/k-NNR and FCM/1-NPR operationally equivalent

Generalized k-nearest neighbor rules 255

classifiers? On the basis of the results in Tables 2-4 it appears that, for all
practical purposes, the answer is yes. The classifier Dicm consistently exhibited
beter performance than D ~ , - b u t how much better? Over fifteen runs, the
FCM/k-NNR had an average error rate about 1.33% less than the FCM/1-NPR!
Against this negligibly small improvement are three very important advantages
for Df,,p. First, Di,,p needs much smaller storage: once found, only vi¢,~ need be
stored (cs real numbers), as compared to DIe,, , storing Xd and Wr¢ m (nd(s + C) real
numbers). For example, the storage required for these parameters in column (5)
of Table 4 is cs = 4 for D~p whereas (nd(S + C))= 810(2 + 2)= 3240 for Dicm.
Second, the number of operations required per decision is as follows: Dynp
requires c distance calculations, whereas Die m needs n a such computations. Using
the same column of Table 4 for this comparison, Dhp completed its test of X, by
calculating 2(100) = 200 distances; Df~,~ needed 810(100) = 81 000! Thus, D~p is at
least several orders of magnitude better than Drc m in terms of both storage and
CPU time. And last, D~,p is more easily implemented in hardware for real-time
applications. These factors may or may not outweigh the apparent reduction in/~
realized by the FCM/k-NNR as compared to the FCM/1-NPR- but certainly
they should be kept in mind!.

Do the examples above provide enough evidence to justify further study of
generalized NNR's? Certainly (11) raises some interesting theoretical issues: what
convergence theory can be established for decision rule (11)? What about upper
and lower bounds on Ea? Are there theoretical reasons for preferring a particular
form of the generalized NNR? And for the applications community, the
numerical examples presented above certainly establish the utility of generalized
k-NNR's. Several investigations are underway to corroborate some of these
suppositions.

References

[1] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis (Wiley-lnterscience, New
York, 1974).

[2] K. Fukunaga and T.E. Flick, Density identification and risk estimation, IEEE Trans. Pattern
Anal. Math. Intell. (1985) to appear.

[3] J.M. Garnett, III and S.S. Yau, Nonparametric estimation of the Bayes error of feature
extractors using ordered nearest neighbor sets, IEEE Trans. Comput. 26 (1977) 46-54.

[4] J. Kittler and P.A. DeVijver, An efficient estimator of pattern recognition system error
probability, Pattern Recognition 13 (1981) 245-249.

[5] A. J6~wik, A learning scheme for a fuzzy k-NN rule, Pattern Recognition Lett. 1 (1983)
287-289.

[6] R.P.W. Duin, The use of continuous variables for labelling objects, Pattern Recognition Lett. 1
(1982) 15-20.

[7] J. Bezdek, Pattern Recognition with Fuzzy Objective Functions (Plenum, New York, 1981).
[8] T.M. Cover and P.E. Hart, Nearest neighbor pattern classification, IEEE Trans. Inform. Theory

13 (1967) 21-27.
[9] S. Chuah and J. Bezdek, Optimal classifier design using fuzzy k-nearest neighbor rules, in: J.

Kacprzyk and S. Orlovski, Eds., Soft Optimization Models Using Fuzzy Sets and Possibility
Theory (1986), to appear.

[10] J. Bezdek and P. Castelaz, Prototype classification and feature selection with fuzzy sets, IEEE
Trans. Systems Man Cybernet. 7 (1977) 87-92.

256 J.C. Bezdek, S.K. Chuah, D. Leep

[11] J. Bezdek and J. Dunn, Optimal fuzzy partitions: A heuristic for estimating the parameters in a
mixture of normal distributions, IEEE Trans. Comput. 24 (1975) 835-838.

[12] J. Bezdek, R. Hathaway and V. Huggins, Parametric estimation for normal mixtures, Pattern
Recognition Lett. 3 (1985) 79-84.

[13] J. Bezdek, R. Ehrlich, W. Full, FCM: The fuzzy c-means clustering algorithms, Comput. Geosci.
10 (1984) 191-203.

[14] R.D. Short and K. Fukunaga, The optimal distance measure for nearest neighbor classification,
IEEE Trans. Inform. Theory 27 (1981) 622-627.

[15] R.A. Fisher, The use of multiple measurements in taxanomic problems, Ann. Eugenics 7 (1936)
179-188.

Appendix. PROC.KNNR: The generalized k-NNR

Input:

Parameters:
Initialize:

Output:

A, a metric for R ~
(Xd, Wd) a labelled design set, Wd hard or fuzzy
(X,, VCe) a labelled test set, Wt hard
(11 lc) a set of voting thresholds for (11)
c, rid, nt, kmax (maximum number of neighbors tried)
/~(Ok,~,) = (0, 0 ,0)
Loop
For j = 1 to nt

Choose xj ~. X t
Find Nk(Xj) per (10c)
Find Jk(Xj) per (10d)
For i = 1 to kma x

Find Li(xj) per (10e)
Find Di(xj) per (11), D = D i, break ties arbitrarily
Find ei(x~) - per (14b), D = D,
E(Oi) = E(Oi) + ei(xj)/n,

Next i
Next j
Find (k*, E(Dk.)) per (15)
(k*, E(Dk.)) as in (15), the optimal number of neighbors and
minimum predicted error rate for the design set (Xd, Wd).

Note 1. This procedure automatically finds the smallest number k* of nearest
neighbors to use with (Xd, Wd) that produces the minimal error rate E(Dk.) on
(X t, Wt).

Note 2. One can send (X a, Wa) to this procedure twice, i.e., as both the design
set and test set, provided Wa is hard. P R O C . K N N R accessed in this fashion
corresponds to the so-called ' leave-one-out ' method of establishing E,(Dk.) using
all of the samples for design.

